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1 Structure and summary of mappings
Biomappings contains four tab-separated values (TSV) files for predicted map-
pings and positive, negative, or unsure curated mappings. Each row in these files
represents a single mapping. Each mapping represents a subject (i.e., source)
and a target (i.e., object) for the mapping with a prefix, local unique identi-
fier, and standard name for each in separate columns. Storing the prefix and
the identifier in separate columns allows for convenient filtering by prefix in
downstream usage, while storing the standard name - though redundant - fa-
cilitates human interpretability of mappings. In addition, each mapping repre-
sents a specific relation (i.e., predicate) as a compact URI (CURIE). Currently
used predicates include skos:exactMatch for exact equivalence - this is the
most common predicate in the current curated set - and skos:narrowMatch
or skos:broadMatch for non-exact matches. Further, we use two other predi-
cates for special relationships: speciesSpecific for relations where a subject is
not an exact match but rather a species-specific variant of a non-species-specific
object, and RO:HOM0000017 (“in orthology relationship with”) to represent cross-
species orthologs of the same gene/protein. Biomappings is not limited to these
predicates though, and future mappings can use other predicates as needed.

Predicted and curated mappings differ in what provenance columns are in-
cluded. For curated mappings, each row includes a “type” to denote whether
a mapping was predicted and then reviewed or manually curated de novo, as
well as the curator’s ORCID identifier. For predicted mappings a “type” column
represents the method by which the mapping was predicted, e.g., “lexical”, and a
“source” column provides the URL to the script that created the mapping. The
predictions file also includes a confidence score between 0 and 1, where a higher
score represents a prediction more likely to be correct. When producing predic-
tions, scores are ideally set to approximate the empirical precision associated
with the predictions.

The Biomappings files can be accessed as follows:
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1. Predicted mappings https://github.com/biopragmatics/biomappings/
blob/master/src/biomappings/resources/predictions.tsv

2. Curated correct mappings https://github.com/biopragmatics/biomappings/
blob/master/src/biomappings/resources/mappings.tsv

3. Curated incorrect mappings https://github.com/biopragmatics/biomappings/
blob/master/src/biomappings/resources/incorrect.tsv

4. Curated unsure mappings https://github.com/biopragmatics/biomappings/
blob/master/src/biomappings/resources/unsure.tsv

Figure 1 shows several exemplar rows from the manually curated positive
mappings file.

Figure 2 provides a more detailed breakdown of which identifier resources
have been covered by Biomappings curation. Medical Subject Headings (MeSH) Rogers
(1963) appears on top, due to the fact that it doesn’t provide mappings to several
key external resources, therefore a large portion of the curation effort in Biomap-
pings has focused on mapping MeSH to various chemical, protein, anatomical,
and disease identifier resources.

Figure 1: A screenshot of the manually curated mappings table in the Biomap-
pings version-controlled repository. This contains information about the source
entity, the target entity, the predicate, the type of mapping, and the curator.

2 Additional Matching Methodologies
Rule-based Lexical Matching Methods Rule-based lexical matching meth-
ods rely on deterministic, data source-specific rules for generating high confi-
dence predicted mappings. For example, because the MeSH supplement con-
tains terms for human proteins whose names are generated based on the labels
in UniProt Bateman et al. (2021), mappings can be generated with determinis-
tic text processing and matching (e.g., AKT1 protein, human (mesh:C494918)
maps to AKT1 (uniprot:P31749)). Similarly, WikiPathways Martens et al.
(2021) labels for homologous pathways can be used to generate exact string
matches after stripping the organism ellipses (e.g., Apoptosis (Homo sapiens)
(wikipathways:WP254) maps to Apoptosis (Mus musculus) (wikipathways:WP1254)).
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Figure 2: A summary of curated positive mappings in Biomappings (v0.3.0),
broken down on the left by prefix and on the right by relation type.
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Structural Matching Methods Structural matching draw from a combina-
tion of local properties of entities in identifier resources (e.g., their properties
and relationships) as well as global properties (e.g., taxonomical structure, graph
structure) to infer or predict mappings (Chauhan et al., 2018). For example,
graph homomorphism-based methods search for sub-graphs with similar struc-
ture that can be used to infer mappings. (Chauhan et al., 2018). Constraint-
based methods have a similar approach but alternate mathematical formula-
tions (Mao et al., 2010; Algergawy et al., 2008). Taxonomy-based matching
algorithms focus on hierarchical information for matching (Nandi and Bern-
stein, 2009) while semantic similarity methods include additional features, e.g.,
from textual labels or descriptions (Essayeh and Abed, 2015; Wang et al., 2010;
Xiang et al., 2015) that are featurized in various ways. Several of these methods
rely on machine learning approaches for inference while others are more classical
procedural algorithms.

Knowledge Graph-based Matching Methods Knowledge graph-based
entity alignment methods incorporate prior knowledge and data about concepts
to predict mappings, often with knowledge graph embedding models Berrendorf
et al. (2020). These methods construct disjoint knowledge graphs with concepts
and relations from each respective controlled vocabulary (typically ontologies),
connect the graphs with triples corresponding to both primary and third-party
mappings, then train a link prediction model to predict novel mappings. While
these models promise to generate more interesting predicted mappings, they
have the drawback that they are slower to train and lack explainability.

Chemical Structure Matching Methods Generating mappings based on
chemical structure has been demonstrated in various cheminformatics efforts
such as in the construction of large, integrative databases such as ExCAPE-
DB (Sun et al., 2017) and Papyrus (Béquignon et al., 2023). These methods
typically either involve the generation and matching of of fingerprints such as the
MAACS fingerprint, the generation and matching of hashes such as the InChI
key, or direct (though computationally complex) chemical graph matching.

While we were unable to employ such methods in the case study in the main
text due to the fact that MeSH does not include chemical structures, this may
be helpful for the variety of small- and medium-scale databases that cover drugs,
lipids, and other specific chemical types. More complex methodology such as
using name-to-structure generators such as OPSIN (Lowe et al., 2011) followed
by chemical structural mapping for MeSH terms using IUPAC-like labels could
also present an avenue forwards.
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