Palladium Hydride-Enabled Hydroalkenylation of Strained Molecules

Ziyan Zhang and Vladimir Gevorgyan*

Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W Campbell RD, Richardson, Texas 75080, United States, Email: vlad@utdallas.edu

Table of Contents

1.	General Information	S2
2.	Preparation of Starting Materials	S 3
3.	Reaction Optimization for Hydroalkenylation of Cyclopropenes	S9
4.	General Procedures for Hydroalkenylation of Cyclopropenes	S12
5.	Procedure for 1 mmol Scale Preparation of 3a	S29
6.	Reaction Optimization for Hydroalkenylation of BCBs	S30
7.	General Procedures for Hydroalkenylation of BCBs	S31
8.	General Procedures for Hydroalkenylation/Diastereoselective Rearrangement Cascade	S35
9.	Reactions of Cyclopropenes with α -Ester Hydrazone	S39
10.	Post-functionalizations	S40
11.	Mechanistic Studies	S45
12.	Assignment of Relative Configurations	S 61
13.	NMR Spectral Data	S67
14.	References	S148

1. General Information

¹H, ¹³C, and ¹⁹F NMR spectra were recorded on Bruker Avance III HD (600 MHz) instrument. ¹H signals are referenced to residual CHCl₃ at 7.26 ppm. ¹³C signals are referenced to CDCl₃ at 77.16 ppm. ¹⁹F NMR were obtained with ¹H decoupling. GC/MS analysis was performed on Agilent 7890A gas chromatograph coupled with Agilent 5975C mass selective detector (15 m \times 0.25 mm capillary column, HP-5MS). Column chromatography was carried out using Silicycle Silica-P flash silica gel (40-63 µm) and Acros Organics neutral aluminum oxide (Brockmann I, 40-300 µm, 60Å). Precoated silica gel plates F-254 were used for thin-layer analytical chromatography. HRMS analysis was performed on maXis plus quadrupole-time of flight mass spectrometer equipped with an electrospray ionization source or atmospheric pressure chemical ionization source (Bruker Daltonics). Anhydrous solvents purchased from Aldrich were additionally purified on PureSolv PS-400-4 by Innovative Technology, Inc. purification system and/or stored over calcium hydride. All starting materials were purchased from Strem Chemicals, Aldrich, Gelest Inc., TCI America, Oakwood Chemical, AK Sci. or Alfa Aesar, or synthesized via known literature procedures. 34 W Blue LED lamps (Kessil KSH150B LED Grow Light) and 40 W LED lamp (Kessil PR160-427) were purchased from Kessil. Photoreactors (PhotoRedOx Box) were purchased from HepatoChem. All manipulations with transition metal catalysts were conducted in oven-dried glassware using a combination of glovebox and standard Schlenk techniques.

2. Preparation of Starting Materials

2.1 Synthesis of bicyclo[1.1.0]butanes (BCBs):

BCBs **4a**-**4c** are known compounds and were prepared using reported procedures.¹ Starting material **4d** was synthesized according to the following modified literature procedures.¹ Step 1:

General procedure for Suzuki-Miyaura cross-coupling reactions²: A sealed tube was charged with aryl bromide (2.97 g, 16 mmol, 1.0 equiv), potassium vinyltrifluoroborate (0.669 g, 16 mmol, 1.0 equiv), PdCl₂ (0.017 g, 0.32 mmol, 0.02 equiv), and the tube was brought into a N₂-filled glovebox. PPh₃ (0.078 g, 0.96 mmol, 0.06 equiv), Cs₂CO₃ (15.63 g, 48 mmol, 3 equiv) and 28 mL THF were added, and the tube was sealed and removed from the glovebox. 3.2 mL H₂O was added, and the mixture was stirred at 85 °C for 22 h. The resulting dark brown mixture was allowed to cool to room temperature, diluted with DCM, and washed with H₂O. The aqueous layer was extracted with DCM three times. The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The crude alkenes were purified with column chromatography (silica, EtOAc/Hexanes) in 62% yield.

Step 2:

3-Oxocyclobutanecarboxylic acid (1.14 g, 9.5 mmol, 1.0 equiv) was dissolved in dry DCM (0.3 M) and amine (1.27 g, 9.5 mmol, 1 equiv), DMAP (58 mg, 0.47 mmol, 0.05 equiv) and DCC (2.94 g, 14.2 mmol, 1.5 equiv) were added. The reaction mixture was stirred under Ar atmosphere for 2 h (or until TLC indicated full conversion of the acid). Subsequently, the reaction mixture was filtrated, and the precipitate (dicyclohexylurea) was rinsed with small amount of DCM. The filtrate was concentrated in vacuo, and the crude amide was purified by column chromatography in 97% yield.

Step 3 and 4:

The ketone (2.10 g, 9.2 mmol, 1 equiv) was redissolved in MeOH (1.0 M), cooled to 0 °C and NaBH₄ (522 mg, 13.8 mmol, 1.5 equiv) was carefully added. The reaction mixture was stirred for 30 min at 0 °C. After this time, the reaction was quenched with water, and extracted with DCM. Combined organic fractions were dried over Na₂SO₄, filtrated and concentrated *in vacuo*.

The crude alcohol was redissolved in dry DCM (1.0 M), cooled to 0 °C and consecutively TsCl (2.28 g, 12 mmol, 1.3 equiv) and NEt₃ (1.67 ml, 12 mmol, 1.3 equiv) were added. The reaction mixture was warmed to rt and stirred under Ar atmosphere, until TLC indicated full conversion of the alcohol (usually within 2 h). Subsequently, the reaction mixture was washed with water and

brine. The organic layer was dried over Na₂SO₄, filtrated and concentrated in vacuo. The crude tosylate was purified by column chromatography in 60% over two steps.

Step 5:

The solution of tosylate (2.15 g, 5.6 mmol, 1 equiv) in dry THF (0.15 M) was cooled to 0 °C, and KOt-Bu (1 M THF solution, 1 equiv) was added dropwise under Ar atmosphere. The reaction mixture was stirred for 5 min (if the TLC did not indicate full conversion of the substrate another portion (0.1 equiv.) of KOtBu was added). Subsequently, the reaction was quenched with saturated NH4Cl solution and extracted with DCM. Combined organic fractions were dried over Na₂SO₄, filtrated and concentrated in vacuo. The crude bicycle[1.1.0]butane **4d** was purified by column chromatography in 64% yield.

N-methyl-N-(2-vinylphenyl)bicyclo[1.1.0]butane-1-carboxamide 4d

4d was prepared in 22% yield over 5 steps as colorless oil. Rf (hexanes/EtOAc = 2/1): 0.20. ¹H NMR (600 MHz, CDCl₃) δ ppm 11.57 (s, 1H), 7.82 – 7.79 (m, 2H), 7.30 – 7.28 (m, 2H), 4.25 (q, J = 7.1 Hz, 2H), 2.61 – 2.51 (m, 1H), 2.42 (s, 3H), 1.82 – 1.69 (m, 4H), 1.33 – 1.29 (m, 3H), 1.28 – 1.15 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 162.5, 144.6, 141.6, 138.8, 135.8, 129.9, 128.7, 128.2, 126.5, 126.4, 53.0, 28.0, 23.9, 21.9, 17.4. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₄H₁₆NO 214.1226; found: 214.1230.

2.2 Synthesis of cyclopropenes:

Synthesis of alkenes:

gem-Difluorocyclopropenes 1a-1i are known compounds and prepared using reported procedures.³

$$R^{1} = R^{2} \xrightarrow{\text{TMSCF}_{3} (2 \text{ equiv})}_{\text{THF (0.33 M), 110 °C, 2 h}} \xrightarrow{F}_{R^{1}} R^{2}$$

General Procedure A: Alkyne (5.0 mmol), TMSCF₃ (1.48 mL, 10.0 mmol), NaI (1.66 g, 11 mmol), and THF (15.0 mL) were mixed into a pressure tube at room temperature. Then the reaction mixture was heated at 110 °C for 2 h. The reaction was quenched by adding saturated Na₂CO₃ solution (15 mL), followed by extraction with Et₂O (50 mL) for two times. The organic phase was dried over anhydrous K₂CO₃. After the removal of solvent under vacuum, the residue was subjected to silica gel column chromatography using hexanes/Et₃N (40/1, v/v) as eluent. The column should be eluted previously with hexanes/Et₃N (10/1, v/v).

Alkenes 2c, 2q, 2t, 2w, 2x, 2y, and 2aa were prepared using general procedure B. 2p, 2r, 2s, and 2v were prepared using general procedure C. 2e,⁴ 2u,⁵ 2z,⁶ 2ac,⁷ and 2ad⁸ were prepared using reported literature procedure. Other alkenes are commercially available.

General Procedure B:

General procedure for Wittig reaction: To a suspension of methyl triphenylphosphonium bromide (3.93 g, 11 mmol, 1.1 equiv) in THF (30 mL) at 0 °C was added *n*-butyllithium (1.6 M in hexanes) (7.5 mL, 12 mmol, 1.2 equiv) dropwise over 5 min under inert atmosphere. The resulting mixture was stirred at rt for 1 h. A solution of aldehyde or ketone (10 mmol, 1 equiv) in THF (5 mL) was then added dropwise. The reaction mixture was stirred at rt until the completion as monitored by TLC (2-4 h). The reaction was quenched with water (20 mL) and extracted with EtOAc (3×30 mL), the combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude alkenes were purified by flash chromatography (silica, EtOAc/Hexanes).

General Procedure C:

$$ArBr + \square BF_{3}K \xrightarrow{PdCl_{2} (2 mol\%)}{THF/H_{2}O (9:1), 85 °C, 22 h} Ar$$

General procedure for Suzuki-Miyaura cross-coupling reactions²: A sealed tube was charged with arylbromide (5 mmol, 1.0 equiv), potassium vinyltrifluoroborate (0.669 g, 5 mmol, 1.0 equiv), PdCl₂ (0.017 g, 0.10 mmol, 0.02 equiv), and the tube was brought into a N₂-filled glovebox. PPh₃ (0.078 g, 0.30 mmol, 0.06 equiv), Cs₂CO₃ (4.88 g, 15 mmol, 3 equiv) and 9 mL THF were added, and the tube was sealed and removed from the glovebox. 1 mL H₂O was added, and the mixture was stirred at 85 °C for 22 h. The resulting dark brown mixture was allowed to cool to room temperature, diluted with DCM, and washed with H₂O. The aqueous layer was extracted with DCM three times. The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The crude alkenes were purified with column chromatography (silica, EtOAc/Hexanes).

3. Reaction Optimization for Hydroalkenylation of Cyclopropenes

3.1 Screening of HX precursors

Entry	HX precursors			
Lifti y	Hydrosilane (0.2 equiv)	Acid (2 equiv)	Halide source (1 eqiuv)	1 icid (70)
1	-	AcOH	NaI	22
2	PhMe ₂ SiH	AcOH	NaI	42
3	PhMe ₂ SiH	CF ₃ COOH	NaI	0
4	PhMe ₂ SiH	<i>p</i> -TsOH·H ₂ O	NaI	traces
5	PhMe ₂ SiH	PivOH	NaI	44
6	PhMe ₂ SiH	PhCOOH	NaI	31
7	PhMe ₂ SiH		Et ₃ N·HI	54
8	PhMe ₂ SiH		49	
9	PhMe ₂ SiH		25	
10	PhMe ₂ SiH		0	
11	PhMe ₂ SiH	AcOH	TBAC	0
12	PhMe ₂ SiH	AcOH	TBAB	57
13	PhMe ₂ SiH	AcOH	TBAI	32
14	Ph ₂ SiH ₂	AcOH	TBAB	48
15	PhMeSiH ₂	AcOH	TBAB	55
16	Et ₃ SiH	AcOH	TBAB	52
17	PhSiH ₃	AcOH	TBAB	40
18	PMHS	AcOH	TBAB	50
19	(EtO) ₃ SiH	AcOH	TBAB	0

^{*a*}0.1 mmol scale, 1a:2a = 1:2, blue LED (40 W, 427 nm). Yields were determined by ¹H NMR spectroscopy using dibromomethane as an internal standard.

3.2 Screening of ligands

Entry	$L_1(20 \text{ mol}\%)$	$L_2(20 \text{ mol}\%)$	Yield ^a (%)
1	Xantphos	PPh ₃	57
2	rac-BINAP	PPh ₃	0
3	dtbdppf	PPh ₃	0
4	dppp	PPh ₃	0
5	Xantphos	P(4-F-Ph)3 P2	59
6	Xantphos	P(4-CF ₃ -Ph) ₃ P3	76

7	Xantphos	P(4-OMe-Ph) ₃ P4	43
8	Xantphos	P(2-Furyl) ₃ P5	80^{b}
9	Xantphos	PCy3 P6	72
10	Xantphos	PCy ₂ Ph P7	68
11	Xantphos	CyJohnPhos P8	61
12	Xantphos	$P(t-Bu)_3$	74

a0.1 mmol scale, 1a:2a = 1:2, blue LED (40 W, 427 nm). Yields were determined by ¹H NMR spectroscopy using dibromomethane as an internal standard. ^b0.15 mmol scale, isolated yields.

3.3 Screening of solvents

F Ph 1a	+ Ph 2a	Pd(OAc) ₂ (10 mol%) Xantphos (20 mol%) P(2-Furyl) ₃ (20 mol%) AcOH (2 equiv) PhMe ₂ SiH (0.2 equiv) TBAB (1 equiv) solvent (0.15 M) 16 h, blue LED	F Ph 3a
Entry		Solvent	Yields ^a (%)
1		1,4-Dioxane	80^b
2		DMA	0
3		DMF	traces
4		MeCN	0
5		THF	32
6		DCM	0
7		PhH	54
8		PhMe	57

^{*a*} 0.1 mmol scale, 1a:2a = 1:2, blue LED (40 W, 427 nm). Yields were determined by ¹H NMR spectroscopy using dibromomethane as an internal standard. ^{*b*} 0.15 mmol scale, isolated yields.

4. General Procedures for Hydroalkenylation of Cyclopropenes

General Procedure D: An oven dried 2 mL PTFE/silicone-lined septa screw cap vial containing a stirring bar was charged with Pd(OAc)₂ (10 mol%), Xantphos (20 mol%), P(2-Furyl)₃ (20 mol%), and TBAB (1 equiv) inside glovebox. Next, 1,4-dioxane (0.15 M), acetic acid (2 equiv), PhMe₂SiH (0.2 equiv), styrene **2** (2 equiv) and cyclopropene **1** (0.15 mmol) were added subsequently via syringe. The vial was placed in a photoreactor box equipped with 40 W LED lamp (Kessil PR160-427) without cooling fan (vial temperature reached 38 °C). The reaction mixture was stirred for 16 h. The resulting mixture was filtered through a short plug of silica gel using hexanes/EtOAc as eluent. The filtrate was concentrated *in vacuo*. The resulting residue was purified by column chromatography on neutral aluminum oxide in hexanes/EtOAc to afford the corresponding products **3**.

(E)-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)benzene 3a

3a was prepared according to the general procedure in 80% yield (31 mg, 0.120 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.40. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.46 – 7.39 (m, 2H), 7.39 – 7.30 (m, 3H), 7.29 – 7.24 (m, 4H), 7.23 – 7.16 (m, 1H), 6.27 (d, *J* = 15.9 Hz, 1H), 6.01 (d, *J* = 15.9 Hz, 1H), 1.99 (ddd, *J* = 12.8, 7.7, 4.8 Hz, 1H), 1.88 (ddd, *J* = 12.7, 7.6, 4.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 136.4, 135.4, 132.0, 130.1 (d, *J* = 1.8 Hz), 128.4, 128.3, 128.3 (d, *J* = 3.5 Hz), 127.6, 127.4, 126.0, 113.7 (dd, *J* = 292.4, 289.6 Hz), 38.4 (t, *J* = 10.8 Hz), 24.0 (dd, *J* = 10.6, 8.2 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.7 (d, *J* = 149.7 Hz), -133.9 (d, *J* = 149.9 Hz). HRMS (APCI) *m/z*: [M]⁺⁺ calcd. for C₁₇H₁₄F₂ 256.1064, found: 256.1060.

(*E*)-1-(2,2-difluoro-1-styrylcyclopropyl)-4-methoxybenzene **3b**

3b was prepared according to the general procedure in 46% yield (20 mg, 0.069 mmol) as colorless oil. R_f (hexanes/EtOAc = 20/1): 0.30. ¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.26 (m, 5H), 7.20 – 7.17 (m, 1H), 7.00 – 6.84 (m, 2H), 6.25 (d, *J* = 15.9 Hz, 1H), 6.01 (d, *J* = 15.9 Hz, 1H), 3.84 (s, 3H), 1.94 (ddd, *J* = 12.7, 7.5, 4.9 Hz, 1H), 1.89 – 1.77 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) 159.2, 136.8, 132.1, 131.5, 129.0 (dd, *J* = 6.7, 3.4 Hz), 128.6, 127.6, 126.2, 114.2 (dd, *J* = 292.6, 289.7 Hz), 114.1, 55.4, 38.1 (t, *J* = 10.7 Hz), 24.5 (dd, *J* = 10.6, 8.1 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -128.8 (d, *J* = 149.3 Hz), -134.0 (d, *J* = 149.4 Hz). HRMS (APCI) *m*/*z*: [M]⁺⁺ calcd. for C₁₈H₁₆F₂O 286.1164, found: 286.1164.

(E)-3-(2,2-difluoro-1-styrylcyclopropyl)thiophene 3c

3c was prepared according to the general procedure in 66% yield (26 mg, 0.099 mmol) as colorless oil. R_f (hexanes/EtOAc = 20/1): 0.36. ¹H NMR (600 MHz, CDCl₃) δ 7.36 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.32 – 7.25 (m, 5H), 7.22 – 7.20 (m, 1H), 7.08 – 7.05 (m, 1H), 6.25 (d, *J* = 15.9 Hz, 1H), 6.18 (d, *J* = 15.9 Hz, 1H), 1.96 (ddd, *J* = 12.8, 7.6, 5.2 Hz, 1H), 1.88 (ddd, *J* = 12.7, 7.6, 4.7 Hz, 1H).¹³C NMR (151 MHz, CDCl₃) δ ppm 136.6, 136.2, 132.4, 128.9, 128.7, 127.7, 127.4 (dd, *J* = 6.2, 3.4 Hz), 126.3, 126.0, 124.7, 113.8 (dd, *J* = 293.0, 289.3 Hz), 34.2 (t, *J* = 11.1 Hz), 24.9 (dd, *J* = 10.3, 8.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -130.1 (d, *J* = 150.0 Hz), -133.9 (d, *J* = 150.0 Hz). HRMS (APCI) *m*/*z*: [M]⁺⁺ calcd. for C₁₅H₁₂F₂S 262.0622, found: 262.0621.

(E)-(2,2-difluoro-3-phenyl-3-styrylcyclopropyl)trimethylsilane 3d

3d was prepared according to the general procedure in 68% yield (33 mg, 0.102 mmol) as colorless oil. One diastereomer. R_f (hexanes/EtOAc = 20/1): 0.48. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.42 – 7.32 (m, 5H), 7.28 – 7.24 (m, 4H), 7.19 (ddd, *J* = 6.2, 4.9, 3.4 Hz, 1H), 6.24 (dd, *J* = 15.9, 1.5 Hz, 1H), 5.92 (d, *J* = 15.9 Hz, 1H), 1.32 (dd, *J* = 18.7, 10.7 Hz, 1H), -0.11 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 136.7, 135.0, 131.8 (dd, *J* = 6.2, 3.9 Hz), 131.4, 131.0, 128.4, 128.2, 127.9 (d, *J* = 1.7 Hz), 127.5, 127.3, 126.0, 117.5 (dd, *J* = 291.8, 289.5 Hz), 41.9 – 41.5 (m), 28.6 (dd, *J* = 15.5, 3.2 Hz), -1.00. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -122.73 (d, *J* = 145.8 Hz), -126.65 (d, *J* = 145.6 Hz). HRMS (ESI) *m*/*z* [M+H]⁺ calcd. for C₂₀H₂₃F₂Si 329.1532, found: 329.1527.

(*E*)-(2-(2,2-difluoro-3-methyl-1-phenylcyclopropyl)vinyl)benzene 3e

3e was prepared according to the general procedure in 69% yield (28 mg, 0.103 mmol), dr 9:1, as colorless oil. R_f (hexanes/EtOAc = 20/1): 0.36. ¹H NMR data are provided only for the major diastereomer. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.44 (t, *J* = 7.4 Hz, 2H), 7.42 – 7.34 (m, 2H), 7.33 – 7.26 (m, 6H), 7.23 – 7.17 (m, 1H), 6.23 (dd, *J* = 15.9, 1.7 Hz, 1H), 5.93 (d, *J* = 15.9 Hz, 1H), 2.10 – 1.96 (m, 1H), 1.06 (dd, *J* = 6.6, 2.3 Hz, 3H).¹³C NMR (151 MHz, CDCl₃): δ ppm 137.1, 133.1, 131.8, 131.6, 130.9 (dd, *J* = 7.0, 3.2 Hz), 130.6, 128.8 (d, *J* = 3.1 Hz), 127.8, 127.7, 126.4 (d, *J* = 3.9 Hz), 116.2 (t, *J* = 295.2 Hz), 41.0 – 40.7 (m), 30.3 (t, *J* = 9.2 Hz), 9.2 (d, *J* = 5.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -126.2 (d, *J* = 148.2 Hz, minor), -130.0 (d, *J* = 150.8 Hz, major), -138.8 (d, *J* = 151.0 Hz, major), -144.3 (d, *J* = 148.5 Hz, minor). HRMS (APCI) *m/z*: [M]⁺⁺ calcd. for C₁₈H₁₆F₂ 270.1215, found: 270.1211.

(*E*)-(2-(3-((benzyloxy)methyl)-2,2-difluoro-1-phenylcyclopropyl)vinyl)benzene 3f

3f was prepared according to the general procedure in 40% yield (23 mg, 0.06 mmol), dr 6:1, as colorless oil. R_f (hexanes/EtOAc = 9/1): 0.32. ¹H NMR data are provided only for the major diastereomer. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.42 – 7.36 (m, 4H), 7.36 – 7.31 (m, 3H), 7.31 – 7.21 (m, 7H), 7.19 (dd, J = 10.9, 4.3 Hz, 1H), 6.19 (d, J = 15.8 Hz, 1H), 5.94 (d, J = 15.9 Hz, 1H), 4.48 (d, J = 11.7 Hz, 1H), 4.40 (d, J = 11.7 Hz, 1H), 3.45 (d, J = 7.0 Hz, 2H), 2.34 (dt, J = 14.5, 7.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 137.8, 136.6, 132.3, 132.1, 131.2, 129.5 (dd, J = 6.2, 2.9 Hz), 128.6, 128.5 (d, J = 4.1 Hz), 127.9, 127.8, 127.7, 127.5, 126.3, 126.2, 114.4 (t, J = 294.2 Hz), 73.2, 65.0 (d, J = 4.8 Hz), 41.6 (t, J = 10.3 Hz), 34.4 (dd, J = 9.5, 7.9 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -125.3 (d, J = 154.9 Hz, minor), -129.6 (d, J = 156.2 Hz, major),

-136.7 (d, J = 156.1 Hz, major), -141.6 (d, J = 153.1 Hz, minor). HRMS (APCI) m/z: [M]⁺ calcd. for C₂₅H₂₂F₂O 312.1684, found: 312.1683.

(*E*)-(2-(3-butyl-2,2-difluoro-1-phenylcyclopropyl)vinyl)benzene **3g**

3g was prepared according to the general procedure in 50% yield (23 mg, 0.075mmol), dr 7:1, as colorless oil. R_f (hexanes/EtOAc = 20/1): 0.41. ¹H NMR data are provided only for the major diastereomer. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.43 – 7.37 (m, 2H), 7.35 – 7.30 (m, 1H), 7.29 – 7.22 (m, 6H), 7.20 – 7.15 (m, 1H), 6.20 (dd, *J* = 15.9, 1.6 Hz, 1H), 5.89 (d, *J* = 15.9 Hz, 1H), 1.99 – 1.85 (m, 1H), 1.63 – 1.48 (m, 2H), 1.48 – 1.37 (m, 2H), 1.34 – 1.24 (m, 2H), 0.87 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 133.2, 131.5, 131.3, 130.8 (dd, *J* = 6.8, 3.3 Hz), 130.5, 128.6 (d, *J* = 4.6 Hz), 127.6, 127.4, 126.2 (d, *J* = 3.2 Hz), 116.0 (t, *J* = 295.1 Hz), 41.0 (dd, *J* = 11.3, 10.0 Hz), 35.5 (t, *J* = 8.6 Hz), 31.4, 24.5 (d, *J* = 3.5 Hz), 22.4, 14.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -124.9 (d, *J* = 148.9 Hz, minor), -129.0 (d, *J* = 151.4 Hz, major), -138.6 (d, *J* = 151.3 Hz, major), -143.4 (d, *J* = 148.9 Hz, minor). HRMS (APCI) *m*/*z*: [M]⁺⁺ calcd. for C₂₁H₂₂F₂ 312.1684, found: 312.1683.

(*E*)-1-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-4-methylbenzene **3h**

3h was prepared according to the general procedure in 63% yield (25 mg, 0.094 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.44. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.46 – 7.30 (m, 5H), 7.16 – 7.13 (m, 2H), 7.07 – 7.05 (m, 2H), 6.21 (d, *J* = 15.9 Hz, 1H), 5.98 (d, *J* = 15.9 Hz, 1H), 2.31 (s, 3H), 2.01 – 1.94 (m, 1H), 1.86 (ddd, *J* = 12.7, 7.6, 4.9 Hz, 1H).¹³C NMR (151 MHz, CDCl₃): δ ppm 137.5, 135.8, 133.9, 132.2, 130.4, 129.3, 128.7, 127.8, 127.5 (dd, *J* = 6.6, 3.4 Hz),

126.1, 114.0 (dd, J = 292.5, 289.7 Hz), 38.7 (t, J = 10.7 Hz), 24.2 (dd, J = 10.6, 8.3 Hz), 21.3. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.6 (d, J = 149.5 Hz), -134.0 (d, J = 149.7 Hz). HRMS (APCI) m/z: [M]⁺ calcd. for C₁₈H₁₆F₂ 270.1215, found: 270.1215.

(*E*)-1-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-4-methoxybenzene **3i**

3i was prepared according to the general procedure in 72% yield (31 mg, 0.108 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.32. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.45 – 7.31 (m, 5H), 7.20 (d, *J* = 8.7 Hz, 2H), 6.80 (d, *J* = 8.7 Hz, 2H), 6.13 (d, *J* = 15.9 Hz, 1H), 5.95 (d, *J* = 15.9 Hz, 1H), 3.78 (s, 3H), 2.00 – 1.92 (m, 1H), 1.85 (ddd, *J* = 12.7, 7.6, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 158.7, 135.3, 131.1, 129.8 (d, *J* = 1.8 Hz), 128.9, 128.1, 127.2, 126.8, 125.8 (dd, *J* = 6.5, 3.4 Hz), 113.4, 113.4 (dd, *J* = 292.5, 289.4 Hz), 54.8, 38.0 (d, *J* = 10.6 Hz), 23.7 – 23.3 (m). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.7 (d, *J* = 149.6 Hz), -134.0 (d, *J* = 149.5 Hz). HRMS (APCI) *m*/*z*: [M]⁺⁺ calcd. for C₁₈H₁₆F₂O 286.1164, found: 286.1165.

(E)-1-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-4-fluorobenzene 3j

3j was prepared according to the general procedure in 73% yield (30 mg, 0.109 mmol) as colorless oil. R_f (hexanes/EtOAc = 20/1): 0.31. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.42 – 7.40 (m, 2H), 7.38 – 7.33 (m, 3H), 7.25 – 7.20 (m, 2H), 6.96 – 6.93 (m, 2H), 6.18 (d, *J* = 15.9 Hz, 1H), 5.97 (d, *J* = 15.9 Hz, 1H), 1.99 (ddd, *J* = 12.8, 7.6, 4.9 Hz, 1H), 1.87 (ddd, *J* = 12.7, 7.6, 4.8 Hz, 1H).¹³C NMR (151 MHz, CDCl₃) δ ppm 163.5, 161.8, 135.8, 133.2 (d, *J* = 3.2 Hz), 131.5, 130.6, 129.1, 128.93 – 128.62 (m), 128.3, 128.1 (d, *J* = 8.0 Hz), 115.8 (d, *J* = 21.6 Hz), 114.2 (dd, *J* = 292.5, 131.5, 130.6, 129.1, 128.9 Hz).

289.4 Hz), 38.9 (t, J = 10.7 Hz), 24.6 (dd, J = 10.2, 8.6 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm - 114.4 (s), -128.7 (d, J = 150.0 Hz), -133.9 (d, J = 150.0 Hz). HRMS (APCI) m/z: [M]⁺ calcd. for C₁₇H₁₃F₃ 274.0964, found: 274.0965.

(*E*)-2-(4-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)phenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane **3k**

3k was prepared according to the general procedure in 31% yield (18 mg, 0.046 mmol) as yellow solid. Rf (hexanes/EtOAc = 10/1): 0.46. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.70 – 7.65 (m, 2H), 7.41 – 7.39 (m, 2H), 7.38 – 7.29 (m, 3H), 7.25 (s, 2H), 6.32 (d, *J* = 15.9 Hz, 1H), 5.99 (d, *J* = 15.9 Hz, 1H), 2.00 (ddd, *J* = 12.8, 7.6, 4.8 Hz, 1H), 1.89 (ddd, *J* = 12.7, 7.5, 4.8 Hz, 1H), 1.33 (s, 12H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 139.4, 135.5, 135.1, 132.3, 130.4 (d, *J* = 1.6 Hz), 129.7 (dd, *J* = 6.4, 3.5 Hz), 128.7, 128.0, 125.5, 113.9 (dd, *J* = 292.5, 289.5 Hz), 83.9, 77.3, 77.2 – 77.0 (m), 76.9, 68.1, 38.8 (t, *J* = 10.9 Hz), 31.7, 25.7, 25.0, 24.4 (dd, *J* = 10.6, 8.2 Hz), 22.8, 14.2. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.5 (d, *J* = 149.1 Hz), -133.8 (d, *J* = 150.4 Hz). HRMS (ESI) *m/z* [M+H]⁺ calcd. for C₂₃H₂₆BF₂O₂ 383.1988, found: 383.1996.

(E)-4-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-N,N-dimethylaniline 31

31 was prepared according to the general procedure in 34% yield (15 mg, 0.051 mmol) as colorless oil. R_f (hexanes/EtOAc = 4/1): 0.56. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.43 – 7.31 (m, 5H), 7.15 (d, *J* = 8.8 Hz, 2H), 6.62 (d, *J* = 8.3 Hz, 2H), 6.06 (d, *J* = 15.9 Hz, 1H), 5.93 (d, *J* = 15.9 Hz, 1H), 2.97 – 2.89 (m, 6H), 1.98 – 1.91 (m, 1H), 1.82 (ddd, *J* = 10.4, 7.6, 3.8 Hz, 1H). ¹³C NMR (151

MHz, CDCl₃) δ ppm 150.4, 136.4, 132.4, 130.5 (d, *J* = 1.6 Hz), 128.8, 127.9, 127.4, 125.4, 124.3, 114.3 (dd, *J* = 292.6, 289.5 Hz), 112.7, 40.8, 39.0 (t, *J* = 10.6 Hz), 24.3 (dd, *J* = 10.4, 8.3 Hz).¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.6 (d, *J* = 149.0 Hz), -134.1 (d, *J* = 148.9 Hz). HRMS (ESI) *m*/*z* [M+H]⁺ calcd. for C₁₉H₂₀F₂N 300.1558, found: 300.1559.

(E)-(4-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)phenyl)(methyl)sulfane 3m

3m was prepared according to the general procedure in 55% yield (25 mg, 0.082 mmol) as colorless oil. R_f (hexanes/EtOAc = 20/1): 0.22. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.41 – 7.40 (m, 2H), 7.39 – 7.31 (m, 3H), 7.20 – 7.18 (m, 2H), 7.17 – 7.12 (m, 2H), 6.23 (d, *J* = 15.9 Hz, 1H), 5.96 (d, *J* = 15.9 Hz, 1H), 2.46 (s, 3H), 1.99 (ddd, *J* = 12.8, 7.6, 4.8 Hz, 1H), 1.87 (ddd, *J* = 12.7, 7.6, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 138.4, 136.2, 134.2, 132.2, 130.9 (d, *J* = 1.5 Hz), 130.4, 129.3, 128.6 (dd, *J* = 6.6, 3.4 Hz), 128.5, 127.2 (d, *J* = 2.5 Hz), 114.5 (dd, *J* = 292.7, 289.5 Hz), 39.3 (t, *J* = 10.7 Hz), 24.8 (dd, *J* = 10.5, 8.3 Hz), 16.5. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.6 (d, *J* = 149.9 Hz), -133.9 (d, *J* = 149.7 Hz). HRMS (ESI) *m*/*z*: [M+H]⁺ calcd. for C₁₈H₁₇F₂S 303.1014; found: 303.1008.

(E)-1-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-3-methylbenzene 3n

3n was prepared according to the general procedure in 50% yield (20 mg, 0.075 mmol) as colorless oil. R_f (hexanes/EtOAc = 20/1): 0.40. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.47 – 7.26 (m, 5H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.12 – 7.04 (m, 2H), 7.02 (d, *J* = 7.5 Hz, 1H), 6.25 (d, *J* = 15.9 Hz, 1H), 5.98 (d, *J* = 15.9 Hz, 1H), 2.30 (s, 3H), 1.99 (ddd, *J* = 12.8, 7.6, 4.8 Hz, 1H), 1.88 (ddd, *J* = 12.7, 7.6, 4.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 138.2, 136.6, 135.7, 132.4, 130.4 (d, *J* = 1.7)

Hz), 128.7, 128.6 – 128.1 (m), 127.9, 127.0, 123.4, 114.0 (dd, J = 292.6, 289.6 Hz), 38.7 (t, J = 10.9 Hz), 24.2 (dd, J = 10.6, 8.3 Hz), 21.4. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.6 (d, J = 149.6 Hz), -133.9 (d, J = 149.6 Hz). HRMS (APCI) m/z: [M]⁺⁺ calcd. for C₁₈H₁₆F₂ 270.1215, found: 270.1215.

Methyl (E)-3-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)benzoate 30

30 was prepared according to the general procedure in 40% yield (19 mg, 0.060 mmol) as colorless oil. R_f (hexanes/EtOAc = 10/1): 0.33. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.92 (s, 1H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.50 – 7.39 (m, 3H), 7.39 – 7.26 (m, 4H), 6.34 (d, *J* = 15.9 Hz, 1H), 6.02 (d, *J* = 15.9 Hz, 1H), 3.90 (s, 3H), 2.01 (ddd, *J* = 12.8, 7.7, 4.9 Hz, 1H), 1.91 (ddd, *J* = 12.8, 7.7, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 167.3, 137.2, 135.5, 131.6, 130.8, 130.7, 130.6 (d, *J* = 1.7 Hz), 130.2 (dd, *J* = 6.6, 3.4 Hz), 129.0, 128.9, 128.8, 128.3, 127.6, 114.1 (dd, *J* = 292.5, 289.3 Hz), 52.5, 39.0 – 38.7 (m), 24.6 (dd, *J* = 10.3, 8.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.6 (d, *J* = 150.1 Hz), -133.7 (d, *J* = 150.1 Hz). HRMS (ESI) *m*/*z*: [M+H]⁺ calcd. for C₁₉H₁₇F₂O₂ 315.1191, found: 315.1192.

(*E*)-1-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-2-fluorobenzene **3p**

3p was prepared according to the general procedure in 38% yield (16 mg, 0.057 mmol) as colorless oil. R_f (hexanes/EtOAc = 20/1): 0.35. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.49 – 7.38 (m, 2H), 7.38 – 7.34 (m, 3H), 7.19 – 7.14 (m, 1H), 7.07 – 7.02 (m, 1H), 6.97 (ddd, *J* = 10.8, 8.2, 1.0 Hz, 1H), 6.36 (d, *J* = 16.1 Hz, 1H), 6.16 (d, *J* = 16.1 Hz, 1H), 2.01 (ddd, *J* = 12.8, 7.7, 4.9 Hz, 1H), 1.91 (ddd, *J* = 12.7, 7.7, 4.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 160.9, 159.2, 135.3, 131.2 (td, *J* = 6.2, 3.6 Hz), 130.3 (d, *J* = 1.8 Hz), 128.9 (d, *J* = 8.4 Hz), 128.8, 128.0, 127.5 (d, *J* = 1.8 Hz), 128.9 (d, *J* = 8.4 Hz), 128.8, 128.0, 127.5 (d, *J* = 1.8 Hz), 128.9 (d, *J* = 8.4 Hz), 128.8, 128.0, 127.5 (d, *J* = 1.8 Hz), 128.9 (d, *J* = 8.4 Hz), 128.8, 128.0, 127.5 (d, *J* = 1.8 Hz), 128.9 (d, *J* = 8.4 Hz), 128.8, 128.0, 127.5 (d, *J* = 1.8 Hz), 128.9 (d, *J* = 8.4 Hz), 128.8, 128.0, 127.5 (d, *J* = 1.8 Hz), 128.9 (d, *J* = 8.4 Hz), 128.8, 128.0, 127.5 (d, *J* = 1.8 Hz), 128.9 (d, *J* = 1.8 Hz), 128.8 Hz), 128.

3.7 Hz), 125.0, 124.6 (d, J = 12.3 Hz), 124.1 (d, J = 3.5 Hz), 115.8 (d, J = 22.2 Hz), 113.9 (dd, J = 292.6, 289.3 Hz), 39.0 (t, J = 10.8 Hz), 24.3 (dd, J = 10.6, 8.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -117.8 (s), -128.7 (d, J = 150.0 Hz), -133.9 (d, J = 150.0 Hz). HRMS (APCI) m/z: [M]⁺⁺ calcd. for C₁₇H₁₃F₃ 274.0964, found: 274.0961.

(E)-1-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-2-methoxybenzene 3q

3q was prepared according to the general procedure in 43% yield (18 mg, 0.064 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.24. ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.36 (m, 4H), 7.35 – 7.26 (m, 2H), 7.19 (td, *J* = 8.3, 1.6 Hz, 1H), 6.88 (t, *J* = 7.5 Hz, 1H), 6.81 (d, *J* = 8.2 Hz, 1H), 6.38 (d, *J* = 16.1 Hz, 1H), 6.33 (d, *J* = 16.1 Hz, 1H), 3.76 (s, 3H), 2.01 – 1.94 (m, 1H), 1.89 (ddd, *J* = 12.7, 7.6, 4.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 156.8, 136.2, 130.5 (d, *J* = 1.7 Hz), 129.4 (dd, *J* = 6.3, 3.3 Hz), 129.0, 128.9, 128.0, 127.7, 127.3, 126.0, 120.9, 114.2 (dd, *J* = 292.1, 289.5 Hz), 111.1, 55.7, 39.2 (t, *J* = 10.7 Hz), 24.2 (dd, *J* = 10.4, 8.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.7 (d, *J* = 149.1 Hz), -134.1 (d, *J* = 149.0 Hz). HRMS (ESI) *m*/*z*: [M+H]⁺ calcd. for C₁₈H₁₇F₂O 287.1242, found: 287.1239.

(E)-1-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-2-fluoro-4-methoxybenzene 3r

3r was prepared according to the general procedure in 63% yield (29 mg, 0.094 mmol) as colorless oil. R_f (hexanes/EtOAc = 20/1): 0.36. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.38 – 7.32 (m, 5H), 7.24 (d, *J* = 8.7 Hz, 1H), 6.62 – 6.60 (m, 1H), 6.54 – 6.50 (m, 1H), 6.23 (d, *J* = 16.1 Hz, 1H), 6.08 (d, *J* = 16.1 Hz, 1H), 3.77 (s, 3H), 1.98 (ddd, *J* = 12.8, 7.6, 4.8 Hz, 1H), 1.88 (ddd, *J* = 12.7, 7.6, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 161.9, 160.6 (d, *J* = 11.2 Hz), 160.2, 148.0 (d,

J = 2.8 Hz), 136.0, 130.7 (d, J = 1.6 Hz), 129.1, 128.4 (d, J = 5.7 Hz), 128.3, 125.1, 121.7, 121.6, 117.5 (d, J = 12.6 Hz), 114.3 (dd, J = 292.5, 289.5 Hz), 111.2 (d, J = 6.5 Hz), 110.7 (d, J = 3.0 Hz), 102.0, 101.9, 56.0, 39.3 (t, J = 10.7 Hz), 24.5 (dd, J = 10.5, 8.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -115.4 (s), -128.7 (d, J = 149.6 Hz), -134.0 (d, J = 149.5 Hz). HRMS (APCI) m/z: [M]⁺ calcd. for C₁₈H₁₅F₃O 304.1070, found: 304.1070.

(E)-4-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-2-fluoro-1-methylbenzene 3s

3s was prepared according to the general procedure in 64% yield (28 mg, 0.096 mmol) as colorless oil. R_f (hexanes/EtOAc = 20/1): 0.35. ¹H NMR (600 MHz, CDCl₃): δ 7.41 – 7.39 (m, 2H), 7.38 – 7.32 (m, 3H), 7.08 (d, *J* = 7.4 Hz, 1H), 7.06 – 7.01 (m, 1H), 6.89 (t, *J* = 8.9 Hz, 1H), 6.16 (d, *J* = 15.9 Hz, 1H), 5.93 (d, *J* = 15.9 Hz, 1H), 2.22 (d, *J* = 1.6 Hz, 3H), 1.98 (ddd, *J* = 12.8, 7.6, 4.8 Hz, 1H), 1.87 (ddd, *J* = 12.7, 7.6, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 161.8, 160.1, 135.6, 132.5 (d, *J* = 3.7 Hz), 131.3, 130.3 (d, *J* = 1.8 Hz), 129.3 (d, *J* = 5.2 Hz), 128.7, 128.2 – 127.9 (m), 125.0 (dd, *J* = 25.8, 12.8 Hz), 115.1 (d, *J* = 22.7 Hz), 113.9 (dd, *J* = 292.5, 289.4 Hz), 38.6 (t, *J* = 10.7 Hz), 24.2 (dd, *J* = 10.6, 8.2 Hz), 14.6 (d, *J* = 3.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -118.7 (s), -128.7 (d, *J* = 149.9 Hz), -133.9 (d, *J* = 149.9 Hz). HRMS (APCI) *m*/*z*: [M]⁺⁺ calcd. for C₁₈H₁₅F₃ 288.1120, found: 288.1129.

(E)-5-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-2,3-dihydrobenzofuran 3t

3t was prepared according to the general procedure in 62% yield (28 mg, 0.093 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.30. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.55 – 7.28 (m, 5H), 7.16 (s, 1H), 6.99 (dd, *J* = 8.2, 1.2 Hz, 1H), 6.67 (d, *J* = 8.3 Hz, 1H), 6.09 (d, *J* = 15.9 Hz, 1H),

5.94 (d, J = 15.9 Hz, 1H), 4.55 (t, J = 8.7 Hz, 2H), 3.15 (t, J = 8.7 Hz, 2H), 1.99 – 1.92 (m, 1H), 1.84 (ddd, J = 12.7, 7.6, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 160.1, 136.1, 132.3, 130.5, 129.8, 128.9, 128.0, 127.7, 127.0, 125.9 (dd, J = 6.5, 3.5 Hz), 122.7, 114.2 (dd, J = 292.4, 289.9 Hz), 109.5, 71.7, 38.9 (t, J = 10.6 Hz), 29.8, 24.3 (dd, J = 10.2, 8.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.7 (d, J = 149.4 Hz), -134.1 (d, J = 149.5 Hz). HRMS (APCI) *m*/*z*: [M]⁺⁺ calcd. for C₁₉H₁₆F₂O 298.1164, found: 298.1167.

(*E*)-5-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)benzo[*d*][1,3]dioxole **3u**

3u was prepared according to the general procedure in 70% yield (31 mg, 0.105 mmol) as colorless oil. R_f (hexanes/EtOAc = 20/1): 0.27. ¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.38 (m, 2H), 7.37 – 7.26 (m, 3H), 6.83 (d, *J* = 1.5 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 6.66 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.09 (d, *J* = 15.9 Hz, 1H), 5.91 (d, *J* = 15.9 Hz, 1H), 5.91 (s, 2H), 1.97 (ddd, *J* = 12.8, 7.6, 4.8 Hz, 1H), 1.84 (ddd, *J* = 12.7, 7.6, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 148.7, 147.8, 136.3, 132.5, 131.8, 130.9 (d, *J* = 1.8 Hz), 129.3, 128.5, 127.4 (dd, *J* = 6.6, 3.4 Hz), 121.5, 114.5 (dd, *J* = 292.8, 289.5 Hz), 108.9, 106.1, 101.7, 39.3 – 39.0 (m), 32.3, 24.8 (dd, *J* = 10.4, 8.3 Hz), 23.3, 14.8. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.7 (d, *J* = 149.7 Hz), -134.0 (d, *J* = 149.7 Hz). HRMS (APCI) *m/z*: [M]⁺⁺ calcd. for C₁₈H₁₄F₂O₂ 300.0956, found: 300.0958.

(E)-5-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-2-methoxypyridine 3v

3v was prepared according to the general procedure in 58% yield (25 mg, 0.087 mmol) as colorless oil. R_f (hexanes/EtOAc = 5/1): 0.28. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.94 (d, *J* = 2.4 Hz, 1H), 7.58 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.42 (dd, *J* = 10.4, 4.4 Hz, 2H), 7.36 – 7.30 (m, 3H), 6.67 (d, *J* =

8.7 Hz, 1H), 6.14 (d, J = 15.9 Hz, 1H), 5.93 (d, J = 16.0 Hz, 1H), 3.91 (s, 3H), 1.99 (ddd, J = 12.8, 7.7, 4.9 Hz, 1H), 1.87 (ddd, J = 12.7, 7.7, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 163.9, 145.6, 135.7, 135.6, 130.5 (d, J = 1.7 Hz), 129.0, 128.7, 128.2, 128.1 (dd, J = 6.6, 3.4 Hz), 126.2, 114.0 (dd, J = 292.6, 289.3 Hz), 111.1, 53.8, 38.9 (t, J = 10.8 Hz), 24.5 (dd, J = 10.5, 8.3 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -128.7 (d, J = 150.0 Hz), -134.0 (d, J = 149.8 Hz). HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₇H₁₆F₂NO 288.1194, found: 288.1194.

(*E*)-5-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-2-methylpyrimidine **3**w

3w was prepared according to the general procedure in 38% yield (15 mg, 0.057 mmol) as colorless oil. R_f (hexanes/EtOAc = 2/1): 0.29. ¹H NMR (600 MHz, CDCl₃) δ ppm 8.51 (s, 2H), 7.48 – 7.39 (m, 2H), 7.39 – 7.29 (m, 3H), 6.33 (d, *J* = 16.1 Hz, 1H), 5.87 (d, *J* = 16.1 Hz, 1H), 2.68 (d, *J* = 8.1 Hz, 3H), 2.04 (ddd, *J* = 12.8, 7.7, 5.0 Hz, 1H), 1.94 (ddd, *J* = 12.8, 7.7, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 166.9, 156.4, 154.2, 134.7, 132.0 (dd, *J* = 6.8, 3.5 Hz), 130.4 (d, *J* = 1.6 Hz), 129.0, 128.9, 128.3, 127.8, 127.6, 127.1, 125.5, 113.6 (dd, *J* = 292.9, 289.1 Hz), 39.0 – 38.6 (m), 25.8 (s), 24.7 (dd, *J* = 10.7, 8.2 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -128.5 (d, *J* = 150.9 Hz), -133.5 (d, *J* = 151.0 Hz). HRMS (ESI) *m*/*z*: [M+H]⁺ calcd. for C₁₆H₁₅F₂N₂ 273.1198, found: 273.1198.

(*E*)-5-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-1-methyl-1*H*-indole **3**x

3x was prepared according to the general procedure in 64% yield (30 mg, 0.096 mmol) as white solid. R_f (hexanes/EtOAc = 10/1): 0.40. ¹H NMR (600 MHz, CDCl₃) δ 7.47 (s, 1H), 7.45 – 7.37

(m, 4H), 7.37 - 7.26 (m, 1H), 7.22 - 7.20 (m, 2H), 7.00 (d, J = 3.1 Hz, 1H), 6.40 (d, J = 3.1 Hz, 1H), 6.22 (d, J = 15.9 Hz, 1H), 6.13 (d, J = 15.9 Hz, 1H), 3.76 (s, 3H), 2.01 - 1.95 (m, 1H), 1.88 (ddd, J = 12.7, 7.6, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 136.9, 136.5, 133.9, 130.8 (d, J = 1.6 Hz), 129.8, 129.1, 129.0, 128.7, 128.1, 125.8 (dd, J = 6.4, 3.4 Hz), 120.3, 119.7, 114.5 (dd, J = 292.7, 289.7 Hz), 109.7, 101.7, 39.2 (t, J = 10.8 Hz), 33.4, 24.5 (dd, J = 10.4, 8.3 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.6 (d, J = 149.1 Hz), -134.1 (d, J = 149.1 Hz). HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₀H₁₈F₂N 310.1402, found: 310.1402.

2-(2,2-Difluoro-1-phenylcyclopropyl)-1*H*-indene 3y

3y was prepared according to the general procedure in 61% yield (24 mg, 0.091 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.37. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.51 – 7.28 (m, 6H), 7.26 – 7.23 (m, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 1H), 6.58 (s, 1H), 3.40 – 3.26 (m, 2H), 2.09 – 1.96 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 146.2, 144.5, 143.4, 137.6, 130.3, 129.9 (d, *J* = 1.8 Hz), 128.9, 128.0, 126.8, 124.9, 123.8, 121.1, 113.8 (t, *J* = 290.6 Hz), 40.2, 37.8 (t, *J* = 11.0 Hz), 24.3 (t, *J* = 9.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -127.3 (d, *J* = 148.4 Hz), -133.0 (d, *J* = 148.4 Hz). HRMS (APCI) *m/z*: [M]⁺⁺ calcd. for C₁₈H₁₄F₂ 268.1058, found: 268.1058.

(2,2-Difluoro-1-(2-phenylallyl)cyclopropyl)benzene 3z

3z was prepared according to the general procedure in 67% yield (26 mg, 0.100 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.29. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.35 – 7.19 (m, 8H), 7.19 – 7.04 (m, 2H), 5.17 (d, *J* = 0.7 Hz, 1H), 4.90 (s, 1H), 3.10 (d, *J* = 15.1 Hz, 1H), 2.98 (d, *J* = 15.0 Hz, 1H), 1.66 – 1.58 (m, 1H), 1.43 (ddd, *J* = 12.5, 7.9, 4.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 145.0, 141.7, 137.2, 129.7 (d, *J* = 1.8 Hz), 128.4 (d, *J* = 7.4 Hz), 127.7, 127.5, 126.9, 116.3, 116.1 – 112.2 (t, *J* = 290.6 Hz), 39.4 (dd, *J* = 5.3, 1.5 Hz), 35.3 (t, *J* = 9.9 Hz), 22.0 (t, *J* = 1.6 Hz).

9.9 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -131.3 (d, *J* = 149.3 Hz), -135.8 (d, *J* = 149.3 Hz). HRMS (APCI) *m/z*: [M]⁺⁺ calcd. for C₁₈H₁₆F₂ 270.1215, found: 270.1216.

4-((2,2-Difluoro-1-phenylcyclopropyl)methyl)-1,2-dihydronaphthalene 3aa

3aa was prepared according to the general procedure in 84% yield (37 mg, 0.126 mmol) as white solid. Rf (hexanes/EtOAc = 20/1): 0.33. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.28 – 7.22 (m, 2H), 7.22 – 7.13 (m, 3H), 7.12 – 7.05 (m, 3H), 7.04 (dd, *J* = 7.0, 2.1 Hz, 1H), 5.73 (t, *J* = 4.6 Hz, 1H), 3.03 (d, *J* = 15.3 Hz, 1H), 2.96 (d, *J* = 15.3 Hz, 1H), 2.60 (t, *J* = 7.9 Hz, 2H), 2.17 – 2.07 (m, 2H), 1.74 – 1.68 (m, 1H), 1.59 (ddd, *J* = 12.4, 7.8, 4.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 137.5, 136.7, 134.9, 132.8 (d, *J* = 1.6 Hz), 129.5 (d, *J* = 1.7 Hz), 128.3, 128.2, 127.5, 127.2, 126.7, 126.2, 122.9, 114.2 (t, *J* = 288.5 Hz), 35.9 (dd, *J* = 5.1, 1.5 Hz), 35.3 – 35.0 (m), 28.4, 23.1, 22.0 (t, *J* = 9.9 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -130.5 (d, *J* = 149.1 Hz), -135.7 (d, *J* = 149.1 Hz). HRMS (APCI) *m/z*: [M]⁺ calcd. for C₂₀H₁₈F₂ 296.1371, found: 296.1373.

4-((2,2-Difluoro-1-phenylcyclopropyl)methyl)-2H-chromene 3ab

3ab was prepared according to the general procedure in 72% yield (32 mg, 0.167 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.25. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.31 – 7.23 (m, 5H), 7.10 (td, *J* = 7.8, 1.4 Hz, 1H), 6.93 (d, *J* = 6.9 Hz, 1H), 6.79 (t, *J* = 7.3 Hz, 2H), 5.53 (t, *J* = 3.8 Hz, 1H), 4.65 (d, *J* = 3.8 Hz, 2H), 3.01 (d, *J* = 15.6 Hz, 1H), 2.92 (d, *J* = 15.6 Hz, 1H), 1.83 – 1.77 (m, 1H), 1.62 (ddd, *J* = 12.5, 7.9, 4.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 154.1, 136.8, 130.4, 129.1 (d, *J* = 1.6 Hz), 128.8, 128.2, 127.2, 123.4, 123.2, 120.9, 120.7, 115.8, 113.8 (t, *J* = 288.6 Hz), 64.9, 34.4 (t, *J* = 9.9 Hz), 34.3 (dd, *J* = 5.6, 1.2 Hz), 21.7 (t, *J* = 10.0 Hz). ¹⁹F NMR (565 MHz,

CDCl₃) δ ppm -131.1 (d, *J* = 149.8 Hz), -135.6 (d, *J* = 149.7 Hz). HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₉H₁₇F₂O 299.1242, found: 299.1242.

tert-Butyl((2-(2,2-difluoro-1-phenylcyclopropyl)-1-phenylvinyl)oxy)dimethylsilane 3ac

3ac was prepared according to the general procedure in 50% yield (29 mg, 0.075 mmol) as colorless oil. E/Z = 1.1:1. R_f (hexanes/EtOAc = 9/1): 0.22. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.43 – 7.39 (m, 2H), 7.38 – 7.34 (m, 2H), 7.33 – 7.30 (m, 4H), 7.31 – 7.28 (m, 4H), 7.28 – 7.22 (m, 8H), 5.56 (d, J = 1.4 Hz, 1H), 5.34 (d, J = 1.2 Hz, 1H), 2.12 (ddd, J = 12.8, 8.0, 4.5 Hz, 1H), 2.09 – 2.04 (m, 1H), 1.80 (ddd, J = 12.6, 8.3, 4.6 Hz, 1H), 1.17 (ddd, J = 13.6, 8.3, 5.7 Hz, 1H), 0.94 (s, 9H), 0.85 (s, 9H), 0.14 (s, 3H), 0.09 (s, 3H), -0.25 (s, 3H), -0.29 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ ppm 155.2, 154.8, 139.8, 137.7, 137.0, 128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.1, 126.8, 126.7, 114.2 (t, J = 288.7 Hz), 113.9 (t, J = 288.6 Hz), 106.2, 77.1, 33.1 (d, J = 10.5 Hz), 32.5 (t, J = 10.5 Hz), 31.7, 25.9, 25.8, 23.1 (t, J = 9.0 Hz), 22.8 – 21.8 (m), 18.3, 18.2, 14.2, -3.3, -3.7, -4.0, -4.5. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -133.0 (d, J = 145.5 Hz, major), -133.9 (d, J = 145.8 Hz, minor), -135.3 (d, J = 145.9 Hz, minor), -136.0 (d, J = 145.5 Hz, major). HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₃H₂₉F₂OSi 387.1950, found: 387.1946.

(E)-(2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)ferrocene 3ad

3ad was prepared according to the general procedure in 60% yield (33 mg, 0.09 mmol) as orange solid. R_f (hexanes/EtOAc = 10/1): 0.30. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.49 – 7.40 (m, 2H), 7.40 – 7.27 (m, 3H), 5.86 (d, *J* = 15.7 Hz, 1H), 5.77 (d, *J* = 15.7 Hz, 1H), 4.25 (d, *J* = 21.9 Hz, 2H), 4.18 (s, 2H), 4.05 (s, 5H), 1.96 – 1.88 (m, 1H), 1.79 (ddd, *J* = 12.6, 7.5, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 136.4, 130.4 (d, *J* = 1.6 Hz), 130.3, 128.9, 127.9, 125.5 (dd, *J* = 6.2, 3.4)

Hz), 114.0 (dd, J = 292.6, 289.4 Hz), 83.0, 69.5, 69.1 (d, J = 1.6 Hz), 67.1, 66.8, 38.9 (t, J = 10.5 Hz), 24.0 (dd, J = 10.2, 8.4 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.9 (d, J = 149.0 Hz), -134.1 (d, J = 148.9 Hz). HRMS (APCI) m/z: [M]⁺ calcd. for C₂₁H₁₈F₂Fe 364.0721, found: 364.0720.

(8*R*,9*S*,13*S*,14*S*)-3-((*E*)-2-(2,2-difluoro-1-phenylcyclopropyl)vinyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one **3ae**

3ae was prepared according to the general procedure in 32% yield (21 mg, 0.048 mmol) as white solid. R_f (hexanes/EtOAc = 9/1): 0.35. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.48 – 7.37 (m, 2H), 7.37 – 7.26 (m, 3H), 7.20 (d, *J* = 8.2 Hz, 1H), 7.07 (d, *J* = 8.1 Hz, 1H), 7.00 (s, 1H), 6.22 (d, *J* = 15.9 Hz, 1H), 5.96 (d, *J* = 15.9 Hz, 1H), 2.86 (dd, *J* = 8.9, 4.1 Hz, 2H), 2.50 (dd, *J* = 19.1, 8.6 Hz, 1H), 2.40 (dt, *J* = 9.2, 3.6 Hz, 1H), 2.31 – 2.24 (m, 1H), 2.18 – 2.10 (m, 1H), 2.10 – 1.91 (m, 4H), 1.86 (ddd, *J* = 12.7, 7.6, 4.8 Hz, 1H), 1.64 – 1.40 (m, 6H), 0.90 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 139.6, 136.9, 135.9, 134.5, 132.2, 130.5, 128.9, 128.2 – 128.1 (m), 128.1, 127.1 (d, *J* = 3.2 Hz), 125.8, 123.8 (d, *J* = 3.3 Hz), 114.2 (dd, *J* = 292.4, 290.0 Hz), 50.8, 48.3, 44.7, 38.9 (t, *J* = 10.7 Hz), 38.4, 36.1, 31.9, 29.6, 26.8, 26.0, 24.4 (dd, *J* = 10.1, 8.4 Hz), 21.9, 14.1. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -128.6 (d, *J* = 149.6 Hz), -133.9 (dd, *J* = 149.7, 3.9 Hz). HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₉H₃₁F₂O 433.2337, found: 433.2336.

Failed substrates (decomposition or less than 20% yield):

An oven dried 12 mL PTFE/silicone-lined septa screw cap vial containing a stirring bar was charged with $Pd(OAc)_2$ (10 mol%), Xantphos (20 mol%), P(2-Furyl)₃ (20 mol%), and TBAB (1 equiv) inside glovebox. Next, 1,4-dioxane (0.15 M), acetic acid (2 equiv), PhMe₂SiH (0.2 equiv) styrene **2a** (2 equiv) and cyclopropene **1a** (0.15 mmol) were added subsequently via syringe. The vial was placed in a photoreactor box equipped with 40 W LED lamp (Kessil PR160-427) without cooling fan (vial temperature reached 38 °C). The reaction mixture was stirred for 16 h. The resulting mixture was filtered through a short plug of silica gel using hexanes/EtOAc as eluent. The filtrate was concentrated *in vacuo*. The resulting residue was purified by column chromatography on neutral aluminum oxide in hexanes/EtOAc to afford the product **3a** in 73% yield (205.0 mg, 0.80 mmol).

5. Procedure for 1 mmol Scale Preparation of Product 3a

Entry	L _	HX precursors			Solvent	Vields ^{a} (%)
Linu y		Acid	Hydrosilane	Halide source	Solvent	1 ieius (%)
1	Xantphos	AcOH	PhMeSiH ₂	NaI	PhH	55
2	Xantphos	-	PhMeSiH ₂	NaI	PhH	33
3	Xantphos	AcOH	PhMeSiH ₂	NaI	PhMe	27
4	Xantphos	AcOH	PhMeSiH ₂	NaI	1,4-Dioxane	23
5	Xantphos	AcOH	PhMeSiH ₂	NaI	DCM	51
6	Xantphos	AcOH	PhMeSiH ₂	NaI	DCE	40^{b}
7	Xantphos	AcOH	PhMeSiH ₂	NaI	DCE	68
8	Xantphos	AcOH	PhMeSiH ₂	NaI	CHCl ₃	35
9	Xantphos	AcOH	PhMeSiH ₂	NaI	DMA	traces
10	Xantphos	AcOH	PhMeSiH ₂	TBAB	DCE	12
11	t-Bu-Xantphos	AcOH	PhMeSiH ₂	NaI	DCE	0
12	DPEphos	AcOH	PhMeSiH ₂	NaI	DCE	47
13	Xantphos	AcOH	PhMeSiH ₂	NaI	DCE	75 ^c

^{*a*}0.1 mmol scale, 4a:2a = 1:2. Yields were determined by ¹H NMR spectroscopy using dibromomethane as an internal standard. ^{*b*}0.2 equivalent of PhMeSiH₂ was used. ^{*c*}Reaction was performed at 40 °C.

7. General Procedures for Hydroalkenylation of BCBs

General Procedures E: An oven dried 2 mL PTFE/silicone-lined septa screw cap vial containing a stirring bar was charged with Pd(OAc)₂ (10 mol%), Xantphos (20 mol%), and NaI (2 equiv) inside glovebox. Next, DCE (0.15 M), acetic acid (2 equiv), PhMeSiH₂ (1 equiv), styrene **2** (2 equiv) and BCB substrate **4** (0.15 mmol) were added subsequently via syringe. The vial was placed in a photoreactor box equipped with 40 W LED lamp (Kessil PR160-427) without cooling fan (vial temperature reached 38 °C). The reaction mixture was stirred for 16 h. The resulting mixture was filtered through a short plug of silica gel using hexanes/EtOAc as eluent. The filtrate was concentrated *in vacuo*. The resulting residue was purified by column chromatography on silica gel in hexanes/EtOAc to afford the corresponding products.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-((E)-2-(1-((benzyloxy)carbonyl)cyclobutyl)vinyl)benzoate**5b**

5b was prepared according to the general procedure in 52% yield (55 mg, 0.078 mmol) as white solid. R_f (hexanes/EtOAc = 9/1): 0.33. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.98 – 7.96 (m, 2H), 7.40 – 7.36 (m, 2H), 7.35 – 7.30 (m, 5H), 6.60 (d, *J* = 16.1 Hz, 1H), 6.51 (d, *J* = 16.1 Hz, 1H), 5.42 (d, *J* = 3.6 Hz, 1H), 5.18 (s, 2H), 4.85 (ddd, *J* = 11.7, 7.7, 4.0 Hz, 1H), 2.65 (dt, *J* = 12.1, 8.2

Hz, 2H), 2.47 (d, J = 7.7 Hz, 2H), 2.29 (dt, J = 12.1, 7.8 Hz, 2H), 2.05 – 1.90 (m, 7H), 1.86 – 1.82 (m, 1H), 1.75 – 1.71 (m, 1H), 1.63 – 1.42 (m, 9H), 1.42 – 1.27 (m, 5H), 1.30 – 0.95 (m, 19H), 0.92 (d, J = 6.5 Hz, 3H), 0.87 (dd, J = 6.6, 2.8 Hz, 6H), 0.69 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 175.3, 166.1, 141.6, 140.0, 136.4, 134.1, 130.2, 129.9, 128.9, 128.7, 128.5, 128.2, 126.4, 123.1, 74.9, 66.9, 57.0, 56.5, 50.5, 50.4, 42.6, 40.1, 39.8, 38.6, 37.4, 37.0, 36.5, 36.1, 32.3, 32.2, 31.3, 28.6, 28.3, 28.2, 24.6, 24.1, 23.1, 22.9, 21.4, 19.7, 19.0, 16.3, 12.2. HRMS (ESI) m/z: [M+H]⁺ calcd. for C_{48H65}O₄ 705.4877; found: 705.4880.

Benzyl (*E*)-1-(4-methoxystyryl)cyclobutane-1-carboxylate 5c

5c was prepared according to the general procedure in 78% yield (37 mg, 0.117 mmol) as colorless oil. R_f (hexanes/EtOAc = 9/1): 0.25. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.41 – 7.26 (m, 7H), 6.86 – 6.83 (m, 2H), 6.44 (d, *J* = 16.0 Hz, 1H), 6.33 (d, *J* = 16.1 Hz, 1H), 5.17 (s, 2H), 3.81 (s, 3H), 2.62 (dt, *J* = 11.8, 8.6 Hz, 2H), 2.37 – 2.21 (m, 2H), 2.03 – 1.86 (m, 2H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 175.4, 159.0, 136.1, 129.6, 128.9, 128.5, 128.4, 127.9, 127.7, 127.4, 113.8, 66.3, 55.3, 49.9, 30.9, 15.9. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₁H₂₃O₃ 323.1642; found: 323.1641.

(E)-1-(2-(6-methoxypyridin-3-yl)vinyl)cyclobutane-1-carboxylate 5d

5d was prepared according to the general procedure in 63% yield (31 mg, 0.094 mmol) as colorless oil. R_f (hexanes/EtOAc = 3/1): 0.28. ¹H NMR (600 MHz, CDCl₃): δ ppm 8.07 (d, J = 2.4 Hz, 1H), 7.65 – 7.62 (m, 1H), 7.43 – 7.26 (m, 5H), 6.71 (d, J = 8.6 Hz, 1H), 6.41 (d, J = 16.1 Hz, 1H), 6.35 (d, J = 16.1 Hz, 1H), 5.17 (s, 2H), 3.94 (s, 3H), 2.63 (ddd, J = 12.3, 9.3, 5.4 Hz, 2H), 2.31 – 2.21 (m, 2H), 1.95 (p, J = 7.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 175.4, 163.8, 145.6, 136.3, 135.7, 130.8, 128.7, 128.3, 128.1, 126.3, 125.5, 111.1, 66.7, 53.7, 50.2, 31.1, 16.2. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₀H₂₂NO₃ 324.1594; found: 324.1599.

(*E*)-morpholino(1-styrylcyclobutyl)methanone **5e**

5e was prepared according to the general procedure in 40% yield (16 mg, 0.060 mmol) as colorless oil. R_f (EtOAc): 0.34. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.38 – 7.35 (m, 2H), 7.33 – 7.30 (m, 2H), 7.24 (d, *J* = 7.3 Hz, 1H), 6.50 (d, *J* = 16.2 Hz, 1H), 6.45 (d, *J* = 16.2 Hz, 1H), 3.67 (s, 4H), 3.53 (s, 2H), 3.25 (s, 2H), 2.74 – 2.68 (m, 2H), 2.21 (ddd, *J* = 9.3, 7.9, 4.0 Hz, 2H), 2.07 – 2.00 (m, 1H), 1.88 – 1.81 (m, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 174.1, 137.0, 132.4, 129.0, 128.5, 128.0, 126.5, 67.3, 66.7, 50.4, 46.7, 42.8, 32.2, 15.6. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C_{17H22}NO₂ 272.1645, found: 272.1647.

(*E*)-1-(4-methoxystyryl)cyclobutane-1-carbonitrile **5f**

5f was prepared according to the general procedure in 55% yield (18 mg, 0.082 mmol) as white solid. R_f (hexanes/EtOAc = 9/1): 0.23. ¹H NMR (600 MHz, CDCl₃): δ 7.36 – 7.32 (m, 2H), 6.90 – 6.85 (m, 2H), 6.65 (d, J = 15.9 Hz, 1H), 6.13 (d, J = 15.9 Hz, 1H), 3.82 (s, 3H), 2.71 – 2.66 (m, 2H), 2.40 – 2.34 (m, 2H), 2.31 – 2.23 (m, 1H), 2.12 – 2.04 (m, 1H).¹³C NMR (151 MHz, CDCl₃): δ ppm 159.7, 130.0, 128.6, 127.9, 125.9, 123.3, 114.2, 55.4, 38.3, 34.1, 17.2. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₄H₁₆NO 214.1226, found: 214.1225.

1',4'-Dimethyl-1',4'-dihydro-2'H-spiro[cyclobutane-1,3'-quinolin]-2'-one 5g

5g was prepared according to the general procedure without adding styrene in 54% yield (31 mg, 0.120 mmol) as colorless oil. R_f (hexanes/EtOAc = 4/1): 0.25. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.23 (td, *J* = 7.9, 1.5 Hz, 1H), 7.17 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.01 (td, *J* = 7.4, 1.0 Hz, 1H), 6.94 (d, *J* = 8.0 Hz, 1H), 3.38 (s, 3H), 2.98 (q, *J* = 7.1 Hz, 1H), 2.88 – 2.81 (m, 1H), 2.03 – 1.81 (m, 5H), 1.05 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 173.8, 139.4, 130.4, 128.5, 127.7, 123.2, 114.9, 47.8, 42.5, 31.3, 30.2, 25.4, 16.2, 15.2. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₄H₁₈NO 216.1383; found: 216.1385.

General Procedures F: An oven dried 2 mL PTFE/silicone-lined septa screw cap vial containing a stirring bar was charged with Xantphos Pd G3 (10 mol%), Xantphos (20 mol%), and TBAB (1 equiv) inside glovebox. Next, 1,4-dioxane/toluene (1/1 ratio in volume, 0.15 M), acetic acid (4 equiv), Et₃SiH (2 equiv), cyclopropene **1** (0.15 mmol) and styrene **2** (2 equiv) were added subsequently via syringe. The vial was placed in a photoreactor box equipped with 40 W LED lamp (Kessil PR160-427) without cooling fan (vial temperature reached 38 °C). The reaction mixture was stirred for 16 h. The resulting mixture was filtered through a short plug of silica gel using hexanes/EtOAc as eluent. The filtrate was concentrated *in vacuo*. The resulting residue was purified by column chromatography on neutral aluminum oxide in hexanes/EtOAc to afford the corresponding products.

((1R*,5S*)-2,2-difluoro-5-(4-methoxyphenyl)cyclopent-3-ene-1,3-diyl)dibenzene 6a

6a was prepared according to the general procedure in 53% yield (26 mg, 0.079 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.28. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.69 – 7.65 (m, 2H), 7.43 – 7.32 (m, 7H), 7.08 – 7.04 (m, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 6.69 (s, 1H), 4.25 (d, *J* = 6.6 Hz, 1H), 3.78 (s, 3H), 3.61 (td, *J* = 16.4, 7.0 Hz, 1H).¹³C NMR (151 MHz, CDCl₃): δ ppm 159.3, 138.7 – 138.3 (m), 135.0, 133.7, 131.6, 130.0, 129.1, 129.0, 128.8 (d, *J* = 12.3 Hz), 128.2, 127.1, 114.7, 62.8 (dd, *J* = 23.4, 22.0 Hz), 55.7, 52.2 (d, *J* = 6.2 Hz), 33.2 – 12.9 (m). ¹⁹F NMR (565

MHz, CDCl₃) δ ppm -90.3 (d, *J* = 248.8 Hz), -95.0 (d, *J* = 248.5 Hz). HRMS (APCI) *m*/*z*: [M]⁺⁺ calcd. for C₂₄H₂₀F₂O 362.1477, found: 362.1477.

((1*R**,2*S**)-5,5-difluorocyclopent-3-ene-1,2,4-triyl)tribenzene **6b**

6b was prepared according to the general procedure in 70% yield (35 mg, 0.105 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.47. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.68 – 7.65 (m, 2H), 7.41 – 7.36 (m, 2H), 7.35 – 7.21 (m, 9H), 7.14 (d, *J* = 7.7 Hz, 2H), 6.69 (s, 1H), 4.28 (s, 1H), 3.64 (td, *J* = 16.3, 6.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 141.5 (d, *J* = 3.4 Hz), 139.3 (dd, *J* = 26.0, 21.7 Hz), 138.5 – 137.4 (m), 134.7, 132.0, 131.4, 130.4, 129.9, 129.1, 128.9 (d, *J* = 12.7 Hz), 128.7, 128.1, 127.6, 127.0, 62.4 (t, *J* = 23.0 Hz), 52.7 (d, *J* = 6.4 Hz), 33.9 – 12.5 (m). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -90.3 (d, *J* = 248.8 Hz), -94.7 (d, *J* = 248.5 Hz). HRMS (APCI) *m/z*: [M]⁺⁺ calcd. for C₂₃H₁₈F₂ 332.1371, found: 332.1371.

(3*R**,3a*R**)-2,2-difluoro-6-methoxy-1,3-diphenyl-2,3,3a,8-tetrahydrocyclopenta[*a*]indene 6c

6c was prepared according to the general procedure in 54% yield (30 mg, 0.081 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.22. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.64 – 7.60 (m, 2H), 7.57 – 7.53 (m, 2H), 7.44 – 7.38 (m, 5H), 7.36 (t, *J* = 7.4 Hz, 1H), 6.97 (d, *J* = 8.3 Hz, 1H), 6.86 (d, *J* = 1.7 Hz, 1H), 6.70 (dd, *J* = 8.3, 2.2 Hz, 1H), 4.56 (s, 1H), 3.93 – 3.81 (m, 2H), 3.78 (s, 3H), 3.73 – 3.65 (m, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 159.6, 154.8 (t, *J* = 9.2 Hz), 143.9, 135.1, 134.4 (d, *J* = 2.1 Hz), 134.2, 132.5 (d, *J* = 4.5 Hz), 131.8 (d, *J* = 2.5 Hz), 130.8, 129.5, 128.7 (d, *J* = 7.8 Hz), 128.2 (d, *J* = 3.3 Hz), 128.1, 127.9, 124.5, 113.0, 110.7, 60.0 (dd, *J* = 26.5, 21.0 Hz),
55.6, 53.8 (dd, J = 8.0, 1.5 Hz), 34.1, 31.9 – 12.6 (m). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -88.6 (d, J = 243.7 Hz), -94.5 (d, J = 243.8 Hz). HRMS (APCI) m/z: [M]⁺ calcd. for C₂₅H₂₀F₂O 374.1477, found: 374.1477.

5-((1S*,5R*)-4,4-difluoro-3,5-diphenylcyclopent-2-en-1-yl)-2-methoxypyridine 6d

6d was prepared according to the general procedure in 41% yield (22 mg, 0.061 mmol) as white solid. R_f (hexanes/EtOAc = 9/1): 0.23. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.96 (d, *J* = 1.6 Hz, 1H), 7.68 – 7.65 (m, 2H), 7.59 – 7.26 (m, 9H), 6.71 (d, *J* = 8.5 Hz, 1H), 6.66 (s, 1H), 4.25 (d, *J* = 4.0 Hz, 1H), 3.90 (s, 3H), 3.58 (td, *J* = 16.1, 7.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 163.6, 145.5, 139.6 (dd, *J* = 26.6, 21.7 Hz), 137.3, 136.9 – 136.3 (m), 133.8, 130.8, 129.7, 129.5, 129.2 (d, *J* = 3.3 Hz), 128.8, 128.7, 128.5, 127.9, 126.7, 111.2, 62.1 (t, *J* = 23.1 Hz), 53.4, 49.3 (d, *J* = 6.3 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -90.7 (d, *J* = 249.4 Hz), -95.2 (d, *J* = 249.3 Hz). HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₃H₂₀F₂NO 364.1507; found: 364.1507.

Butyl((3*S**,3*aR**)-2,2-difluoro-6-methoxy-1-phenyl-2,3,3*a*,8-tetrahydrocyclopenta[*a*]inden-3-yl)sulfane **6e**

6e was prepared according to the general procedure in 50% yield (29 mg, 0.075 mmol) as colorless oil. R_f (hexanes/EtOAc = 9/1): 0.26. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.56 – 7.53 (m, 2H), 7.49 (d, *J* = 8.9 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.35 (d, *J* = 7.4 Hz, 1H), 6.85 – 6.77 (m, 2H), 3.97 (s, 1H), 3.84 – 3.72 (m, 5H), 3.54 – 3.48 (m, 1H), 2.91 – 2.86 (m, 1H), 2.83 – 2.78 (m, 1H), 1.74 – 1.66 (m, 2H), 1.51 – 1.47 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ ppm

160.1, 144.0, 134.0, 132.0, 129.0, 128.6, 128.5 (d, J = 3.2 Hz), 125.0, 113.6, 111.0, 57.0, 56.0, 53.9 (d, J = 6.0 Hz), 34.4, 32.3, 32.0, 22.4, 14.1. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -87.6 (d, J = 242.1 Hz), -94.8 (d, J = 242.3 Hz). HRMS (APCI) m/z: [M]⁺ calcd. for C₂₃H₂₄F₂OS 386.1510, found: 386.1517.

Butyl((1S*,5R*)-2,2-difluoro-5-(4-methoxyphenyl)-3-phenylcyclopent-3-en-1-yl)sulfane 6f

6f was prepared according to the general procedure in 46% yield (26 mg, 0.069 mmol) as colorless oil. R_f (hexanes/EtOAc = 4/1): 0.25. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.65 – 7.62 (m, 2H), 7.42 – 7.33 (m, 3H), 7.23 – 7.20 (m, 2H), 6.94 – 6.86 (m, 2H), 6.52 (t, *J* = 2.1 Hz, 1H), 3.82 (s, 3H), 3.73 (dt, *J* = 11.7, 6.1 Hz, 1H), 3.42 – 3.34 (m, 1H), 2.62 (t, *J* = 7.4 Hz, 2H), 1.53 – 1.44 (m, 2H), 1.38 – 1.30 (m, 2H), 0.85 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 158.8, 137.1 (t, *J* = 8.5 Hz), 132.3, 130.6, 128.9, 128.3, 128.3, 127.8 (d, *J* = 8.7 Hz), 126.3, 113.9, 60.0 – 57.9 (m), 55.0, 51.5 (d, *J* = 5.8 Hz), 31.5, 31.2, 21.5, 13.3. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -89.3 (d, *J* = 247.4 Hz), -94.7 (d, *J* = 247.4 Hz). HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₂H₂₅F₂OS 375.1589; found: 375.1588.

9. Reaction of Cyclopropene with *α*-Ester Hydrazone

Following General Procedure D, α -ester hydrazone **7** (57.6 mg, 0.3 mmol) was used. The crude reaction mixture was purified by column chromatography in hexanes/EtOAc (10:1) to afford the product **3af** in 62% yield (32.0 mg, 0.093 mmol) as white solid. ¹H NMR (600 MHz, C₆D₆) δ ppm 8.26 (s, 1H), 7.45 (d, J = 7.6 Hz, 2H), 7.04 – 7.00 (m, 6H), 6.96 (t, J = 7.4 Hz, 1H), 6.81 – 6.75 (m, 1H), 4.16 (pt, J = 10.8, 5.4 Hz, 2H), 1.73 (ddd, J = 12.0, 8.1, 5.4 Hz, 1H), 1.41 – 1.35 (m, 1H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, C₆D₆) δ ppm 164.2, 143.1, 133.4, 129.8 (d, J = 2.0 Hz), 129.7, 129.4, 128.7, 128.5, 128.4, 123.1, 114.7, 112.7 (t, J = 288.1 Hz), 61.3, 32.1, 31.7 (dd, J = 12.5, 10.9 Hz), 21.9 (t, J = 10.1 Hz), 14.5. ¹⁹F NMR (565 MHz, C₆D₆) δ ppm -128.8 (d, J = 151.2 Hz), -134.8 (d, J = 151.1 Hz). HRMS (APCI) m/z: [M+H]⁺ calcd. for C₁₉H₁₉F₂N₂O₂ 345.1414, found: 345.1402.

10. Post-functionalizations

10.1 Epoxidation

To a stirred solution of **3a** (51.3 mg, 0.2 mmol) in DCM (2.0 mL, 0.1 M), *m*-CPBA (69 mg, 0.30 mmol, 1.5 equiv) was added at room temperature under Ar atmosphere. After being stirred for 24 h, the reaction mixture was poured into aq. NaHCO₃ (sat) with diethyl ether. The aqueous layer was extracted two times with diethyl ether. The combined extract was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by column chromatography on neutral aluminum oxide in hexanes/EtOAc to afford products **3ag** in 89% yield (49 mg, 0.18 mmol) as a colorless oil, dr 2:1. R_f (hexanes/EtOAc = 20/1): 0.22. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.46 – 7.32 (m, 7H), 7.29 (ddd, J = 17.3, 9.7, 1.0 Hz, 5H), 7.20 (dd, J = 8.6, 7.2 Hz, 3H), 3.56 (d, J = 1.5 Hz, 1H, major), 3.36 (d, J = 1.6 Hz, 1H, minor), 3.34 (s, J = 1.6 Hz, 1H, minor), 3.341H, major), 3.12 (s, 1H, minor), 1.99 – 1.93 (m, 1H), 1.88 – 1.79 (m, 1H), 1.66 (ddd, J = 12.4, 7.7, 4.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 136.4, 136.2, 133.8, 132.6, 130.4, 129.6, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 125.8, 125.7, 112.7 (t, J = 288.0 Hz), 112.5 (t, J = 288.2 Hz), 62.7 - 62.3 (m), 60.4 (d, J = 2.0 Hz), 56.5, 55.8, 35.9 (t, J = 9.9 Hz), 35.3 (t, J = 10.4 Hz), 19.9 (t, J = 10.2 Hz), 18.1 (t, J = 10.2 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -129.6 (d, J = 154.6 Hz, major), -130.4 (d, J = 155.4 Hz, minor), -136.0 (d, J = 154.6 Hz, major), -136.2 (d, J = 155.5 Hz, minor). HRMS (APCI) m/z: [M]⁺ calcd. for C₁₇H₁₄F₂O 272.1007, found: 272.1006.

10.2 Photoinduced oxidative cleavage

3ah was prepared according to reported methods of photoinduced oxidative cleavage of alkenes.⁹ An oven dried 4 mL PTFE/silicone-lined septa screw cap vial containing a stirring bar was charged

4-nitrobenzonitrile (44.4 mg, 0.3 mmol, 1.5 equiv) and **3a** (51.3 mg, 0.2 mmol). The reaction vial was purged with N₂ for 15 minutes followed by the addition of anhydrous MeCN (2 mL, 0.1 M). The reaction vial was placed 3 cm in front of a 390 nm lamp with cooling fan. The reaction was stirred under irradiation for 16 h to full conversion. Then, solvent was removed *in vacuo*. The resulting residue was purified by column chromatography on silica gel in hexanes/EtOAc to afford product **3ah** in 68% yield (25 mg, 0.136 mmol) as a colorless oil. R_f (hexanes/EtOAc = 20/1): 0.30. ¹H NMR (600 MHz, CDCl₃) δ ppm 9.52 (s, 1H), 7.53 – 7.35 (m, 3H), 7.34 (d, *J* = 6.9 Hz, 2H), 2.70 – 2.63 (m, 1H), 2.13 (ddd, *J* = 11.5, 7.8, 5.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 194.0, 131.2, 130.7 (d, *J* = 2.0 Hz), 129.7, 129.6, 112.6 (dd, *J* = 290.7, 289.6 Hz), 47.3 (t, *J* = 10.6 Hz), 21.9 (dd, *J* = 11.2, 8.1 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -127.9 (d, *J* = 150.0 Hz), -133.7 (d, *J* = 150.0 Hz). HRMS (APCI) *m/z*: [M]⁺⁺ calcd. for C₁₀H₈F₂O 182.0538, found: 182.0539.

10.3 Dibromination

3ai was prepared according to reported procedure.¹⁰ To a stirred solution of **3a** (51.3 mg, 0.2 mmol) in dry CH₃CN (4 mL, 0.05 M), anhydrous LiBr (34.8 mg, 0.4 mmol, 2 equiv), NaIO₄ (21.4 mg, 0.1 mmol, 0.5 equiv), and concentrated H₂SO₄ (5.8 mg, 0.06 mmol, 0.3 equiv) were added at rt. The resulting reaction mixture was stirred at rt for 24 hours (monitored by TLC or GC/MS). After completion, the reaction mixture was diluted with EtOAc (5 mL) and washed with water followed by saturated aqueous Na₂S₂O₃ solution (2x5 mL). The organic layer was dried over anhydrous MgSO₄, concentrated under pressure to afford crude product. The residue was purified by flash chromatography on neutral aluminum oxide in hexanes/EtOAc to afford compound **3ai** in 70% yield (58 mg, 0.139 mmol) as white solid, dr 1.1: 1. R_f (hexanes/EtOAc = 20/1): 0.30. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.88 – 7.79 (m, 3H), 7.48 – 7.40 (m, 5H), 7.35 – 7.26 (m, 6H), 7.25 (dd, *J* = 9.1, 3.4 Hz, 5H), 4.68 (dtd, *J* = 13.1, 11.7, 1.4 Hz, 3H), 4.51 (d, *J* = 11.6, 8.2, 5.6 Hz, 1H), 1.78 (ddd, *J* = 12.8, 8.2, 4.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 140.6, 140.2, 129.0 (d,

J = 2.2 Hz), 129.0, 128.9, 128.7 (d, J = 4.8 Hz), 128.3, 127.7 (d, J = 8.2 Hz), 115.2 (dd, J = 290.7, 289.7 Hz), 112.3 (dd, J = 290.8, 289.3 Hz), 59.0, 56.6 (dd, J = 7.1, 2.8 Hz), 53.7 (d, J = 2.1 Hz), 52.9, 39.7 – 38.8 (m), 38.5 – 37.3 (m), 31.7, 29.8, 27.9 (t, J = 9.6 Hz), 27.3 (dd, J = 11.1, 8.7 Hz), 22.8, 14.2.¹⁹F NMR (565 MHz, CDCl₃) δ ppm -122.3 (d, J = 150.2 Hz), -128.5 (d, J = 150.2 Hz), -131.7 (d, J = 154.8 Hz), -138.9 (d, J = 154.8 Hz).

10.4 Semi one-pot dibromination and dehydrobromination

To a stirred solution of **3a** (51.3 mg, 0.2 mmol) in DCM (4 mL, 0.05 M), bromine (13 μ L, 0.24 mmol, 1.2 equiv) was added dropwise under ice bath and stirred for 2 hours. After completion, the reaction mixture was concentrated under pressure to afford crude debromination product. Then, 1.2 mL of THF/ MeOH (1:1) was added, followed by KOH (0.4 mmol, 2 equiv) in one portion. The resulting solution was heated to 80 °C for 3 hours. After completion, the reaction mixture was quenched with saturated NH₄Cl, extracted three times by EtOAc. The combined organic layers were washed by saturated brine, dried over Na₂SO₄, then concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel in hexanes/EtOAc to afford compound **3aj** in 65% yield over two steps (44 mg, 0.131 mmol) as a colorless oil. R_f (hexanes/EtOAc = 20/1): 0.40. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.30 – 7.23 (m, 6H), 7.22 – 7.16 (m, 2H), 7.16 – 7.09 (m, 2H), 6.64 (s, 1H), 1.75 – 1.70 (m, 1H), 1.35 – 1.30 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 138.6, 136.5, 129.6 – 129.5 (m), 129.3, 128.8, 128.6, 128.4, 127.6, 115.1 – 110.7 (m), 36.3 (t, *J* = 10.5 Hz), 35.0, 31.9, 23.0, 22.6 (t, *J* = 9.4 Hz), 14.4. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -133.3 (d, *J* = 147.3 Hz), -134.2 (d, *J* = 147.3 Hz). HRMS (APCI) *m*/z: [M]⁺⁺ calcd. for C₁₇H₁₃BrF₂ 334.0168, found: 334.0164.

10.5 Hydrogenation

To a solution of **3a** (51.3 mg, 0.2 mmol) in EtOAc (2 ml, 0.1 M) was added palladium on carbon (21.3 mg, 10 wt. % loading). After gas exchanging using hydrogen balloon for 10 min, the reaction mixture was stirred under hydrogen atmosphere at room temperature for 2 hours. Upon completion, the reaction was filtered through a pad of celite. The mixture was concentrated *in vacuo*. The residue was purified by flash chromatography on neutral aluminum oxide in hexanes/EtOAc to afford product **3ak** in 86% yield (45 mg, 0.173 mmol) as a colorless oil. Rf (hexanes/EtOAc = 20/1): 0.36. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.36 (t, *J* = 7.3 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 1H), 7.28 – 7.24 (m, 4H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.09 (d, *J* = 7.4 Hz, 2H), 2.93 (ddd, *J* = 20.5, 11.6, 2.6 Hz, 1H), 2.51 (dt, *J* = 12.2, 8.7 Hz, 1H), 2.42 – 2.31 (m, 2H), 2.20 – 2.10 (m, 1H), 1.40 (t, *J* = 18.7 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 141.8, 138.2 (d, *J* = 5.7 Hz), 129.6, 128.9, 128.8, 128.7, 127.8, 126.2, 125.0 (dd, *J* = 290.8, 289.4 Hz), 53.0 (t, *J* = 23.9 Hz), 33.4, 30.2 (t, *J* = 3.8 Hz), 22.8 (t, *J* = 27.9 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -91.3 (d, *J* = 239.8 Hz), -98.0 (d, *J* = 239.8 Hz). HRMS (APCI) *m/z*: [M]⁺ calcd. for C₁₇H₁₈F₂ 260.1371, found: 260.1375.

10.6 F-elimination/alkynylation/cycloisomerization cascade

3al was prepared according to reported method.¹¹ An oven dried 3 mL Wheaton V-vial containing a stirring bar was charged with **3a** (51.3 mg, 0.2 mmol), Pd(TFA)₂ (6.6 mg, 10 mol%), P(*t*-Bu)₃·HBF₄ (8.3 mg, 12 mol%), Cs₂CO₃ (130 mg, 2 equiv) inside glovebox. Next, THF (1 mL, 0.2 M) and phenylacetylene (44 μ L, 2 equiv) were added subsequently via syringe. The reaction vial was placed into an aluminum block, which was pre-heated to 60 °C. The resulting mixture was stirred for 18 hours. Upon completion, the reaction was cooled to room temperature, diluted with EtOAc, and filtered under cotton column. The filtrate was concentrated *in vacuo*. The residue was purified by flash chromatography on neutral aluminum oxide in hexanes/EtOAc to afford compound **3al** in 41% yield (28.0 mg, 0.083 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.30. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.58 (d, J = 7.9 Hz, 2H), 7.43 (t, J = 7.7 Hz, 2H), 7.39 (t, J = 7.3 Hz, 2H), 7.37 – 7.32 (m, 3H), 7.31 – 7.28 (m, 2H), 7.27 – 7.25 (m, 2H), 7.19 (t, J = 7.4 Hz, 1H), 7.04 (d, J = 7.5 Hz, 2H), 6.98 (d, J = 11.7 Hz, 1H), 3.96 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 159.9, 158.2, 140.6 (d, J = 2.5 Hz), 139.9 (d, J = 7.6 Hz), 138.5 (d, J = 3.5 Hz), 135.6, 132.3 (d, J = 3.8 Hz), 129.5, 129.1 (d, J = 2.9 Hz), 129.0, 128.5 (d, J = 1.3 Hz), 128.3, 127.7, 127.3, 126.2, 117.5 (d, J = 23.1 Hz), 39.0. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -120.3 (s). HRMS (APCI) m/z: [M]⁺⁺ calcd. for C₂₅H₁₉F 338.1465, found: 338.1471.

11. Mechanistic Studies

To a screw-cap NMR tube in glovebox, $Pd(OAc)_2$ (1.2 mg, 0.005 mmol, 0.1 equiv), Xantphos (5.8 mg, 0.01 mmol, 0.2 equiv) and NaI (15 mg, 0.1 mmol, 2 equiv) were added. Next, 0.5 mL of benzene-*d*₆, acetic acid (6 µL, 0.1 mmol, 2 equiv) and PhMeSiH₂ (7 µL, 0.05 mmol, 1 equiv) were added subsequently via syringe. After mixing at room temperature for 2 minutes, the reaction mixture quickly turned dark red and ¹H NMR analysis was performed. ¹H NMR spectra shows the formation of a small peak at -11.48 ppm that is attributed to the H–Pd(II)–X species.

Then, the reaction mixture was transferred to an over-dried 2 mL screw-cap vial equipped with a stir bar under inert atmosphere. BCB **4a** (0.05 mmol) and styrene **2a** (0.1 mmol, 2 equiv) was added. The vial was placed in a photoreactor box equipped with 40 W LED lamp (Kessil PR160-427) without cooling fan (vial temperature reached 38 °C). The reaction mixture was allowed to stir for 16 h. The resulting mixture was diluted using benzene- d_6 and analyzed by ¹H NMR using CH₂Br₂(3.5 µL, 0.05 mmol, 1 equiv) as standard. NMR yield of hydroalkenylation product **5a** was found to be 43%.

¹H NMR (600 MHz, C₆D₆) of Pd(OAc)₂, Xantphos and HX precusors mixture:

13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -2 тн(реп)

¹H NMR (600 MHz, C₆D₆) with expanded range (-10 to -13 ppm):

^{-10.3 -10.4 -10.5 -10.6 -10.7 -10.8 -10.9 -11.0 -11.1 -11.2 -11.3 -11.4 -11.5 -11.6 -11.7 -11.8 -11.9 -12.0 -12.1 -12.2 -12.3 -12.4 -12.5 -12.6 -12.7 -12.8 -12.9} 1H(ppm)

¹H NMR (600 MHz, C₆D₆) of reaction mixture:

11.2 PdH complex as a catalyst

(a) Synthesis of HPd(PPh₃)₂Cl complex

$$Pd(PPh_3)_4 + HCI \xrightarrow{THF, rt, 1 h} Ph_3P \xrightarrow{Pd} H$$

HPd(PPh₃)₂Cl was synthesized according to modified literature procedure.¹² In a glove box, HCl (1.0 M in Et₂O, 0.22 mmol) was added dropwise into a stirring solution of Pd(PPh₃)₄ (232 mg, 0.2 mmol) in THF (2.5 mL) at room temperature for an hour. Then the solvent and excess HCl were removed under reduced pressure. The resulting solid was washed with pentane (5 mL x 3) and then dried under vacuum to afford the HPd(PPh₃)₂Cl as off-white powder (76 mg, 51% yield). Compound was isolated as THF solvate (1 equiv THF, as observed by 1H NMR spectroscopy, remains after extensive vacuum drying of the isolated solid). **HPd(PPh₃)₂Cl**: ¹H NMR (600 MHz, C₆D₆) δ ppm 7.86 (d, *J* = 5.9 Hz, 12H), 7.00 (t, *J* = 8.4 Hz, 18H), -12.30 (s, 1H). ¹³C NMR (151 MHz, C₆D₆) δ ppm 134.9, 130.2, 128.6, 128.3. ³¹P NMR (243 MHz, C₆D₆) δ ppm 28.4.

¹H NMR (600 MHz, C₆D₆) of HPd(PPh₃)₂Cl

(b) Experiment using HPd(PPh₃)₂Cl as a catalyst

An oven dried 2 mL PTFE/silicone-lined septa screw cap vial containing a stirring bar was charged with HPd(PPh₃)₂Cl (10 mol%) and Xantphos (20 mol%) inside glovebox. Next, styrene (2 equiv) and cyclopropene **1a** (0.15 mmol) were added subsequently via syringe. The vial was placed in a photoreactor box equipped with 40 W LED lamp (Kessil PR160-427) without cooling fan (vial temperature reached 38 °C). The reaction mixture was stirred for 16 h. The resulting mixture was filter through a short plug of neutralized silica gel using hexanes/EtOAc as eluent. The filtrate was concentrated *in vacuo*. The resulting residue was purified by column chromatography on neutral aluminum oxide in hexanes/EtOAc to afford the product **3a** in 40% yield (15.0 mg, 0.06 mmol).

11.3 HAT of cyclopropyl and cyclobutyl radicals

(a) HAT of cyclopropyl radical

An oven dried 2 mL PTFE/silicone-lined septa screw cap vial containing a stirring bar was charged with Pd(OAc)₂ (10 mol%), Xantphos (20 mol%), P(2-Furyl)₃ (20 mol%), and TBAB (1 equiv) inside glovebox. Next, 1,4-dioxane (0.15 M), acetic acid (2 equiv), PhMe₂SiH (0.2 equiv), cyclopropene **1d** (0.15 mmol) were added subsequently via syringe. The vial was placed in a photoreactor box equipped with 40 W LED lamp (Kessil PR160-427) without cooling fan (vial temperature reached 38 °C). The reaction mixture was stirred for 16 h. The resulting mixture was filter through a short plug of neutralized silica gel using hexanes/EtOAc as eluent. The filtrate was concentrated *in vacuo*. The residue was diluted with CDCl₃ and analyzed by ¹H NMR using CH₂Br₂(10.5 μ L, 0.15 mmol, 1 equiv) as standard. NMR yield of cyclopropane **3am** was found to be 62% with dr 1.8:1 (*cis:trans*), compared with literature spectral data of **3am**.¹³ The stereochemistry of major diastereomer was assigned via NOESY experiment.

¹H NMR (600 MHz, C₆D₆) of reaction mixture:

(b) HAT of cyclobutyl radical

An oven dried 2 mL PTFE/silicone-lined septa screw cap vial containing a stirring bar was charged with BCB **4b** (0.15 mmol), Pd(OAc)₂ (10 mol%), Xantphos (20 mol%), and NaI (2 equiv) inside glovebox. Next, DCE (0.15 M), acetic acid (2 equiv), and PhMeSiH₂ (1 equiv) were added subsequently via syringe. The vial was placed in a photoreactor box equipped with 40 W LED lamp (Kessil PR160-427) without cooling fan (vial temperature reached 38 °C). The reaction mixture was stirred for 16 h. The resulting mixture was filter through a short plug of silica gel using hexanes/EtOAc as eluent. The filtrate was concentrated *in vacuo*. The residue was diluted with CDCl₃ and analyzed by ¹H NMR using CH₂Br₂ (10.5 μ L, 0.15 mmol, 1 equiv) as standard. NMR yield of cyclobutane **5h** was found to be 46%, compared with literature spectral data of **5h**.¹⁴ ¹H NMR (600 MHz, CDCl₃) of reaction mixture:

11.4 Deuterium-labeling studies:

(a) Reaction with acetic acid-d₄

Following General Procedure D, acetic acid- d_4 (17 µL, 0.3 mmol, 2 equiv) was used. The crude reaction mixture was purified by column chromatography in hexanes/EtOAc (20:1) to afford the the product **3i-D1** in 63% yield with 53% D incorporation analyzed by ¹H NMR.

¹H NMR (600 MHz, CDCl₃) of **3i-D1**

(b) Reaction with 4-vinylanisole-d₂

Reaction was performed according to the General Procedure E using **1a** (0.15 mmol), deuterated 4-vinylanisole¹⁵ **2b-D** (0.3 mmol, 2.0 equiv) to afford the product **3i-D2** in 66% yield and deuterium incorporation was analyzed by ¹H NMR, *which indicates that* H-Pd(II)-X species enters next catalytic cycle after β -H elimination.

¹H NMR (600 MHz, CDCl₃) of **2b-D**

¹H NMR (600 MHz, CDCl₃) of **3i-D2**

11.5 Radical probe experiments:

Following General Procedure D, cyclopropane **1a** (0.15 mmol) and (1-cyclopropylvinyl)benzene **2c** (43.5 mg, 0.3 mmol) were used. The crude reaction mixture was purified by column chromatography in hexanes/EtOAc (20:1) to afford the mixture of products **3aa** and **3an** in 35% yield (15.0 mg, 0.051 mmol). The ratio of **3aa** and **3an** was determined by ¹H NMR.

¹H NMR (600 MHz, CDCl₃) of isolated **3aa** and **3an**:

Following General Procedure E, BCB **4a** (0.15 mmol) and (1-cyclopropylvinyl)benzene **2c** (43.5 mg, 0.3 mmol) were used. The crude reaction mixture was purified by column chromatography in hexanes/EtOAc (10:1) to afford the product **5i** in 21% yield (10.0 mg, 0.031 mmol) as colorless oil. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.39 – 7.36 (m, 1H), 7.28 (t, *J* = 6.6 Hz, 3H), 7.25 – 7.21 (m, 2H), 7.17 (dd, *J* = 11.7, 4.6 Hz, 1H), 7.12 (q, *J* = 7.4 Hz, 2H), 5.66 (t, *J* = 4.5 Hz, 1H), 4.97 (s, 2H), 2.97 (d, *J* = 1.1 Hz, 2H), 2.63 (t, *J* = 7.9 Hz, 2H), 2.53 – 2.45 (m, 2H), 2.13 (dd, *J* = 12.5, 7.9 Hz, 2H), 2.07 (dt, *J* = 11.8, 8.6 Hz, 2H), 1.96 – 1.87 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ ppm 176.7, 136.3, 136.0, 135.0, 132.5, 128.0, 127.6, 127.2, 126.3, 125.9, 125.7, 122.1, 65.8, 46.9, 38.8, 30.1, 28.0, 22.7, 15.6. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₃H₂₅O₂ 333.1849, found: 333.1856.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

11.6 Radical quenching experiments:

An oven dried 2 mL PTFE/silicone-lined septa screw cap vial containing a stirring bar was charged with Pd(OAc)₂ (10 mol%), Xantphos (20 mol%), P(2-Furyl)₃ (20 mol%), TBAB (1 equiv) and TEMPO (2 equiv) inside glovebox. Next, 1,4-dioxane (0.15 M), acetic acid (2 equiv), PhMe₂SiH (0.2 equiv), styrene **2a** (2 equiv) and cyclopropene **1a** (0.15 mmol) were added subsequently via syringe. The vial was placed in a photoreactor box equipped with 40 W LED lamp (Kessil PR160-427) without cooling fan (vial temperature reached 38 °C). The reaction was stirred for 16 h. The resulting reaction mixture was analyzed by GC-MS and ¹H NMR. Product **3a** was not detected and no radical trapping product with TEMPO was observed.

An oven dried 2 mL PTFE/silicone-lined septa screw cap vial containing a stirring bar was charged with Pd(OAc)₂ (10 mol%), Xantphos (20 mol%), NaI (2 equiv) and TEMPO (2 equiv) inside glovebox. Next, DCE (0.15 M), acetic acid (2 equiv), PhMeSiH₂ (1 equiv), styrene (2 equiv) and BCB **4a** (0.15 mmol), were added subsequently via syringe. The vial was placed in a photoreactor box equipped with 40 W LED lamp (Kessil PR160-427) without cooling fan (vial temperature reached 38 °C). The reaction mixture was stirred for 16 h. The resulting reaction mixture was analyzed by GC-MS and ¹H NMR. Product **5a** was not detected and no radical trapping product with TEMPO was observed.

11.7 Reaction of cyclopropene with α -methyl styrene:

Following General Procedure F, α -methyl styrene **2d** (39 µL, 0.3 mmol) was used. The crude reaction mixture was purified by column chromatography in hexanes/EtOAc (10:1) to afford the product **3ao** in 61% yield (32.0 mg, 0.091 mmol) as white solid. One diastereomer. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.35 – 7.29 (m, 5H), 7.15 – 7.08 (m, 3H), 7.05 (d, *J* = 7.3 Hz, 1H), 7.00 (t, *J* = 7.6 Hz, 2H), 6.82 (d, *J* = 7.4 Hz, 2H), 6.46 (d, *J* = 7.6 Hz, 2H), 5.13 (s, 1H), 4.81 (s, 1H), 3.25 (d, *J* = 14.5 Hz, 1H), 3.04 (d, *J* = 14.5 Hz, 1H), 2.73 (dd, *J* = 15.2, 2.7 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 145.1, 141.9, 133.2, 132.9, 131.8 (d, *J* = 1.0 Hz), 129.3 (d, *J* = 3.5 Hz), 128.7, 127.9 (d, *J* = 1.7 Hz), 127.3, 127.3, 126.7, 117.7, 117.3, 115.7, 42.5 (d, *J* = 5.2 Hz), 40.7 (dd, *J* = 10.5, 7.0 Hz), 38.5 (dd, *J* = 12.0, 9.1 Hz), 31.9, 23.0, 14.4. ¹⁹F NMR (565 MHz, CDCl₃) δ ppm - 126.6 (d, *J* = 153.8 Hz), -138.7 (d, *J* = 153.6 Hz). HRMS (APCI) *m/z*: [M]⁺⁺ calcd. for C₂₄H₂₀F₂ 346.1533, found: 346.1528.

11.8 Thermal rearrangement:

An oven dried 3 mL Wheaton V-vial containing a stirring bar was charged with vinyl cyclopropane **3a** (0.15 mmol) in 1,4-dioxane (0.1 M). The microreactor was capped with a Teflon pressure cap and placed into pre-heated aluminum block at indicated reaction temperature. The reaction mixture was allowed to stir for 16 h and then concentrated *in vacuo*. The resulting residue was purified by column chromatography on neutral aluminum oxide in hexanes/EtOAc to afford product **6g** and substrate **3a** was recovered.

(5,5-Difluorocyclopent-1-ene-1,3-diyl)dibenzene 6g

6g was obtained at 150 °C in 93% yield (36 mg, 0.139 mmol) as white solid. R_f (hexanes/EtOAc = 20/1): 0.26. ¹H NMR (600 MHz, CDCl₃): δ ppm 7.59 – 7.55 (m, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.28 – 7.24 (m, 3H), 7.20 – 7.15 (m, 3H), 6.46 (s, 1H), 4.06 – 3.96 (m, 1H), 2.97 (ddt, *J* = 17.9, 15.5, 7.9 Hz, 1H), 2.42 – 2.33 (m, 1H). ¹³C NMR (151 MHz, CDCl₃): δ ppm 142.7 (d, *J* = 4.6 Hz), 139.2 (dd, *J* = 25.0, 23.6 Hz), 138.8 (t, *J* = 8.1 Hz), 134.5, 132.9, 131.2, 131.0, 129.0, 128.7, 128.6, 127.4, 127.2, 126.8, 45.7 – 45.3 (m), 44.6 (dd, *J* = 26.5, 23.6 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -83.5 (d, *J* = 250.1 Hz), -87.9 (d, *J* = 250.0 Hz). HRMS (APCI) *m/z*: [M]⁺⁺ calcd. for C₁₇H₁₄F₂ 256.1058, found: 256.1060.

12. Assignment of Relative Configurations

12.1 Assignment of relative configurations for cyclopropanes

Relative configurations of cyclopropanes **3d**, **3ao** and major diastereomer of **3e**, **3f**, **3g** were assigned based on chemical shifts and ¹H-¹H NOESY experiments. Three representative examples of the structure elucidation performed for compounds **3d**, **3e**, and **3ao** are provided below. Relative configurations of other products were assigned by analogy.

(a) Stereochemistry of cyclopropanes 3d

¹H-¹H NOESY spectrum showed that cyclopropyl H^a proton at 1.32 ppm has correlation with alkenyl H^b proton at 6.23 ppm, which means that H^a is *cis* to vinyl group in cyclopropane **3d**.

(b) Stereochemistry of cyclopropanes 3e (major diastereomer)

¹H-¹H NOESY spectrum showed that cyclopropyl H^a proton at 2.03 ppm has correlation with alkenyl H^b proton at 6.23 ppm, which means that H^a is *cis* to vinyl group in major diastereomer of cyclopropane **3e**.

¹H-¹H NOESY of **3e**

f1 (ppm)

(b) Stereochemistry of cyclopropanes 3ao

¹H-¹H NOESY spectrum showed that cyclopropyl H^a proton at 2.73 ppm has correlation with both allylic H^b and H^c proton at 3.23 ppm and 3.03 ppm, which means that H^a is *cis* to allyl group in cyclopropane **3ao**.

¹H-¹H NOESY of **3ao**

12.2 Assignment of relative configurations for cyclopentenes

Relative configurations of cyclopentenes **6a**, **6b**, **6c**, **6d**, **6e**, **6f** were assigned based on chemical shifts and ¹H-¹H NOESY experiments. Three representative examples of the structure elucidation performed for compounds **6c**, **6d**, and **6f** are provided below. Relative configurations of other products were assigned by analogy.

(a) Stereochemistry of cyclopentene 6c

¹H-¹H NOESY spectrum showed that H^a proton at 3.70 ppm has correlation with H^b proton at 4.56 ppm, which means that H^a is *cis* to H^b in cyclopentene **6c**.

¹H-¹H NOESY of 6c

(b) Stereochemistry of cyclopentene 6d

¹H-¹H NOESY spectrum showed that H^a proton at 3.60 ppm has correlation with H^b proton at 4.25 ppm, which means that H^a is *cis* to H^b. Thus, pyridyl group is *cis* to phenyl group in cyclopentene **6d**.

¹H-¹H NOESY of **6d**

(c) Stereochemistry of cyclopentene 6f

¹H-¹H NOESY spectrum showed that H^a proton at 3.37 ppm has correlation with H^b proton at 3.72 ppm, which means that H^a is *cis* to H^b.

¹H-¹H NOESY of **6f**

13. NMR Spectral Data

^1H NMR (600 MHz, CDCl₃) of 4d

¹³C NMR (151 MHz, CDCl₃) of 4d

S68

¹⁹F NMR (565 MHz, CDCl₃) of **3a**

S69

¹³C NMR (151 MHz, CDCl₃) of **3b**

¹⁹F NMR (565 MHz, CDCl₃) of **3c**

----0.11

1132 1132 1132 1132

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)
^{13}C NMR (151 MHz, CDCl₃) of 3d

 $\angle \frac{-122.60}{-122.86}$ $\angle \frac{-126.52}{-126.78}$

¹⁹F NMR (565 MHz, CDCl₃) of **3e**

¹H NMR (600 MHz, CDCl₃) of **3g**

$^{19}\mathrm{F}\,\mathrm{NMR}$ (565 MHz, CDCl₃) of $3\mathrm{g}$

^{13}C NMR (151 MHz, CDCl₃) of 3h

¹⁹F NMR (565 MHz, CDCl₃) of **3h**

¹³C NMR (151 MHz, CDCl₃) of **3i**

¹⁹F NMR (565 MHz, CDCl₃) of **3i**

 $< \frac{-128.58}{-128.84}$ $< \frac{-133.94}{-134.21}$

¹H NMR (600 MHz, CDCl₃) of 3k

¹³C NMR (151 MHz, CDCl₃) of **3k**

¹³C NMR (151 MHz, CDCl₃) of **3**l

¹⁹F NMR (565 MHz, CDCl₃) of **3**l

$^{19}\mathrm{F}\,\mathrm{NMR}$ (565 MHz, CDCl₃) of $3\mathrm{m}$

¹⁹F NMR (565 MHz, CDCl₃) of **30**

¹⁹F NMR (565 MHz, CDCl₃) of **3p**

¹H NMR (600 MHz, CDCl₃) of 3q

$^{19}\mathrm{F}\,\mathrm{NMR}$ (565 MHz, CDCl₃) of $3\mathrm{q}$

S96

^{13}C NMR (151 MHz, CDCl₃) of 3t

¹³C NMR (151 MHz, CDCl₃) of **3u**

¹⁹F NMR (565 MHz, CDCl₃) of **3u**

^{13}C NMR (151 MHz, CDCl₃) of 3v

¹H NMR (600 MHz, CDCl₃) of 3w

¹³C NMR (151 MHz, CDCl₃) of **3**w

S102

^{13}C NMR (151 MHz, CDCl₃) of 3x

<-128.52
<-128.79
<-133.97
<-134.23</pre>

$^{19}\mathrm{F}\,\mathrm{NMR}$ (565 MHz, CDCl₃) of $3\mathrm{y}$

¹³C NMR (151 MHz, CDCl₃) of **3z**

 ^{19}F NMR (565 MHz, CDCl₃) of 3z

Ph

¹H NMR (600 MHz, CDCl₃) of 3aa

¹⁹F NMR (565 MHz, CDCl₃) of 3aa

130.44
 -130.70
 135.58
 -135.84

¹H NMR (600 MHz, CDCl₃) of **3ab**

¹³C NMR (151 MHz, CDCl₃) of **3ab**

¹³C NMR (151 MHz, CDCl₃) of 3ac

¹⁹F NMR (565 MHz, CDCl₃) of 3ac

¹³C NMR (151 MHz, CDCl₃) of **3ad**

¹⁹F NMR (565 MHz, CDCl₃) of **3ad**

¹H NMR (600 MHz, CDCl₃) of 3ae

¹⁹F NMR (565 MHz, CDCl₃) of **3ae**

 ^1H NMR (600 MHz, CDCl₃) of 5b

¹³C NMR (151 MHz, CDCl₃) of **5b**

¹³C NMR (151 MHz, CDCl₃) of **5**c

¹³C NMR (151 MHz, CDCl₃) of **5d**

 11.0
 10.5
 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0.0
 -0.5
 -1.0

 f1(ppm)
 f1
 f1

 ^1H NMR (600 MHz, CDCl₃) of 5g

^{13}C NMR (151 MHz, CDCl₃) of 5g

¹³C NMR (151 MHz, CDCl₃) of **6a**

¹⁹F NMR (565 MHz, CDCl₃) of **6a**

¹³C NMR (151 MHz, CDCl₃) of **6b**

$^{19}\mathrm{F}\,\mathrm{NMR}$ (565 MHz, CDCl₃) of $\mathbf{6b}$

 ^{-90.12}

 ^{-91.56}

 ^{-91.56}

$^1\mathrm{H}$ NMR (600 MHz, CDCl₃) of $\mathbf{6c}$

^{13}C NMR (151 MHz, CDCl₃) of 6c

¹⁹F NMR (565 MHz, CDCl₃) of **6c**

¹H-¹³C HMQC of **6c**

¹H-¹H COSY of **6c**

¹³C NMR (151 MHz, CDCl₃) of 6d

¹⁹F NMR (565 MHz, CDCl₃) of 6d

20.50
 290.50
 295.04
 35.48

6.0 5.5 5.0 4.5 4.0 f2 (ppm)

MeO

3.0

2.5 2.0 1.5 1.0

3.5

170 -180 . -190 -200

0.0

0.5

0

7.5 7.0 6.5

0

8.5 8.0

¹H-¹H COSY of **6d**

¹³C NMR (151 MHz, CDCl₃) of 6e

¹⁹F NMR (565 MHz, CDCl₃) of **6e**

¹³C NMR (151 MHz, CDCl₃) of 6f

$^{19}\mathrm{F}\,\mathrm{NMR}$ (565 MHz, CDCl₃) of $\mathbf{6f}$

-50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

 $< \frac{-89.11}{-89.54}$

10 0 -10 -20 -30 -40

S132

¹⁹F NMR (565 MHz, C₆D₆) of **3af**

S135

¹³C NMR (151 MHz, C₆D₆) of **3ag**

 $^{19}\mathrm{F}\,\mathrm{NMR}$ (565 MHz, C6D6) of 3ag

2 2	8 4	28 C	19 m
	00	in in	0.0
20	<u>m</u> m	<u>m</u> m	mm
- 77	77	77.77	777
	JU.	U.	سد

¹H NMR (600 MHz, C₆D₆) of **3ah**

¹⁹F NMR (565 MHz, C₆D₆) of **3ah**

¹⁹F NMR (565 MHz, C₆D₆) of **3ai**

Ph

-122.15
 -122.45
 -128.64
 -138.80
 -138.80
 -138.80

S140

¹⁹F NMR (565 MHz, C₆D₆) of **3aj**

¹³C NMR (151 MHz, C₆D₆) of **3al**

S143

¹⁹F NMR (565 MHz, C₆D₆) of **3al**

¹³C NMR (151 MHz, CDCl₃) of 3ao

¹³C NMR (151 MHz, CDCl₃) of **6g**

¹⁹F NMR (565 MHz, CDCl₃) of **6g**

 $< \frac{83.33}{83.77}$ $< \frac{83.77}{83.77}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

14. References

(1) (a) Ociepa, M.; Wierzba, A. J.; Turkowska, J.; Gryko, D. Polarity-Reversal Strategy for the Functionalization of Electrophilic Strained Molecules via Light-Driven Cobalt Catalysis. *J. Am. Chem. Soc.* 2020, *142*, 5355-5361. (b) Schwartz, B. D.; Zhang, M. Y.; Attard, R. H.; Gardiner, M. G.; Malins, L. R. Structurally Diverse Acyl Bicyclobutanes: Valuable Strained Electrophiles. *Chem. Eur. J.* 2020, *26*, 2808-2812.

(2) Molander, G. A.; Brown, A. R. Suzuki–Miyaura Cross-Coupling Reactions of Potassium Vinyltrifluoroborate with Aryl and Heteroaryl Electrophiles. *J. Org. Chem.* **2006**, *71*, 9681-9686.

(3) (a) Wang, F.; Luo, T.; Hu, J.; Wang, Y.; Krishnan, H. S.; Jog, P. V.; Ganesh, S. K.; Prakash, G. K. S.; Olah, G. A. Synthesis of *gem*-Difluorinated Cyclopropanes and Cyclopropenes: Trifluoromethyltrimethylsilane as a Difluorocarbene Source. *Angew. Chem., Int. Ed.* 2011, *50*, 7153-7157. (b) Li, L.; Wang, F.; Ni, C.; Hu, J. Synthesis of *gem*-Difluorocyclopropa(e)nes and O-, S-, N-, and P-Difluoromethylated Compounds with TMSCF₂Br. *Angew. Chem., Int. Ed.* 2013, *52*, 12390-12394.

(4) Qin, Y.; Sukul, V.; Pagakos, D.; Cui, C.; Jäkle, F. Preparation of Organoboron Block Copolymers via ATRP of Silicon and Boron-Functionalized Monomers. *Macromolecules* **2005**, *38*, 8987-8990.

(5) Huang, C.-Y.; Doyle, A. G. Nickel-Catalyzed Negishi Alkylations of Styrenyl Aziridines. *J. Am. Chem. Soc.* **2012**, *134*, 9541-9544.

(6) Schnell, S. D.; Schilling, M.; Sklyaruk, J.; Linden, A.; Luber, S.; Gademann, K. Nucleophilic Attack on Nitrogen in Tetrazines by Silyl-Enol Ethers. *Org. Lett.* **2021**, *23*, 2426-2430.

(7) Gui, J.; Xie, H.; Chen, F.; Liu, Z.; Zhang, X.; Jiang, F.; Zeng, W. Brønsted Acid/visiblelight-promoted Markovnikov Hydroamination of Vinylarenes with Arylamines. *Org. Biomol. Chem.* **2020**, *18*, 956-963.

(8) Ye, Y.; Liu, J.; Xu, B.; Jiang, S.; Bai, R.; Li, S.; Xie, T.; Ye, X.-Y. Nickel-catalyzed Enantioselective 1,2-Vinylboration of Styrenes. *Chem. Sci.* **2021**, *12*, 13209-13215.

(9) (a) Wise, D. E.; Gogarnoiu, E. S.; Duke, A. D.; Paolillo, J. M.; Vacala, T. L.; Hussain, W. A.; Parasram, M. Photoinduced Oxygen Transfer Using Nitroarenes for the Anaerobic Cleavage of Alkenes. *J. Am. Chem. Soc.* 2022, *144*, 15437-15442. (b) Ruffoni, A.; Hampton, C.; Simonetti,

M.; Leonori, D. Photoexcited Nitroarenes for the Oxidative Cleavage of Alkenes. *Nature* **2022**. DOI: 10.1038/s41586-022-05211-0.

(10) Karabal, P. U.; Chouthaiwale, P. V.; Shaikh, T. M.; Suryavanshi, G.; Sudalai, A. NaIO4/LiBr-Mediated Aziridination of Olefins Using Chloramine-T. *Tetrahedron Lett.* **2010**, *51*, 6460-6462.

(11) Ahmed, E.-A. M. A.; Suliman, A. M. Y.; Gong, T.-J.; Fu, Y. Access to Divergent Fluorinated Enynes and Arenes via Palladium-Catalyzed Ring-Opening Alkynylation of *gem*-Difluorinated Cyclopropanes. *Org. Lett.* **2020**, *22*, 1414-1419.

(12) (a) Hills, I. D.; Fu, G. C. Elucidating Reactivity Differences in Palladium-Catalyzed Coupling Processes: The Chemistry of Palladium Hydrides. *J. Am. Chem. Soc.* 2004, *126*, 13178-13179.
(b) Hu, Y.; Shen, Z.; Huang, H. Palladium-Catalyzed Intramolecular Hydroaminocarbonylation to Lactams: Additive-Free Protocol Initiated by Palladium Hydride. *ACS Catal.* 2016, *6*, 6785-6789.
(c) Tanase, T.; Ohizumi, T.; Kobayashi, K.; Yamamoto, Y. Spontaneous Multiple Insertion of a Bulky Aromatic Isocyanide into the Palladium–Hydride Bond of *trans*-[Pd(H)Cl(PPh₃)₂], Leading to Formation of Heterobicyclic and Pyrrole Compounds. *Organometallics* 1996, *15*, 3404-3411.

(13) Dolbier, W. R.; Tian, F.; Duan, J.-X.; Li, A.-R.; Ait-Mohand, S.; Bautista, O.; Buathong, S.; Marshall Baker, J.; Crawford, J.; Anselme, P.; Cai, X. H.; Modzelewska, A.; Koroniak, H.; Battiste, M. A.; Chen, Q.-Y. Trimethylsilyl Fluorosulfonyldifluoroacetate (TFDA): A New, Highly Efficient Difluorocarbene Reagent. *J. Fluor. Chem.* 2004, *125*, 459-469.

(14) Nicholson, W. I.; Barreteau, F.; Leitch, J. A.; Payne, R.; Priestley, I.; Godineau, E.;
Battilocchio, C.; Browne, D. L. Direct Amidation of Esters by Ball Milling**. *Angew. Chem., Int. Ed.* 2021, *60*, 21868-21874.

(15) Hu, F.; Chen, Z.; Tan, Y.; Xu, D.; Huang, S.; Jia, S.; Gong, X.; Qin, W.; Yan, H. Organocatalytic Enantioselective γ-Elimination: Applications in the Preparation of Chiral Peroxides and Epoxides. *Org. Lett.* **2020**, *22*, 1934-1940.