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Supplementary Figures  

 

Supplementary Figure 1. CALR species used in this study. 
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a. Summary of recombinant CALR proteins used in HDx-MS and FTIR experiments. 

Theoretical molecular weight (MW) and Tm measured with Tycho NT.6 instrument 

(NanoTemper). b. Coomassie Blue staining of CALR WT, CALR del52 and indicated variants. 

Purified samples were analyzed by SDS-PAGE in denaturing and reducing conditions and 

stained with Coomassie Blue for total protein detection. Representative gel from 3 

experiments.  c. Thermal stability of purified proteins. The graphs represent the 350/330 nm 

intrinsic fluorescence from Trp and Tyr residues at different temperatures. The S-shaped curve 

is typical of well-folded proteins as the accessibility of Tyr and Trp residues gradually increases 

upon temperature-induced protein unfolding. The Tm is computed as the temperature at which 

half of the proteins in the sample are denatured. Source data are provided as a Source data 

file. d. Structure prediction using AlphaFold 2.01 of CALR del52 mutant protein. The mutant 

C-terminus is highlighted. The N-domain is shown in light blue, the P-domain in green, the 

partial C-domain of CALR WT in dark blue and the mutant tail in magenta until position 394 

and in red from 395 to 411. 
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Supplementary Figure 2. Size-exclusion chromatography and purity of 
recombinant proteins. 
a-g. Left: Size-exclusion chromatograph of indicated proteins in HDx equilibration buffer. The 

final fraction collected for is indicated. Right: Profile of the first derivative of the 350/330 nm 

ratio of indicated proteins. The position of the peak on the X axis indicates the Tm of each 

protein. The shape of the first derivative ratio is used as an additional indicator of protein purity. 
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Supplementary Figure 3. HDx-MS footprints of CALR WT, CALR del52 and 
CALR DC-tail  
a-b. Sequence coverage obtained for the H-D exchange analysis between CALR WT and 

CALR DC-tail (a) and between CALR WT and CALR del52 (b). The percentage of sequence 
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coverage and the number of peptides detected are indicated. c-d. Wood’s plots linked to 

Figure 1C-D generated with Deuteros 2.02. Each bar (wood) represents the H-D exchange 

differential for a single peptide between CALR WT and CALRDC-tail (c) or between CALR WT 

and CALR del52 (d) at 0,0.25,1,5,15 or 60 minutes incubation in deuterium. Peptides in red 

(deprotected) or blue (protected) have significant differential H-D exchange (p<0.001) with the 

peptide-level significance testing (n = 3) as described 2. The N-, P- and C-domains of CALR 

are indicated on the plots by letters N, P and C, respectively. Source data are provided as a 

Source data file. 
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Supplementary Figure 4. FTIR spectra of CALR species. 
a. Raw data - all FTIR spectra recorded (without any preprocessing step) to analyse the 

structure. Each sample is identified by a unique color indicated in the legend. For better 

readability, spectra were offset along the absorbance axis. b. PCA score plot depicting the 

projection of the 25 individual preprocessed FTIR spectra of the WT and mutant proteins in 
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the PC1-PC2 space performed on the 1720-1480 cm-1 spectral region. Each star stands for 

one spectrum. For the sake of clarity, a colour is associated with each sample but the analysis 

is completely unsupervised. Percentages on the axis labels indicate the variance described 

by PC1 (59.7%) and PC2 (33.8%). A mean centering (subtraction of the arithmetic mean from 

all the spectra) was applied on this set of data. c. (a) Representation of the original data in 

terms of the two axes x and y. Each point represents one IR spectra. (b) As a result of the 

PCA the axes are rotated and the data will be represented in the two-dimensional principal 

component space. Thereby PC1 represents the largest variance in the data. 

 

 

Supplementary Figure 5. Raw FTIR spectra of CALR species. 

a-d. Comparison of the processed mean spectra recorded. The difference between the two 

mean spectra indicated is shown in black – zoom on the spectral region related to proteins 

absorption (1720-1480 cm-1). A Student’s t-test was carried out at each wavenumber with a 

confidence level α=0.1%. The significant spectral differences are revealed with black stars on 

the difference spectrum. Each spectrum is identified by a unique colour indicated in the legend. 
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Supplementary Figure 6. CALR mutant C-terminus specifically interacts with 
TpoR in absence of immature N-glycans. 
a. Coomassie Blue staining of TpoR D1-D4 with mature N-glycans. Purified TpoR D1-D4 was 

analyzed by SDS-PAGE in denaturing and reducing conditions and stained with Coomassie 
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Blue for total protein detection. Representative gel from 3 experiments. b. Thermal stability of 

TpoR D1-D4 with mature N-glycans. The graphs represent the 350/330 nm intrinsic 

fluorescence from Trp and Tyr residues at different temperatures. The S-shaped curve is 

typical of well-folded proteins as the accessibility of Tyr and Trp residues gradually increases 

upon temperature-induced protein unfolding. Source data are provided as a Source data file. 

c. Microscale Thermophoresis between CALR del52 and TpoR D1-D4 with mature N-glycans. 

CALRdel52 was labeled with RED-NHS 2nd Generation chemistry according to the 

manufacture's instruction (NanoTemper Technology). The curve corresponds to the mean (± 

SD) of two independent experiments following the fluorescence of the target protein 

(CALRdel52-NHS) with titration of the the ligand (TpoR D1-D4). While the concentration of the 

target is kept constant at 20 nM, the ligand concentration ranges from 5uM and 0,15 nM. The 

binding curve represents the percentage of bound fraction of CALR del52 to TpoR D1-D4 and 

yields a KD of 104 nM ± 3.75 nM. Source data are provided as a Source data file. d. Sequence 

coverage obtained for the H-D exchange analysis between CALR del52 alone and CALR 

del52 in complex with TpoR D1-D4 with mature N-glycan. The percentage of sequence 

coverage and the number of peptides detected are indicated. e. Wood’s plots linked to Figure 

2A generated with Deuteros 2.02. Each bar (wood) represents the H-D exchange differential 

for a single peptide between CALR del52 alone and CALR del52 in complex with TpoR D1-

D4 with mature N-glycans at 0,0.25,1,5,15 or 60 minutes incubation in deuterium. Peptides in 

red (deprotected) or blue (protected) have significant differential H-D exchange (p<0.001) with 

the peptide-level significance testing (n = 3) as described 2. The N-, P- and WT C and mutant 

C-domains of CALR are indicated on the plots by letters N, P and C and Cmut, respectively. 

Source data are provided as a Source data file. f. Deuterium uptake (Da) of the indicated 

peptides of the mutant C-terminus from CALR del52 alone or in complex with TpoR D1D4 

(with mature N-glycans) at 5 different exchange time points. The dotted lines represent 

standard deviation (SD), the full line represents average of triplicates. Source data are 

provided as a Source data file. g. STAT5 transcriptional activity in presence of EpoR and 

indicated CALR truncations. HEK293T were transiently transfected with human EpoR and 

CALR truncations along with cDNAs coding for STAT5, JAK2 and SpiLuc Firefly luciferase 

reporter reflecting STAT5 transcriptional activity and normalized with a control reporter 

(pRLTK) containing Renilla luciferase. Data represent mean ± SD (n = 6 biologically 

independent samples over 2 independent experiments). Data were analyzed with two-ways 

ANOVA followed by Sidak multiple comparison test. ns: non-significant (p>0.05). Source data 

are provided as a Source data file. 
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Supplementary Figure 7. Donor Saturation Assay between TpoR-NanoLuc and 
CALR del52-HaloTag. 
Donor Saturation Assay between TpoR-NanoLuc and indicated CALR del52-HaloTag (HT) 

construct. HEK293T were co-transfected with fixed amount of donor (TpoR-NanoLuc) and 

increasing ratios of acceptor (HaloTag fusion proteins). The negative control corresponds to 

a HaloTag protein non-fused to TpoR. A specific BRET signal will increase in a hyperbolic 

manner before reaching a plateau. A non-specific interaction will be less intense and increase 

linearly without reaching a plateau. The shape of the curve in a Donor Saturation Assay 

provides a control for the specificity of the interaction according to the manufacturer instruction 

(Promega). 

 



 12 

 
Supplementary Figure 8. Interaction between CALR mutant and TpoR in 
presence of immature N-glycans. 
a. Coomassie Blue staining of the complex CALR del52-TpoR D1D2 with immature N-glycans 

on Asn117. The purified complex was analyzed by SDS-PAGE in denaturing and reducing 
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conditions and stained with Coomassie Blue for total protein detection. Representative gel 

from 3 experiments. b. Thermal stability of the CALR del52-TpoR D1D2 complex. The graphs 

represent the 350/330 nm intrinsic fluorescence from Trp and Tyr residues at different 

temperatures. The S-shaped curve is typical of well-folded proteins as the accessibility of Tyr 

and Trp residues gradually increases upon temperature-induced protein unfolding. Source 

data are provided as a Source data file. c. Sequence coverage obtained for the H-D exchange 

analysis between CALR del52 alone and the CALR del52-TpoR D1D2 complex with immature 

N-glycans on TpoR Asn117. The percentage of sequence coverage and the number of 

peptides detected are indicated. d. Wood’s plots linked to Figure 3E generated with Deuteros 

2.02. Each bar (wood) represents the H-D exchange differential for a single peptide between 

CALR del52 alone and the CALR del52-TpoR D1D2 complex at 0,0.25,1,5,15 or 60 minutes 

incubation in deuterium. Peptides in red (deprotected) or blue (protected) have significant 

differential H-D exchange (p<0.001) with the peptide-level significance testing (n = 3) as 

described 2. The N-, P- WT C and mutant C-domains of CALR are indicated on the plots by 

letters N, P and C and Cmut, respectively. Source data are provided as a Source data file. e. 

Deuterium uptake (Da) of the indicated peptides of the mutant C-terminus (left) or N-glycans 

binding sites (right) from CALR del52 alone or in complex with TpoR D1D2 (with immature N-

glycans on Asn117) at 5 different exchange time points. The dotted lines represent standard 

deviation (SD), the full line represents average of triplicates. Source data are provided as a 

Source data file. 
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Supplementary Figure 9. Interaction between CALR mutant C-terminus and 
acidic patches on TpoR D1 domain. 

a. Sequence coverage obtained for the H-D exchange analysis between TpoR D1-D4 alone 

(with mature N-glycans) and in presence of CALR del52. The percentage of sequence 

coverage and the number of peptides detected are indicated. The peptide signal sequence is 
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not shown. The sites of N-glycans attachment are indicated. b. Wood’s plots generated with 

Deuteros 2.02. Each bar (wood) represents the H-D exchange differential for a single peptide 

between TpoR D1-D4 alone and the CALR del52-TpoR D1-D4 complex at 0,0.25,1,5,15 or 60 

minutes incubation in deuterium. Peptides in red (deprotected) or blue (protected) have 

significant differential H-D exchange (p<0.001) with the peptide-level significance testing as 

described 2. The D1, D2,D3 and D4 domains of TpoR are indicated. Source data are provided 

as a Source data file. c-d. Deuterium uptake (Da) of (C) the FSRTFEDL peptide from TpoR 

D1-D4 alone and from the CALR del52-TpoR D1D2 complex and (D) the WDEEEAAPSGT 

peptide from TpoR D1-D4 alone and in presence of CALR del52 at 5 different exchange time 

points. The dotted lines represent standard deviation (SD), the full line represents average of 

triplicates. Source data are provided as a Source data file. e. Sequence of CALR del52 C-

terminus and mutants as indicated. f. STAT5 transcriptional activity with human TpoR and 

indicated CALR del52 mutants. HEK293T were transiently transfected with human TpoR and 

CALR mutants along with cDNAs coding for STAT5, JAK2 and SpiLuc Firefly luciferase 

reporter reflecting STAT5 transcriptional activity and normalized with a control reporter 

(pRLTK) containing Renilla luciferase. Data represent mean ± SD (n = 9 biologically 

independent samples over 3 independent experiments). Data were analyzed with two-ways 

ANOVA followed by Sidak multiple comparison test. Source data are provided as a Source 

data file. 
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Supplementary Figure 10. Molecular Dynamics between CALR mutant C-
terminus and TpoR D1D2 domains. 
a. Representative conformations of the main 2 clusters of CALR del52 mutant C-terminus with 

the bending region in bold in sequence. b. Poses generated by HADDOCK. The best docking 

complex was chosen, as ranked by the HADDOCK score. Render done in PyMOL40 v. 2.2.3 

c. Timeseries of the angle between the two FN-III-like domains of the membrane distal TpoR 

domain, moving average with 0.5 ns window. The Cα atoms of Q26, S129 and D283 were 

used to compute the angle. d. Conformation superposition of the TpoR-CALR del52 mutant 

C-terminus structure before (purple/blue) and after (red) 500 ns of molecular dynamics. e-f. 
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Timeseries of the angle between the two FN-III-like domains of the membrane distal TpoR 

domain for pose 1 and 2, moving average with 0.5 ns window. The Cα atoms of Q26, S129 

and D283 were used to compute the angle. 

 

Supplementary Figure 11. Final frames Molecular Dynamic simulations between 
CALR mutant C-terminus and TpoR D1D2 domain. 

Last frame of triplicates unconstrained molecular dynamics simulations (500 ns) for pose 2. 

The last frame is shown for each replicate independently. The D1 and D2 domain of TpoR are 

shown in blue/deepteal and beige, respectively. The Arg and Lys of CALR del52 C-terminus 

are shown in dark blue, the Met in orange and other residues in grey. Residues of TpoR that 

with a distance < 3.5 Ä from CALR del52 C-terminus are shown in red. The E and F of the 
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44TFED47 motif that interact with Arg of CALR del52 C-terminus are highlighted. Render done 

with Pymol 2.4.2. 

 

Supplementary Figure 12. Free energy between CALR mutant C-terminus and 
TpoR D1D2 domain. 

Comparative MM-GBSA free energy differences, and their associated standard deviation 

(SD). Data represent the mean (± SD) of MM-GBSA free energy computed on 100 simulation 

frames (N = 100) for each pose. The average is -153.43 (± SD 18.49) ∆G (kcal/mol) for pose 

1, -100.45 (± SD 14.58) ∆G (kcal/mol) for pose 2 and -81.94 (± SD 17.01) ∆G (kcal/mol) for 

pose 3. 
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Supplementary Figure 13. In silico analyses of the CALR mutant C-terminus 
interaction with TpoR D1D2 domain. 
a. Free energy surface of the independent components for pose 1, pose 2 and pose 3. The 

centers of the top 3 most probable clusters are shown (see also Supplementary Methods). 

b. Top two most auto-correlated components generated by TICA for pose 1, pose 2 and pose 

3. c. InfleCS cluster of the independent components for pose 1, pose 2 and pose 3. The 

generated clusters are shown in colored circles and their associated centers in squares. d. 
Cluster center conformation of pose 1. Left: cluster 1, middle: cluster 2, right: cluster 3. These 
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corresponds to clusters 9, 10 and 8 of Supplementary Table 1, respectively. Renders done 

in VMD v1.9.4. 
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Supplementary Figure 14. CALR mutant oligomerization is independent of C-
terminal cysteines. 

Native western blot of indicated CALR species, with or without reducing agent (DTT). Staining 

with Coomassie Blue. Representative gel from 3 experiments. 
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Supplementary Figure 15. Molecular Dynamic Simulations of CALR del52-TpoR 
tetrameric complex. 
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Left: side view of the last frame of unconstrained molecular dynamics simulations (100 ns) of 

the CALR del52-TpoR tetrameric complex performed in triplicates. CALR del52 molecules are 

shown in orange and pink. TpoR molecules are shown in cyan and dark blue. N-glycans 

attached to Asn117 (immature), Asn178 (mature), Asn298 (mature) and Asn358 (mature) are 

shown as yellow sticks. Middle: Top views of the last frame of triplicates molecular dynamics 

CALR del52-TpoR tetrameric complex. Right: RMSD plots of each molecular dynamic 

simulations. RMSD over the simulations courses are shown in black (backbone), cyan/light 

blue (TpoR-1), dark blue (TpoR-2), orange (CALR del52-1) and pink (CALR del52-2). 
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Supplementary Figure 16. Molecular Dynamic Simulations of CALR Ins5-TpoR 
tetrameric complex. 
Left: side view of the last frame of unconstrained molecular dynamics simulations (100 ns) of 

the CALR Ins5-TpoR tetrameric complex performed in triplicates. CALR Ins5 molecules are 
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shown in orange and pink. TpoR molecules are shown in cyan and dark blue. N-glycans 

attached to Asn117 (immature), Asn178 (mature), Asn298 (mature) and Asn358 (mature) are 

shown as yellow sticks. Middle: Top views of the last frame of triplicates molecular dynamics 

CALR Ins5-TpoR tetrameric complex. Right: RMSD plots of each molecular dynamic 

simulations. RMSD over the simulations courses are shown in black (backbone), cyan/light 

blue (TpoR-1), dark blue (TpoR-2), orange (CALR Ins5-1) and pink (CALR Ins5-2). 
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Supplementary Table 

 

Cluster Number State Probability (%) Cluster Population (determined 
by Voronoi Tesselation) 

1 3% 1441 
2 3.2% 886 
3 0.05% 595 
4 2.3% 955 
5 3.3% 1102 
6 2.2% 991 
7 1.8% 1758 
8 4.3% 2035 
9 7.6% 3245 
10 6.7% 1992 

 
Supplementary Table 1. Detailed overview of the generated InfleCS clusters for pose 1 

linked to Supplementary Figure 13d. 
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Supplementary Methods 

Production and purification of recombinant proteins 
Recombinant human CALR wild-type, CALR del52 and its derivatives contain a N-

terminal His tag sequence (MGSHHHHHHGSSG) that replaces the CALR signal 

peptide sequence (a.a. 1-17). In addition, the cysteine 163 was mutated to serine. The 

amino acid sequence of human TpoR D1D2D3D4 (TpoR D1-D4) starts at Q26 and 

ends at T489 and this of human TpoR D1D2 (TpoR D1D2) starts at Q26 and ends at 

Q290. Both contains a histidine tag at the C-terminus. The amino acid sequence of 

human CALR WT starts at E18 and ends at L417.  

The sequences of all recombinant proteins are provided below. 

Protein Sequence 

rhCALRWT 

 

MGSHHHHHHGSSGEPAVYFKEQFLDGDGWTSRWIESKHKSDFGKFVLSSG

KFYGDEEKDKGLQTSQDARFYALSASFEPFSNKGQTLVVQFTVKHEQNIDC

GGGYVKLFPNSLDQTDMHGDSEYNIMFGPDICGPGTKKVHVIFNYKGKNVLI

NKDIRSKDDEFTHLYTLIVRPDNTYEVKIDNSQVESGSLEDDWDFLPPKKIKD

PDASKPEDWDERAKIDDPTDSKPEDWDKPEHIPDPDAKKPEDWDEEMDGE

WEPPVIQNPEYKGEWKPRQIDNPDYKGTWIHPEIDNPEYSPDPSIYAYDNFG
VLGLDLWQVKSGTIFDNFLITNDEAYAEEFGNETWGVTKAAEKQMKDKQDE

EQRLKEEEEDKKRKEEEEAEDKEDDEDKDEDEEDEEDKEEDEEEDVPGQA

KDEL 

rhCALRdel52 

 

MGSHHHHHHGSSGEPAVYFKEQFLDGDGWTSRWIESKHKSDFGKFVLSSG

KFYGDEEKDKGLQTSQDARFYALSASFEPFSNKGQTLVVQFTVKHEQNIDC

GGGYVKLFPNSLDQTDMHGDSEYNIMFGPDICGPGTKKVHVIFNYKGKNVLI

NKDIRSKDDEFTHLYTLIVRPDNTYEVKIDNSQVESGSLEDDWDFLPPKKIKD

PDASKPEDWDERAKIDDPTDSKPEDWDKPEHIPDPDAKKPEDWDEEMDGE
WEPPVIQNPEYKGEWKPRQIDNPDYKGTWIHPEIDNPEYSPDPSIYAYDNFG

VLGLDLWQVKSGTIFDNFLITNDEAYAEEFGNETWGVTKAAEKQMKDKQDE

EQRTRRMMRTKMRMRRMRRTRRKMRRKMSPARPRTSCREACLQGWTEA 

rhCALRdel52
A394* 

MGSHHHHHHGSSGEPAVYFKEQFLDGDGWTSRWIESKHKSDFGKFVLSSG

KFYGDEEKDKGLQTSQDARFYALSASFEPFSNKGQTLVVQFTVKHEQNIDC

GGGYVKLFPNSLDQTDMHGDSEYNIMFGPDICGPGTKKVHVIFNYKGKNVLI

NKDIRSKDDEFTHLYTLIVRPDNTYEVKIDNSQVESGSLEDDWDFLPPKKIKD

PDASKPEDWDERAKIDDPTDSKPEDWDKPEHIPDPDAKKPEDWDEEMDGE
WEPPVIQNPEYKGEWKPRQIDNPDYKGTWIHPEIDNPEYSPDPSIYAYDNFG
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VLGLDLWQVKSGTIFDNFLITNDEAYAEEFGNETWGVTKAAEKQMKDKQDE

EQRTRRMMRTKMRMRRMRRTRRKMRRKMSP 

rhCALR 

∆C-tail 

MGSHHHHHHGSSGEPAVYFKEQFLDGDGWTSRWIESKHKSDFGKFVLSSG

KFYGDEEKDKGLQTSQDARFYALSASFEPFSNKGQTLVVQFTVKHEQNIDC

GGGYVKLFPNSLDQTDMHGDSEYNIMFGPDICGPGTKKVHVIFNYKGKNVLI

NKDIRSKDDEFTHLYTLIVRPDNTYEVKIDNSQVESGSLEDDWDFLPPKKIKD
PDASKPEDWDERAKIDDPTDSKPEDWDKPEHIPDPDAKKPEDWDEEMDGE

WEPPVIQNPEYKGEWKPRQIDNPDYKGTWIHPEIDNPEYSPDPSIYAYDNFG

VLGLDLWQVKSGTIFDNFLITNDEAYAEEFGNETWGVTKAAEKQMKDKQDE

EQR 

rhCALRdel52 
Y109F/D135L 

 

MGSHHHHHHGSSGEPAVYFKEQFLDGDGWTSRWIESKHKSDFGKFVLSSG

KFYGDEEKDKGLQTSQDARFYALSASFEPFSNKGQTLVVQFTVKHEQNIDC

GGGFVKLFPNSLDQTDMHGDSEYNIMFGPLICGPGTKKVHVIFNYKGKNVLI

NKDIRSKDDEFTHLYTLIVRPDNTYEVKIDNSQVESGSLEDDWDFLPPKKIKD
PDASKPEDWDERAKIDDPTDSKPEDWDKPEHIPDPDAKKPEDWDEEMDGE

WEPPVIQNPEYKGEWKPRQIDNPDYKGTWIHPEIDNPEYSPDPSIYAYDNFG

VLGLDLWQVKSGTIFDNFLITNDEAYAEEFGNETWGVTKAAEKQMKDKQDE

EQRTRRMMRTKMRMRRMRRTRRKMRRKMSPARPRTSCREACLQGWTEA 

TpoR D1-D4 

QDVSLLASDSEPLKCFSRTFEDLTCFWDEEEAAPSGTYQLLYAYPREKPRA

CPLSSQSMPHFGTRYVCQFPDQEEVRLFFPLHLWVKNVFLNQTRTQRVLFV

DSVGLPAPPSIIKAMGGSQPGELQISWEEPAPEISDFLRYELRYGPRDPKNS

TGPTVIQLIATETCCPALQRPHSASALDQSPCAQPTMPWQDGPKQTSPSRE
ASALTAEGGSCLISGLQPGNSYWLQLRSEPDGISLGGSWGSWSLPVTVDLP

GDAVALGLQCFTLDLKNVTCQWQQQDHASSQGFFYHSRARCCPRDRYPIW

ENCEEEEKTNPGLQTPQFSRCHFKSRNDSIIHILVEVTTAPGTVHSYLGSPF

WIHQAVRLPTPNLHWREISSGHLELEWQHPSSWAAQETCYQLRYTGEGHQ

DWKVLEPPLGARGGTLELRPRSRYRLQLRARLNGPTYQGPWSSWSDPTRV

ETATETAWHHHHHH 

TpoR D1D2 

QDVSLLASDSEPLKCFSRTFEDLTCFWDEEEAAPSGTYQLLYAYPREKPRA

CPLSSQSMPHFGTRYVCQFPDQEEVRLFFPLHLWVKNVFLNQTRTQRVLFV
DSVGLPAPPSIIKAMGGSQPGELQISWEEPAPEISDFLRYELRYGPRDPKNS

TGPTVIQLIATETCCPALQRPHSASALDQSPCAQPTMPWQDGPKQTSPSRE

ASALTAEGGSCLISGLQPGNSYWLQLRSEPDGISLGGSWGSWSLPVTVDLP

GDAVALGLQHHHHHH 
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Production of CALR wild-type and mutants 

The corresponding DNA sequences of the CALR recombinant proteins were cloned 

into a derivative of plasmid pET9 for transformation and expression in the E. Coli 

bacterial strain Rosetta2(DE3).  For each production, 2 L of E. Coli culture was 

centrifuged at 4°C and put on ice. The pellet was lysed in 40 mL buffer A using French 

press. The lysate was centrifuged at 4.500 G for 20 min. at 4°C and the supernatant 

was further filtered on 0.45 µM. The clarified lysate was frozen at -80°C until use. 

The soluble recombinant proteins were captured from total lysate using Histidine-

affinity with a Ni2+ purification resin (HiTRAP IMAC 5mL, Roche) equilibrated in Buffer 

B. The column was washed with 20 columns volume (100mL) of buffer C. 

Recombinant proteins were then eluted with by increasing the imidazole concentration 

(50-200mM). Eluted fractions were concentrated by ultrafiltration and further purified 

by size-exclusion chromatography using a Superdex 200 Increase 10/300 column (GE 

healthcare, Chalfont St. Giles, United Kingdom). The proteins were kept in buffer D at 

-80°C. The size-exclusion chromatographs are provided in Supplementary Figure 2. 

The purity was further confirmed by SDS-PAGE and by measuring the computing the 

first derivative of the 330/350 nm ratio upon thermal unfolding (Supplementary 
Figures 1 and 2). The correct folding of the proteins was validated by thermal 

unfolding experiments with Tycho NT.6 (Supplementary Figure 1). 

Buffer 
CALR WT 

CALR del52 A394* 
CALR del52 

CALR del52 Y109F/D135L 
CALR ∆C-tail 

A 

Tween 50mM, NaCl 

500mM, CaCl2 5 mM, 

imidazole 10 mM, 
CHAPS 1mM, pH 7.5 

MES 50mM, NaCl 500mM, CHAPS 

1%, EDTA 1mM, pH 6.5 

Tween 50mM, NaCl 

500mM, CaCl2 5 mM, 

imidazole 10 mM, 
CHAPS 1mM, pH 7.5 

B 

Tween 50mM, NaCl 

500mM, Imidazole 10 

mM, CHAPS 1%, EDTA 

1 mM, pH 7.5 

MES 50 mM, NaCl 500mM, CHAPS 

1%, pH 6.5 

Tween 50mM, NaCl 

500mM, Imidazole 10 

mM, CHAPS 1%, EDTA 

1 mM, pH 7.5 

C 

Tween 50mM, NaCl 

500mM, Imidazole 10 

mM, CHAPS 1%, EDTA 

1 mM, pH 7.5 

MES 50 mM, NaCl 500mM, CHAPS 

1%, imidazole 25 mM (CALR del52) 

or 10mM (CALR del52 

Y109F/D135L), pH 6.5 

Tween 50mM, NaCl 

500mM, Imidazole 10 

mM, CHAPS 1%, EDTA 

1 mM, pH 7.5 

D HEPES 20mM NaCl 
150mM CaCl2 1mM 

MES 20mM NaCl 150mM CaCl2 
1mM 

HEPES 20 mM CaCl2 
1mM 
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Fourrier Transformed Infrared Stepctroscopy (FTIR) 
FTIR experiments were performed under the supervision of Allison Derenne, Ph.D., 

founder and general manager of Spectralys Biotech, Belgium. The full report is 

provided below. 

Sample preparation 

In order to avoid any interference with buffers or with the high concentration in salt, a 

buffer exchange was performed. The buffer was replaced by a phosphate buffer 5 mM 

at pH 7.01 using Micro-Bio Spin P6 Gel from Bio-Rad. 30μL of the five samples was 

charged on the columns. 

To obtain meaningful comparison, five FTIR spectra were recorded for each sample 

described here above (after buffer exchange). FTIR spectra (raw data, without any 

pre-processing step) are provided in Supplementary Figure 4a. 

Result analysis 

To interpret the FTIR data in terms of secondary structure, two types of analysis were 

performed:  

• Comparison of the spectra in the region specific to proteins absorption to 

evaluate the similarity between the wild type protein and the two mutated forms;  

• A prediction of the secondary structure content using an in-house database of 

FTIR spectra of proteins.  

The preprocessing steps described in the methods section are required for meaningful 

comparison of FTIR spectra. Results shown in main Figure 1e-f presents the mean of 

all preprocessed spectra for each sample with a zoom on the spectral region related 

to protein absorption. 

With the naked eye, clear spectral variations can be noted among the five samples. 

Regarding the region of the Amide II, it must be noted that the mean spectra of the 

wild type form is quite different. This would mainly arise from the contribution of the 

Aspartate and Glutamate residues which are much more abundant in the wild type (55 

and 54 respectively) than in CALR del52 (43 and 34), in CALRdel52 A394* (43 and 

32), in CALR ∆C-tail (43 and 32) and in CALR del52 D135L/Y109F (42 and 34). These 

two amino acids have a significant contribution around 1568 cm-1 due to the absorption 

of the carbonyl group in their side chains.  
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In addition to this first observation, it can be noticed that the CALR WT and the 

CALRdel52 A394* have a similar shape, especially in the amide I band. The CALR 

∆C-tail has a similar shape in the amide I band but exposes very different 

characteristics in the amide II band. The CALRdel52 and the CALRdel52 

D135L/Y109F have each, specific and distinct features in both, the amide I and the 

amide II bands.  

Multivariate analyses can be applied to assess similarities and discrepancies among 

the samples. Principal component analysis (PCA) is a powerful tool for high-dimension 

data to identify patterns and to express the data in such a way as to highlight their 

similarities and differences. This tool reduces the number of variables without much 

loss of information, taking into account most of the variance. It is an unsupervised 

analysis: the classification obtained does not suppose any a priori condition on 

grouping obtained. Technical details concerning PCA are provided in the “Methods” 

section.  

Supplementary Figure 4b displays the PCA score plot. Every point (star) in this plot 

is the projection of one spectrum in the space defined by the first two principal 

components (PC). The different samples are identified by a unique colour (indicated 

in the right caption). Each mutant clusters separately, underlying that each mutant has 

specific spectral features.  

The CALR del52 A394* and the CALR del52 separate from the CALR WT along the 

first principal component (PC1). The CALR del52 A394* is the closest to the CALR 

WT. The two other mutants separate from the CALR WT along the PC1 and the PC2.  

Secondary structure prediction 

As described in the methods section, the estimation was realized using three 

wavenumbers in the Amide I and II bands. The wavenumbers used for this secondary 

structure determination are the following: 

• α-helix: 1545, 1655 and 1613 cm-1 

• β-sheet: 1656, 1635 and 1692 cm-1 

• Turn: 1678, 1528 and 1600 cm-1 

• Random: 1544, 1627 and 1692 cm-1 
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The table shown in main Figure 1f presents the results of this prediction for each 

sample. 

According to the prediction obtained, samples CALR WT and CALR del52 A394* have 

a similar α-helix, β-sheet, turn and random structures content. Sample CALR del52 

has a lower content in α-helix and a slightly higher content in random structures. The 

α-helix content further decreases for sample CALRdel52 D135L/Y109F and becomes 

null for CALR ∆C-tail. In addition, the CALR del52 D135L/Y109F has a higher content 

in turn and the CALR ∆C-tail has a higher turn and random contents. A slight increase 

of the β-sheet content is also observed for the CALR ∆C-tail.  

For the present predictions, the standard error of prediction in cross-validation 

obtained using the 50-protein database is 5.7% for the α-helix and 6.7% for the β-

sheet, 3.2% for turns and 8% for random. Despite these prediction errors, those results 

are consistent with the observations made on main Figure 1e and Supplementary 
Figure 4a. 

Instrument 

The IR measurements were performed with a Bruker Tensor 27 FTIR-spectrometer 

(Bruker Optics GmbH, Ettlingen, Germany) with the software Opus 6.5 (Bruker Optics 

GmbH, Ettlingen, Germany). The FTIR-spectrometer was equipped with a Mercury-

Cadmium-Telluride detector, which was cooled down with liquid nitrogen. The spectra 

were recorded with the ATR mode by using a Golden GateTM ATR accessory 

(Specac, Orpington, United Kingdom) with an integrated total reflection element 

composed of a single reflection diamond. The angle of incidence was 45 degrees. 

Methods 

FTIR measurement 

0.5 μL of sample was loaded on the diamond crystal of the ATR device of the FTIR 

spectrometer and quickly dried with a constant, gentle nitrogen flow: elimination of the 

water molecules prevents overlapping of the large water absorption peaks with the 

sample’s absorption spectrum. After each spectrum, the crystal was cleaned with 

water. A background was recorded with a clean crystal before the start of the 

measurement and before every new sample. FTIR spectra were recorded between 

4000 and 600 cm-1 at a resolution of 2 cm-1. Each spectrum was obtained by taking an 
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average of 128 scans. The FTIR measurements were carried out at room temperature 

(~22°C). For each sample, at least four spectra were recorded. 

Multivariate data analysis 

Each wavelength in an IR spectrum is considered as a variable. There are therefore a 

few thousand wavenumbers at which biological molecules absorb, and several spectra 

are recorded per sample. Thus, the measured data contains a high number of 

variables, which are additionally often correlated with each other. Consequently, the 

analysis and interpretation of this large amount of information is complicated. To 

extract useful information from the measured data, multivariate data analysis can be 

applied. Multivariate data analysis can be carried out based on unsupervised or 

supervised learning procedures. For the unsupervised procedures no a priori 

knowledge about the training set samples is required. 

Principal component analysis (PCA) is an unsupervised multivariate data analysis. 

This technique permits reducing the dimensionality of the data consisting of many 

correlated variables. At the same time, most of the variation present in the data set is 

retained 3. Therefore the variables are transformed in a new uncorrelated set of 

variables, the principal components (PC) 3. The PC are linear combinations of the 

initial variables representing a maximum of variation present in the data 3 . This 

transformation simplifies the interpretation and visualisation of the data 4. 

Mathematically, each IR spectrum can be represented as a linear combination of p 

wavenumbers. For n spectra the matrix A [nxp] (samples x variables) can be 

expressed whereat one spectrum corresponds to one row and each column 

characterises one wavenumber. Thus, each element of the matrix represents the 

absorbance of a spectrum at one specific wavenumber. The principal components are 

determined by calculating the eigenvalues and their corresponding eigenvectors of the 

covariance matrix A [pxp’]. In the next step, the eigenvectors are ordered by 

eigenvalue, from the highest one to the lowest one, to obtain the principal components 

in order of their significance. The eigenvector with the largest eigenvalue is defined as 

the first principal component (PC1) as it represents the direction of the greatest 

variance. The eigenvector with the second largest eigenvalue (PC2) represents the 

next highest variance in the orthogonal direction and so forth. Finally, the coordinate 

system of the original spectral data will be transformed to express the spectral data in 
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terms of the principal components as new axes. This transformation is demonstrated 

in Supplementary Figure 4c. In fact, the plot of the original data in terms of the axes 

x and y will be rotated and the principal components form the new axes. 

In fact, there are as many principal components as variables in the data. However, the 

first few principal components represent generally over 99% of the present variance 

in the data. Thus, PCA permits reducing the dimensionality of the spectral data while 

retaining the majority of the information. This is simply done by projecting the spectra 

in the principal components space. 

The representation of the composition of all spectra in terms of the PC is called score 

plot. Each point or star in a score plot represents a spectrum. Thus, a score plot 

permits visualising similarities and difference between spectra and to determine if the 

spectra are related with each other by forming groups 5.  

Secondary structure prediction 

Using a database of 50 protein containing as little fold redundancy as possible, an 

ascending stepwise method was applied to determine the protein secondary structure. 

It was demonstrated that three wavenumbers contain all the nonredundant information 

related to the secondary structure content. The standard error of prediction in cross-

validation obtained using the 50-protein database was 5,7% for the α-helix and 6,7% 

for the β-sheet, 3.2% for turns and 8% for random 6,7. 

Statistical analysis 

Supplementary Figure 5 presents the mean preprocessed spectra for each sample, 

with a zoom on the spectral region related to protein absorption. A statistical pairwise 

comparison with the wild type was also performed to evidence spectral changes. The 

difference spectrum (black spectrum) corresponds to the difference between the mean 

spectra of each sample. The black stars on the difference spectrum refer to significant 

differences defined by a Student’s t-test at each wavenumber. Details on the statistical 

techniques are provided here below. 

Student’s t-test 

In order to evidence spectral changes between samples, the mean spectrum of one 

was subtracted from the mean spectrum of another. We thus obtained a “difference 
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spectrum”. All difference spectra were calculated with fully preprocessed spectra 

(baseline corrected and normalized).  

The Student’s t-test is a parametrical hypothesis test. It is used to determine whether 

two populations are significantly different from each other or not by comparing the 

means of the measurements derived from these two populations. The test is applicable 

if the measurements follow a normal distribution, and the variance of each population 

is the same. 

Two hypotheses are tested: 

- H0: 𝜆! = 𝜆" which means that there is no difference between the means of 

the two populations 

- H1: 𝜆! ≠ 𝜆" which means that the means of the two populations are 

significantly different  

where 𝜆# is the signal intensity for a given wavelength. 

The t-test statistic is calculated as follows: 

𝑡 = 	
(𝑥̅!) −	(𝑥̅")

+𝑆$
"

𝑛!
+ 𝑆$

"

𝑛"

 

where	𝑥̅# is the mean of the sample 𝑖, 𝑆$" is the estimated common variance for the two 

samples and 𝑛# the number of the sample in the population 𝑖.  

The variance 𝑆$" is calculated with the following formula: 

𝑆$" =
(𝑛! − 	1)𝑠!" + (𝑛" − 1)𝑠""

𝑛! +	𝑛" − 2	
 

where 𝑠# is the standard deviation of the sample 𝑖 and 𝑛# the number of the samples 

in the population	𝑖. 

The test was carried out with a significance level of α = 0.1% (p<0.001). This threshold 

is defined as the probability of rejecting the null hypothesis under the assumption that 

it is true. 

Student's t-tests were computed at every wavenumber and allowed a statistical 

comparison between the spectra of the two samples. Wavenumbers where a 

significant difference occurs (with a significance α = 0.1%) are indicated by black stars.  
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Nano-Bioluminescence Energy Transfer (BRET) 
Nano-Bioluminescence Energy Transfer (BRET) is a technique that measures 

proximity between two proteins in living cells. When the two partners are in close 

proximity (< 10 nm), bioluminescence energy transfer (BRET) occurs between a donor 

(NanoLuciferase) and an acceptor (HaloTag ligand. This technique has been used to 

measure protein-protein interaction in living cells between a wide variety of proteins 

thanks to its ease of use, reproducibility and specificity 8. 

Construct 

The Thrombopoietin Receptor (TpoR) was cloned into pNL-N vector (Promega) to 

generate the N-terminally fused NanoLuc-TpoR construct as described. Extracellular 

forms of the receptor (TpoR D1-D4, TpoR D1D2 and TpoR D1) were obtained from 

this initial construct by introducing a stop codon by site-directed mutagenesis. 

The CALR del52-HaloTag construct was generated by cloning the cDNA from CALR 

del52 into the pHT-C vector (Promega) to generation the CALR del52-HaloTag fusion 

protein9. The CALR del52 P-C and C-domain-HaloTag were obtained by truncating 

the N domain or N and P-domain, respectively using the Q5® Site-Directed 

Mutagenesis method with KLD (NEB). All constructions were sequenced by 

Macrogen. 

Methods 

HEK293T were co-transfected with the NanoLuc and HaloTag fusion proteins with a 

1:1 cDNA ratio using TransLT-1 in white opaque 96-wells plate. The NanoBRET 618 

ligand was added 8h post-transfection according to the manufacturer instruction 

(Promega). 24h post-transfection, the medium was removed and 100 µL of 

luminescence substrate (DMEM/F12 without FBS, without phenol red with 2 µL of 

NanoGlo reagent) was added to each well. The signal was acquired directly using a 

GloMax® MicroPlate reader at 618 nm (acceptor) and 460 nm (donor) at 37°C. The 

NanoBRET ratio was computed as: 

Acceptor	signal
Donor	Signal = NanoBRET	ratio	 
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The specificity of the interaction was further validated by performing a Donor 

Saturation Assay (DSA) (Supplementary Figure 7) following the manufacturer 

instruction (Promega). 

Molecular Modelling, Docking, Molecular Dynamics and Free energy 
simulations 
Generation of TpoR D1D2 and CALR mutant C-terminus 

Sequences of TpoR extracellular regions which consists of two Cytokine Receptor 

Modules (CRM1 and 2) comprising each two Fibronectin III like (FN-III) domains and 

of CALR Del52 were profiled for secondary structure, intrinsic disorder and 

accessibility propensities with state-of-the-art predictors 10-20. Models were raised 

manually for CRM1 using Modeller 9.21 17, and automatically for the TpoR-CRM2, 

TpoR-linker, TpoR-Transmembrane domain and CALR using Alpha Fold 2.0 1 and 

Rosetta Folding 1.  

When compared to its closest template (EpoR, RCSB code: 1CN4) - TpoR displays a 

long, 65 amino acids insertion in its second FN-III domain of CRM1 which bears local 

propensity for two ß-strands. Hence a second template, the 2E8 antibody of LDL 

receptor (RCSB code: 12E8) from the same CATH 2.60.40.10 superfamily, has had 

to be used to model the insertion and bring the TpoR-CRM1 architecture from a 3/4 β-

sandwich (EpoR) to a 4/5 β-sandwich TpoR model. 

In order to computationally investigate the interaction between CRM1 and CALR-

del52, a model of the mutant C-terminus of CALR del52 was also generated using 

tLEaP and the FF14SB 21 protein forcefield. Given the secondary structure propensity 

of CALR del52 C-terminus, this region was modelled first as a straight, ~72Å long, 12 

turn α-helix. This structure was then subjected to a 1 μs MD simulation in order to 

gather the conformational pool to be used in the selection of several starting CALR 

del52 mutant C-terminus structures for CALR del52 C-terminus-TpoR D1D2 docking. 

The simulation was performed with OpenMM v.7.4.1 22 in explicit solvent, using a 

Monte Carlo barostat to maintain constant pressure, at a temperature of 300K. The 

conformation clustering along the trajectory and structure extraction was performed 

with TASKit, an in-house developed Python module, based on the All-vs-All RMSD 

matrix for clustering and on MDTraj 23 and SciPy 24 for structure extraction. Using a 

maximum inter-cluster distance cutoff of 8Å, two major configurational basins were 

identified, from which structural selections were performed. The structures in these 
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two basins differ by the bending angle of a break in the α-helix shaping up at the 

'PARP' motif of CALR del52 (Supplementary Figure 10a). 

Docking trials between TpoR D1D2 and CALR del52 mutant C-terminus 

Taking into account the location of negatively charged acidic amino acids onto the 

surface of TpoR, three main start configurations (poses) of the complex were chosen 

for assessing the complex formation: one involving a potential interaction of CALR 

del52 mutant C-terminus with the large extended acidic area found on the 'dorsal' 

region of TpoR, a second similar pose - but using the more bent CALR del52 mutant 

C-terminus configuration, and a third involving the second, minor acidic cluster found 

in the N-ter region of the TpoR sequence. Several structures from the two 

configurational basins of CALR-del52 were manually set in the above-mentioned 

poses of the complex as inputs for HADDOCK 2. 4 8 for complex optimization searches 

(Supplementary Figure 10b). The positively charged, basic residues on CALR and 

negatively charged, acidic residues on TpoR were selected as “interacting residues” 

in the HADDOCK run and no other explicit restraints were used. The generated poses 

were then filtered by their HADDOCK score and the top three poses were chosen for 

further analysis. 

Molecular dynamics simulations of TpoR D1D2-CALR del52 mutant C-terminus 

complex and subsequent analysis 

Starting from the three poses generated by HADDOCK, we sampled the 

conformational space of the complex via unconstrained molecular dynamics 

simulations. Each of the three poses were subjected to triplicate 500ns molecular 

dynamics simulations in which the last residues of the CALR del52 mutant C-terminus 

become unfolded, in explicit TIP3P water boxes with a 12Å buffer, using a Monte Carlo 

barostat, at 300K, a Langevin integrator with 1ps-1 friction coefficient and a 2fs 

timestep. OpenMM 22 was used to run all simulations, with the same ff14SB 21 

forcefield. PDB files corresponding to the first and last frame of triplicates MD 

simulations for each pose have been deposited to FigShare 

(https://figshare.com/s/9033970b5a1d3f8d6fa7). 

Trajectory analysis 
A strong bending motion was noticed in the TpoR molecule of Pose 3 (lowest binding 

free energy) between the two FN-III-like domains (Supplementary Figure 10c-d). 

This was not observed in the other poses (Supplementary Figure 10e-f) which could 
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indicate that the presence of the CALR del52 C-terminus has a stabilizing effect on 

the TpoR. This might also imply that the domain is more flexible when unbound, but 

the inter domain joint stiffens when bound. 

 

Free energy estimations 

Free energy was estimated by both a knowledge based method, using PRODIGY 

server25, and a physical MD estimation approach based on 3 simulations for each 

pose, using the MM-GBSA method 26 at 150mM salt concentration, implemented in 

AMBER20 27. Results using both methods were in line with HADDOCK scores. 

Free energy estimation using the PRODIGY: the best free energy is shown by the 

dark-blue complex (Supplementary Figure 10b) with ΔG= –12.6 kcal/mol, the sky-

blue complex displays an intermediate estimated affinity with ΔG= –11.2 kcal/mol, 

while the red complex shows the lowest binding capacity with ΔG= –9.6 kcal/mol.  

Free energy estimation using MM-GBSA: The first half (250ns) of simulation time was 

removed as equilibration and 100 frames were uniformly drawn at every 2.5ns, from 

each repeat, and retained for MM-GBSA calculation. MM-GBSA calculations were 

performed using the MM-PBSA module included with AMBER20 28. A total of 300 

frames were used for each pose. The OBC GB model 29 and a salt concentration of 

150 mM was used. The LCPO algorithm 30 was used to calculate the surface area of 

the solute. 

The three poses' binding energy estimates using MM-GBSA show exactly the same 

trend as initial PRODIGY estimates and provide insight into the relative stabilities of 

the three poses. The values presented in Supplementary Figure 12 show that the 

stretched CALR del52 C-terminus conformation (Pose 1) binds the strongest to the 

membrane-distal TpoR domain and that Pose 3 binds the weakest. This could explain 

the higher flexibility of the TpoR domain when bound in the Pose 3 configuration. 

Conformational discretization: 
Microstates were delimited using Time-Lagged Independent Component Analysis 

(TICA). The backbone dihedral angles of the CALR del52 mutant C-terminus molecule 

were used as input coordinates for TICA. TICA and free energy surfaces were 

computed using the PyEMMA (2.5.11) python package31, and the resulting ⁠plots were 

generated using the Matplotlib (3.5.1) python package 32. 
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The inflection core state (InfleCS) clustering method 33 was used to cluster the two 

transformed coordinates with the highest eigenvalues and the associated cluster 

centers were plotted on the corresponding free energy surface. Clustering was 

performed using 10 components, and re-estimation of the same model was done 5 

times. Bayesian information criterion was used for identifying the model. 

Trajectory clustering using TICA 
 
The independent components generated by TICA were sorted by their eigenvalues 

and the top two most autocorrelated components were plotted (Supplementary 
Figure 13b). The subsequent InfleCS clustering (Supplementary Figure 13c, 

Supplementary Table 1) shows the formation of discrete conformational clusters, 

showing that a range of microstates were sampled. Free energy surfaces were 

generated and are presented in Supplementary Figure 13a, along with the centers 

of the top 3 most probable clusters for pose 1, for which trajectory frames are also 

presented (Supplementary Figure 13d). 

Modelling of the TpoR-CALR del52 and ins5 tetramers 

Initial models from AlphaFold 2.01 and RosettaDock34 were used to build the tetrameric 

3D TpoR-CALR mutant models and to identify the interaction interface between the 

two CALR del52 and CALR ins5 mutants. H-D exchange data was used to identify 

contacts between TpoR and CALR del52 in the formation of the tetramer complex. 

The ER specific G1M9 glycans of TpoR in contact to CALR mutant were modelled with 

Glycopack 35 and the Glycam server in the configuration consistent with NMR data 36 

while the rest are of complex type, built in agreement with SAGS Database 37,38. 

The contacts identified by HDx-MS and the crosslinking data on the TM region 

configuration of TpoR dimer were used as constraints in generating the overall 2CALR 

del52-2TpoR model. The glycoproteic tetramer was then gently optimized in a five 

stage process in implicit solvent: (1) first, this was heated to 300K over 1 ns with 

harmonic cartesian constraints of K=1 on all backbone atoms predicted to be found in 

secondary structures and K=0.5 on backbone atoms in predicted coil regions; then (2) 

the system was subjected to equilibration for 2 ns with harmonic cartesian constraints 

of K=0.5 on secondary structures and no constraints on predicted coil region; this was 

followed by (3) a further equilibration of 20ns with distance based harmonic constraints 

of K=1 on interdomain contact points and hydrogen bonds in predicted secondary 
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structure regions; then (4) the system was cooled over 2 ns with distance based 

constraints in place and finally (5) extensively minimized without constraints. 

This glycoproteic tetramer was then immersed into a full-atom representation of the 

environment - consisting of a lipid bilayer of 1162 POPC molecules accommodating 

the TM region of TpoR and in 263023 TIP3P water molecules, 726 chloride and 789 

sodium ions describing the solvent region hydrating the rest of the tetramer using the 

CHARMM-GUI server 39. This overall system consisting of ~ 1 million atoms was 

subjected to further unconstrained extensive minimization to obtain the final model for 

MD simulation. A similar procedure was used for preparing the system containing the 

TpoR-CALR ins5 tetramer. 

The explicit solvent MD simulations were performed with NAMD v.2.1336 and the 

CHARMM36 37-39 forcefield. at constant pressure (1 atm) in two steps: (1) heating 

using a 1fs time step in order to ensure an even energy distribution, followed by (2) 

constant temperature simulation using a 2 fs timestep. All MD simulations used a 

Langevin integrator, with a coupling coefficient of 1 ps-1. 

Production MD simulations of the heterotetrameric TpoR-CALR del52 and ins5 

systems were carried out for 100 ns in triplicate. Root-mean-square deviation (RMSD) 

analysis of these simulation was performed using MDAnalysis 41,42 and the 

corresponding plots are presented in Supplementary Figure 8 (CALR del52) and 

Supplementary Figure 9 (CALR Ins5). For the analysis of inter-residues contacts, the 

first half (50 ns) of each simulation was discarded as equilibration and only the second 

half (which shows a plateau in the RMSD plot) was used for computing the distances.  

Tetramer trajectory analysis 

Inter-domain and glycan-CALR contacts were computed using MDTraj19 and were 

averaged over three 100ns runs. A threshold of 8 Å was used as contact cutoff 

between heavy atoms and the data was collected every 0.5 ns starting from 50 ns - to 

account for a model equilibration period – resulting in 100 frames per run. Shown are 

only contacts present, on average, in more than 60% of frames. 

 

 

 

 

 



 42 

Thermal unfolding and stability 

Thermal unfolding experiments were conducted to measure the Tm of all proteins used 

in HDx-MS and FTIR experiments and to verify the quality and purity of protein 

preparations. This technique uses the intrinsic fluorescence of Trp and Tyr residues 

to verify quality, purity and structural integrity of a protein. The intrinsic fluorescence 

of Trp and Tyr residues (detected at 350 and 330 nm) are measured over a range of 

increasing temperature. As temperature ramps up, changes in fluorescence signal 

inform on the protein folding status. The 350/350 nm ratio provides information about 

protein integrity and Tm. The first derivative of the 350/330 ratio informs on the purity 

of the protein preparation. A pure sample will have a single peak, indicating that a 

single protein specie is present in the sample while samples that are not pure will have 

multiple peaks. All measurements were performed with Tycho NT.6 (NanoTemper). 
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