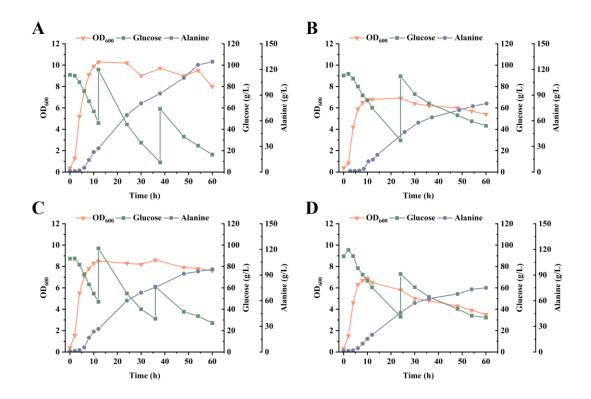
iScience, Volume 26


Supplemental information

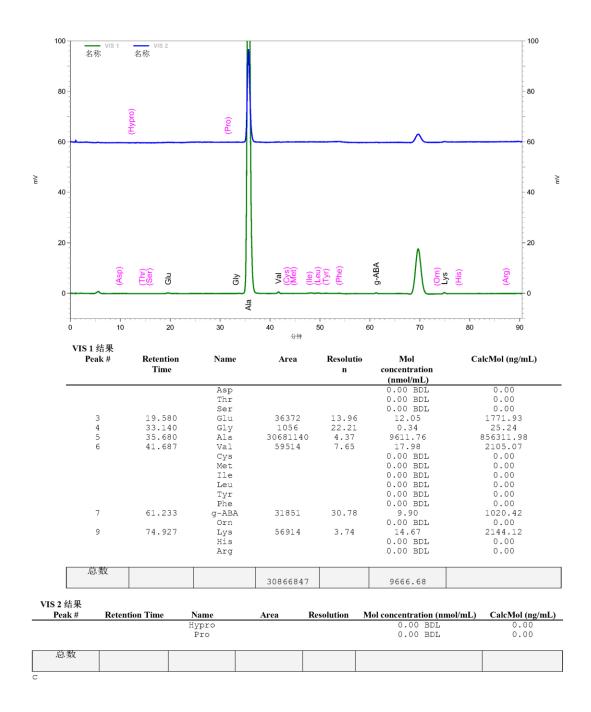
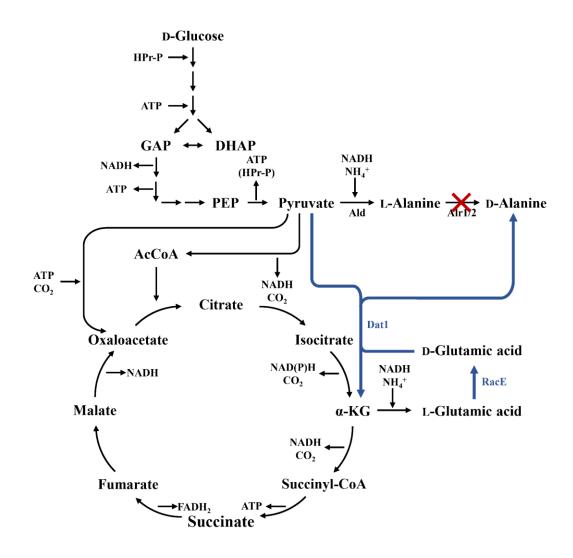
Activating a dormant metabolic pathway

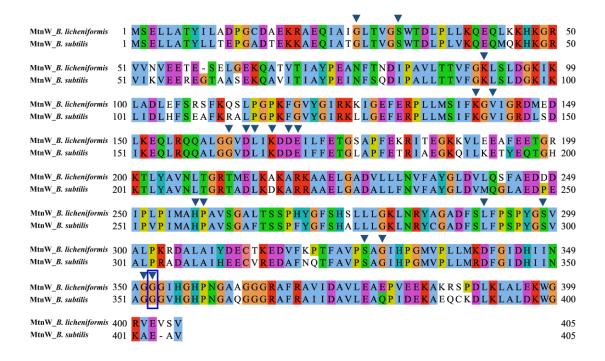
for high-temperature ∟-alanine

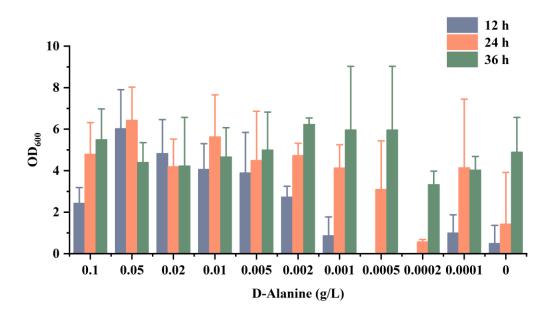
production in Bacillus licheniformis

Xiao Han, Jiongqin Liu, Yutong Wu, Yuhan Yang, Fei Tao, and Ping Xu

Figure S1. Fed-batch fermentations of *Bacillus licheniformis* **overexpressing alanine dehydrogenases from different sources, related to Figure 1.** (A–D) Fedbatch fermentation of *B. licheniformis* BLA1-*ald1*, BLA1-*ald2*, BLA1-*STald*, and BLA1-*BSald*.


Figure S2. Concentrations of different amino acid by-products in *B. licheniformis* BLA3, related to Figure 2. The concentrations of free amino acids were detected by L-8900 automatic amino acid analyzer. Fermentation end product samples were diluted 100-fold before being assayed.


Figure S3. The alternate D-alanine synthesis pathway in *B. licheniformis*, related **to Figure 4.** The main reaction of the alternate D-alanine synthesis pathway was marked in blue in the picture. L-Glutamate was converted to D-glutamate catalyzed by the glutamate racemase RacE, and subsequently converted to D-alanine catalyzed by the D-amino acid aminotransferase Dat1.

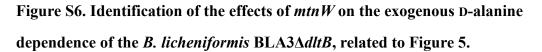


Figure S4. Genome upstream and downstream genes of *alsT5* in *B. licheniformis*, **related to Figure 5.** The *alsT5* gene is located in the upstream region of the *ald1* gene encoding alanine dehydrogenase, suggesting that it may be involved in alanine transport.

Figure S5. Amino acid sequences alignment between *B. licheniformis* **MtnW and** *B. subtilis* **MtnW, related to Figure 5.** The residues involved in the substrate binding and catalytic activity of MtnW were marked by dark blue triangles. Site where SNP occurred in MtnW in evolved strain *B. licheniformis* BLA3-E1 was highlighted by a blue box.

Characterization of the D-alanine dependence on *B. licheniformis* BLA3 $\Delta dltB\Delta mtnW$ by testing the growth performance in media containing various concentrations of D-alanine. Triplicate experiments were carried out for physiological measurements, and error bars represent standard deviations.

Table S1. Concentrations of organic acid and alcohol by-products in different B.licheniformis, related to Figure 2.

Strain	Succinic acid	Lactic acid	Glycerol	Formic acid	Acetic acid
BLA3	0.9 g/L	0.4 g/L	6.6 g/L	1.6 g/L	2.7 g/L
BLA4	0.8 g/L	1.3 g/L	ND	1.8 g/L	1.7 g/L

ND, undetectable.

Туре	Position and content	Description
SNP	338665, G to T	Hypothetical protein gene, missense mutation, L59F
SNP	609159, C to A	Intergenic region between sortase gene and inositol transport protein gene <i>iolT</i>
SNP	920866, A to G	Intergenic region between hypothetical protein gene and 16S ribosomal RNA gene
SNP	1491092, G to T	2,3-diketo-5-methylthiopentyl-1-phosphate enolase gene <i>mtnW</i> , missense mutation, G352V
SNP	2210832, G to T	Sporulenol synthase gene <i>sqhC</i> , missense mutation, A432S
SNP	2525390, C to T	Biotin carboxylase gene accC2, missense mutation, R149H
SNP	3139007, C to T	Sodium/glucose cotransporter gene sglT, missense mutation, P263L
SNP	3233706, C to T	Sodium: alanine symporter family protein gene <i>alsT5</i> , missense mutation, V165I
SNP	3612548, C to T	Two-component sensor histidine kinase gene degS, missense mutation, E65K
InDel	3234341,	Intergenic region between sodium: alanine symporter family protein gene <i>alsT5</i> and proline-
	CAAAATTTTTTCA	responsive transcriptional activator gene putR
	TGCAAA to CAA	
InDel	3905875, GC to G	Teichoic acid D-alanyltransferase <i>dltB</i> , frame shift mutation after the position 408

Table S2. Summary of SNPs and InDels occurring in BLA3-E1 compared to BLA3, related to Figure 5.

Strain or plasmid	Description	
plasmids		
pKVM1	<i>E. coli/B. licheniformis</i> shuttle vector, Amp ^r and Em ^r	
pKVM1-PFYAK	Vector for introducing the <i>pfkA</i> and <i>pyk</i> genes from <i>B</i> .	
	coagulans into strain BN11 with the strong promoter P_{als}	
$pKVM1\Delta ldh_{Ti}$	Vector for deleting the <i>ldh</i> _{Ti} gene in strain BN11-PFYAK	
pKVM1-ald1	Vector for introducing another copy of <i>ald1</i> gene into strain	
	BLA1 with the strong promoter Pals	
pKVM1-ald2	Vector for introducing another copy of <i>ald2</i> gene into strain	
	BLA1 with the strong promoter Pals	
pKVM1-GSald	Vector for introducing the codon-optimized GSald gene into	
	strain BLA1 with the strong promoter Pals	
pKVM1-STald	Vector for introducing the codon-optimized STald gene into	
	strain BLA1 with the strong promoter Pals	
pKVM1-BSald	Vector for introducing the codon-optimized BSald gene into	
	strain BLA1 with the strong promoter Pals	
pKVM1∆ <i>alr1</i>	Vector for deleting the <i>alr1</i> gene in strain BLA2	
pKVM1∆ <i>alr2</i>	Vector for deleting the <i>alr2</i> gene in strain BLA2 or	
	BLA2 $\Delta alrl$	
pKVM1∆ <i>dgp</i>	Vector for deleting the <i>dgp</i> gene in strain BLA3	
pKVM∆ <i>dltB</i>	Vector for deleting the <i>dltB</i> gene in strain BLA3	
pKVM∆ <i>mtnW</i>	Vector for deleting the <i>mtnW</i> gene in strain BLA3 or	
	BLA3 $\Delta dltB$	
pKVM∆alsT5	Vector for deleting the <i>alsT5</i> gene in strain BLA3 or BLA3-	
	E1	
pKVM∆ <i>dat1</i>	Vector for deleting the <i>dat1</i> gene in strain BLA3 or BLA3-E	
pKVM-dat1	Vector for introducing another copy of <i>dat1</i> gene into strain	
	BLA3 with the strong promoter P_{als}	

Table S3. Strains and plasmids used in this study, related to STAR Methods.

strains

B. licheniformis	Efficient D-lactate producer, B. licheniformis ATCC 14580
BN11	$\Delta hsdR1\Delta hsdR2\Delta ldh\Delta alsS\Delta alsD::ldh_{Ti}$
<i>E. coli</i> S17-1	Conjugative strain able to host λ -pir-dependent plasmids
BN11-PFYAK	BN11::PalsPFYAK
BLA1	BN11-PFYAK Δldh_{Ti}
BLA1-Pald1	BLA1::Palsald1
BLA1-Pald2	BLA1::Palsald2
BLA2	BLA1::PalsGSald
BLA1-PSTald	BLA1::PalsSTald
BLA1-PBSald	BLA1::PalsBSald
BLA2∆alr1	BLA2 $\Delta alrl$
BLA2 $\Delta alr2$	BLA2 $\Delta alr2$
BLA3	BLA2 $\Delta alr1\Delta alr2$
BLA4	BLA3 Δdgp
BLA3-E1	Evolved BLA3 which can grow without adding D-alanine
BLA3 $\Delta dltB$	BLA3 $\Delta dltB$
BLA3 $\Delta mtnW$	BLA3 $\Delta mtnW$
BLA3 $\Delta alsT5$	BLA3 $\Delta alsT5$
BLA3-E1 $\Delta alsT5$	BLA3-E1 $\Delta alsT5$
BLA3 $\Delta dlt B \Delta mtn W$	BLA3 $\Delta dltB\Delta mtnW$
BLA3 <i>∆dat1</i>	BLA3 <i>\Delta</i> dat1
BLA3-E1∆dat1	BLA3-E1Δdat1
BLA3-Pdat1	BLA3::Palsdat1