
Documentation of Bioinformatics Analysis Workflow 
 
 
PART1: RNA-Seq Processing workflow 
 
I have outlined version and commands of all used tools for processing paired-end 
fastq files from each sample in unix environment. 
 
Step1: Quality Check using FASTQC 
 
Version used : FastQC v0.11.3 
 
fastqc R1.fq R2.fq -o outputdir 
 
Step2: Trimming low quality bases using TRIMMOMATIC [1] 
 
Java-version used : 1.7.0_79 
Trimmomatic-version used : 0.33 
 
java -jar trimmomatic-0.33.jar PE R1.fq R2.fq R1_paired.fq R1_unpaired.fq 
R2_paired.fq R2_unpaired.fq LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 
MINLEN:36 
 
Step3: Alignment to reference genome using STAR-Aligner [2] 
 
STAR version used : v2.5.3 
Picard version: v1.95 
 
3.1 Create STAR Index for alignment 
 
star-2.5.3  --runThreadN 4 --runMode genomeGenerate --genomeDir /path/to/ 
genome/index/ --genomeFastaFiles /path/to/ genome/referenceGenomeFile --
sjdbGTFfile /path/to/ gtfFile/referencegtfFile --sjdbOverhang 100 
 
 
3.2 Alignment to reference genome 
 



star-2.5.3 --genomeDir /path/to/genome/index/ --readFilesIn R1_paired.fq 
R2_paired.fq --runThreadN 12 --outFileNamePrefix filePrefix --quantMode 
GeneCounts --sjdbGTFfile /path/to/gtfFILE 
 
3.3 Sorting SAM files by co-ordinates  
 
java -Xms1g -Xmx4g -jar picard-v1.95/SortSam.jar INPUT= alignment_sample1.sam 
OUTPUT= sorted_ sample1.sam SO=coordinate 
 
3.4 Converting SAM files to BAM files  
 
samtools_1.10  view -bS sorted_ sample1.sam -o sample1.out.bam 
samtools_1.10  index sample1.out.bam 
 
Step4: Quantification using HTSEQ [3] 
 
Version used : HTSeq-v0.8.0 
 
htseq-count -s no  -f sam sorted_sample1.sam /path/to/gtfFILE > 
rawcount_sample1.txt 
 
Step5: Implementation of RSEM [4] to obtain isoform abundances in each sample 
 
Version used : rsem_v1.2.31 
 
5.1 Create RSEM STAR Index for alignment 
 
rsem_v1.2.31  rsem-prepare-reference --gtf /path/to/ genome/referencegtfFile --
star --star-path /path/to/STAR/2.5.3/bin -p 8 /path/to/ 
genome/referenceGenomeFile  /path/to/RSEM_star_index/ 
 
5.2 Alignment and Quantification using RSEM  
 
rsem_v1.2.31 rsem-calculate-expression --paired-end --star --star-path 
/path/to/STAR/2.5.3/bin -p 8 R1_paired.fq.gz R2_paired.fq.gz 
/path/to/RSEM_star_index/ 
 
 



 
NOTE: Using above workflow and commands we obtained raw gene count, 
Isoform abundances and sam file for each sample. These outputs were used as 
input to DESeq2, ISAR and DEXSEQ tool for downstream analysis, respectively. 
 
PART 2: Downstream Analysis 
 
 
Step6: Differential gene expression analysis using DESeq2 [5] 
 
We identified differentially expression genes (DEGs) using the R Bioconductor 
package DESeq2(v1.16.1).  
 
6.1 Loading the libraries 
 
library(“DESeq2”) 
library("org.Mm.eg.db") 
library(“AnnottaionDbi”) 
library(“xlsx”) 
 
6.2 Reading the metadata file 
 
metadata <- read.csv("/path/to/ metadataFile", row.names = 1) 
 
metadata <- meta[sort(rownames(metadata)),] 
 
6.3 Reading the count data file obtained from HTSeq-count 
 
rawdata <-  read.csv("/path/to/htseq_countdata_File", check.names = FALSE, 
row.names = 1) 
 
rawdata <- rawdata[,sort(colnames(rawdata))] 
 
6.4 Differential Expression Analysis 
 
After reading the raw count data and metadata, we performed the DEG analysis 
for each LOAD model [6] compared to sex and age-matched B6 controls, as shown 
below through an example. 



 
Example:  
 
To identify DEGs in 12 months old male TREM2 mice compared to age and sex-
matched control mice, first we subset information about 12 months old male B6 
and TREM2 samples from metadata file, as shown below: 
 
selected.samples <- metadata[metadata$Sex=="Male" & metadata$Age==12 & 
(metadata$Genotype=="Trem2" | metadata$Genotype=="C57BL/6J"),] 
 
next, we implemented our DEG() function on selected samples, as shown below: 
 
DEG(rawdata=rawdata,meta= selected.samples,include.batch=FALSE) 
dseq_Trem2.M12 <- dseq_res                ##only DEGs 
All_Trem2.M12 <- All_res                      ##All genes 
 
We repeated step 6.4 for each mouse model for all ages and sexes and saved the 
results for downstream analysis. 
 
Function used to identify DEGs in each LOAD mouse model  
 
DEG  <- function(rawdata,meta, include.batch = FALSE, ref = "C57BL/6J")  
{ 
  dseq_res <- data.frame() 
  All_res <- data.frame() 
   
  if (include.batch)  
{ 
    cat("Including batch as covariate\n") 
    design_formula <- ~ Batch + Genotype 
  } 
  else 
{ 
    design_formula <- ~ Genotype 
  } 
   
  dat2 <- as.matrix(rawdata[, colnames(rawdata) %in% rownames(meta)]) 



   
    ddsHTSeq <- 
    DESeqDataSetFromMatrix(countData = dat2, 
                           colData = meta, 
                           design = design_formula) 
  ddsHTSeq <- ddsHTSeq[rowSums(counts(ddsHTSeq)) >= 10, ] 
  ddsHTSeq$Genotype <- relevel(ddsHTSeq$Genotype, ref = ref) 
  dds <- DESeq(ddsHTSeq, parallel = TRUE) 
   
  res <- results(dds, alpha = 0.05) 
  summary(res) 
  res_sub <- subset(res[order(res$padj), ], padj < 0.05) 
   
# Adding gene symbol to results mapping to ensemble ID using a map_function 
  res_sub$symbol <- map_function.df(res_sub,"ENSEMBL","SYMBOL") 
  res$symbol <- map_function.df(res,"ENSEMBL","SYMBOL") 
   
# Adding Entrez ID to results mapping to ensemble ID using a map_function 
  res_sub$EntrezGene <- map_function.df(res_sub,"ENSEMBL","ENTREZID") 
  res$EntrezGene <- map_function.df(res,"ENSEMBL","ENTREZID") 
   
  dseq_res <<- as.data.frame(res_sub[, c(7:8, 1:6)]) 
   
  All_res <<- as.data.frame(res[, c(7:8, 1:6)]) 
   
} 
 
Function to map ENSEMBL ID to gene symbol and EntrezID 
map_function.df  <-  function(x, inputtype, outputtype)  

{ 
      mapIds(org.Mm.eg.db, 
        keys = row.names(x), 
        column = outputtype, 
        keytype = inputtype, 
        multiVals = "first" 
      ) 

} 



Step7: Differential Exon usages (DEU) analysis using DEXSeq [7] 
 
For differential exon usage analysis, we followed the steps described in the 
documentation of DEXSeq (v1.40.0).  
(https://bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXS
eq.html). We ran all required steps at default parameter setting as mentioned in 
above documentation and briefly illustrated below: 
 
7.1 Preparing the annotation for DEXSeq 
 
We used python script dexseq_prepare_annotation.py  provided with DEXSeq tool 
to convert reference mouse GTF file with gene models into a GFF file with 
collapsed gene models as required by DEXSeq, as shown below: 
 
python dexseq_prepare_annotation.py referencegtfFile flatt.mm.gff 
 
7.2 Counting the reads 
 
We first converted BAM files to SAM files: 
 
samtools_1.10 view /path/to/sample1.out.bam > sample1.sam 
 
We used python script dexseq_count.py  provided with DEXSeq tool to count 
number of reads that overlap with each of the exon counting bin for each sample, 
as shown below: 
 
python dexseq_count.py -p yes -r pos flatt.mm.gff sorted_ sample1.sam 
Sample1.txt 
 
7.3 Reading the data in to R 
Next, we load all required libraries and read count matrix and gff file generated 
from above commands as described in DEXSeq documentation. 
 
library(“DEXSeq”) 
library( "BiocParallel") 
library(“dplyr”) 
library("xlsx”) 



library(“tidyverse”) 
 
inDir = “/path/to/DEXCount/” 
countFiles = list.files(inDir, pattern=".txt$", full.names=TRUE) 
basename(countFiles) 
 
flattenedFile = list.files(indir, pattern="gff$", full.names=TRUE) 
basename(flattenedFile) 
 
 
7.4 Prepare the sampleTable 
 
Next step is to create a table for samples to be used to identify differential exon 
usage i.e., control and LOAD samples. For example, I have shown sampleTable we 
created for comparison between control B6  and Trem2 mice, as follows: 
 
sampleTable = data.frame( 
row.names = c("control1", "control2", "control3", "control4", "control5", 
"control6", "TREM2.1", "TREM2.2", "TREM2.3", "TREM2.4" , 
"TREM2.5","TREM2.6"), 
condition = c("control", "control", "control", "control","control","control","Trem2", 
"Trem2", "Trem2",  "Trem2", "Trem2", "Trem2")) 
 
7.5 Constructing an DEXSeqDataSet object 
 
This object holds all the input data and will be used for differential exon usage 
analysis: 
 
dxd = DEXSeqDataSetFromHTSeq( 
  countFiles, 
  sampleData=sampleTable, 
  design= ~ sample + exon + condition:exon, 
  flattenedfile=flattenedFile ) 
 
 
 
 



7.6 Testing for differential Exon usage and saving the significant results 
 
We used the wrapper function DEXseq() for differential exon usage analysis in one 
command, as shown below: 
 
dxr = DEXSeq(dxd,BPPARAM=MulticoreParam(workers=4)) 
 
 
7.7 subsetting significant exonic regions with a false discovery rate of 10% 
 
DXR_TR_4M <- dxr[(dxr$padj) < 0.1,] %>%  

mutate(Symbol = map_sym(groupID))  %>%   
mutate(EntrezID = map_eid(groupID)) %>%  

                 filter(!(is.na(Symbol))) %>% 
                 select(GeneID=groupID, Symbol, EntrezID, ExonID=featureID,   
exonBaseMean, dispersion, stat, padj) 
 
where map_sym and map_eid are functions to map ENSEMBL ID to Gene symbol 
and EntrezID, as shown below: 
 
map_sym <- function(x)  

{ 
mapIds(org.Mm.eg.db, 
keys=x, 
column="SYMBOL", 
keytype="ENSEMBL", 
multiVals="first") 
} 

 
map_eid <- function(x) { 

mapIds(org.Mm.eg.db, 
keys=x, 
column="ENTREZID", 
keytype="ENSEMBL", 
multiVals="first") 
} 

 



We repeated steps 7.4 to 7.7 for each mouse model to identify differentially exon 
usage in all mouse models compared to age and sex-matched B6 control mice. 
 
7.8 Saving the results obtained from DEU analysis into  supplementary File 1 
 
Finally, we saved DEXSeq results for each mouse model as shown below: 
 
write.xlsx(DXR_TR_4M, file="/path/to/ Supplementary Table1.xlsx",sheetName = 
"Trem2_4mo_Male",append=TRUE) 
 
Note: Similarly, we performed the DEXSeq analysis on sequencing data file 
obtained from cortex and hippocampus brain regions of 4 and 8 months old Trem2 
KO mouse models compared to age and brain-region matched B6 controls [8] and 
appended the results in supplementary Table 4: 
 
write.xlsx(Cortex_4mo_Male.Trem2, file="/path/to/ Supplementary 
Table4.xlsx",sheetName = " Cortex_4mo_Male",append=TRUE) 
 
7.9 Overlap between genes with differential expression and exon usage 
 
Next, we compared genes with differential exon usages and differential expression 
obtained from DESeq2 analysis and results from this analysis were appended as 
sheetName “Overlap_DEGs_DEU” in supplementary Table 3. 
 
 
Step8: Identification of Isoform Switches using IsoformSwitchAnalyzeR (ISAR) [9] 
 
We followed the steps described in the documentation of ISAR (V1.20.0) 
(https://bioconductor.org/packages/release/bioc/vignettes/IsoformSwitchAnalyze
R/inst/doc/IsoformSwitchAnalyzeR.html). For more detailed explanation about 
each step please follow above documentation.  
 
ISAR takes isoform-level quantification, so we input isoform abundance count 
matrix generated from RSEM tool as input to ISAR. We ran all steps at default 
parameter setting as mentioned in above documentation. 
 
 



8.1 Import data into R : 
 
Loading libraries and specifying path to directory containing isoform count matrix 
for all mouse models. 
 
library(IsoformSwitchAnalyzeR) 
library(tidyverse) 
library(BSgenome.Mmusculus.UCSC.mm10) 
 
filedir <- "/path/to/isoform/countdata/" 
 
metadata <- 
read.csv(“/path/to/metadata.csv”,row.names=1,stringAsFactors=FALSE)  
 
8.2 Selection of samples for Isoform usage analysis 
 
Next we selected samples for analysis. For example, we selected 12 months old 
male Trem2 and C57BL/6J control mice to run the analysis. Users can do similarly 
for other comparisons. 
 
sub.meta <- metadata[metadata$Sex=="M" & metadata$Age==12 & 
(metadata$Genotype=="Trem2" | metadata$Genotype=="C57BL/6J"),] 
 
myQuant <- importIsoformExpression( 
  sampleVector = paste0(filedir,rownames(sub.meta),".isoforms.results"), 
) 
 
The result of using importIsoformExpression is a list containing both count and 
abundance estimates for each isoform. 
 
8.3 Design matrix to indicating condition of each biological replicates  
 
myDesign <-data.frame( 

sampleID=rownames(sub.meta), 
condition=sub.meta$Genotype) 

 
8.4 Create switchAnalyzeRlist object 



 
mySwitchList <- importRdata( 
  isoformCountMatrix    = myQuant$counts, 
  isoformRepExpression = myQuant$abundance, 
  designMatrix                 = myDesign, 
  ignoreAfterPeriod        = TRUE, 
  isoformExonAnnoation= "/path/to/gtfFILE/mm10.GRCm38.97.gtf.gz", 
  isoformNtFasta             =  
c("/path/to/cdnaFile/Mus_musculus.GRCm38.cdna.all.fa.gz", 
"/path/to/ncrnaFile/Mus_musculus.GRCm38.ncrna.fa.gz"), showProgress = TRUE) 
 
8.5 Extract Isoform Switches and Their Sequences 
 
We implemented high-level function isoformSwitchAnalysisPart1() to identify 
isoform switches and writing the nucleotide and amino acid sequences to fasta 
files. 
 
mySwitchListPart1 <- isoformSwitchAnalysisPart1( 
  switchAnalyzeRlist         = mySwitchList, 
  dIFcutoff                          = 0.05, 
  pathToOutput                 = "/path/to/output/outdir/", 
  genomeObject                = Mmusculus, 
  outputSequences           = TRUE,  
  prepareForWebServers = FALSE   
) 
 
The mySwitchListPart1 returned by isoformSwitchAnalysisPart1() has been reduced 
to only contain genes where an isoform switch (as defined by the alpha and 
dIFcutoff arguments) was identified. 
 
It also output two fasta files: one contains nucleotide sequences of isoforms and 
amino acid sequences of isoforms, and it is stored in specified output directory. 
These files were used for external sequence analysis tools such as Pfam (for 
prediction of protein domains), CPAT(for prediction of coding potential), IUpred2a 
(for prediction of Intrinsically Disordered Regions (IDR)) and SignalP (for prediction 
of signal peptides) as recommended in ISAR documentation at default parameter 
setting. Results from these tools will be used in second part of ISAR analysis. 



8.6 Plot all isoform switches and their annotations 
 
This part includes to incorporate the results from external sequence analysis, 
analyzing alternative splicing, predicting functional consequences and plotting 
individual genes with isoform switches.  
 
mySwitchListPart2 <- isoformSwitchAnalysisPart2( 
  switchAnalyzeRlist               = mySwitchListPart1,  
  dIFcutoff                                = 0.05,    
  n                                              = Inf,     
  removeNoncodinORFs        = FALSE,   
  consequencesToAnalyze     = c( 'intron_retention', 'coding_potential',  
'ORF_seq_similarity', 'NMD_status', 'domains_identified', 
'signal_peptide_identified'), 
  pathToCPATresultFile         = "/path/to/cpat_result.txt"), codingCutoff = 0.721, 
 pathToPFAMresultFile         = "/path/to/pfam_results.txt", 
 pathToIUPred2AresultFile  ="/path/to/IUpred2a_ isoform_AA.result", 
  pathToSignalPresultFile     = "/path/to/SignalIP_output_protein_type.txt", 
  pathToOutput                     = "/path/to /outputdir”, 
  outputPlots                         = TRUE   
) 
 
The isoform switch plot for each gene saved into specified directory in above 
command. Isoform switch result obtained from this step was saved in  
Supplementary Table 5, as follows: 
 
write.xlsx(mySwitchListPart2$isoformFeatures, file=”/path/to/Supplementary 
Table 5/”, sheetName=”Trem2_12mo_Male”, append=TRUE) 
 
We repeated steps 8.2 to 8.6 for rest of the LOAD mouse models and Isoform 
switch results obtained from this analysis for each LOAD mouse model were saved 
in  Supplementary Table 5 
 
8.7 Overlap between genes with differential expression and isoform usage 
 



Next, we compared genes with differential isoform usages and differential 
expression obtained from DESeq2 analysis and results from this analysis were 
appended as sheetName “Overlap_DEGs_DTU” in Supplementary Table 3. 
 
 
 
Step 9: Functional Annotations 
 
9.1 Functional annotations of genes with differential exon usages 
 
We performed the KEGG pathway [10-12] enrichment analysis using the R 
Bioconductor package clusterProfiler [13].  We applied compareCluster() function 
to perform enrichment analysis for genes with significant exon usage in each LOAD 
mouse model. 
 
library(clusterProfiler) 
library("AnnotationDbi") 
library("org.Mm.eg.db")  
 
First, created a list of genes with differential exon usages for each LOAD mouse 
model. We used EntrezId of all genes as input. 
 
geneList <- list(APOE4_M4 = DXR_APOE4_4M$EID, APOE4_M8 = 
DXR_APOE4_8M$EID ,………………………..…… ,Trem2_F24 = DXR_TR_24F$EID) 
 
Next, we implemented compareCluster() function, as shown below: 
 
keggterm <- compareCluster(geneCluster = geneList, fun = "enrichKEGG",organism 
= 'mmu') 
 
Results were plotted as shown in figure 1 using dotplot function of clusterProfiler 
as follows: 
 
dotplot(keggterm.ALL,font.size=13,showCategory=15,title="KEGG Pathway 
enrichment across mouse models") 
 
Functional annotation result was saved in tabular format in supplementary File 2: 



 
write.xlsx(keggterm.ALL, file="/path/to /Supplementary Table2.xlsx",sheetName = 
"LOAD Models") 
 
similarly, we performed the KEGG pathway [10-12] enrichment analysis for genes 
with significant exon usage in cortex and hippocampus brain regions of 4 and 8 
months old Trem2 KO mouse models and appended the results in supplementary 
Table 2: 
 
write.xlsx(keggterm.ALL, file="/path/to /Supplementary Table2.xlsx",sheetName = 
"Trem2 KO",append=TRUE) 
 
 
9.2 Functional Annotation of DTU genes in 12months old Trem2 mice 
 
We used following function to perform gene ontology analysis for genes with 
differential isoform usage in 12 months old Trem2 mice: 
 
ENRICHGO <- 
  function(x,universe, n = 2) { 
    GO.term <- enrichGO( 
      gene = x, 
      OrgDb = org.Mm.eg.db, 
      ont = "BP", 
      pvalueCutoff = 0.05, 
      pAdjustMethod = "BH", 
      readable = TRUE 
    ) 
    GO.term@result <- GO.term@result[GO.term@result$Count > n, ] 
    GO.term 
  } 
 
#12 Months old male Trem2 mice 
 
Extracting isoform results of male Trem2 mice from saved results at step 8.6; 
 
dat <- results.ISAR$Trem2.12M.Male 



 
converting Ensembl id of genes with differential isoform usage to Entrez id and 
storing it in a vector; 
 
dat.EID.male <- as.character(as.data.frame(map_eid(unique(dat 
$isoformFeatures$gene_id)))[,1]) 
 
Implemented to ENRICHGO function to identify enriched GO processes; 
 
GOterm.male.Trem2 <- ENRICHGO(dat.EID.male, 2) 
 
Saving the GO annotation results in supplementary Table 6; 
 
write.xlsx(GOterm.male.Trem2, file="/path/to/Supplementary Table 6 ", 
sheetName = "Male") 
 
 
# 12 Months old female Trem2 mice 
 
Extracting isoform results of female Trem2 mice from saved results at step 8.6: 
 
dat <- results.ISAR$Trem2.12M.Female 
 
converting Ensembl id of genes with differential isoform usage to Entrez id and 
storing it in a vector; 
 
dat.EID.female <- 
as.character(as.data.frame(map_eid(unique(dat$isoformFeatures$gene_id)))[,1]) 
 
Implemented to ENRICHGO function to identify enriched GO processes; 
 
GOterm.female.Trem2 <- ENRICHGO(dat..EID.female, 2) 
 
Saving the GO annotation results in supplementary Table 6; 
 
write.xlsx(GOterm.female.Trem2,file="/path/to/Supplementary Table 6 ", 
sheetName = "Female",append=TRUE) 



 
 
 
 
Step 10: Cell type enrichment 

We used Different brain cell types (neurons, endothelial cell, astrocytes, microglia, 
oligodendrocyte precursor cells, newly formed oligodendrocytes, and myelinating 
oligodendrocytes) specific gene signatures were selected from an RNA-Sequencing 
database [14]. 

Fisher exact test was used to test enrichment of cell type signatures in each input 
gene set (differentially expressed genes, genes with differential exon usage and 
genes with differential isoform usage). P values and odd ratios were calculated as 
shown below: 

pval <- fisher.test(matrix(c(A,B,C,D),nrow=2,ncol=2),alternative="greater")$p.value 

OR <- fisher.test(matrix(c(A,B,C,D),nrow=2,ncol=2),alternative="greater")$estimate 

Where, A implies number of microglial genes in DEU genes in given LOAD model 
for example in 12 months old male Trem2; B implies number of microglial genes in 
database minus A; C implies other DEU genes except microglial gene in given LOAD 
model; and D implies total genes in database minus B & C.  

Step 11: Binding Site Prediction using RBPmap [15] 
 
We used webserver of RBPmap webserver (https://rbpmap.technion.ac.il). We 
used RBPmap webserver at default settings for mouse genome (GRCm38/mm10 
assembly). We input co-ordinates of exonic region of differentially spliced genes as 
listed in supplementary table 7 and 8, which were obtained from results from DEU 
and DTU analysis. Results from RBPmap were downloaded and appended to 
supplementary table 7 and 8 for binding sites of RBM25, HNRNPM and CELF5. 
 
Step 12: Overlap with human AD splicing studies 
 
We performed hypergeometric test to compute significant overlaps between 
differentially spliced genes identified in each human study and mouse models, as 
shown below: 



 
Hmgenes  <- intersect (Hsgenes, mmgenes) 
 
pvalue <- phyper(q,m,n,k,lower.tail = FALSE) 
where,  Hsgenes refers to total genes identified in human AD splicing studies with 
mouse orthologs; mmgenes refers to  total differentially spliced genes in given 
mouse model ; Hmgenes refers to  total overlapped genes between mouse model 
and human AD splicing study; and 
q <-  Hmgenes - 1 
m <- Hsgenes  
n <-  total mouse genes with human orthologs - m 
k <-  mmgenes 
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