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Referees' comments: 

Referee #1 (Remarks to the Author): 

The authors have extended their powerful dBIT microfluidics strategy for spatial transcriptomics and 

epigenomics for multi-modal chromatin/transcriptome profiling by adding RNA-seq to both ATAC-

seq and CUT&Tag. Since these authors' single-modal spatial methods are already available as 

publications or preprints (RNA-seq: Cell PMID: 33188776; ATAC-seq: biorxiv 2021.06.06.447244; 

CUT&Tag: Science PMID: 35143307), I will focus my evaluation on the question of how much the 

current study adds to those previous studies. Unfortunately, I do not find enough added value to 

recommend publication in Nature. 

1) Although Spatial-ATAC-seq-RNA-seq is described fully, including application to a wider-field

microfluidic device, Spatial-CUT&Tag-RNA-seq seems to be last-minute add-on. Spatial-CUT&Tag-

RNA-seq data are described in the text and in Figure 1 and interpreted without any indication of the

antibody used. Different antibodies for example to different histone modifications report on

different parts of epigenome, so the results are meaningless to a reader without knowing what

antibody against what epitope was used. Only by Figure 3 is the mystery solved where it is stated

that a single primary antibody against H3K27ac was used. This is a promoter/enhancer mark that

should give roughly the same profile as ATAC-seq. But users of this method will not be interested in

doing spatial-CUT&Tag-RNA-seq to do something that they can do using the spatial-ATAC-seq-RNA-

seq, since it requires additional steps and is less familiar to most labs. For example in PMID:

33589836 (Nature Methods), which describes a multi-modal CUT&Tag/RNA-seq method also applied

to mouse brain, 5 different histone modifications are profiled, each targeting a different feature of

the epigenome. As there is no data using antibodies that provide information beyond what can be

found more simply by the ATAC-seq version of the method, this aspect of the study is too

preliminary for publication.

2) ATAC-seq, H3K27ac-CUT&Tag and RNA-seq should in principle be concordant at steady-state, and



as shown in the UMAPs of Figure 3, this is the case for these spatial implementations. Non-

concordance might be interpreted as suggesting cause-effect dynamics, if for example there is an 

ATAC-seq signal without an RNA-seq signal. Evidence for this is shown in Figure 2e (2d and 2e are 

apparently mixed up in the text and figure legend relative to the figure panels), however the reads 

are quite sparse and noisy for most of the clusters (and there is no indication of what is the locus 

shown, enhancer? promoter? of what?) and not convincing. There is very little effort made to 

address this critical issue, as most of the data shown presents just the joint modalities. Thus it is not 

clear that there is much added value to adding spatial-RNA-seq to spatial-ATAC-seq or vice-versa. 

This is in contrast to other multi-modal studies; for example in PMID: 33589836 referred to above, 

there are UMAPs showing the chromatin-only and chromatin+RNA for direct comparison, where it is 

clear that the RNA-seq data substantially improved the clustering in general. One of the histone 

modifications was H3K27ac, and in that case there was little if any obvious improvement in UMAP 

cluster separation. Since H3K27ac is exactly the mark used here for Spatial-CUT&Tag, which marks 

the same features as ATAC-seq, there is reason to question whether RNA-seq provides substantial 

enough additional useful information about the mouse brain than what would be obtained by 

Spatial-ATAC-seq alone. 

3) The authors make the bold claim that “The discordance between chromatin accessibility and gene

expression proves the importance of spatial multi-omics co-profiling”. However, these claims seem

largely unsupported by the data:

- In Figure 2d, ATAC signal for Myt1l and Nrxn2 is observed at low-to-intermediate levels in places in

the E13 mouse embryo where RNA signal is not detected in the same pixels. Whereas the authors'

interpretation is that this indicates “lineage priming”, a more parsimonious explanation is that this is

background ATAC signal, given that reads in peaks (13%) was relatively low for this sample. There is

no indication that lineage-priming is being defined by robust peak-to-gene associations in the

manner described by Ma et al. Cell 2020 PMID: 33098772, the article cited for this concept.

- In Figure 2h, a large proportion of the rows presented appear to have high RNA expression that

precedes high ATAC signal on the pseudotemporal trajectory (assuming increasing pseudotime

moves from left to right). This directly contradicts the associated claim that “the gene expression

exhibited a similar temporal tendency as the chromatin accessibility, but showed a slower pace

during the developmental process, such as Sox11 and Nfix, in agreement with epigenetic lineage-

priming of gene expression”. The examples in Figure 2i should therefore not be considered

representative unless addition data is mustered to support this claim.

- The idea of lineage priming manifesting as promoter ATAC-seq preceding RNA-seq expression

should be treated as rather extraordinary, since the prior expectation should be that promoter

accessibility is dependent upon RNA PolII residence/activity and not the other way around.

4) For a technology-focused paper, especially one published in a general interest journal, readers will

be most interested if the methodology can be practically applied to their own problems of interest.

In the case of biocomputing technologies, public availability of software is a requirement for

publication at least to my knowledge. Otherwise, there will be only brief a flurry of interest but no

lasting impact. This method requires microfluidic devices, and presumably some will become

commercially available at some point in the future, but until then it is difficult to get as enthusiastic

about this study as about the 3 previous single-modal papers when they first appeared.



Minor problems: 

- Figure 2b is difficult to interpret in relation to Figure 2a. It is not clear how the clusters relate to

each other here.

- Figure 3c: The “lineage priming” claim should be distinguished from spurious RNA-seq background,

especially when only a single example is being used to support the claim.

Referee #2 (Remarks to the Author): 

Professor Fan and colleagues have developed a new technology for joint spatial transcriptomic and 

epigenomic profiling in two versions. The first one, called spatial-ATAC-RNA-seq, is designed for joint 

profiling of RNA and open chromatin; and the second one, called spatial-CUT&Tag-RNA-seq, is 

designed for joint profiling of RNA and histone modifications. To my knowledge, this is the first 

sequencing-based spatial multi-omic technology for joint RNA and open chromatin/histone 

modification profiling. The data appears to have high quality, although it requires more rigorous 

evaluation through additional analysis (see detailed comments below). If confirmed, this will provide 

biologists a powerful tool for investigating the spatial patterns and regulatory mechanisms of cellular 

heterogeneity within a tissue. To demonstrate its utility, the authors applied this technology to study 

fetal and postnatal mouse brain as well as adult human brain. They were able to identify distinct cell 

clusters whose spatial distributions were consistent with tissue histology. By integrative analysis RNA 

and chromatin accessibility profiles, they identified key enhancers and TFs associated and each cell 

cluster. Interestingly, they identified a number of highly expressed genes that corresponded to low 

chromatin accessibility. Such information provides mechanistic insights that are not available from 

knowledge of individual modalities alone. 

Major comments: 

1. The raw data quality scores (ATACseq fragments and number of detected genes) are impressive

and comparable to non-spatial counterparts. What is the average number of UMIs detected for each

pixel? It is unclear to what extent the genome-wide expression and epigenetic profiles agree with

previous data from the corresponding cell-types. The authors did try to address this issue by

comparing with several public datasets. However, the UMAP co-embedding plots in Figure S4 should

be taken with a grain of salt because the algorithm deliberately removes technical variations

between platforms. To faithfully represent original data, correlation analysis and Genome Browser

visualization will provide more accurate evaluation.

2. There is a non-negligible discrepancy between the RNA and ATACseq based pseudotime analyses

results. This is especially evident in the bottom left corner of Figure 2f and g. Is the source of

variation biological or technical in nature? If the source is biological, what would be the underlying

mechanistic reason?

3. Figure 2h appears to indicate a significant number of genes have different temporal patterns in

expression and chromatin profiles. The biological significance of such discrepancy is not discussed.

Also, part of the discrepancy may be technical as the underlying trajectories from RNA and ATAC are



different. To remove this confounding factor, it would be more relevant to visualize the dynamic 

patterns under a common pseudotime coordinate system (either RNA or ATACseq based). 

4. The integration analysis of spatial-ATACseq-RNAseq and spatial-CUT&Tag-RNAseq for P21 mouse

brain is somewhat confusing. It seems that each dataset is analyzed independently, Consequently,

the resulting clustering patterns do not match exactly. Also, the two datasets seem to target

different regions in the brain, although they appear to be symmetrical. In any case, this analysis does

not seem to provide a more coherent understanding of the mechanism than using each dataset

alone.

5. The comparative analysis of RNA and ATAC dynamics for PROX1 is interesting. The authors

discovered the discrepancy between RNA and ATAC patterns could be utilized to infer RNA turnover

rate. I wonder if this relationship can be formalized as a quantitative model, although it might be

beyond the scope of this paper.

Minor comments: 

1. Gene activity score analysis is used for spatial-CUT&Tag-RNA-seq data, but I could not find where

this score is defined.

2. Several technologies exist for spatial epigenomic profiling, including (sciMAP-ATAC Nat Commun

12, 1274 (2021)), merFISH (bioRxiv, doi: https://doi.org/10.1101/2022.02.17.480825), and seqFISH+

(Nature 590, 344–350 (2021)). The latter study also jointly profiled RNA and chromatin state from

the same cells. It will be relevant to discuss the innovation and significance of this paper in the

aforementioned (and possibly additional) literature context.

Referee #3 (Remarks to the Author): 

This manuscript provides a novel and interesting technique, while serving as a biological reference 

catalogue for epigenetic and transcriptomic signatures in the mousje CNS during two developmental 

timepoints. Their biotechnology side involves a novel combination of epigenetics and 

transcriptomics from the same unit area, layered with spatial information, from PFA fixed tissues! 

The biological importance lies in ability to precede the transcriptomics and observe how epigenetics 

influences the transcriptomic outcome seen in embryonic versus adult tissues, while also translating 

to human hippocampus data. 

This manuscript is incredibly original from techniques to data. 

I would like to see more metrics regarding the technique, such as: during QC, how many barcode 

combinations are thrown away (as empty or just too poor of quality)? How many cells do you 

hypothesize to be captured by one barcode? Is there a supplementary video on how everything 

works that can be added? Are there any metrics for fidelity (which could be compromised just due to 

diffusion of cell contents) between pixels? 

The overlap of the clusters from any given -omics dataset onto specific regions of the tissues is 

incredible. I would just like to see some scale bars on the images with clusters overlayed. 

There is not so much a biological story throughout the manuscript, the data and way it is interpreted 



sums out to be more of a reference, where focusing on and validating some gene candidates could 

provide a more interesting story. 

Data analysis is well reported with availability of all scripts on a github page. 

In terms of providing credit to other work, there could be more comparison with Visium, however, I 

am fine if just a reference sentence distinguishing their technique from Visium is thrown in to the 

introduction. 

The abstract, introduction and conclusion are all clear and concise and the manuscript and data is 

presented well. In the results, I would like to see more interpretation/explanation in discrepancies 

seen in metrics in Figure 1, specifically the E13 data seems to often behave quite differently, do you 

think this can be explained by biology or is this a technical artifact? 

Altogether, the technique seems great, the analysis seems solid and writing is clear, just more 

emphasis on some gene candidates could make this manuscript more interesting. 



Author Rebuttals to Initial Comments: 

We greatly appreciate the reviewers for all the constructive review comments, which contributed 

to a major improvement of our manuscript. We have fully addressed all the concerns from three 

reviewers, with an extensive set of experiments and new analysis. We have also now generated 

webresources in UCSC Cell and Genome Browser (https://genome-test.gi.ucsc.edu/~max/rong/) 

and our own data portal generated with AtlasXplore (https://web.atlasxomics.com/,  Id: reviewer 

Password: Reviewer@fanlab1), where the data can be browsed, which will constitute a unique 

resource for the scientific community. Following please find our point-by-point responses to all 

review comments. Thank you so much! 

Referee #1 (Remarks to the Author): 

The authors have extended their powerful DBiT microfluidics strategy for spatial transcriptomics and 
epigenomics for multi-modal chromatin/transcriptome profiling by adding RNA-seq to both ATAC-seq 
and CUT&Tag. Since these authors' single-modal spatial methods are already available as publications 
or preprints (RNA-seq: Cell PMID: 33188776; ATAC-seq: biorxiv 2021.06.06.447244; CUT&Tag: 
Science PMID: 35143307), I will focus my evaluation on the question of how much the current study 
adds to those previous studies. Unfortunately, I do not find enough added value to recommend 
publication in Nature. 

Response: We would like to thank the reviewer for the feedback regarding our manuscript! 

The latest advances in spatial biology have enabled the profiling of proteins, transcriptome, and recently 

epigenome, creating a rich set of tools to empower future biological and biomedical research. However, 

most methods are single modality omics that capture only one layer of the omics information at a time 

on a tissue sample. It is highly desirable to develop spatial multi-omics techniques, especially, 

epigenome & transcriptome, for interrogating the mechanisms to control gene expression, cell fate 

decision and dynamics in the tissue context. This was highlighted as one of the seven technologies to 

watch in 2022 by Nature (https://www.nature.com/articles/d41586-022-00163-x). In the revised version 

of the manuscript, we demonstrated that the DBiT-Seq platform is unique in its versatility which allows 

the assessment of different genome-wide omic layers in the same tissue section. There are several key 

advances including (i) versatility to develop different spatial epigenome-transcriptome profiling 

protocols, (ii) high resolution at a near single cell level (20 μm), (iii) new device design with larger 

mapping area (100x100 pixels) cover nearly an entire mouse brain hemisphere, (iv) up to three histone 

modifications (H3K27me3, H3K27ac, or H3K4me3, respectively) for spatial-CUT&Tag-RNA-seq, and 

(v) application to a variety of mammalian tissue types ranging from embryonic to postnatal mouse

tissues and to highly complex human brain tissues (hippocampus). Thus, our manuscript is a major

leap forward rather than an incremental next step to develop a new platform for spatially resolved

genome-wide epigenome-transcriptome co-profiling.

With regard to the biological insights, this work demonstrated extensively the power of joint profiling for 

epigenome and transcriptome to examine the causal relationship between epigenetic state and 

transcriptional phenotype as well as to identify cell state and dynamics. Specifically, we (i) detected 

>20,000 significant peak-to-gene linkages between epigenetic regulatory elements and target genes,

(ii) decipher the gene regulation mechanism and spatial dynamics during tissue development, (iii)

epigenetic but not transcriptional memory of specific genes during brain development, (iv) dissect the

principles of gene and epigenetic regulation that infer cell identity in diverse areas of the brain,

uncovering for instance unexpected regional correlation between H3K27me3 and expression. Our

results highlight the power of spatial epigenome-transcriptome co-profiling to dissect not only cell types

or states but also the mechanisms controlling cell fate selection and dynamics. Thus, our spatial-

epigenome-transcriptome co-sequencing dataset itself is a long-awaited and highly valuable resource.



Major comments 

1) Although Spatial-ATAC-seq-RNA-seq is described fully, including application to a wider-field
microfluidic device, Spatial-CUT&Tag-RNA-seq seems to be last-minute add-on. Spatial-CUT&Tag-
RNA-seq data are described in the text and in Figure 1 and interpreted without any indication of the
antibody used. Different antibodies for example to different histone modifications report on different
parts of epigenome, so the results are meaningless to a reader without knowing what antibody against
what epitope was used. Only by Figure 3 is the mystery solved where it is stated that a single primary
antibody against H3K27ac was used. This is a promoter/enhancer mark that should give roughly the
same profile as ATAC-seq. But users of this method will not be interested in doing spatial-CUT&Tag-
RNA-seq to do something that they can do using the spatial-ATAC-seq-RNA-seq, since it requires
additional steps and is less familiar to most labs. For example in PMID: 33589836 (Nature Methods),
which describes a multi-modal CUT&Tag/RNA-seq method also applied to mouse brain, 5 different
histone modifications are profiled, each targeting a different feature of the epigenome. As there is no
data using antibodies that provide information beyond what can be found more simply by the ATAC-
seq version of the method, this aspect of the study is too preliminary for publication.

Response: We thank the reviewer for the comments and we apologize for the oversight of not 

mentioning upfront that H3K27ac was the profiled histone modification. In our revised manuscript, we 

first designed a new device which could improve the number of barcodes from 50 (2,500 pixels, 20 μm 

pixel size) to 100 (10,000 pixels, 20 μm pixel size). The mapping area is 4 times larger than before (Fig. 

2a, please also see below). The serpentine channel design in the new device can further realize the 

processing of up to 5 samples simultaneously. 

This new device was used to conduct not only spatially resolved genome-wide joint mapping of 

epigenome and transcriptome by co-profiling chromatin accessibility and gene expression (spatial-

ATAC-RNA-seq) but also now three histone modifications and gene expression (spatial-CUT&Tag-

RNA-seq, H3K27ac,  or H3K27me3, or H3K4me3 histone modifications, respectively) on the same 

mouse postnatal day 22 (P22) brain tissue, which can cover nearly the entire mouse brain hemisphere 

at a resolution near single cells (1~3 cells per pixel)  (Fig. 2b, Fig. 3a-c, please also see below).  

For spatial-CUT&Tag-RNA-seq, the application of the technology to H3K27me3 (repressed loci) and 

H3K4me3 (active promoters) clearly demonstrates the potential of the technology beyond spatial ATAC-

RNA-seq. The detailed results of Spatial-CUT&Tag-RNA-seq for coprofiling of CUT&Tag (H3K27me3), 

CUT&Tag (H3K27ac), and CUT&Tag (H3K4me3) with transcriptome were shown in Fig. 3 and Fig. 4 

(please also see below) and we did a comprehensive revision of sections “Juvenile mouse brain: spatial 

co-mapping of chromatin accessibility with transcriptome at the cellular level”, “Juvenile mouse brain: 

spatial co-mapping of histone modifications (H3K27me3, H3K27ac, and H3K4me3) with transcriptome 

at the cellular level” and added a new section “Spatial multi-omics deciphers region-specific epigenetic 

regulation of gene expression and cooperation in mouse brain” in our revised manuscript according to 

the reviewer’s suggestion. 

Fig. 2. a, Design of the microfluidic chips for 100x100 barcodes with 20 μm channel size. b, Spatial UMAP and UMAP of all the 

clusters for ATAC and RNA in spatial-ATAC-RNA-seq for the mouse brain. Pixel size 20 µm. Scale bar, 1 mm. 



Fig. 3. Spatial epigenome and transcriptome co-sequencing (Spatial-CUT&Tag-RNA-seq) and integrative analysis of P22 

mouse brain. a-c, Spatial UMAP and UMAP of all the clusters for CUT&Tag (H3K27me3) and RNA (a), CUT&Tag (H3K27ac) 

and RNA (b), and CUT&Tag (H3K4me3) and RNA (c) in the mouse brain. Pixel size, 20 µm. Scale bar, 1 mm. d, Integration of 

CUT&Tag (H3K27me3) data in spatial-CUT&Tag-RNA-seq with scCUT&Tag data from mouse brain. e, Integration of CUT&Tag 

(H3K27ac) data in spatial-CUT&Tag-RNA-seq with scCUT&Tag data from mouse brain. f,g, Integration of RNA data in spatial-

CUT&Tag(H3K27me3)-RNA-seq, spatial-CUT&Tag(H3K27ac)-RNA-seq, and spatial-CUT&Tag(H3K4me3)-RNA-seq with 

scRNA-seq from mouse brain.  



Fig. 4. Region specific epigenetic regulation of gene expression for spatial epigenome and transcriptome co-

sequencing. a, Correlation of H3K27me3 CSS and RNA gene expression in corpus callosum. b, Correlation of H3K27ac GAS 

and RNA gene expression in corpus callosum. c, Correlation of H3K4me3 GAS and RNA gene expression in corpus callosum. 

d, Upset plot of H3K27me3 CSS and RNA gene expression in striatum, deeper and superficial cortical layer. Low CSS or gene 

expression (-), High CSS or gene expression (+). e-g, Venn diagrams showing the number of high (+) or low (-) CSS/GAS for 

different histone modifications in corpus callosum for common RNA marker genes. h-k, Spatial mapping of CSS, GAS, and gene 

expression for selected marker genes Mag (h), Car2 (i), Syt1 (j), Gpr88 (k) in different clusters for ATAC, CUT&Tag and RNA in 

spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq. 



2) ATAC-seq, H3K27ac-CUT&Tag and RNA-seq should in principle be concordant at steady-state, and
as shown in the UMAPs of Figure 3, this is the case for these spatial implementations. Non-concordance
might be interpreted as suggesting cause-effect dynamics, if for example there is an ATAC-seq signal
without an RNA-seq signal. Evidence for this is shown in Figure 2e (2d and 2e are apparently mixed up
in the text and figure legend relative to the figure panels ), however the reads are quite sparse and noisy
for most of the clusters (and there is no indication of what is the locus shown, enhancer? promoter? of
what?) and not convincing. There is very little effort made to address this critical issue, as most of the
data shown presents just the joint modalities. Thus it is not clear that there is much added value to
adding spatial-RNA-seq to spatial-ATAC-seq or vice-versa. This is in contrast to other multi-modal
studies; for example in PMID: 33589836 referred to above, there are UMAPs showing the chromatin-
only and chromatin+RNA for direct comparison, where it is clear that the RNA-seq data substantially
improved the clustering in general. One of the histone modifications was H3K27ac, and in that case
there was little if any obvious improvement in UMAP cluster separation. Since H3K27ac is exactly the
mark used here for Spatial-CUT&Tag, which marks the same features as ATAC-seq, there is reason to
question whether RNA-seq provides substantial enough additional useful information about the mouse
brain than what would be obtained by Spatial-ATAC-seq alone.

Response: We thank the reviewer for the comments. 

In order to verify the ATAC and RNA data quality of our technology, we did a comparison of aggregated 
profiles of chromatin accessibility from E13 mouse embryo with organ-specific ENCODE E13.5 ATAC-
seq data. The aggregated profiles can reproduce the ENCODE bulk measurement accurately (Fig. S3b, 
please also see below). The signal-to-noise ratio of our ATAC signal is comparable with the ENCODE 
data. Furthermore, the peaks obtained from our ATAC data in spatial-ATAC-RNA-seq are consistent 
with ENCODE ATAC-seq data (Fig. S3c, please also see below). For our RNA data in spatial-ATAC-
RNA-seq, we did a correlation analysis with organ-specific ENCODE E13.5 bulk RNA-seq data, which 
showed high reproducibility (r = 0.849 (forebrain) and r = 0.834 (hindbrain), r stands for Pearson 
correlation coefficient) (Fig. S3a). All the above results proved the good data quality of our technology. 
While we observed a strong correlation between replicates, we agree with the reviewer that challenges 
might occur regarding the depth of RNA detection, which we mention in the revised manuscript. 



Fig. S3. Benchmarking of data quality in spatial-ATAC-RNA-seq. a, Comparison of transcriptional profiles between RNA in 

spatial-ATAC-RNA-seq and the ENCODE RNA-Seq data in brain of mouse embryo. b, Aggregated spatial chromatin access bility 

profiles in spatial-ATAC-RNA-seq recapitulated ENCODE ATAC-seq profiles in brain of mouse embryo. c, Venn diagram showing 

the overlap of peaks between ATAC in spatial-ATAC-RNA-seq and ENCODE ATAC-seq profiles in brain of mouse embryo. 

The Genome browser tracks were drawn with ArchR (Nat Genet 2021, 53, 403-411, 
https://www.archrproject.com). The open chromatin near the TSS (transcription start site) is where the 
promoter located, and the putative enhancers can be recognized by the peak-to-gene links. Also, co-
accessibility of peaks was also calculated (using addCoAccessibility function in ArchR) to see the 
potential co-accessible between peaks (enhancers and promoters). For ATAC, the gene activity score 
(GAS, ArchR, Methods) was calculated to estimate the gene expression from chromatin accessibility 
based on the overall signal at a given locus. Following is the toy example provided in the ArchR tutorial 
to explain the default ArchR gene score model. 



The regulatory and mechanistic links between different omics layers can only be deciphered by profiling 
multiple regulatory layers. Direct relation between chromatin and transcriptional regulation would be 
hidden if we will only look at a single regulatory layer. Changes of chromatin accessibility preceding 
gene expression have been observed in lineage priming from single-cell based methods, for instance 
it has been previously observed in mouse skin cells (Cell, 2020, 183(4): 1103-1116) and mouse brain 
oligodendroglia (Neuron, 2022, 110(7): 1193-1210). Only by coprofiling different modalities have we 
been able to identify lineage priming cases as reported by others. 

To further address this point and also the reviewer’s point number 3, we focused on the pseudotime 

analysis from radial glia cells to postmitotic premature neurons in the brainstem of the E13 mouse 

embryo. The pseudotime analysis was conducted under the ATAC coordinate system according to 

reviewer 2’s suggestion, and the developmental trajectories were directly visualized in the spatial tissue 

map (Fig. 1j, please also see below). The gene activity scores for chromatin accessibility and gene 

expression along this developmental trajectory were computed and the dynamic changes in selected 

marker genes were presented (Fig. 1k,l, please also see below). Overall, the gene expression exhibited 

a similar temporal tendency as the chromatin accessibility. As expected, the expression levels of Sox2, 

Pax6 and other genes involved in progenitor maintenance and proliferation (Gene Ontology (GO) Fabp7

to Pax6 in Fig. S6a, please also see below) were downregulated during the transition to postmitotic 

neurons. Interestingly the loss of chromatin accessibility at the Pax6 and the radial glia marker Fabp7

loci preceded the downregulation at the RNA level (Fig. 1l). In turn, genes involved in neuronal identity, 

axonogenesis and synapse organization (GO Myt1l to Dnm3 in Fig. S6a, please also see below) as 

Dcx and Tubb3 presented increased expression in the spatial pseudotime, but the chromatin 

accessibility at their loci was already elevated at much earlier stages, suggesting lineage-priming of 

gene expression (Cell, 2020, 183(4): 1103–1116; Neuron, 2022, 110(7): 1193-1210). We also found a 

cohort of genes whose expression quickly declined during the spatial pseudotime, but whose chromatin 

accessibility was maintained throughout the pseudotime, only declining at very late stages. Many of 

these genes such as Ptprz1, Bcan, Luzp2 are characteristic of oligodendrocyte precursor cells, and 

indeed GO analysis highlighted biological processes as negative regulation of myelination and 

regulation of gliogenesis (GO Cp to Sparcl1 in Fig. S6a, please also see below) suggesting that the 

neuronal lineage might retain the potential to acquire an oligodendrocyte identity even when they have 

already migrated away from the ventricular zone in the embryonic brain. Interestingly, Monocle2 

pseudotime analysis indicated a bifurcation at the chromatin accessibility level that was not observed 

at the RNA level (Fig. S6b,c). One bifurcation path led to areas close to the ventricular zone (green 

pixels, Fig. S6d,e), while the other bifurcation path terminated in areas distal from the ventricular zone 

(blue pixels). In contrast to the green path, the blue path presented an increase in chromatin 

accessibility in genes involved in axonogenesis and dendrite formation (Fig. S6e, red box and Fig. S6f), 

suggesting that the chromatin state of neural cells distal to the ventricles is indeed more consistent with 

a terminally differentiated neuronal state. Thus, our spatial-ATAC-RNA-seq can be used to decipher 

the gene regulation mechanism and spatial dynamics during tissue development. The above contents 

have been added in the revised manuscript. 

[Redacted figure below]



Fig. 1. j, Pseudotime analysis from radial glia to postmitotic premature neurons visualized at a spatial level. k, Heatmaps 
delineating gene expression and gene activity scores for marker genes. l, Dynamic changes of gene activity scores and gene 
expression across pseudotime. 



Fig. S6 Further pseudotime analysis of radial glia and postmitotic premature neurons in spatial-ATAC-RNA-seq. a, GO 
enrichment analysis for genes from Fig. 1k. b,c, Pseudotime analysis from radial glia to postmitotic premature neurons with gene 
activity scores (b) and gene expression (c). d, Monocle2 analyses showing different states in (b). e, Heatmap of different states 
along the pseudotime trajectory. f, GO analysis of genes in red box of (e). 

We apologize for not being clear regarding the clustering. We followed the methods from Signac 
(Methods, https://stuartlab.org/signac/articles/pbmc multiomic.html) to do unsupervised clustering for 
ATAC/CUT&Tag and RNA data, separately. First, we did the unsupervised clustering for RNA data 
(results from RNA clustering were obtained), and unsupervised clustering of ATAC/CUT&Tag data was 
performed separately or independently from RNA (results from ATAC/CUT&Tag clustering were 
obtained). Finally, joint UMAP (for E13 mouse embryo and P21 mouse brain) was done using 



“FindMultiModalNeighbors” (results from clustering of joint modalities were obtained). In the end, the 
UMAPs for ATAC (for example, Fig. 1e, left, please also see below), RNA (for example, Fig. 1e, middle) 
and RNA+ATAC (for example, Fig. 1e, right) were visualized separately using “DimPlot”. We included 
this description in the Methods section of the revised version of the manuscript.

We identified 8 clusters from ATAC data and 14 clusters from RNA data for spatial-ATAC-RNA-seq of 
E13 mouse embryo. We provided the UMAP and spatial UMAP for ATAC (Fig. 1e, left) and RNA (Fig. 
1e, middle). The joint clustering of ATAC and RNA as the reviewer mentioned is able to refine the spatial 
patterns (Fig. 1e, right). For example, we identified a new neuronal cluster (J10) in the joint clustering 
analysis, which was not readily resolved by single modalities alone (Fig. 1e, right). This cluster was 
recognized as granule neurons after label transfer with Mouse Organogenesis Cell Atlas (MOCA) 
(Nature, 2019, 566(7745): 496-502) scRNA-seq dataset. This result highlights the unique value to use 
joint multi-omics profiles for improving the cell-type-specific spatial mapping. 

We also conducted spatial mapping of P22 mouse brain coronal sections (at Bregma 1) for chromatin 
accessibility jointly with transcriptome. In contrast to embryonic tissue, we were able to identify a larger 
number of clusters by ATAC (fourteen) than with RNA data (eleven) with unsupervised clustering, 
respectively. This might reflect the terminal differentiated status of most cells in the juvenile brain, in 
contrast the undifferentiated and multipotent state of cells during development. The distinct spatial 
distributions are also in agreement with anatomical annotation defined by the Nissl staining, reflecting 
arealization of the juvenile brain (Fig. 2b). Moreover, spatial clusters between ATAC and RNA showed 
strong concordance in cluster assignment (Fig. S7c).  

According to the reviewer’s suggestions, for spatial-CUT&Tag-RNA-seq, we expanded the histone 

modifications to H3K27me3 (marks repressed loci), H3K27ac (marks active promoter and/or enhancer), 

and (H3K4me3 is for active promoters). Unsupervised clustering was used separately to each modality, 

which identified 13 and 15 specific clusters for CUT&Tag (H3K27me3) and RNA, 12 and 13 clusters for 

CUT&Tag (H3K27ac) and RNA, 11 and 12 clusters for CUT&Tag (H3K4me3), respectively (Fig. 3a-c, 

please also see below). As can be seen from the UMAP and spatial UMAP of H3K27me3 (Fig. 3a, top), 

H3K27ac (Fig. 3b, top), and H3K4me3 (Fig. 3c, top), for CUT&Tag (H3K27me3, H3K27ac, and 

H3K4me3), we could get clusters agreed well with the anatomical regions defined by the Nissl staining 

from an adjacent tissue section without the need of integration with the corresponding RNA data. Also, 

there is good concordance between CUT&Tag and RNA in terms of spatial patterns (Fig. 3a-c). 



Integration of our CUT&Tag (H3K27ac or H3K4me3) data with the corresponding scRNA-seq data also 

allowed for label transfer to assign epigenetic cell identities/states to spatial location (Fig. S11f,g). We 

observed an enrichment of MOL within the corpus callosum, a thin layer of EPEN in the lateral ventricle, 

excitatory neurons (TEGLU) in cerebral cortex, and MSN in the striatum, which are in consistent with 

the results obtained from RNA data (Fig. S11f,g). In particular, for spatial H3K27me3, while integration 

with scCUT&Tag could not clearly indicate the identity of several clusters in the epigenomic modalities 

(cluster 0, cluster 1, and cluster 3), integration of the spatial RNA in the same sections with scRNA-seq 

clearly indicated the cell identities in these clusters (Fig. 3a,d and Fig. S11e). This highlights the power 

of combining CUT&Tag and RNA-seq (spatial-CUT&Tag-RNA-seq) in the same tissue section. Also, 

proved the good clustering for our CUT&Tag data. 

Moreover, to further understand the epigenetic regulation of gene expression, a new section “Spatial 
multi-omics deciphers region-specific epigenetic regulation of gene expression and cooperation in 
mouse brain” was added and more genome-wide analyses were done in this section (Fig. 4, please 
also see below, and Fig. S15-22) to decipher the mechanism of epigenetic regulation of gene 
expression in genome-wide. 



Fig. 4. Region specific epigenetic regulation of gene expression for spatial epigenome and transcriptome co-

sequencing. a, Correlation of H3K27me3 CSS and RNA gene expression in corpus callosum. b, Correlation of H3K27ac GAS 

and RNA gene expression in corpus callosum. c, Correlation of H3K4me3 GAS and RNA gene expression in corpus callosum. 

d, Upset plot of H3K27me3 CSS and RNA gene expression in striatum, deeper and superficial cortical layer. Low CSS or gene 

expression (-), High CSS or gene expression (+). e-g, Venn diagrams showing the number of high (+) or low (-) CSS/GAS for 

different histone modifications in corpus callosum for common RNA marker genes. h-k, Spatial mapping of CSS, GAS, and gene 

expression for selected marker genes Mag (h), Car2 (i), Syt1 (j), Gpr88 (k) in different clusters for ATAC, CUT&Tag and RNA in 

spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq. 



3) The authors make the bold claim that “The discordance between chromatin accessibility and gene
expression proves the importance of spatial multi-omics co-profiling”. However, these claims seem
largely unsupported by the data:
- In Figure 2d, ATAC signal for Myt1l and Nrxn2 is observed at low-to-intermediate levels in places in
the E13 mouse embryo where RNA signal is not detected in the same pixels. Whereas the authors'
interpretation is that this indicates “lineage priming”, a more parsimonious explanation is that this is
background ATAC signal, given that reads in peaks (13%) was relatively low for this sample. There is
no indication that lineage-priming is being defined by robust peak-to-gene associations in the manner
described by Ma et al. Cell 2020 PMID: 33098772, the article cited for this concept.
- In Figure 2h, a large proportion of the rows presented appear to have high RNA expression that
precedes high ATAC signal on the pseudotemporal trajectory (assuming increasing pseudotime moves
from left to right). This directly contradicts the associated claim that “the gene expression exhibited a
similar temporal tendency as the chromatin accessibility, but showed a slower pace during the
developmental process, such as Sox11 and Nfix, in agreement with epigenetic lineage-priming of gene
expression”. The examples in Figure 2i should therefore not be considered representative unless
addition data is mustered to support this claim.

Response: We thank the reviewer for this comment, which we address in point 2, namely in the 
pseudotime analysis at E13. Nevertheless, we removed the sentence “The discordance between 
chromatin accessibility and gene expression proves the importance of spatial multi-omics co-profiling” 
from the corresponding section according to the reviewer’s comment. 

As the reviewer mentioned, in a recent published study (Cell, 2020, PMID: 33098772), a method is 
described to predict the possible lineage priming by calculating DORCs (domains of regulatory 
chromatin), which are domains that have significantly overlap with super-enhancers. They found at 
DORCs, that chromatin accessibility precedes gene expression during lineage commitment. Since 
DORCs could predict the possible lineage priming loci, we calculate DORCs for our E13 spatial-ATAC-
RNA-seq data, Myt1l belongs to DORCs, it may indicate the lineage priming. We removed Nrxn2 in this 
sentence.  



While the overall spatial RNA pixel distribution of these genes overlapped with their chromatin 

accessibility, we observed clear differences at the level of expression, with some regions with abundant 

ATAC signal being devoid of transcription of the corresponding gene (Fig. 1h, please also see below,

and Fig. S4b). We found that some of the marker genes identified from ATAC data were enriched in 

part of the embryonic brain (for example, Pax6, Sox2, and Myt1l) but not highly expressed in RNA data 

(Fig. 1h and Fig. S4b), which may indicate the lineage priming26 of these genes in embryonic brain 

(Fig. S4c)10. While we observed a strong correlation between replicates (Fig. S2c, please also see 

below), this could be due to technical challenges regarding the depth of RNA detection, which we 

mention in the revised version of the manuscript. Nevertheless, these differences highlight the potential 

of the presented technologies to identify differential correlation between epigenomic information and 

transcription in different regions.  



10 Ma, S. et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin. Cell 183, 1103-
1116 e1120, doi:10.1016/j.cell.2020.09.056 (2020). 

26 Meijer, M. et al. Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis suscept bility. 
Neuron 110, 1193-1210.e1113, doi:https://doi.org/10.1016/j.neuron.2021.12.034 (2022). 

- The idea of lineage priming manifesting as promoter ATAC-seq preceding RNA-seq expression should
be treated as rather extraordinary, since the prior expectation should be that promoter accessibility is
dependent upon RNA PolII residence/activity and not the other way around.

Response: We thank the reviewer for the comments. Lineage priming is that the changes in chromatin 
accessibility may precede gene expression during gene transcription, leading to the non-concordance 
or asynchronous changes between ATAC and RNA signals. The lineage priming at enhancers and/or 
at promoters we observe is not unique, since it has also been observed by other studies. For instance, 
in mouse skin cells (Cell, 2020, 183(4): 1103-1116), mouse brain oligodendroglia (Neuron, 2022, 
110(7): 1193-1210). Therefore, the chromatin accessibility signal can be applied to predict cell lineage 
states before the activation of the transcriptional programs.  

4) For a technology-focused paper, especially one published in a general interest journal, readers will
be most interested if the methodology can be practically applied to their own problems of interest. In
the case of biocomputing technologies, public availability of software is a requirement for publication at
least to my knowledge. Otherwise, there will be only brief a flurry of interest but no lasting impact. This
method requires microfluidic devices, and presumably some will become commercially available at
some point in the future, but until then it is difficult to get as enthusiastic about this study as about the
3 previous single-modal papers when they first appeared.

Response: We thank the reviewer for the comments. We are aiming to make our technologies available 
to solve readers’ problems of interest, and will actively work on this.  

To make our technology more user-friendly, the detailed experimental procedure for our spatial-ATAC-
RNA-seq and spatial-CUT&Tag-RNA-seq technologies were provided in the Methods. We will publish 
a video protocol as well as a step-by-step protocol for our spatial-ATAC-RNA-seq and spatial-
CUT&Tag-RNA-seq technologies. Besides, we have published a video protocol for our DBiT-seq 
technology (STAR protocols, 2021, 2(2): 100532), which includes detailed procedures on fabrication of 
PDMS microfluidic chips, assembly of the microfluidic device, and how the reagents were added. The 
labs without any microfluidic experiment can set up this platform easily. We also added this reference 
(Su G, Qin X, Enninful A, et al. Spatial multi-omics sequencing for fixed tissue via DBiT-seq[J]. STAR 
protocols, 2021, 2(2): 100532) in the Methods section. Additionally, a startup company 
(https://www.atlasxomics.com/) has licensed this technology, which will be adopted quickly by many 
people in the research community. 



The computational analysis part has been performed by using published pipelines and packages. The 
detailed information was provided in the Methods. All the codes are available at Github: 
https://github.com/di-0579/Spatial epigenome-transcriptome co-sequencing.  
All the raw and processed data reported in this manuscript are deposited in the Gene Expression 

Omnibus (GEO) with accession code GSE205055 (reviewer token: alkvqimobtyjxol).  

Furthermore, in order to constitute a unique resource for the scientific community, we have generated 
the webresources where our data can be browsed easily by the readers, one is UCSC Cell and Genome 
Browser (https://genome-test.gi.ucsc.edu/~max/rong/), another is our own data portal generated with 
AtlasXplore (https://web.atlasxomics.com, Id: reviewer Password: Reviewer@fanlab1). It allows for 
visualizing spatial pattern of genes or motifs, for example, by selecting a gene in the table of top ranked 
genes/motifs to show on the search bar to display (click the show function to view one by one). For 
ATAC and CUT&Tag data, the peaks, raw fragments per cluster, and gene model for the corresponding 
gene of interest can be viewed (click the Peak Viewer icon in the lower left panel). The motifs can be 
viewed by switching the icon Gene on the top right panel to Motif followed by selecting motif in the table 
to show on the search bar in a way similar to visualizing spatial gene expression map. The sequence 
logo can be displayed by clicking the Peak Viewer icon. The detailed tutorial of AtlasXplore for 
interactive analysis of spatial omics data is available at 
https://docs.atlasxomics.com/projects/AtlasXplore/en/latest/. The uploaded datasets will be available 
for browsing upon publication, and we are also building the CellXGene webresource, which we aim to 
release at the same time.  

Minor problems: 

- Figure 2b is difficult to interpret in relation to Figure 2a. It is not clear how the clusters relate to each
other here.

Response: Thank you for the comments. We changed the color of each cluster to make it consistent 
between Figure 2a (showed as Fig. 1e in the revised manuscript) and Figure 2b (showed as Fig. 1f in 
the revised manuscript, please also see below). 

- Figure 3c: The “lineage priming” claim should be distinguished from spurious RNA-seq background,
especially when only a single example is being used to support the claim.

Response: We thank the reviewer for the comments. According to the reviewer’s comments, we 

calculated the gene activity scores (GAS) of the same genes (Sox2, Pax6, Notch1, Sox10, and

Neurod6) for spatial-ATAC-RNA-seq with 10,000 and 2,500 pixels device on mouse brain (P22 and 

P21, respectively). The results were shown in Fig. 2e, Fig. S7a and Fig. S10g (please also see below). 

As can be seen from the results, from both datasets, while the overall spatial RNA pixel distribution of 

these genes overlapped with their chromatin accessibility, we could observe clear differences at the 

level of expression for ATAC and RNA, with some regions with abundant ATAC signal being devoid of 



transcription of the corresponding gene. We revised the manuscript for the lineage priming part and the 

content has already been added in our response to reviewer’s third question.

(1) GAS for 10,000 pixels on P22 mouse brain

(2) GAS for 2,500 pixels on P21 mouse brain



Referee #2 (Remarks to the Author): 

Professor Fan and colleagues have developed a new technology for joint spatial transcriptomic and 
epigenomic profiling in two versions. The first one, called spatial-ATAC-RNA-seq, is designed for joint 
profiling of RNA and open chromatin; and the second one, called spatial-CUT&Tag-RNA-seq, is 
designed for joint profiling of RNA and histone modifications. To my knowledge, this is the first 
sequencing-based spatial multi-omic technology for joint RNA and open chromatin/histone modification 
profiling. The data appears to have high quality, although it requires more rigorous evaluation through 
additional analysis (see detailed comments below). If confirmed, this will provide biologists a powerful 
tool for investigating the spatial patterns and regulatory mechanisms of cellular heterogeneity within a 
tissue. To demonstrate its utility, the authors applied this technology to study fetal and postnatal mouse 
brain as well as adult human brain. They were able to identify distinct cell clusters whose spatial 
distributions were consistent with tissue histology. By integrative analysis RNA and chromatin 
accessibility profiles, they identified key enhancers and TFs associated and each cell cluster. 
Interestingly, they identified a number of highly expressed genes that corresponded to low chromatin 
accessibility. Such information provides mechanistic insights that are not available from knowledge of 
individual modalities alone.  

Response: We are grateful to the reviewer for the positive feedback regarding our technologies! 

Major comments: 

1. The raw data quality scores (ATACseq fragments and number of detected genes) are impressive
and comparable to non-spatial counterparts. What is the average number of UMIs detected for each
pixel? It is unclear to what extent the genome-wide expression and epigenetic profiles agree with
previous data from the corresponding cell-types. The authors did try to address this issue by comparing
with several public datasets. However, the UMAP co-embedding plots in Figure S4 should be taken
with a grain of salt because the algorithm deliberately removes technical variations between platforms.
To faithfully represent original data, correlation analysis and Genome Browser visualization will provide
more accurate evaluation.

Response: We thank the reviewer for the comments! For 50 μm pixel size device (50x50 barcodes), the 
detected UMIs per pixel were found to be an average of 3,603 UMIs (mouse E13) and 2,809 UMIs 
(human hippocampus) (Fig. 1c). For 20 μm pixel size device (P21 mouse brain, 50x50 barcodes), an 
average of 2,391 UMIs (spatial-ATAC-RNA-seq) and 2,938 UMIs (spatial-CUT&Tag(H3K27ac)-RNA-
seq) (Fig. S2f) were detected per pixel. To further increase the mapping area, we developed a new 
device to perform in tissue barcoding of 100x100 pixels with a 20 μm pixel size. We performed spatial-
ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq (H3K27me3, H3K27ac or H3K4me3) on P22 mouse 
brain using the new device, an average of 2,358 UMIs (spatial-ATAC-RNA-seq), 4,734 UMIs (spatial-
CUT&Tag(H3K27me3)-RNA-seq), 3,580 UMIs (spatial-CUT&Tag(H3K27ac)-RNA-seq), and 2,885 
UMIs (spatial-CUT&Tag(H3K4me3)-RNA-seq) were detected per pixel (Fig. 1c). According to the 
reviewer’s suggestion, the average number of UMIs per pixel were added in the manuscript. Also, the 
metrics for all the samples we processed were summarized in Table S1 and Table S2 in the revised 
manuscript (please also see below).   

According to the reviewer’s suggestion, we did a validation of the data quality from our technology using 
our E13 mouse embryo data of spatial-ATAC-RNA-seq. To evaluate the ATAC data quality, we did a 
comparison of aggregated profiles of chromatin accessibility with organ-specific ENCODE ATAC-seq 
E13.5 mouse embryos data. The aggregated profiles can reproduce the ENCODE bulk measurement 
accurately (Fig. S3b). Additionally, the peaks obtained from our ATAC data in spatial-ATAC-RNA-seq 
are consistent with ENCODE ATAC-seq data (Fig. S3c). To verify the data quality of our RNA data in 
spatial-ATAC-RNA-seq from E13 mouse embryo, we did a correlation analysis with organ-specific 
ENCODE E13.5 bulk RNA-seq data, which showed high reproducibility (r = 0.849 (forebrain) and 
r = 0.834 (hindbrain), r stands for Pearson correlation coefficient) (Fig. S3a). 

All the above results proved the good data quality of our technology. We added “To evaluate the ATAC 
data quality, we did a comparison of aggregated profiles of chromatin accessibility with organ-specific 
ENCODE E13.5 ATAC-seq data. The aggregated profiles can reproduce the ENCODE bulk 
measurement accurately (Fig. S3b). Additionally, the peaks obtained from our ATAC data in spatial-



ATAC-RNA-seq are consistent with ENCODE ATAC-seq data (Fig. S3c).”,  “To verify the data quality 
of our RNA data in spatial-ATAC-RNA-seq, we did a correlation analysis with organ-specific ENCODE 
E13.5 bulk RNA-seq data, which showed high reproducibility (Fig. S3a).” and Fig. S3a,b,c in our 
revised manuscript. 

Fig. S3. Benchmarking of data quality in spatial-ATAC-RNA-seq. a, Comparison of transcriptional profiles between RNA in 

spatial-ATAC-RNA-seq and the ENCODE RNA-Seq data in brain of mouse embryo. b, Aggregated spatial chromatin access bility 

profiles in spatial-ATAC-RNA-seq recapitulated ENCODE ATAC-seq profiles in brain of mouse embryo. c, Venn diagram showing 

the overlap of peaks between ATAC in spatial-ATAC-RNA-seq and ENCODE ATAC-seq profiles in brain of mouse embryo. 

Table S1 Summary of metrics for ATAC and RNA in spatial-ATAC-RNA-seq for all the samples. 
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Table S2 Summary of metrics for CUT&Tag and RNA in spatial-CUT&Tag-RNA-seq for all the samples.
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Number of 

unique 

genes 

present 
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2. There is a non-negligible discrepancy between the RNA and ATACseq based pseudotime analyses
results. This is especially evident in the bottom left corner of Figure 2f and g. Is the source of variation
biological or technical in nature? If the source is biological, what would be the underlying mechanistic
reason?

Response: We thank the reviewer for the comments! According to the reviewer’s suggestion, we have 
re-done the pseudotime analysis under the ATAC pseudotime coordinate system (Fig. j,k,l). Here, we 
focused on brainstem of E13 mouse embryo and chose the differentiation trajectory from radial glia 
cells to postmitotic premature neurons. In our previous manuscript, we used the cell identities obtained 
after label transfer from scRNA-seq (Nature, 2019, 566(7745): 496-502) data without taking the regions 
into consideration, which may cause discrepancy between ATAC and RNA data. To further address the 
reviewer’s comments, we provided the detailed explanation of the revised pseudotime results in our 
response to reviewer’s third question. 

3. Figure 2h appears to indicate a significant number of genes have different temporal patterns in
expression and chromatin profiles. The biological significance of such discrepancy is not discussed.
Also, part of the discrepancy may be technical as the underlying trajectories from RNA and ATAC are
different. To remove this confounding factor, it would be more relevant to visualize the dynamic patterns
under a common pseudotime coordinate system (either RNA or ATACseq based).

Response: We thank the reviewer for the comments! According to the reviewer’s suggestion, we have 
re-done the pseudotime analysis under the ATAC pseudotime coordinate system. We chose the 
differentiation trajectory from radial glia cells to postmitotic premature neurons (Fig. j,k,l, please also 
see below).  

The developmental trajectories were directly visualized in the spatial tissue map (Fig. 1j). The gene 
activity scores for chromatin accessibility and gene expression along this developmental trajectory were 
computed and the dynamic changes in selected marker genes were presented (Fig. 1k,l). Overall, the 
gene expression exhibited a similar temporal tendency as the chromatin accessibility. As expected, the 
expression levels of Sox2, Pax6 and other genes involved in progenitor maintenance and proliferation 
(Gene Ontology (GO) Fabp7 to Pax6 in Fig. S6a) were downregulated during the transition to 



postmitotic neurons. Interestingly the loss of chromatin accessibility at the Pax6 and the radial glia 
marker Fabp7 loci preceded the downregulation at the RNA level  (Fig. 1l). In turn, genes involved in 
neuronal identity, axonogenesis and synapse organization (GO Myt1l to Dnm3 in Fig. S6a) as Dcx and 
Tubb3 presented increased expression in the spatial pseudotime, but the chromatin accessibility at their 
loci was already elevated at much earlier stages, suggesting lineage-priming of gene expression10,26. 
We also found a cohort of genes whose expression quickly declined during the spatial pseudotime, but 
whose chromatin accessibility was maintained throughout the pseudotime, only declining at very late 
stages. Many of these epigenetic genes such as Ptprz1, Bcan, Luzp2 are characteristic of 
oligodendrocyte precursor cells, and indeed GO analysis highlighted biological processes as negative 
regulation of myelination and regulation of gliogenesis (GO Cp to Sparcl1 in Fig. S6a) suggesting that 
the neuronal lineage might retain the potential to acquire an oligodendrocyte identity even when they 
have already migrated away from the ventricular zone in the embryonic brain. Interestingly, Monocle2 
pseudotime analysis indicated a bifurcation at the chromatin accessibility level that was not observed 
at the RNA level (Fig. S6b,c). One bifurcation path led to areas close to the ventricular zone (green 
pixels, Fig. S6d,e), while the other bifurcation path terminated in areas distal from the ventricular zone 
(blue pixels). In contrast to the green path, the blue path presented an increase in chromatin 
accessibility in genes involved in axonogenesis and dendrite formation (Fig. S6e, red box and Fig. S6f), 
suggesting that the chromatin state of neural cells distal to the ventricles is indeed more consistent with 
a terminally differentiated neuronal state. Thus, our spatial-ATAC-RNA-seq can be used to decipher 
the gene regulation mechanism and spatial dynamics during tissue development.  

The above explanation has been added in the Mouse embryo: spatial co-mapping of chromatin 
accessibility and transcriptome to identify tissue feature, cell state and developmental dynamics section 
according to the reviewer’s comment. 

Fig. 1. j, Pseudotime analysis from radial glia to postmitotic premature neurons visualized at a spatial level. k, Heatmaps 
delineating gene expression and gene activity scores for marker genes. l, Dynamic changes of gene activity scores and gene 
expression across pseudotime. 



Fig. S6 Further pseudotime analysis of radial glia and postmitotic premature neurons in spatial-ATAC-RNA-seq. a, GO 

enrichment analysis for genes from Fig. 1k. b,c, Pseudotime analysis from radial glia to postmitotic premature neurons with gene 

activity scores (b) and gene expression (c). d, Monocle2 analyses showing different states in (b). e, Heatmap of different states 

along the pseudotime trajectory. f, GO analysis of genes in red box of (e). 

10 Ma, S. et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin. Cell 183, 1103-
1116 e1120, doi:10.1016/j.cell.2020.09.056 (2020). 

26 Meijer, M. et al. Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis suscept bility. 
Neuron 110, 1193-1210.e1113, doi:https://doi.org/10.1016/j.neuron.2021.12.034 (2022). 

4. The integration analysis of spatial-ATACseq-RNAseq and spatial-CUT&Tag-RNAseq for P21 mouse



brain is somewhat confusing. It seems that each dataset is analyzed independently, Consequently, the 
resulting clustering patterns do not match exactly. Also, the two datasets seem to target different regions 
in the brain, although they appear to be symmetrical. In any case, this analysis does not seem to provide 
a more coherent understanding of the mechanism than using each dataset alone.  

Response: Thanks for pointing out this confusion. For the clustering of spatial-ATAC-RNA-seq on P21 
mouse brain data (2,500 pixels) (Figure 3a, now is shown as Fig. S10a-c in our revised manuscript, 
please also see below), we followed the methods from Signac (Methods, 
https://stuartlab.org/signac/articles/pbmc_multiomic.html). First, we did the clustering for RNA data 
(results from RNA clustering were obtained), Then, the ATAC clustering was done separately or 
independently from RNA (results from ATAC clustering were obtained). Finally, joint UMAP was done 
using “FindMultiModalNeighbors” (results from clustering of joint modalities were obtained). In the end, 
the UMAPs for ATAC (Fig. S10a), RNA (Fig. S10b), and RNA+ATAC (Fig. S10c) were visualized 
separately using “DimPlot”. We included this description in the Methods section of the revised version 
of the manuscript. 

Fig. S10 a-c, Spatial UMAP and UMAP of all the clusters for ATAC (a), RNA (b), and joint clustering of ATAC and RNA (c) in 
spatial-ATAC-RNA-seq for the mouse brain. Pixel size, 20 µm. Scale bar, 1 mm.  

We did the clustering using the same method for spatial-CUT&Tag-RNA (H3K27ac)-RNA-seq data on 
P21 mouse brain (2,500 pixels), the results are shown in Fig. S14a-c (Figure 3b before revision, please 
also see below). We could see a slight increase of spatial resolution after joint clustering of ATAC+RNA 
(Fig. S10c) and CUT&Tag+RNA (Fig. S14c).  

Fig. S14 a-c, Spatial UMAP and UMAP of all the clusters for CUT&Tag (H3K27ac) (a), RNA (b), and joint clustering of CUT&Tag 
and RNA (c) in spatial-CUT&Tag-RNA-seq for the mouse brain. Pixel size, 20 µm. Scale bar, 1 mm. 

Also, according to the reviewer’s comment, we did an integration of ATAC and CUT&Tag (H3K27ac) 
data, the results are shown in the following figures, it could be seen that there is a slight increase of the 
spatial resolution for CUT&Tag (H3K27ac) in the ventricular zone after integration but no further 



improvement for other regions which already matched well with the corresponding anatomical 
annotations before integration. 

For our new generated spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq (H3K27me3, H3K27ac, 

or H3K4me3 histone modifications) data with larger mapping area on P22 mouse brain (10,000 pixels, 

20 μm pixel size), we could also get good clustering from each modality (ATAC/CUT&Tag and the 

corresponding RNA) alone (Fig. 2a,b and Fig. 3a-c, please also see below). The distinct spatial 

distributions for all the datasets are in agreement with anatomical annotation defined by the Nissl 

staining, reflecting arealization of the juvenile brain (Fig. 2b, Fig. 3a-c). So we don’t do joint clustering 

for ATAC+RNA, and CUT&Tag+RNA for our P22 mouse brain (10,000 pixels) data.  

Fig. 2. a, Design of the microfluidic chips for 100x100 barcodes with 20 μm channel size. b, Spatial UMAP and UMAP of all the 

clusters for ATAC and RNA in spatial-ATAC-RNA-seq for the mouse brain. Pixel size, 20 µm. Scale bar, 1 mm. 



Fig. 3. a-c, Spatial UMAP and UMAP of all the clusters for CUT&Tag (H3K27me3) and RNA (a), CUT&Tag (H3K27ac) and RNA 

(b), and CUT&Tag (H3K4me3) and RNA (c) in the mouse brain. Pixel size, 20 µm. Scale bar, 1 mm.  

Also, we did the integration of our ATAC/CUT&Tag and RNA data with the corresponding single cell 
data for validation or label transfer. In the revised manuscript, we projected the integrated datasets 
together as gray and black dots to make the results clearer for both P22 (10,000 pixels) (Fig. 2c,d, Fig. 
3d,e,f,g, and Fig. S11a-d, please also see below) and P21 (2,500 pixels) (Fig. S10e,f and Fig. S14e,f,
please also see below) mouse brain data. As can be seen from the results, our data from each modality 
matched well with the corresponding single cell data.  

Fig. 2. c, Integration of ATAC data in spatial-ATAC-RNA-seq with scATAC-seq data from mouse brain (10,000 pixels). d, 

Integration of RNA data in spatial-ATAC-RNA-seq with scRNA-seq from mouse brain (10,000 pixels).  

Fig. 3. d, Integration of CUT&Tag (H3K27me3) data in spatial-CUT&Tag-RNA-seq with scCUT&Tag data (10,000 pixels). e,

Integration of CUT&Tag (H3K27ac) data in spatial-CUT&Tag-RNA-seq with scCUT&Tag data from mouse brain (10,000 pixels). 



f,g, Integration of RNA data in spatial-CUT&Tag(H3K27me3)-RNA-seq, spatial-CUT&Tag(H3K27ac)-RNA-seq, and spatial-

CUT&Tag(H3K4me3)-RNA-seq with scRNA-seq from mouse brain (10,000 pixels). 

Fig. S11 a, Integration of RNA data in spatial-CUT&Tag(H3K27me3)-RNA-seq with scRNA-seq from P22 mouse brain (10,000 

pixels). b, Integration of RNA data in data in spatial-CUT&Tag(H3K27ac)-RNA-seq with scRNA-seq data from mouse brain 

(10,000 pixels). c, Integration of CUT&Tag (H3K4me3) data in spatial-CUT&Tag-RNA-seq with scCUT&Tag data from mouse 

brain (10,000 pixels). d, Integration of RNA data in spatial-CUT&Tag(H3K4me3)-RNA-seq with scRNA-seq from mouse brain 

(10,000 pixels). 

Fig. S10 e, Integration of ATAC data in spatial-ATAC-RNA-seq with scATAC-seq data from mouse brain (2,500 pixels). f, 
Integration of RNA data in spatial-ATAC-RNA-seq with scRNA-seq from mouse brain (2,500 pixels). 



Fig. S14 e, Integration of CUT&Tag data in spatial-CUT&Tag-RNA-seq with scCUT&Tag data from mouse brain (2,500 pixels). 

f, Integration of RNA data in spatial-CUT&Tag-RNA-seq with scRNA-seq from mouse brain (2,500 pixels).  

Furthermore, the regulatory and mechanistic links between different omics layers can only be 
deciphered by profiling multiple regulatory layers. Direct relation between chromatin and transcriptional 
regulation would be hidden if we will only look at a single regulatory layer. The pseudotime analysis for 
E13 mouse embryo in our response to reviewer’s former comments proved that spatial epigenome-
transcriptome co-mapping can be used to decipher the gene regulation mechanism and spatial 
dynamics during tissue development.  

Moreover, to further understand the epigenetic regulation of gene expression, a new section “Spatial 
multi-omics deciphers region-specific epigenetic regulation of gene expression and cooperation in 
mouse brain” was added and more genome-wide analyses were added in this section (Fig. 4, please 
also see below, and Fig. S15-22) to decipher the mechanism of epigenetic regulation of gene 
expression genome-wide. 



Fig. 4. Region specific epigenetic regulation of gene expression for spatial epigenome and transcriptome co-

sequencing. a, Correlation of H3K27me3 CSS and RNA gene expression in corpus callosum. b, Correlation of H3K27ac GAS 

and RNA gene expression in corpus callosum. c, Correlation of H3K4me3 GAS and RNA gene expression in corpus callosum. 

d, Upset plot of H3K27me3 CSS and RNA gene expression in striatum, deeper and superficial cortical layer. Low CSS or gene 

expression (-), High CSS or gene expression (+). e-g, Venn diagrams showing the number of high (+) or low (-) CSS/GAS for 

different histone modifications in corpus callosum for common RNA marker genes. h-k, Spatial mapping of CSS, GAS, and gene 

expression for selected marker genes Mag (h), Car2 (i), Syt1 (j), Gpr88 (k) in different clusters for ATAC, CUT&Tag and RNA in 

spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq. 



5. The comparative analysis of RNA and ATAC dynamics for PROX1 is interesting. The authors
discovered the discrepancy between RNA and ATAC patterns could be utilized to infer RNA turnover
rate. I wonder if this relationship can be formalized as a quantitative model, although it might be beyond
the scope of this paper.

Response: We thank the reviewer for the comments. Indeed, development of a quantitative model for 
this discrepancy will be very interesting. However, the quantitative model is beyond the scope of this 
manuscript as the reviewer kindly mentioned, since our focus here is the developing of new 
technologies for spatial co-profiling of epigenome and transcriptome. We will actively work on this 
according to the reviewer’s comments. 

Minor comments: 

1. Gene activity score analysis is used for spatial-CUT&Tag-RNA-seq data, but I could not find where
this score is defined.

Response: We thank the reviewer for the comments. According to the reviewer’s suggestion, we made 
a definition of gene scores for CUT&Tag in spatial-CUT&Tag-RNA-seq and ATAC in spatial-ATAC-
RNA-seq. For H3K27me3, chromatin silencing score (CSS) was calculated for the prediction of gene 
expression. The high CSS represents repressed genes because of the transcriptional repression 
function of H3K27me3. For ATAC, H3K27ac and H3K4me3, gene activity scores (GAS) were calculated 
to show cluster specific active genes.  

Both CSS and GAS were calculated with ArchR (Nat Genet 2021, 53, 403-411,
https://www.archrproject.com/bookdown/calculating-gene-scores-in-archr.html). Please find blow the 
toy example provided in the ArchR tutorial to explain the default ArchR gene score model. The method 
of calculation was added in the Methods section of our revised manuscript. 

2. Several technologies exist for spatial epigenomic profiling, including (sciMAP-ATAC Nat Commun
12, 1274 (2021)), merFISH (bioRxiv, doi:https://doi.org/10.1101/2022.02.17.480825), and seqFISH+
(Nature 590, 344–350 (2021)). The latter study also jointly profiled RNA and chromatin state from the
same cells. It will be relevant to discuss the innovation and significance of this paper in the
aforementioned (and possibly additional) literature context.

Response: We thank the reviewer for the suggestion. According to the reviewer’s kind suggestion, we 
already added “Spatial omics technologies (spatial epigenomics, transcriptomics, and proteomics) 
based either on next generation sequencing (NGS)5-8,43-45 or imaging9,46, offer great opportunity to get 
insight into the gene regulation at a spatial level. However, the comprehensive understanding of the 
mechanism of gene regulation will need different layers of information simultaneously, which has been 
realized by single-cell multi-omics technologies1-4. Imaging-based DNA seqFISH+ combined with RNA 
seqFISH also provide the spatial chromatin and gene expression image of cells instead of tissue47. 
However, there is no current technology that can achieve genome-wide co-mapping of different 
epigenome modalities and transcriptome on the same tissue section at cellular level.” and the 
corresponding references in the Discussion section. 

[Redacted figure below]



1 Allaway, K. C. et al. Genetic and epigenetic coordination of cortical interneuron development. 
Nature 597, 693-697, doi:10.1038/s41586-021-03933-1 (2021). 

2 Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and 
chromatin accessibility in the same cell. Nat Biotechnol 37, 1452-1457, doi:10.1038/s41587-
019-0290-0 (2019).

3 Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of
single cells. Science 361, 1380-1385, doi:10.1126/science.aau0730 (2018).

4 Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of the developing human
cerebral cortex at single-cell resolution. Cell 184, 5053-5069 e5023,
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3559-3572.e3522, doi:https://doi.org/10.1016/j.cell.2021.05.010 (2021).

45 Fu, X. et al. Continuous Polony Gels for Tissue Mapping with High Resolution and RNA
Capture Efficiency. bioRxiv, 2021.2003.2017.435795, doi:10.1101/2021.03.17.435795 (2021).

46 Fang, R. et al. Conservation and divergence of cortical cell organization in human and mouse
revealed by MERFISH. Science 377, 56-62, doi:10.1126/science.abm1741 (2022).

47 Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature
590, 344-350, doi:10.1038/s41586-020-03126-2 (2021).



Referee #3 (Remarks to the Author): 

This manuscript provides a novel and interesting technique, while serving as a biological reference 
catalogue for epigenetic and transcriptomic signatures in the mouse CNS during two developmental 
timepoints. Their biotechnology side involves a novel combination of epigenetics and transcriptomics 
from the same unit area, layered with spatial information, from PFA fixed tissues! The biological 
importance lies in ability to precede the transcriptomics and observe how epigenetics influences the 
transcriptomic outcome seen in embryonic versus adult tissues, while also translating to human 
hippocampus data. 
This manuscript is incredibly original from techniques to data. 

Response: We really appreciate the reviewer for the positive feedback regarding our work and 

manuscript! 

- I would like to see more metrics regarding the technique, such as: during QC, how many barcode

combinations are thrown away (as empty or just too poor of quality)? How many cells do you

hypothesize to be captured by one barcode? Is there a supplementary video on how everything works

that can be added? Are there any metrics for fidelity (which could be compromised just due to diffusion

of cell contents) between pixels?

Response: We thank the reviewer for the comments! 

We first identified pixels on tissue from the bright field image taken from the same tissue using MATLAB, 
the barcodes didn’t on the tissues were thrown away. The detailed processing procedure to select the 
pixels on tissue was put in Github: (https://github.com/edicliuyang/Hiplex_proteome). The Github link 
were added in the Methods section according to the reviewer’s comments.  

The cell numbers captured by one barcode are various, which are decided by pixel size and tissue 
types. According to the reviewer’s comment, we added “The cell numbers captured by the barcode 
depended on the pixel size and tissue type.” in the data quality section of our manuscript. 

For 50 μm pixel size, we previously did a counting of cell numbers for E10 mouse embryo, there are 
about 15~30 cells per pixel with an average cell number of 25.1 (Cell, 2020, 183(6): 1665-1681). We 
added “For 50 μm pixel size, we obtained an average of 25 cells for E10 mouse embryo” in data quality 
section of our revised manuscript.   

We also used 50 μm pixel size for the human brain hippocampus sample, according to the Nissl staining 
of an adjacent tissue (we draw a grid with a pixel size of 50 μm, scale bar, 1 mm), each pixel contains 
1~9 cells since the cells in tissue are various in size and density. We added “1~9 cells for human 
hippocampus” in the data quality section of our revised manuscript. 

[Redacted figure below]



In order to increase the resolution, we used 20 μm pixel size chip for all the mouse brain samples. 
According to the Nissl staining of the P21 mouse brain sample (we draw a grid with a pixel size of 20 
μm, scale bar, 200 μm, this image was added as Fig. S2b in the revised manuscript), most of the pixels 
contain 1~3 cells in the region of interesting we covered, except for the ventricular layer that contains 
5~9 cells in some pixels. We added “most of the pixels contain 1~3 cells per 20 μm pixel size” in data 
quality section of our revised manuscript. 

A video protocol is a great suggestion! We will publish a video protocol as well as a step-by-step protocol 
for our spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq technologies.  
Besides, we have published a video protocol for our DBiT-seq technology (STAR protocols, 2021, 2(2): 
100532.), which includes detailed procedures on fabrication of PDMS microfluidic chips, assembly of 
the microfluidic device, and how the reagents were added. The labs without any microfluidic experiment 
can set up this platform easily. We also added this reference “Su G, Qin X, Enninful A, et al. Spatial 
multi-omics sequencing for fixed tissue via DBiT-seq[J]. STAR protocols, 2021, 2(2): 100532.” in the 
Methods section. 

The possibility of DNA diffusion has been evaluated by analyzing a 3D fluorescence confocal image in 

our previous study (Cell, 2020, 183(6): 1665-1681), which validated negligible leakage signal 

[Redacted figure below]



throughout the tissue section thickness (please see the following figure). It was found to be 4.5 ± 1 μm 

for 50 μm channels and 0.9 ± 0.2 μm for 10 μm channels, which confirmed spatially confined delivery 

and binding of DNA barcodes in tissue with our microfluidic device. 

- The overlap of the clusters from any given -omics dataset onto specific regions of the tissues is
incredible. I would just like to see some scale bars on the images with clusters overlayed.

Response: We appreciate the reviewer for the comments! We added scale bars on images of tissues 
for Fig. 1e, Fig. 2b,c, Fig. 3a-c, Fig. 5a, Fig. S10a-c, and Fig. S14a-c.  

- There is not so much a biological story throughout the manuscript, the data and way it is interpreted
sums out to be more of a reference, where focusing on and validating some gene candidates could
provide a more interesting story.

Response: We thank the reviewer for the comments! According to the reviewer’s comments, we 

discussed more genes and focused more on the biological story in the revised manuscript.  

According to the reviewer’s suggestion, we have focus on the pseudotime analysis of the E13 dataset 
and we chose the differentiation trajectory from radial glia cells to postmitotic premature neurons (Fig. 
j,k,l, please also see below).  The developmental trajectories were directly visualized in the spatial 
tissue map (Fig. 1j). The gene activity scores for chromatin accessibility and gene expression along 
this developmental trajectory were computed and the dynamic changes in selected marker genes were 
presented (Fig. 1k,l). Overall, the gene expression exhibited a similar temporal tendency as the 
chromatin accessibility. As expected, the expression levels of Sox2, Pax6 and other genes involved in 
progenitor maintenance proliferation (Gene Ontology (GO) Fabp7 to Pax6 in Fig. S6a) were 
downregulated during the transition to postmitotic neurons. Interestingly the loss of chromatin 
accessibility at the Pax6 and the radial glia marker Fabp7 loci preceded the downregulation at the RNA 
level (Fig. 1l). In turn, genes involved in neuronal identity, axonogenesis and synapse organization (GO 
Myt1l to Dnm3 in Fig. S6a) as Dcx and Tubb3 presented increased expression in the spatial 
pseudotime, but the chromatin accessibility at their loci was already elevated at much earlier stages, 
suggesting lineage-priming of gene expression10,26. We also found a cohort of genes whose expression 
quickly declined during the spatial pseudotime, but whose chromatin accessibility was maintained 
throughout the pseudotime, only declining at very late stages. Many of these genes such as Ptprz1, 
Bcan, Luzp2 are characteristic of oligodendrocyte precursor cells, and indeed GO analysis highlighted 
biological processes as negative regulation of myelination and regulation of gliogenesis (GO Cp to 
Sparcl1 in Fig. S6a) suggesting that the neuronal lineage might retain the potential to acquire an 
oligodendrocyte identity even when they have already migrated away from the ventricular zone in the 
embryonic brain. Interestingly, Monocle2 pseudotime analysis indicated a bifurcation at the chromatin 
accessibility level that was not observed at the RNA level (Fig. S6b,c). One bifurcation path led to areas 
close to the ventricular zone (green pixels, Fig. S6d,e), while the other bifurcation path terminated in 
areas distal from the ventricular zone (blue pixels). In contrast to the green path, the blue path presented 
an increase in chromatin accessibility in genes involved in axonogenesis and dendrite formation (Fig. 
S6e, red box and Fig. S6f), suggesting that the chromatin state of neural cells distal to the ventricles is 
indeed more consistent with a terminally differentiated neuronal state. Thus, our spatial-ATAC-RNA-
seq can be used to decipher the gene regulation mechanism and spatial dynamics during tissue 
development.  

[Redacted figure below]



The above explanation has been added in the Mouse embryo: spatial co-mapping of chromatin 
accessibility and transcriptome to identify tissue feature, cell state and developmental dynamics section 
according to the reviewer’s comment.

Fig. 1. j, Pseudotime analysis from radial glia to postmitotic premature neurons visualized at a spatial level. k, Heatmaps 
delineating gene expression and gene activity scores for marker genes. l, Dynamic changes of gene activity scores and gene 
expression across pseudotime.



Fig. S6 Further pseudotime analysis of radial glia and postmitotic premature neurons in spatial-ATAC-RNA-seq. a, GO 
enrichment analysis for genes from Fig. 1k. b,c, Pseudotime analysis from radial glia to postmitotic premature neurons with gene 
activity scores (b) and gene expression (c). d, Monocle2 analyses showing different states in (b). e, Heatmap of different states 
along the pseudotime trajectory. f, GO analysis of genes in red box of (e).

10 Ma, S. et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin. Cell 183, 1103-1116 e1120, 
doi:10.1016/j.cell.2020.09.056 (2020).

26 Meijer, M. et al. Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis suscept bility. Neuron
110, 1193-1210.e1113, doi:https://doi.org/10.1016/j.neuron.2021.12.034 (2022).



We also added a new section “Spatial multi-omics deciphers region-specific epigenetic regulation of 

gene expression and cooperation in mouse brain” and more genome-wide analyses were done in this 

section (Fig. 4, please also see below, and Fig. S15-22) to emphasize on epigenetic regulation of gene 

expression and the biological story as the reviewer kindly suggested. 

Besides, we discussed more gene candidates, for example, Fig. 2e (please also see below) and Fig. 

S7a for our spatial-ATAC-RNA-seq; Fig. 4b-d,h-k, Fig. S12a-c and Fig. S15a-b for our spatial-

CUT&Tag-RNA-seq (H3K27me3, H3K27ac, or H3K4me3, respectively) on P22 mouse brain with 

100x100 barcodes. The corresponding discussions have been added in the corresponding sections 

according to the reviewer’s kind suggestion.  

Furthermore, in order to constitute a unique resource of reference as the reviewer kindly mentioned, 
we have generated the webresources where our data can be browsed easily by the readers, one is 
UCSC Cell and Genome Browser (https://cells-test.gi.ucsc.edu/?ds=mouse-brain-spatial-atac+spatial), 
another is our own data portal generated with AtlasXplore (AtlasXomics) (https://web.atlasxomics.com, 
Id: reviewer Password: Reviewer@fanlab1). It allows for visualizing spatial pattern of genes or motifs, 
for example, by selecting a gene in the table of top ranked genes/motifs to show on the search bar to 
display (click the show function to view one by one). For ATAC and CUT&Tag data, the peaks, raw 
fragments per cluster, and gene model for the corresponding gene of interest can be viewed (click the 
Peak Viewer icon in the lower left panel). The motifs can be viewed by switching the icon Gene on the 
top right panel to Motif followed by selecting motif in the table to show on the search bar in a way similar 
to visualizing spatial gene expression map. The sequence logo can be displayed by clicking the Peak 
Viewer icon. The detailed tutorial of AtlasXplore for interactive analysis of spatial omics data is available 
at https://docs.atlasxomics.com/projects/AtlasXplore/en/latest/. The uploaded datasets will be available 
for browsing upon publication, and we are also building the CellXGene webresource, which we aim to 
release at the same time.  

Fig. 2. e, Spatial mapping of GAS and gene expression for selected marker genes in different clusters for ATAC and RNA in 

spatial-ATAC-RNA-seq. 



Fig. 4. Region specific epigenetic regulation of gene expression for spatial epigenome and transcriptome co-

sequencing. a, Correlation of H3K27me3 CSS and RNA gene expression in corpus callosum. b, Correlation of H3K27ac GAS 

and RNA gene expression in corpus callosum. c, Correlation of H3K4me3 GAS and RNA gene expression in corpus callosum. 

d, Upset plot of H3K27me3 CSS and RNA gene expression in striatum, deeper and superficial cortical layer. Low CSS or gene 

expression (-), High CSS or gene expression (+). e-g, Venn diagrams showing the number of high (+) or low (-) CSS/GAS for 

different histone modifications in corpus callosum for common RNA marker genes. h-k, Spatial mapping of CSS, GAS, and gene 

expression for selected marker genes Mag (h), Car2 (i), Syt1 (j), Gpr88 (k) in different clusters for ATAC, CUT&Tag and RNA in 

spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq. 



- Data analysis is well reported with availability of all scripts on a github page.
In terms of providing credit to other work, there could be more comparison with Visium, however, I am
fine if just a reference sentence distinguishing their technique from Visium is thrown in to the
introduction.

Response: We thank the reviewer for the comments and suggestions. According to the reviewer’s 
suggestion, we added “The 10x Visium platform also allows the co-detection of transcriptomics and 
proteins by either using immunofluorescence staining or polyadenylated antibody-derived tag-
conjugated (ADT-conjugated) antibodies for proteins of interest before spatial transcriptome 
workflow11.” in the Introduction section. 

11 Ben-Chetrit, N. et al. Integrated protein and transcriptome high-throughput spatial profiling. bioRxiv, 2022.2003.2015.484516, 
doi:10.1101/2022.03.15.484516 (2022). 

- The abstract, introduction and conclusion are all clear and concise and the manuscript and data is
presented well. In the results, I would like to see more interpretation/explanation in discrepancies seen
in metrics in Figure 1, specifically the E13 data seems to often behave quite differently, do you think
this can be explained by biology or is this a technical artifact?

Response: We appreciate the reviewer for this comment! The metrics in Fig. 1b,c and Fig. S2e,f
(originally in Figure 1) includes Unique fragments, TSS fragments, FRiP (fraction of reads in peaks) and 
Mitochondria fragments for ATAC/CUT&Tag data and number of genes/UMIs per pixel for RNA data. 

The discrepancies among metrics may mainly come from the tissues in our manuscript. The tissue 
types and tissue qualities may influence the metrics here. The tissue quality on epigenome and 
transcriptome are different among different tissue types. Besides, we are using fresh frozen tissues 
from different sources, the methods of tissue acquisition and conditions for tissue preservation will 
influence the tissue quality, especially the mRNA quality since mRNAs are quite easy to degrade.  

Furthermore, according to the reviewer’s suggestion, in order to figure out the reproducibility of our 

technologies within the same type of tissues, we added the experiments of biological replica using P21 

mouse brain from different batches for both spatial-ATAC-RNA-seq and spatial-CUT&Tag(H3K27ac)-

RNA-seq. The correlation analysis between replicates were shown in Fig. S2c,d (please also see 

below), which showed high reproducibility (r= 0.98 for ATAC and r=0.98 for RNA in spatial-ATAC-RNA-

seq; r=0.96 for CUT&Tag (H3K27ac) and r=0.89 for RNA in spatial-CUT&Tag-RNA-seq). The metrics 

of the replicas were also shown in Fig. S2e,f (the corresponding data are provided in Table S1, S2, 

please also see below). As can be seen from the results, there is good consistency for each technology 

with the same tissue types. This proved that the discrepancies were not led by technical artifacts. The 

Fig. S2c,d,e,f, and Table S1,S2 were added in the revised manuscript and “Thus, the tissue types and 

quality may influence the metrics.” was added in the data quality section. 



Fig. S2 c, The reproducibility of spatial-ATAC-RNA-seq between biological replicates on ATAC data (left) and RNA data (right) 
for P21 mouse brain. d, The reproducibility of spatial-CUT&Tag-RNA-seq between biological replicates on CUT&Tag data (left) 
and RNA data (right) for P21 mouse brain.  



Fig. S2 e, Comparison of number of unique fragments, TSS fragments, fraction of reads in peaks (FRiP), and fraction of 
mitochondrial fragments between biological replicates for spatial-ATAC-RNA-seq and spatial-CUT&Tag(H3K27ac)-RNA-seq. f, 
Gene and UMI count distribution between biological replicates for spatial-ATAC-RNA-seq and spatial-CUT&Tag(H3K27ac)-RNA-
seq. 

To further increase the mapping area, we developed a new device to perform in tissue barcoding of 100 

x 100 pixels with a 20 μm pixel size, and performed spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-

seq (H3K27me3, H3K27ac or H3K4me3) on mouse postnatal day 22 (P22) brain (Fig. 2a, please also 

see below). This new device allows a unique combination of barcodes Ai and Bj (i = 1-100, j = 1-100) 

with a total of 10,000 barcoded pixels, which allowed to cover almost the entire mouse brain hemisphere 

at this stage. The new device also generated good metrics (Fig. 1b,c and Table S1,S2, please also 

see below) and the discussion about the new metrics were added in the data quality section (please 

also see below).  



For the ATAC (spatial-ATAC-RNA-seq) or CUT&Tag (spatial-CUT&Tag-RNA-seq) data, we obtained a 

median of 14,284 (ATAC), 10,644 (H3K27me3), 10,002 (H3K27ac), and 2,507 (H3K4me3) unique 

fragments per pixel, of which 19% (ATAC), 12% (H3K27me3), 17% (H3K27ac), and 67% (H3K4me3) 

of fragments overlapped with TSS regions, and 26% (ATAC), 12% (H3K27me3), 21% (H3K27ac), and 

54% (H3K4me3) located in peaks (Fig. 1b,d and Table S1,S2). The proportion of mitochondrial 

fragments was 0.2% (H3K27me3), 0.3% (H3K27ac), and 3.6% (H3K4me3) for spatial-CUT&Tag-RNA-

seq or 4.6% for spatial-ATAC-RNA-seq. For the RNA portion of spatial-ATAC-RNA-seq and spatial-

CUT&Tag-RNA-seq, totally 22,914 genes (spatial-ATAC-RNA-seq) or 25,881 (H3K27me3), 23,415 

(H3K27ac), and 22,731 (H3K4me3) genes (spatial-CUT&Tag-RNA-seq) were detected with an average 

of 1,073 genes (spatial-ATAC-RNA-seq) and 2,011 (H3K27me3), 1,513 (H3K27ac), and 1,329 

(H3K4me3) genes per pixel (spatial-CUT&Tag-RNA-seq) or 2,358 UMIs (spatial-ATAC-RNA-seq) and 

4,734 (H3K27me3), 3,580 (H3K27ac), and 2,885 (H3K4me3) UMIs (spatial-CUT&Tag-RNA-seq) per 

pixel (Fig. 1c and Table S1,S2) in the mouse brain tissues.  



Fig. 1. b, Comparison of number of unique fragments, TSS fragments, fraction of reads in peaks (FRiP), and fraction of 
mitochondrial fragments between spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq. c, Gene and UMI (unique molecular 
identifier) count distribution between spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq. 



Table S1 Summary of metrics for ATAC and RNA in spatial-ATAC-RNA-seq for all the samples. 

Spatia

l-

ATAC

-RNA-

seq 

E13 

mouse 

embryo 

(50 

barcodes, 

50 μm 

pixel size) 

P22 

mouse 

brain 

(100 

barcode

s, 20 μm 

pixel 

size) 

P21 

mouse 

brain 

(replica 1, 

50 

barcodes, 

20 μm 

pixel size) 

P21 

mouse 

brain 

(replica 2, 

50 

barcodes, 

20 μm 

pixel size) 

Human 

brain (50 

barcode

s, 50 μm 

pixel 

size) 

ATA

C 

Number of 

Unique 

fragments 

18,079 14,284 10,857 14,385 9,898 

TSS 

fragments 
16% 19% 20% 19% 15% 

FRiP 11% 26% 24% 26% 11% 

Mitochondri

al 

fragments 

0.96% 4.6% 9% 8.4% 20% 

RNA 

Number of 

genes per 

pixel 

1,255 1,073 1,005 1,600 1,200 

Number of 

UMIs per 

pixel 

3,603 2,358 2,391 3,811 2,809 

Number of 

unique 

genes 

present 

20,900 22,914 19,859 20,046 29,293 

Pixels on 

tissue 
2,187 9,215 2,373 2,498 2,500 

Table S2 Summary of metrics for CUT&Tag and RNA in spatial-CUT&Tag-RNA-seq for all the samples. 

Spatial-

CUT&Tg

ag-RNA-

seq 

P22 

mouse 

brain 

(H3K27m

e3) (100 

barcodes, 

20 μm 

pixel size) 

P22 

mouse 

brain 

(H3K27

ac) (100 

barcode

s, 20 μm 

pixel 

size) 

P22 

mouse 

brain 

(H3K4m

e3) (100 

barcode

s, 20 μm 

pixel 

size) 

P21 

mouse 

brain 

(H3K27

ac, 

replica 

1) (50

barcode

s, 20 μm 

pixel 

size) 

P21 

mouse 

brain 

(H3K27

ac, 

replica 

2) (50

barcode

s, 20 μm 

pixel 

size) 



CUT&T

ag 

Number of 

Unique 

fragments 

10,644 10,002 2,507 4,756 5,022 

TSS 

fragments 
12% 17% 67% 19% 20% 

FRiP 12% 21% 54% 19% 18% 

Mitochond

rial 

fragments 

0.2% 0.3% 3.6% 0.1% 0.02% 

RNA 

Number of 

genes per 

pixel 

2,011 1,513 1,329 1,145 752 

Number of 

UMIs per 

pixel 

4,734 3,580 2,885 2,938 1,890 

Number of 

unique 

genes 

present 

25,881 23,415 22,731 19,831 18,718 

Pixels on 

tissue 
9,752 9,370 9,548 2,387 2,499 

- Altogether, the technique seems great, the analysis seems solid and writing is clear, just more

emphasis on some gene candidates could make this manuscript more interesting.

Response: We appreciate the reviewer for the positive comments and the great suggestion!  
According to the reviewer’s comments, we discussed more genes and focused more on the biological 

story in the revised manuscript. As we discussed in our responses to reviewer’s previous comment, we 

added a new section “Spatial multi-omics deciphers region-specific epigenetic regulation of gene 

expression and cooperation in mouse brain” to emphasize on discussion of epigenetic regulation of 

gene expression genome-wide and the biological story according to the reviewer’s suggestion (Fig. 4 

and Fig. S15-22). Besides, we discussed more gene candidates, for example, Fig. 2e and Fig. S7a for 

our spatial-ATAC-RNA-seq; Fig. 4b-d,h-k, Fig. S12a-c and Fig. S15a-b for our spatial-CUT&Tag-RNA-

seq (H3K27me3, H3K27ac, or H3K4me3, respectively) on P22 mouse brain with 100x100 barcodes. 

The corresponding discussions have been added in the corresponding sections. In addition, the 

generated webresources could also help the readers browse our data easily, and we are also actively 

improving the websources according to the reviewer’s suggestions.  



Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

The authors have addressed the issues raised with extensive additional data and more meaningful 

analyses, and I support publication. 

Referee #2 (Remarks to the Author): 

I commend the authors for doing an excellent job addressing all the issues raised in my (and possibly 

other) previous review. The new analyses included in this revision have clearly demonstrated high 

data quality. The two spatial epigenomics/transcriptomics technologies by Prof. Fan and colleagues 

provide new powerful tools for biologists to characterize the spatial heterogeneity and to investigate 

the underlying gene regulatory mechanisms, as demonstrated by their integrated analyses of mouse 

and human brains. 

Referee #3 (Remarks to the Author): 

I do appreciate how the authors addressed my comments. I was satisfied by all responses , except 

for the following: 

I would still like the authors to specifically address the technical issues which may be setting the E13 

tissue apart, and maybe append this to the sentence about reproducibility (which I do recognize as a 

great improvement) 

The new biological storyline section outlining progenitor to post-mitotic and oligodendrocyte states 

is exactly what I was looking for, thank you! 

I am also very impressed by the accessibility offered by the atlasxomics website, and think this is 

wonderful and deserves to be better recognized. 

Altogether, my comments were satisfactorily addressed and I believe this manuscript is great 

product of extensive interdisciplinary collaboration.



Author Rebuttals to First Revision: 

We greatly appreciate the reviewers for all the constructive review comments, which 

contributed to a major improvement of our manuscript. We have fully addressed all the 

concerns from the reviewers. Following please find our point-by-point responses to all review 

comments. Thank you so much! 

Referee #1 (Remarks to the Author): 

The authors have addressed the issues raised with extensive additional data and more meaningful 

analyses, and I support publication. 

Response: We would like to thank the reviewer for the positive feedback regarding our work and 

manuscript!  



Referee #2 (Remarks to the Author): 

I commend the authors for doing an excellent job addressing all the issues raised in my (and possibly 

other) previous review. The new analyses included in this revision have clearly demonstrated high 

data quality. The two spatial epigenomics/transcriptomics technologies by Prof. Fan and colleagues 

provide new powerful tools for biologists to characterize the spatial heterogeneity and to investigate 

the underlying gene regulatory mechanisms, as demonstrated by their integrated analyses of mouse 

and human brains. 

Response: We really appreciate the reviewer for the positive feedback regarding our technologies and 

manuscript! 



Referee #3 (Remarks to the Author): 

- I do appreciate how the authors addressed my comments. I was satisfied by all responses, except

for the following:

I would still like the authors to specifically address the technical issues which may be setting the E13

tissue apart, and maybe append this to the sentence about reproducibility (which I do recognize as a

great improvement)

Response: We thank the reviewer for the comment! As we mentioned in our previous response, the 

tissue types and tissue quality may influence the metrics here.  

The E13 mouse embryo is a heterogenous tissue type. The region we covered for this tissue (Fig. 1d) 

includes several embryonic organs with distinct cell types, for instance, brain, eye, limb, spine, etc. So 

the metrics might be difference.  

Also, besides the influence of tissue quality from tissue acquisition and preservation, the methods of 

tissue preparation might also influence the metrics. We used fresh frozen tissues from different 

sources, and they may have different tissue preparation protocols, which could affect the quality of the 

tissue sections. According to the reviewer’s suggestions, we added the details of tissue preparation 

for all the tissues in the Methods section (please also see below), and the sentence “Tissue type, 

preparation, and quality may influence analytical metrics (Methods).” has been added in the 

reproducibility section of our manuscript.  

The tissue preparation for the E13 mouse embryo: 

Mouse C57 Embryo Sagittal Frozen Sections (MF-104-13-C57) were purchased from Zyagen (San 

Diego, CA). The freshly harvested E13 mouse embryos were snap-frozen in OCT blocks and 

sectioned with 7−10 μm thickness. The tissue sections were collected on poly-L-lysine coated glass 

slides. 

The tissue preparation for the juvenile mouse brain: 

Juvenile mouse brain tissue (P21−P22) was obtained from Sox10:Cre-RCE:LoxP (EGFP) line on a 

C57BL/6xCD1 mixed genetic background maintained at Karolinska Institutet. Mice were sacrificed at 

P21/P22 by anesthesia with ketamine (120 mg/kg of body weight) and xylazine (14 mg/kg of body 

weight), followed by transcranial perfusion with cold oxygenated artificial cerebrospinal fluid aCSF (87 

mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 75 mM Sucrose, 20 mM Glucose, 1 mM 

CaCl2*2H2O and 2 mM MgSO4*7H2O in dH2O). Upon isolation, the brains were kept for a minimal time 

period in aCSF until embedding in Tissue-Tek® O.C.T. compound (Sakura) and snap-freezing using a 

mixture of dry ice and ethanol. Coronal cryosections of 10 μm were mounted on poly-L-lysine coated 

glass slides.  

The tissue preparation for the human brain: 

The human brain tissue was obtained from the Brain Collection of the New York State Psychiatric 

Institute (NYSPI) at Columbia University. The anterior hippocampal region was dissected from a fresh 



frozen coronal section (20 mm thickness) of the right brain hemisphere. The dentate gyrus region 

(around 10 mm x 10 mm) of the anterior hippocampal region was selected. The cryosections of 10 μm 

were collected on poly-L-lysine coated glass slides. 

- The new biological storyline section outlining progenitor to post-mitotic and oligodendrocyte states is

exactly what I was looking for, thank you!

I am also very impressed by the accessibility offered by the atlasxomics website, and think this is

wonderful and deserves to be better recognized.

Altogether, my comments were satisfactorily addressed and I believe this manuscript is great product

of extensive interdisciplinary collaboration.

Response: We are grateful to the reviewer for the positive feedback regarding our work and

manuscript!
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