
Supplementary Figure 1

v

u

(a)

0 5 10 15 20 25

Time

-0.5

0

0.5

1

1.5
v

, 
u

(b)

-0.5 0 0.5 1

v

0

0.5

1

1.5

u

(c)

0 2 4 6 8 10

Time

-4

-2

0

2

4

P
h

a
s

e
 D

if
fe

r
e

n
c

e

(d)

Figure 1: (a) The Wilson-Cowan neuronal oscillator consisting of a single excitatory (triangle) and inhibitory
(circle) neurons with average membrane potentials of v and u (b) Oscillatory activities of excitatory and
inhibitory population in (a), (c) The Phase plane dynamics. Phase portrait shows the stochastic trajectories
of (b) (green) together with the deterministic limit cycle (red) (d) Phase signal obtained from mapping the
stochastic trajectory in (b) onto the phase field

Supplementary Figure 2

(a) (b) (c)

Figure 2: (a) Information transfers among neurons due to addition 5 new edges using the Subgraph Comple-
tion Algorithm in the original network given in Fig. 3e of the main paper (b) Information transfers among
neurons due to rewiring 7 new edges and using the Subgraph Completion Algorithm in the Original network
given in Fig.3e of the main paper (c) Information transfer from excitatory neuron 8 to 7. T8→7 is maximized
with the rewiring algorithm. The performance is almost similar to using Greedy Algorithm (as shown in
Figure 3(i-m) of the main paper)
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Supplementary Figure 3
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Figure 3: The left panel shows the case when there is a single input to node i = 1 from node j = 3. To
maximize T3→1 by adding edges, we pick edges from the set Eg, defined by the green box. We restrict any
new incoming edges to node i, defined by the red box. We also do not consider the self-loops denoted by the
diagonal elements. The right panel shows the case with additional edges to node 1 from nodes 2 and n− 1.
The incoming edges to node 2 and n− 1 inside the purple boxes are considered only after all the edges in Eg
are added.
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Figure 4: Illustration of Subgraph-Completion Algorithm for maximizing Information transfer from node 3
to node 1. Fig. (a) shows the connected network topology with minimum edges that maximizes T3→1. We
call this the ‘Base Topology’ in the main manuscript.

Supplementary Figure 5

Figure 5: Performance of different algorithms for maximizing T3→1 in four different networks with 16 edges,
wub = 1 and wmax = 15.5 for the design problem in Figure 2a of the main paper.
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Supplementary Figure 6
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Figure 6: (a) Evolution of the elements of the state covariance matrix (b) Evolution of the elements of the
cofactor of the state covariance matrix
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Figure 7: (a) The Liang-Kleeman information transfers (b) Horowitz-Esposito information flows

Supplementary Figure 8
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Figure 8: (a) Complexities of the algorithms for a network of 10 nodes and n edges (b) Complexities of the
algorithms for a network of arbitrary nodes and n edges
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Supplementary Figure 9
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Figure 9: Network topologies for maximizing T3→1 by adding 200 edges using (a)Greedy Algorithm (b)
Subgraph-Completion Algorithm (c) Modular Approach (d) Complementary Modular Approach

Supplementary Figure 10
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Figure 10: Performance comparisons for maximizing T3→1 by adding 220 new edges in a network of 20 nodes

4



Supplementary Figure 11
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Figure 11: (a) The Wilson-Cowan neuronal oscillator consisting of two excitatory (triangle) and inhibitory
(circle) neurons with average membrane potentials of v and u. (b) The coupling function curves for the
network in figure (a). The dark red and blue curves show the coupling function and its antisymmetric curve.
The black dots denote the stable synchronous and anti-phase states, the orange dot denotes the unstable
non-synchronous solution (c) Coupling function with varying heterogeneity

Supplementary Figure 12

Figure 12: Variations in T2→1 due to weak heterogeneity, denoted by Th2→1
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Supplementary Figure 13

Figure 13: Variations in ∆φ1,2 due to the effect of various intensities of additive noise

Supplementary Figure 14

Figure 14: Variations in γ, γ̄ due to the effect of various intensities of additive noise. The black curves are
the coupling functions in the noiseless case. The grey area denotes the variations in the coupling function.
For small noise intensity, D = 0.05, the variations in ∆φ1,2 and γ1,2 are relatively small.
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Supplementary Figure 15

(a) (b) (c)

Figure 15: The red curves denote the evolution of phase differences when there is no multiplicative noise. The
blue curves denote the evolution under the influence of multiplicative noise of intensity, D= 0.02 (a) A change
in the synchronization pattern under the influence of multiplicative noise (b) Effect of multiplicative noise
on the phase difference of two uncoupled oscillators (c) Effect of multiplicative noise on stable phase-locked
states

Supplementary Figure 16
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Figure 16: (a) The Wilson-Cowan neuronal oscillator consisting of three excitatory (triangle) and inhibitory
(circle) neurons with average membrane potentials of v and u. (b) The coupling function curve, γ2,3 for the
network in figure (a). The dark red and blue curves show the coupling function and its antisymmetric curve.
The black dots denote the stable synchronous and anti-phase states (c) Coupling function with varying local
noise
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Supplementary Figure 17

(a) (b)

Figure 17: (a) Shift in the stable phase-locked state due to the multiplicative noise(b) T2→3(t) increases from
0.613 to 0.654 due to the multiplicative noise induced at t = 5 secs.
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Supplementary Note 1
Information Transfer in Dynamical Systems

The formulation of information transfer in [1–3] is based on freezing a direction of the phase space and is
derived for a general stochastic system using the Fokker-Planck equation. This section defines the information
transfer between any two states for a general dynamical system. Consider a dynamical system in R2 with
states x1 and x2 drawn from a probability distribution ρ(x), x = (x1, x2)T and vector field, F = (F1, F2)′,
defined as

dx1

dt
= F1(x1, x2, t),

dx2

dt
= F2(x1, x2, t). (1)

Correspondingly, we have the differential entropy, H associated with ρ(x) defined as H = −
∫
ρ(x) ln ρ(x)dx.

The marginal entropies are given by Hi = −
∫
ρi ln ρidxi, i = 1, 2, where ρi denotes the marginal distribution

of state xi. As the system evolves in time, dH1

dt is contributed from two sources, one from x1 alone and the
remaining is the contribution from the state x2. The latter can be interpreted as the amount of information
transfer from x2 to x1. In terms of cause-effect relation, the latter is the amount of cause from x2 that affects

the evolution of x1. Denoting the former as
dH∗1
dt and the latter as T2→1, we can thus write

dH1

dt
=
dH∗1
dt

+ T2→1 (2)

For a system in Rn, (2) can be written as [1–3]

T tj→i =
dHi

dt
− dHi 6j

dt
(3)

Similar to (2),
dHi6j
dt in the above equation can be interpreted as the rate of change of marginal entropy of xi

with contributions from all other states except from xj . To compute
dHi6j
dt , we freeze the evolution of state xj

in the phase space and compute the marginal entropy of xi.
Now, consider the stochastic system below with states x1 and x2 drawn from a probability distribution

ρ(x), x = (x1, x2)T and vector field, F = (F1, F2)′,

dxi(t) = Fi(x1, x2, t)dt+Gi(x1, x2, t)dWi(t), i = 1, 2

The information transfer from x2 to x1 is given by

T2→1 =
dH1

dt
− dH162

dt
(4)

The density evolution is given by the Fokker-Planck equation

∂ρ(x)

∂t
+

∂

∂x1
(F1ρ(x)) +

∂

∂x2
(F2ρ(x)) =

1

2

2∑
i,j=1

∂2(g11ρ162)

∂xi∂xj
(5)

where gij = gji =
∑2
k=1GikGjk. Integrating eq. (5) with respect to x2 gives the evolution of ρ1:

∂ρ1

∂t
+

∫
∂

∂x1
(F1ρ))dx2 =

1

2

∫
∂2(g11ρ)

dx2
1

dx2 (6)

Multiplying eq. (6) by −(1 + logρ1) and followed by integration with respect to x1, we get

dH1

dt
−
∫ ∫

logρ1
∂(F1ρ)

∂x1
dx1dx2 = −1

2

∫ ∫
logρ1

∂2(g11ρ)

∂x2
1

dx1dx2 (7)

Integrating by parts, eq. (7) reduces to

dH1

dt
= −E

(
F1
∂logρ1

∂x1

)
− 1

2
E

(
g11

∂2logρ1

∂x2
1

)
(8)

where E is the expectation. To arrive at the formulation of T2→1 from eq. (4), we need to evaluate H162.
Over the small time interval, [t, t + ∆t], H162(t + ∆t) is the marginal entropy of x1 at time t + ∆t as x2 is
frozen as a parameter instantaneously at t. Clearly, we cannot use the Fokker-Planck equation to derive H162
since the dynamics are inconsistent through the time duration. We have

dH162

dt
= lim

H162(t+ ∆t)−H1(t)

∆t

9



If we denote x162 as a parameter in the interval [t, t+ ∆t], we have

dx162 = F1(x162, x2, t) +
∑
k

G1kdwk (9)

Correspondingly, the density ρ162 evolves following the Fokker-Planck equation

∂ρ162

∂t
+

∂

∂x1
(F1ρ162) =

1

2

∂2(g11ρ162)

∂x2
1

, t ∈ [t, t+ ∆t] (10)

Introduce the function ft(x1) = logρ162(t, x1), whose evolution is obtained by dividing eq. (10) by ρ1 62:

∂ft
∂t

+
1

ρ1 62

∂

∂x1
(F1ρ162) =

1

2ρ162

∂2(g11ρ162)

∂x2
1

, t ∈ [t, t+ ∆t] (11)

Discretizing eq. (11), we have

ft+∆t(x1) = ft(x1)− ∆t

ρ162

∂

∂x1
(F1ρ162) +

∆t

2ρ162

∂2(g11ρ1 62)

∂x2
1

, t ∈ [t, t+ ∆t] (12)

For the 2D case, we have ρ162 = ρ1, therefore, eq. (12) can be written as

ft+∆t(x162(t+ ∆t)) = ft(x162(t+ ∆t))− ∆t

ρ1

∂

∂x1
(F1ρ162) +

∆t

2ρ1

∂2(g11ρ1)

∂x2
1

, t ∈ [t, t+ ∆t] (13)

The term x162(t+ ∆t) can be expanded as

x162(t+ ∆t) = x1(t) + F1∆t+
∑
k

G1k∆wk + higher order terms (14)

Substituting back in eq. (13) and performing Taylor series expansion, we get

ft+∆t(x162(t+ ∆t)) = ft(x1 + F1∆t+
∑
k

G1k∆wk))− ∆t

ρ162

∂

∂x1
(F1ρ162) +

∆t

2ρ1

∂2(g11ρ1)

∂x2
1

= ft(x1) +
∂ft
∂x1

(
F1∆t+

∑
k

G1k∆wk

)
+

1

2

∂2ft
∂x2

1

(F1∆t+
∑
k

G1k∆wk)2 − ∆t

ρ1

∂(F1ρ1)

∂x1
+

∆t

2ρ1

∂2(g11ρ1)

∂x2
1

(15)

Taking expectations on both sides, the left-hand side is −H162(t + ∆t), and the first term on the right-hand
side is −H1(t). The second term on the right-hand side is given by

∆tE

(
F1
∂ft
∂x1

)
+ E

(
∂ft
∂x1

∑
k

G1k∆wk

)
= ∆tE

(
F1
∂ft
∂x1

)
(16)

The third term after expansion can be written as

1

2
E

[
∂2ft
∂x2

1

∑
k

G1k∆wk
∑
j

G1j∆wj

]
=

1

2
E

[
∂2ft
∂x2

1

∑
k

G2
1k(∆wk)2 +

∑
k 6=j

G1kG1j∆wk∆wj

]
(17)

Summation over k 6= j vanishes after the expectation is performed. The first summation is equal to g11∆t.
Putting all these together in eq. (113), we get

H162(t+ ∆t) = H1(t)−∆tE

(
F1
∂logρ1

∂x1

)
− ∆t

2
E

(
g11

∂2logρ1

∂x2
1

)
+ ∆tE

(
1

ρ1

(∂F1ρ1)

∂x1

)
− ∆t

2
E

(
1

ρ1

∂2(g11ρ1)

∂x2
1

)
(18)

The second and fourth terms on the right-hand side can be combined to give ∆tE(∂F1

∂x1
). So,

dH162

dt
= E

(
∂F1

∂x1

)
− 1

2
E

(
g11

∂2logρ1

∂x2
1

)
− 1

2
E

(
1

ρ1

∂2(g11ρ1)

∂x2
1

)
(19)

The second and the third terms on the right-hand side of eq. (19) are from the stochastic perturbations.
Using eq. (8) and eq. (19) in eq. (4), information transfer from x2 to x1 is given by

T2→1 = −E
(

1

ρ1

∂(F1ρ1)

∂x1

)
+

1

2
E

(
1

ρ1

∂2(g11ρ1)

∂x2
1

)
(20)
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The first term in eq. (20) is because of the deterministic system and the second term is the contribution from
stochasticity. If g11 is independent of x2, the second term vanishes. That is

E

(
1

ρ1

∂2(g11ρ1)

∂x2
1

)
=

∫
∂2(g11ρ1)

∂x2
1

dx1 = 0 (21)

Thus, for stochastic systems with noise input matrix independent of the states, the information transfer is
given as

T2→1 = −E
(

1

ρ1

∂(F1ρ1)

∂x1

)
= −

∫ ∫
ρ2|1(x2|x1)

∂F1ρ1

∂x1
dx1dx2 (22)

Combining eq. (8), (19) and (22), for the 2D system, we have

dH1

dt
+
dH2

dt
=
dH

dt
+ T1→2 + T2→1 (23)

From eq. (23), we infer that unlike the flow of matter, the information does not necessarily have to be lost
in a component for the other to receive it. Similar to eq. (22), we can show that for a general dynamical
system in Rn with states x = (x1, x2, · · ·xi, · · ·xj , · · ·xn)T ,

T tj→i = −E
[

1

ρi

∫
Rn−2

∂Fiρ6j
∂xi

]
= −

∫
Rn

ρj|i
∂ρ6jFi
∂xi

dx (24)

where ρ 6j denotes the joint distribution of (x1, · · ·xj−1, xj+1, · · ·xn) at time t.
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Supplemantary Note 2: Information Transfer and Its Relation to
Thermodynamics in Complex Dynamical Systems

In this section, we study the relationship between thermodynamics and information transfer by analyzing the
effects of information transfer on the thermodynamics of the system. The formulation of information trans-
fer primarily depends on the entropy rates of information-theoretic nature, whereas the study of stochastic
thermodynamics relies on entropy production. In [4], the authors study the thermodynamic cost for infor-
mation flow between two Brownian particles coupled to different heat baths. In their work, the entropy rate
is defined as the rate of change of delayed mutual information and is used to formulate the information flow
between the two particles. A similar approach that incorporates information theory and the second law of
thermodynamics has been proposed recently in [5], where the entropy rate is defined as the time deriva-
tive of mutual information and is used to study information flow between two interacting components of a
Markovian bipartite system. Below, we show the theoretical relationship between Information transfer and
Information flow, thereby providing thermodynamical aspects to the definition of information transfer. We
also compare the Information transfer to the widely used Schreiber’s transfer entropy. The thermodynamical
interpretations of transfer entropy has been studied in [6, 7].

Horowitz Information Flow

The work in [4] provides a thermodynamic formalism that describes the flow of energy and information for
a pair of bipartite systems following stochastic thermodynamics. The information flow is defined in terms of
the rate of change of mutual information and it modifies the entropy balance of the system. The evolution
of the probability distribution is described by a Fokker-Planck equation. We limit our discussion to bipartite
systems and assume that the noises in each subsystem X and Y are independent. In [8], the authors extended
the thermodynamic formalism information flow to multipartite systems. Specifically, consider a Markovian
system (X,Y ) with joint probability distribution p(x, y) and evolving according to the equation:

dp(x, y)

dt
−
∑
x′,y′

[
W y,y′

x,x p(x
′, y′)−W y′,y

x′,xp(x, y)

]
= 0 (25)

where W y,y′

x,x′ defines the transition rate from state (x′, y′) to (x, y). We assume that the noise in the subsystems
X and Y are independent. The current J flowing from (x′, y′) to (x, y) is defined as

Jy,y
′

x,x′ = W y,y′

x,x p(x
′, y′)−W y′,y

x′,xp(x, y) (26)

Combining eq. (25) and eq. (26), we have

dp(x, y)

dt
−
∑
x′,y′

Jy,y
′

x,x′ = 0 (27)

Note that eq. (27) is a form of the Fokker-Planck equation in eq. (5), with the noise factor g11, independent

of the states. In this approach, the current Jy,y
′

x,x′ is split into two separate flows, one flowing from x′ to x

along y, Jyx,x′ and the other flowing from y′ to y along x, Jy,y
′

x . Thus, we have∑
x′,y′

Jy,y
′

x,x′ =
∑
x′

Jyx,x′ +
∑
y′

Jy,y
′

x (28)

The joint system (X,Y ) satisfies the second law of thermodynamics. Thus the entropy production rate is
always positive and satisfies the equation

Ṡi = dtS
X,Y + Ṡr ≥ 0 (29)

where dtS
X,Y is the time derivative of the system’s Shannon Entropy, SX,Y and Ṡr is the entropy rate flowing

to the environment,

Ṡr =
∑

x≥x′,y≥y′
Jy,y

′

x,x′ ln
W y,y′

x,x p(x
′, y′)

W y′,y
x′,xp(x, y)

(30)

The irreversible entropy production rate is denoted by Ṡi. Whereas, eq. (29) describes the flow of entropy
between the system and its environment, but it does not explicitly describe the flow of energy and information.
The authors pointed out that each term in eq. (29) is a functional of the currents and any current functional,

A(J) =
∑
x′,y′ J

y,y′

x,x′A
y,y′

x,x′ can be separated into two flows. That is

A(J) =
∑

x≥x′,y≥y′
Jyx,x′A

y,y′

x,x′ +
∑

x≥x′,y≥y′
Jy,y

′

x Ay,y
′

x,x′ = AX +AY , (31)
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where AX and AY denote the variations in the X and Y directions, respectively. Applying eq. (31) to the
second law, we have

Ṡi = ṠXi + ṠYi , (32)

where ṠXi and ṠYi are the entropy production rates in each subsystem. The relation between the joint entropy
and mutual information, I is given by SXY = SX + SY − I, where

I =
∑
x,y

p(x, y)log
p(x, y)

p(x), p(y)
(33)

The authors define the information flow as the rate of change of mutual information and is given as

dtI = İX + İY (34)

where İX ≥ 0 signifies that X is learning about Y , thereby increasing the information I and İX ≥ 0 signifies
either consumption of information to extract energy or erasure of information. From eq. (32), eq. (33) and
eq. (34), we have

ṠXi = dtS
X + Ṡr

X − İX ≥ 0

ṠYi = dtS
Y + Ṡr

Y − İY ≥ 0
(35)

Using eq. (29), eq. (32) and eq. (35), we have

dtS
X + dtS

Y = dtS
XY + İX + İY (36)

The pair of equations in eq. (35) represents the flow of information derived by the authors. The idea
underlying this derivation is the separation of a current functional for a bipartite system into two separate
flows.

A Thermodynamic Comparison

We now provide a formal analogy between Horowitz-Esposito’s and Liang-Kleeman’s definitions of information
transfers. By definition, the mutual information, I between two processes, X1 and X2 is given by

I(t) =

∫ ∫
ρ log

(
ρ

ρ1ρ2

)
dx1dx2 (37)

I(t) = H1(t) +H2(t)−H(t) (38)

Differentiating both sides of eq. (39), we have

dtI = dtH1 + dtH2 − dtH (39)

Using eq. (23) and eq. (39), we have
dtI = T1→2 + T2→1 (40)

Under the assumption that the noises in each subsystem are independent, eq. (5) and eq. (27) both correspond
to the continuity equation. Also, the similarities between the two approaches become self-evident from eq.
(23) and eq. (36). Finally, rate of change of mutual information in eq. (34) corresponds to eq. (40). With
these analogies, Liang-Kleeman’s heuristic approach is supported by the thermodynamics entropic balance
approach.

Schreiber’s Transfer Entropy

Let P be the probability mass function. The transfer entropy for a Markov chain of order 1, from X2 to X1

at time step τ is given by

Te2→1 =
∑

P (xτ+1
1 , xτ1 , x

τ
2)log

P (xτ+1
1 |xτ1 , xτ2)

P (xτ+1
1 |xτ1)

(41)

where Te denotes the transfer entropy and it measures the incorrectness when the probability of X1 at time
step τ conditioned on the measurements at previous time steps is taken as the probability of X1 given the
measurements of both X1 and X2 at their previous time steps. Notice that eq. (41) can be written as

Te2→1 = ∆H1 −∆H1|2 (42)

where
∆H1 = −

∑
P (xτ+1

1 , xτ1)logP (xτ+1
1 , xτ1) +

∑
P (xτ+1

1 , xτ1)logP (xτ1) (43)
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and
∆H1|2 = −

∑
P (xτ+1

1 , xτ1 , x
τ
2)logP (xτ+1

1 , xτ1 , x
τ
2) +

∑
P (xτ+1

1 , xτ1 , x
τ
2)logP (xτ1 , x

τ
2) (44)

For ∆H1, the second term on the right-hand side is

−
∑

P (xτ+1
1 , xτ1)logP (xτ1) = −

∑
P (xτ1)logP (xτ1) = H1(τ) (45)

The first term also has the form of an entropy expression but at a time step between τ and τ + 1 and for the
time being, we denote it by H1(τ + 1

2 ). Thus, we can write

∆H1|2 = H1(τ +
1

2
)−H1(τ) (46)

To see the physical meaning of ∆H1|2, we introduce two quantities

A =
∑

P (xτ+1
1 , xτ1 , x

τ
2)logP (xτ2)

B =
∑

P (xτ1 , x
τ
2)logP (xτ2)

It is easy to show that both A and B are equal to −H2(τ). Thus, we have

∆H1|2 = −
[∑

P (xτ+1
1 , xτ1 , x

τ
2)logP (xτ+1

1 , xτ1 , x
τ
2) +A

]
−
[
−
∑

P (xτ+1
1 , xτ1 , x

τ
2)logP (xτ1 , x

τ
2) +B

]
(47)

The last term on the right hand side is the conditional entropy of X1 on X2 at time step τ , denoted by
H1|2(τ), while the first term may be interpreted as the conditional entropy of X1 on X2 at some time step

between τ and τ + 1, denoted as H1|2(τ + 1
2 ). So, ∆H1|2 describes the entropy increment of X1 conditioned

on X2. The two terms correspond to ∆H1 and ∆H1 62 in Liang-Kleeman’s formulation. In other words, the
freezing of x2 instantaneously as time goes from τ to τ+1 can be viewed as a kind of conditioning on X2. The
Liang-Kleeman formalism is thus physically consistent with the transfer entropy in the context of a Markov
Chain of order 1.
In [9], the authors provide a thermodynamics interpretation of Schreiber’s transfer entropy. The authors
showed that in a joint system, (X1, X2), the entropy variation in each subsystem, ∆S equals the sum of
the internal entropy production, σ, and the entropy change caused by the interactions with the surrounding,
∆Sext. That is

∆S = σ + ∆Sext (48)

Further, the authors relate the local transfer entropy to the external entropy production as

tX2→X1(n+ 1) ∝ −∆SXext (49)

where

tX2→X1(n+ 1) = log

[
p(xn+1

1 |xn1 , xn2 )

p(xn+1
1 |xn1 )

]
(50)

And the transfer entropy, Te2→1 is the expected value of tx2→x1
at each time step n. Using eq. (48) for both

the subsystems and assuming a proportionality constant equal to 1 in eq. (49), we have

σX1 + σX2 = ∆SX1 + ∆SX2 + tX2→X1
(n+ 1) + tX1→X2

(n+ 1) (51)

= ∆S + tX2→X1
(n+ 1) + tX1→X2

(n+ 1) (52)

where ∆S = ∆SX1,X2 in eq. (52). Thus, eq. (52) is analogous to eq. (23) and eq. (36) in Liang-Kleeman’s
approach and Horowitz-Esposito’s approach respectively.

Thus, we provide the thermodynamical and mathematical relationships among the three notions of
information-theoretic measures. Moreover, with derivations from the Horowitz-Esposito approach, the heuris-
tic approach in Liang-Kleeman’s approach is strengthened. Finally, the thermodynamical relationship be-
tween Schreiber’s transfer entropy and Liang-Kleeman’s information flow is also provided. A rigorous ana-
lytical relationship among the three measures is also given in [10].
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Supplemantary Note 3: Information Transfer in Linear Stochastic
System

Consider a linear time-invariant stochastic network model where the dynamics are given by:

dx(t) = Ax(t)dt+B1dw(t) (53)

where x(t) ∈ Rn are the states of the system, w(t) ∈ Rm is a white noise with mean zero and unit covariance
and B1 denotes the input noise matrix. We assume that the initial states x(0) denoted as x0 are drawn from
a normal Gaussian distribution, ρ with initial mean, µ0 and covariance, Σ0. The non-zero entries of B1 define
how each of the nodes are affected by the white noise.

For the system in eq. (53), the state covariance Σ(t) = E{x(t)x(t)′} satisfies the Lyapunov differential
equation

˙Σ(t) = AΣ(t) + Σ(t)A′ +B1B
′
1 (54)

Liang-Kleeman’s Information Transfer

We use the formulation in eq. (24) to derive the information transfer for the linear time-invariant stochastic
system defined in eq. (53). Below, we give an example for a n = 3.

Example 1. For n = 3 and initial states drawn from a Gaussian distribution, ρ2|1 is a Gaussian with mean
µ2 + σ12/σ11(x1 − µ1) and covariance ∆12/σ11. Also,

ρ 62 = ρ13 =
1√

(2π)2∆13

e−
1

∆13
[σ33(x1−µ1)2+σ11(x3−µ3)2−2σ13(x1−µ1)(x3−µ3)] (55)

In the above equation, we have used ∆ij to denote det

[
σii σij
σij σjj

]
. Thus, we can write∫

R

∂F1ρ 62
∂x1

dx3 =

∫
R
ρ13{a11 + [σ13(x3 − µ3)− σ33(x1 − µ1)](a11x1 + a12x2 + a13x3)/∆13}dx3 (56)

= a11ρ1 −
σ13µ3 + σ33(x1 − µ1)(a11x1 + a12x2)

∆13
ρ1 +

1

∆13

∫
R
ρ13Kdx3 (57)

where K = a13σ13x
2
3 + (a11x1 + a12x2)σ13x3 − (σ13µ3 + σ33(x1 − µ1))a13x3. Substituting this in eq. (24), we

have

T t2→1 = −E
[

1

ρ1

∂F1ρ13

∂x1
dx3

]
= −a11 −

1

∆13
[−σ13µ3a11µ1 − σ13µ3a12µ2 − σ33a11σ11 − σ33a12σ12

+ a13σ13
∆13

σ11
+ a13σ13(µ2

3 + σ2
13/σ

2
11.σ11) + a11σ13µ3µ1 + a12µ3σ13µ2 − a13σ13µ

2
3 + a11σ

2
13/σ11.σ11+

a12σ
2
13/σ11.σ12 − a13σ33σ13/σ11.σ11] = a12

σt12

σt11

(58)

Similarly, we can show that for the system in eq. (53) with n random variables,

Tj→i(t) = aij
σij(t)

σii(t)
. (59)

Horowitz-Esposito’s Information Flow

For the system in eq. (53), the formulation of Horowitz’s information flow is given in [10] as

Tk→l(t) = −alk
Clk(t)

Ckk(t)
− 1

2
gll

Clk(t)

detΣ(t)

Clk(t)

Ckk(t)
(60)

where Tk→l(t) is the information flow from xk to xl at time t,aij = A(i, j), gij = BBT (ij) and Cij(t) is the
(ij) cofactor of the covariance matrix, Σ(t) at time t.

Supplementary Example

For the linear stochastic system in eq. (53), let the constant matrices be

A =

−0.2 0.5 1
−0.2 0.4 −1
−0.5 2 −2

 , B1 =

1 0 0
0 2 0
0 0 3

 ,Σ0 =

1 0 0
0 4 0
0 0 9

 (61)
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where Σ0 is the initial state covariance matrix. The evolution of the state covariance matrix, Σ(t) and the co-
factor matrix of Σ(t) are shown in Fig.6. The various information transfers among the state variables for the
two measures are shown in Fig.7. In the above example, we see that information transfers in both the Liang-
Kleeman and Horowitz-Esposito theories approach a constant value after a transition period. The Horowitz
information flows in order of magnitude are, T2→3, T1→3, T3→1, T1→2, T2→1, T3→2. The Liang-Kleeman infor-
mation transfers in order of magnitude are, T2→3, T1→3, T3→1, T1→2, T2→1, T3→2. Thus, for our example, the
two orders are the same. The largest information transfer in both cases is observed in T2→3, as A(3, 2) is the
largest state matrix element.
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Supplementary Note 4: Maximizing Information Theoretic Mea-
sures in Linear Stochastic Networks

Below we provide an algorithmic analysis for designing networks that maximize Horowitz’s information the-
oretic measures discussed in the above sections. From eq. (59), Tj→i can be maximized if we can design
networks that maximize σij and minimize σii simultaneously. For Horowitz’s information flow, we express
eq. (60) in terms of the elements of the state covariance matrix. For example, for networks with 3 nodes, to
maximize T2→1, we can write

T2→1(t) = −a12
C12(t)

C22(t)
− 1

2
g11

C12(t)

detΣ(t)

C12(t)

C22(t)
(62)

For large det(Σ), the second term on the right-hand side of eq. (62) is negligible and thus, we can write

T2→1(t) = −a12
C12(t)

C22(t)

= a12
(σ12σ33 − σ23σ13)

σ11σ33 − σ13σ13

(63)

Also since det(Σ) ≥ 0, C12(t) ≤ det(Σ) and g11 ≥ 0, we get from eq. (62),

T2→1(t) ∝ a12
(σ12σ33 − σ23σ13)

σ11σ33 − σ13σ13
≥ 0 (64)

Similarly, to maximize T3→1, we have

T3→1(t) = −a13
C13(t)

C33(t)
− 1

2
g11

C13(t)

detΣ(t)

C13(t)

C33(t)
(65)

For networks with positive weights,a13, C13 and det(Σ) are positive. Therefore, T3→1 is always negative.
Thus, we maximize the magnitude of T3→1. Therefore, similar to eq. (64), we have

|T3→1(t)| ∝ a13
(σ13σ22 − σ32σ12)

σ11σ22 − σ12σ12
≥ 0 (66)

From eq. (64) and eq. (66), |Tj→i| can be maximized by maximizing σij and minimizing σii simultaneously.
The results show that the proposed algorithms in the main manuscript will work for maximizing Horowitz’s
information flow as well.
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Supplementary Note 5: Definitions, Lemmas, Theorems, Proposi-
tions, and Proofs

Definition 1. Walks and paths: In G(V, E ,W), a walk of length k is a sequence of nodes n1, n2, · · ·nk, nk+1

such that for all 1 ≤ l ≤ k, (il, il + 1) ∈ E. A path is a walk with no repeated nodes. The directed graph G is
weakly connected if there is an undirected path between any two nodes.

Definition 2. Monotone Increasing: A set function, f : 2E → R is called monotone increasing if for all
subsets P,Q ⊆ E, it holds that

P ⊆ Q =⇒ f(P ) ≤ f(Q) (67)

Definition 3. Sub-modular, super-modular and modular function: A set function, f : 2E → R is called
submodular if for all P ⊆ Q ⊆ E and s ∈ E\Q, it holds that

f(P ∪ {s})− f(P ) ≥ f(Q ∪ {s})− f(Q) (68)

If −f is a sub-modular function, then f is called a super-modular function. If the right and the left hand side
of eq. (68) are equal for all P,Q, then the function is said to be modular.

Definition 4. Communicability : The communicability from node i to node j in G(V, E), i, j ∈ V, denoted
as Cc(i, j) is defined as the total number of walks of all lengths from node i to j, weighting walks of length k
by a factor 1

k! . It quantifies the ability to exchange messages between two nodes and is given by

Cc(i, j) = [e(A0,1)]ij

= A0,1(i, j) +
(A0,1)2

2!
(i, j) + · · ·

(69)

Definition 5. Submodularity Ratio (γ): For a given non-negative set function f , the submodularity ratio is
the largest γ ∈ R+ such that ∑

ω∈Ω\S

∆ω(S) ≥ γ∆Ω(S), ∀ Ω, S ⊆ E (70)

Definition 6. Curvature (α): For a given non-negative set function f , the curvature is the smallest α ∈ R+

such that
∆j(S\j ∪ Ω) ≥ (1− α)∆j(S\j), ∀ Ω, S ⊆ E ,∀j ∈ S\Ω (71)

Lemma 1. For the system in eq. (53) with the associated weighted network GA(V, EA, wA), the elements of
Σ in eq. (75) are monotone non-decreasing functions of the edges.

Proof. We denote Σ as a function of subset A by ΣA. For all A ⊆ B ∈ E , Σ(i, j) is monotone increasing if
ΣA 4 ΣB (4 denotes that [Σ(A)](i, j) ≤ [Σ(B)](i, j) for all (i, j) ∈ E). Since A ⊆ B, we take B = A + δA.
Thus, we have

ΣA(t) = (I +At+
A2t2

2!
+ · · · )Σ0(I +A′t+

A′2t2

2!
+ · · · )+∫ t

0

(I +Aτ +
A′2τ2

2!
+ · · · )B1B

′
1(I +Aτ +

A′2τ2

2!
+ · · · )dτ (72)

ΣA+δA(t) = (I + (A+ δA)t+
(A+ δA)2t2

2!
+ · · · )Σ0

(I + (A+ δA)′t+
(A+ δA)′2t2

2!
+ · · · )+∫ t

0

(I + (A+ δA)τ +
(A+ δA)′2τ2

2!
+ · · · )B1B

′
1

(I + (A+ δA)τ +
(A+ δA)′2τ2

2!
+ · · · )dτ (73)

Thus,ΣA+δA(t) = ΣA(t) + ζ(A, δA, t) where ζ(A, δA, t) is an appropriate matrix function of A and δA. Since
the entries in δA and A are non-negative, ζ(A, δA, t) < 0. Thus,

ΣA+δA(t) < ΣA(t) =⇒ ΣB(t) < ΣA(t)
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Theorem 1. For the system in eq. (53), if we assume that there are no incoming edges to node i except from
node j, then Tj→i is a monotone non-decreasing function of edges.

Proof. For the system in eq. (53), the state covariance Σ(t) = E{x(t)x(t)′} satisfies the Lyapunov differential
equation

˙Σ(t) = AΣ(t) + Σ(t)A′ +B1B
′
1 (74)

The positive definiteness of Σ(t) can be seen from the solution of eq. (74) for Σ(0) > 0, which can be written
as

Σ(t) = eAtΣ(0)eA
′t +

∫ t

0

eAτB1B
′
1e
A′τdτ (75)

The evolution of Σ(t) depends on the B1 matrix which is assumed to be known. If we denote the (i, j) element
of eA0,1 by cij , then we have(

eA
′
0,1Σ(0)eA0,1

)
(i, j) =

[
c1i c2i · · · cni

]
Σ(0)

[
c1j c2j · · · cnj

]′
(76)

If we take Σ(0) = In = B1B
′
1, from eq. (75), we get

σij =

n∑
k=1

ckickj + Θ, σii =

n∑
k=1

c2ki + Λ (77)

where Θ and Λ are appropriate functions of ckickj and c2ki respectively. Note that from the definition of
communicability (in the main paper), for an incoming edge to node i from p, σpi increases. Let ∆ be the
increase in σpi. Thus, Σ(i, j) due to addition of edge (p, i) can be written as

σ′ij =

n∑
k=1

ckickj + Θ1 + ∆cpj (78)

σ′ii =

n∑
k=1

c2ki + ∆2 + 2∆cpi + Λ1 (79)

where Θ1 and Λ1 are appropriate functions of (cki+∆)ckj and (cki+∆)2 respectively. Therefore, the marginal
increase in σii due to the addition of (p, i) is larger than the increase in σij due to the addition of the same
edge. Consequently, Tj→i decreases. To avoid this, we fix the in-degree of node i to reduce the number of
directed paths to node i. All the remaining paths to node i pass through node j, and by eq. (69), increase
in σij is greater than increase in σii. Hence Tj→i increases.

Corollary 1.1. Assuming that the elements of Σ(0) are positive and A(i, j) ≥ 0, we can infer from eq. (75)
that Σ(t) is monotone increasing function of time. Therefore, maximizing the elements of Σ(t) at any instant
maximizes it for all other instances.

Theorem 2. For the linear system in eq. (53), Tj→i is neither a submodular nor supermodular function of
the edges.

Proof. We will prove this with a counter-example. A function is said to be neither a submodular nor a
supermodular function if it satisfies the submodularity for some elements and the supermodularity properties
for other elements. In this example, we let B1 = I6, µ0 = 0, Σ0 = I6. The sets of edges shown by thick lines
in Fig. 18a and Fig.18b denote the sets H = {G∪ (6, 5)} and I = {G∪ (4, 5)} respectively so that G ⊂ H, I.

12 3

4

5 6

(a)

12 3

4

5 6

(b)

Figure 18: Submodularity and Supermodularity property of Tj→i

In Fig. 18a, we compute the following equations

T3→1(G ∪ (2, 4))− T3→1(G) = 0.1156 (80)

T3→1(H ∪ (2, 4))− T3→1(H) = 0.1057 (81)
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Thus, the increase in T3→1(G) caused by adding edge (2, 4) is more than the increase in T3→1(H) due to the
addition of the same edge, which by definition is a submodular function. On the other hand, in Fig. 18b we
compute

T3→1(I ∪ (2, 4))− T3→1(I) = 0.1350. (82)

Therefore, the increase in T3→1(G) caused by adding edge (2, 4) is lower than the increase in T3→1(H) due
to the addition of the same edge, which by definition is a supermodular function. Thus T3→1 is neither a
submodular nor supermodular function of the edges.

Lemma 2. Maximizing the communicability from all nodes to node j maximizes Tj→i.

Proof. Recall the definition of communicability. The term σij is defined in eq. (76) as the communicability
from all nodes to node j. Thus, from eq. (59), maximizing σij maximizes Tj→i.

Theorem 3. In the ground set Eg, the information transfer function Tj→i is non-negative, non-decreasing
and normalised. The bounds on γ and α are given by

γ ≥ Tji(ωij)

Tji(Eg)− Tji(ωij)
, α ≤ 1− Tji(ωij)

Tji(Eg)− Tji(ωij)
(83)

where ωij = {(j, i)}, Tji = Tj→i.

Proof. We first recall the definitions of the submodularity ratio and curvature of a set function. For any
S ⊆ Eg, Tj→i(S) is non-negative since the entries of the A matrix are greater than or equal to zero. Also
from Theorem 1, Tj→i is a monotone increasing function of the edges. And from eq. (75), σij = 0 when there
are no edges in the network. Therefore Tj→i(φ) = 0 and is also normalised. To derive the lower bound of the
submodularity ratio, we first derive a lower bound of

∑
ω∈Ω\S ρω(S) in eq. (70). Thus, we have∑

ω∈Ω\S

ρω(S) =
∑

ω∈Ω\S

f(S ∪ {ω})− f(S); ∀S,Ω ⊆ Eg

=
∑

ω∈Ω\S

Tji(S ∪ {ω})− Tji(S)
(84)

Note that Tj→i(S) = 0 if (j, i) 6∈ S for any S ⊂ Eg. Thus for any two disjoint sets P,Q ⊂ Eg, either
Tj→i(P ) = 0 or Tj→i(Q) = 0 or both. Also, since Tj→i is monotone non-decreasing of the edges,

Tj→i(P ∪Q) ≥ Tj→i(P ) + Tj→i(Q)

Thus, we can write eq. (84) as ∑
ω∈Ω\S

ρω(S) ≥
∑

ω∈Ω\S

Tji(S) + Tji(ω)− Tji(S)

≥
∑

ω∈Ω\S

Tji(ω),
(85)

where Tji(ω) = 0 if (j, i) 6∈ Ω\S. Since we are finding the largest γ, we take (j, i) ∈ Ω\S and we can write
eq. (85) as ∑

ω∈Ω\S

ρω(S) ≥ |Ω\S| Tji(ωij) ≥ Tji(ωij) (86)

For the right-hand side in eq.(71), we have ∀S,Ω ⊂ Eg,

ρΩ(S) = f(S ∪ Ω)− f(S)

= Tji(S ∪ Ω)− Tji(S)

≤ Tji(Eg)− Tji(ωij)
(87)

Using the inequalities in eqns. (86) and (87), we can write

γ ≥ Tji(ωij)

Tji(Eg)− Tji(ωij)
(88)

Similarly, we can bound the curvature. We have ∀S,Ω ⊂ Eg, k ∈ S\Ω, the left-hand-side of eq. (71) can be
written as

ρk(S\j ∪ Ω) = Tji(S ∪ Ω)− Tji(S\k ∪ Ω)

≥ Tji(S\ωij ∪ Ω) + Tji(ωij)− Tji(S\ωij ∪ Ω)

= Tji(ωij) ≥ Tji(ωij)
(89)
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For the right-hand side of eq. (71), we have ∀S,Ω ⊂ Eg, j ∈ S\Ω

ρj(S\j) = Tji(S)− Tji(S\j)
≤ Tji(Eg)− Tji(ωij)

(90)

From eqns. (89) and (90), we have

ρj(S\j ∪ Ω)

ρj(S\j)
≥ Tji(ωij)

Tji(Eg)− Tji(ωij) (91)

Thus the lower bound for the curvature is

α ≤ 1− Tji(ωij)

Tji(Eg)− Tji(ωij)
(92)

Proposition 1. Given the optimal edge set S∗,

i) there always exists a global maximum w∗ of Problem 1 and Problem 2 (in the main paper) satisfying

k∑
i=1

w∗i = wmax (93)

ii) if further, Tj→i is not a constant function of wi for any i = 1, 2, · · · k, then any global maximum satisfies
eq. (93). In other words, no global maximum may lie in the interior of the feasibility set {0, wub}.

Proof. i) We consider the case when Wmax ≤ kwub since if Wmax > kwub, it is trivial to see that wi = wub. If

the global maximum w∗ does not satisfy eq. (93), then
∑k
i=1 w

∗
i < wmax and we can always find ŵ satisfying

eq. (93). From Theorem 1 and the fact that w∗ is a global maximum, ŵ is also a global maximum. Thus
ŵ = w∗.
ii) Let the global maximum be w∗. If Tj→i is not a constant function of wi and w∗ does not satisfy eq. (93),

then
∑k
k=1 w

∗
k < wmax. We define

Γw∗ = {w ≥ w∗|w ≤ wub,
∑

wi ≤ wmax} (94)

Let kub be the number of edges in w that have weights wub. Since w ≥ w∗ in Γw∗ , Tj→i(w) ≥ Tj→i(w∗). Also,
since w∗ is the global maximum, Tj→i(w

∗) ≥ Tj→i(w). Thus ∀w ∈ Γw∗ , Tj→i(w) = Tj→i(w
∗) =⇒ Tj→i is

a constant function over Rk−kub , which is a contradiction. Hence, the global maximums for both problems
satisfy eq. (93).

Algorithms

Greedy Algorithm

1: Input: f = Tj→i, Eg,Eb, k
2: Output : S∗

3: Initialization S → φ, P → φ
4: S ← S ∪ Eb, P ← P ∪ Eb
5: while |S| < k & P 6= Eg do

6: efi = argmax
e∈{E\P}

f(S ∪ {e})− f(S)

7: S ← S ∪ efi ,P ← P ∪ efi
8: end while; S∗ ← S
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Supplementary Note 6: Computational Complexities

We consider the worst-case complexity analysis of the proposed algorithms. We denote β1 for the cost of
computing the set function defined in eq. (59).

The Subgraph Completion Algorithm in Algorithm 1 (of the main paper) runs for n iterations in the
worst case. The computational complexity for each iteration is O(n3). Hence, the worst-case computational
complexity for the Subgraph Completion Algorithm is O(n4). The modular addition and complementary
modular addition techniques compute Tj→i for each edge and sort them to identify the links with the highest
information transfer. The worst-case computational complexity under constant factor approximation for the
modular and complementary modular technique is thus O(n2β1 +n4). O(n2β1) is the cost of computing Tj→i
for each possible link, and O(n4) is the cost of sorting the links and finding the links with the highest Tj→i.
For the Greedy Algorithm, the cost of computing Tj→i for each link is O(n2β1) and the cost of identifying
the link with the highest information transfer is O(n2). Thus for each iteration, the total worst-case cost
is O(n2β1 + n2). In the worst case, the Greedy Algorithm runs for n2 iterations. Hence, the worst-case
computational complexity is O(n4β1 + n4).

For a network of m nodes, the maximum number of edges is n = m2. The computational cost of Tj→i for
i, j = {1, 2, · · ·m} involves matrix multiplication and matrix addition of order m. We can approximate the
computational complexity of Tj→i as β = O(m3). For a network of size 10, we plot the computational com-
plexities of our algorithms, which is shown in Figure 8a. The number of edges to be added is usually greater
than the network size,i.e., m < n. Therefore, further approximations of the computational complexities are
given as O(n4) for Subgraph Completion Algorithm, O(n5) for the modular and the complementary modular
technique and O(n7) for the Greedy Algorithm. A comparison of complexities as a function of the edges is
shown in Figure 8b.

We can see that in both Figures 8a, 8b, the subgraph completion algorithm performs the best. To highlight
the differences among these algorithms in terms of network topology, we consider the problem of maximizing
T3→1 in a network of 20 edges by adding 200 edges. We take B1 = 0.01I20,Σ0 = I20, where In is the identity
matrix of order n. The results are shown in Figures 9, 10.

Figure 9 shows the network topologies generated by Greedy Algorithm, the Subgraph Completion (SC)
Algorithm, and the Modular and the Complementary Modular (C-Modular) approaches. To compare the
efficiency and the performance of these algorithms, we plot T3→1 for increasing the number of edges from 0
to 220. As we see from Figure 10, the performances of the Greedy Algorithm and the SC Algorithm are very
close, while the Modular and the C-Modular approaches do not perform well. Among all the algorithms, our
heuristic SC Algorithm takes has the best computational complexity, and the Greedy Algorithm has the most
expensive computational complexity. The simulation justifies the performance of our heuristic SC Algorithm
in terms of computational cost and maximizing the objective function. We see similar results in Figure 8 as
well.

22



Supplementary Note 7: Phase Reduction of Coupled Oscillators

To study the oscillatory behaviour of the interacting nodes in complex networks, each nodal dynamic is
separated into phases and amplitudes. If the phase-amplitude interactions among the individual nodes are
negligible, the phase and amplitude dynamics are decoupled. Thus the network oscillatory dynamics can be
expressed in terms of nodal phases only [11]. Throughout this work, we focus on weakly coupled oscillators
where the separation between the phase and amplitude dynamics is possible. Consider a dynamical system

ẋ = f(x) (95)

with x ∈ Rn and f is a smooth n dimensional vector field. If eq. (95) has a stable limit cycle solution,
xc(t) = xc(t + T ) with time period T > 0, then ẋ describes oscillatory dynamics. Associating a phase
φ(t) ∈ [0, 2π) described by f on the limit cycle solution, we can write φ̇ = ω, where ω = 2π/T . Within
the basin of attraction, the phase φ can be uniquely defined by assigning to each point x0 a scalar phase
φ(x0) such that limt→∞φ[x(t)− (ωt+ φ(x0))] = 0 for the solution x(t) of eq. (95) starting at x(0) = x0. By
definition,

d

dt
φ(x(t)) = ω = ∇xφ(x)

dx

dt
(96)

Introducing an additive perturbation, p(x, t) in eq. (95), scaled by a parameter k ∈ R, eq. (95) can be written
as

ẋ = f(x, p) = f(x) + ∂pf(x, 0)p+O2(p) (97)

From eq. (96) and (97), for infinitesimal perturbations, |p| << 1 and k = ε << 1,

d

dt
φ = ω + k∇xφ(xc(φ))p(xcφ, t) = ω + εz(φ)p(xc(φ), t) (98)

In other words, the response in the phase variable φ to weak perturbation p can be approximated by
z(φ)p(xc(φ), t). Here, z(φ) is the ‘Phase Response Curve (PRC)’ and determines the linear response in
the phase variable due to small, pulse-like perturbations in the n different coordinates applied at the oscilla-
tor’s phase φ. The oscillatory dynamics are thus reduced to a one-dimensional phase model. Various methods
to determine z(φ) are given in [12]. We employ the adjoint method to determine the PRC.

Phase Reduction for a network of N coupled limit-cycle oscillators under external
forcing

Consider a network of N ∈ N coupled stable limit cycle oscillators evolving according to

ẋi = fi(xi) +
∑
j

gi,j(xi, xj) +
∑
k

hi,k(xi)ζk (99)

with xi ∈ Rni , i ∈ {1, · · ·N}, fi smooth vector fields, gij coupling functions, and hi,k denotes the impact of
the random processes ζk with zero mean. We also assume that the nodal dynamics in the deterministic case
(gij = 0, hi,k = 0) has an attracting limit cycle. Using eq. (98), the reduced phase dynamics of eq. (99)
under the assumptions that the couplings and the external forces(noise) are sufficiently weak, can be written
as

d

dt
φi = ωi +

∑
j

zi(φi)gi,j(φi, φj) +
∑
k

zi(φi)hi,k(φi)ζk (100)

where ωi is the constant oscillation frequency and zi(φ) is the ni-dimensional PRC. Assuming that the
system has a collective deterministic state rotating at an average frequency, Ω = 2π

T , then the coordinates in
eq. (100) may be transformed in terms of ϕ as ϕ = φi − Ωt. The weak couplings and external forces ensure
that the evolution of ϕ is slow as compared to the collective oscillation. The average change over one period
can then be written as

d

dt
ϕi = ωi−Ω +

∑
j

1

T

∫ T

0

zi(ϕi+ Ωt)gi,j(ϕi+ Ωt, ϕj + Ωt)dt+
∑
k

1

T

∫ T

0

zi(φi+ Ωt)hi,k(ϕi+ Ωt)ζkdt (101)

The first sum term in eq. (101) depends on the phase differences and can be written as
∑
j γij(φi−φj) where

γij(ϕi − ϕj) = γij(φi − φj) =
1

2π

∫ T

0

zi(φi − φj + ψ).gi,j(φi − φj + ψ,ψ)dψ (102)
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If we assume that the noises affecting the oscillator dynamics are uncorrelated, that is i,k(φ) = δikhi(φ), then
the second sum can be written as ςiξi, where

ς2i =
1

2π

∫ 2π

0

zi(ψ)hi(ψ)hi(ψ)T zi(ψ)T dψ (103)

and ξi = dωi

dt . Thus the stochastic oscillatory stochastic evolution in eq. (99) can be reduced to the averaged
phase stochastic dynamics as

d

dt
φi = ωi +

∑
j

γij(φi − φj) + ςiξi (104)

The study of the effect of network edges on the information flows in complex oscillatory networks is studied
using eq. (104) and is provided in the next section.

Computing the Information Transfer in Stochastic Oscillatory Networks

Consider a network of N ∈ N coupled stochastic oscillators with phases φi and intrinsic oscillation frequencies
ωi. Using eq. (104), the stochastic evolution is given by

dφi =

(
ωi +

∑
j

γij(φi − φj)
)
dt+

∑
ςikdwk (105)

where γij(φi−φj) are the coupling functions, and external input are modeled as independent Wiener processes,
wk. We assume that in the unperturbed system (ςik = 0), the phase dynamics in eq. (105) has a stable phase-

locked state with constant phase difference ∆φij = φrefi − φrefj and a collective oscillation frequency Ω, that
is for all i ∈ {, · · ·N}, we have

Ω = ωi +
∑
j

γij(∆φi,j) (106)

We decompose the phase dynamics into a deterministic reference part, φrefi and a fluctuating part, φfluci .
The solution to the deterministic dynamics is given by

φrefi (t) = Ωt+ ∆φrefi,1 (107)

Introducing new coordinates, ϕi = φi − φrefi , eq. (105) can be written as

dϕ = f(ϕ)dt+ ςdw (108)

where fi(ς) = ωi +
∑
j γij(ςi − ςj + ∆φrefi,j )−Ω. We assume that the noise levels, ςik are small and using the

small noise expansion, the first order approximation of eq. (108) is given by a multivariate Ornstein-Uhlenbeck
process

dϕ = Gϕdt+ ςdw (109)

where Gij = γ′ij(∆φ
ref
i,j ). Thus, eq. (109) is of the form of eq. (53) and Tj→i(t) has been provided in eq.

(59). Thus, the primary goal is to find the coupling matrix, G from the linearized phase response curves.
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Supplmentary Note 8: Wilson-Cowan Model for Networks of Neu-
ronal Populations

The Wilson-Cowan model [13] describes the evolution of the excitatory and inhibitory neurons for networks
of coupled neuronal populations. The key parameters in this model are the interconnection weights between
each sub-populations (excitatory and inhibitory) and the strength of input to each subpopulation. To add
the stochastic external noise, we use the model described in

We consider a neuronal network consisting of 8 excitatory and inhibitory sub-populations whose dynamics
are described by the average potential variables vi and ui, respectively, as

τ
d

dt
vi = vi + geeg(vi)− gieg(ui) + 0.75 +

∑
j

gi,jg(vj) + ρe,iζe,i

τ
d

dt
ui = −ui + geig(vi)− giig(ui) + ρi,iζi,i

(110)

where τ is the membrane time scale, gee and gei are the synaptic connections within the excitatory
subgroups and from excitatory to inhibitory subgroups respectively. Similarly, gii and gie denotes the synaptic
connections within the inhibitory and from inhibitory to exhitatory population, g(vi) denotes the firing rates
of vi and ui; ζi,i and ζe,i are the external white noise with weights ρi,i and ρe,i; gi,j denotes the directed edge
weights in the network.

For all our simulations, we use the parameters in [14] given as τ = 1, gee = 15, gei = 15, gii = 5,gie = 15,
ρi,i = ρe,i = 0.001, the edge weights within the cluster gi,j = 0.1 and inter-cluster is given by gi,j = 0.015,
and g(vi) = (1 + exp(−4.4vi))

−1. We also use a stochastic integration time step of ∆t = 0.01.
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Supplmentary Note 9: Effects of Noise on the Information Transfer

We investigated the influence of noise on the information transfers in weakly coupled oscillators. One of
the main effects of noise on neurons is that it allows them to fire even when the voltage levels are below
the subthreshold levels. The addition of zero mean noise can induce the neurons to fire. In weakly coupled
oscillatory networks, noise can potentially be a factor in the temporal patterns of phase locking or synchronous
states or in deciding the level of couplings among the oscillators. The studies in [15, 16] showed that noise
is well-known to affect synchronous dynamics in multiple ways, from decreasing the synchronous under the
action of noise to increasing synchronous due to correlated noisy input. The coupling strengths among the
oscillators depend on the level of synchronization states; thus, noise is a factor in the information transfers
among these oscillators. Below, we discuss the effect of channel noise (multiplicative noise) and additive
noise on the information transfers in a network of coupled oscillators. We also analyse the effect of local noise
acting at a particular instance for a particular duration. We consider a neurological network model consisting
of 2 pairs of excitatory and inhibitory neurons.

Effects of Weak Heterogeneity:

In the noiseless case, the averaged phase stochastic dynamics of the two coupled neurons in Figure 11a can
be written as

dφ = ∆ω + γ(−φ)− γ(φ) = ∆ω + γ̄ (111)

where φ = φ2 − φ1, ∆ω denotes the difference in the intrinsic frequencies caused by the presence of weak
heterogeneity and γ̄ = γ(−φ)−γ(φ) is the antisymmetric curve as in Figure 11b. The fixed points are therefore
given by dφ = 0 =⇒ γ̄ = −∆ω. The phase-locking states of the neurons change due to the presence of weak
heterogeneity. The coupling function curve and its antisymmetric part in the absence of heterogeneity are
shown in Figure 11b, where the synchronous and anti-phase states are stable. When heterogeneity is added,
the neurons move from either the synchronous or the anti-phase state to a nonsynchronous phase-locked state.
For example, when ∆ω < 0 (neuron 1 is faster than neuron 2), the stable steady-state phase-locked values
φ will be shifted to the upper left of the synchronous and the left of the anti-phase state, and the unstable
non-synchronous state shifted to the upper right, as shown in Figure 11c. Furthermore, if ∆ω is increased
or decreased further, saddle-node bifurcations occur in which a stable and unstable fixed point collide and
annihilate each other.

The effect of weak heterogeneity on the information transfer curve for the network in Figure 11a is shown
in Figure 12.

Effects of Additive Noise:

Now, to understand the effect of additive noise in the information transfer function, we consider the average
phase stochastic dynamics for three oscillators. That is

d

dt
φi = ωi +

∑
j

γij(φi − φj) +Diξi (112)

where i, j = 1, 2, 3 and Di is the noise intensity level in the oscillator i. The variations of the phase difference
∆φ1,2 for various levels of noise intensities are plotted in Figure 13. Correspondingly, we observe a variation
in the coupling function and the phase response curve as shown in Figure 14.

From Figures 13, 14, we observe that the variations in the coupling function increase with the increase in
noise intensities. The results are similar to the studies in [17].

Effects of Multiplicative Noise:

In the presence of multiplicative noise, the excitation level dynamics of the oscillators are of the form

d

dt
vi = f(v) + g(v)ξi(t), (113)

where Here ξi is white noise with zero mean and intensity, D = 0.02. Figure 15 demonstrates the effect
of multiplicative noise on the phase differences. A change in the phase difference induces a change in the
coupling function and the stable synchronous states. The result is a variation in the information transfer
function.

Figure 15a shows that phase synchronization can be significantly enhanced with weak multiplicative noise.
As can be seen, for the system with no multiplicative noise, the phase took a long time to settle near the
stable phase-locked state. The system with weak multiplicative noise settles near the stable state faster.
The result is also demonstrated in [18, 19], where the authors demonstrated that weak multiplication noise
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facilitates synchronization in coupled oscillators. Figure 15b is the case when there is no coupling between
the oscillators v2 and v3. The oscillators are however coupled indirectly through a multiplicative noise in
oscillator v3. The result shows that even in uncoupled oscillators, the stable synchronization state can be
achieved faster when the system is affected by weak multiplicative noise. Figure 15c shows the case where
multiplicative noise shifts the stable synchronization state. Similar observations are also noticed in Figures
15a and 15b. As the noise intensity increases, we observe an ‘oscillation death’ phenomenon [20], where the
oscillating components approach a stable rest state.

Effect of Local Noise:

As seen from the effects of additive noise, small intensities of additive noise have little effect on the coupling
function. We, therefore, analyse the effect of local noise acting at a particular time by inducing multiplicative
noise in the excitation level dynamics. The network for 3 nodes is shown in Figure 16a. As before, we
follow the Wilson-Cowan dynamics model in Supplementary Note 8 and adapt the parameters given. We
first compute the evolution of the excitation levels for t = 0− 10 secs. Next, we induce a small multiplicative
noise of intensity 0.02 at node 1 at t = 5 secs. Figure 16b shows the coupling function curve for the noiseless
case. Due to the multiplicative noise, the stable phase-locked states shift towards the red dots in Figure 16c.
The shift in the stable phase-locked state can also be seen in Figure 17a. As a result, T2→3(t) increases as
shown in Figure 17b.

27



References

[1] X. S. Liang, “The liang-kleeman information flow: Theory and applications,” Entropy, vol. 15, no. 1,
pp. 327–360, 2013.

[2] X. San Liang and R. Kleeman, “A rigorous formalism of information transfer between dynamical system
components. i. discrete mapping,” Physica D: Nonlinear Phenomena, vol. 231, no. 1, pp. 1–9, 2007.

[3] ——, “Information transfer between dynamical system components,” Physical review letters, vol. 95,
no. 24, p. 244101, 2005.

[4] J. M. Horowitz and M. Esposito, “Thermodynamics with continuous information flow,” Physical Review
X, vol. 4, no. 3, p. 031015, 2014.

[5] J. M. Parrondo, J. M. Horowitz, and T. Sagawa, “Thermodynamics of information,” Nature physics,
vol. 11, no. 2, pp. 131–139, 2015.

[6] S. Ito and T. Sagawa, “Information thermodynamics on causal networks,” Physical review letters, vol.
111, no. 18, p. 180603, 2013.

[7] M. Prokopenko, J. T. Lizier, and D. C. Price, “On thermodynamic interpretation of transfer entropy,”
Entropy, vol. 15, no. 2, pp. 524–543, 2013.

[8] J. M. Horowitz, “Multipartite information flow for multiple maxwell demons,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2015, no. 3, p. P03006, 2015.

[9] D. Hartich, A. C. Barato, and U. Seifert, “Stochastic thermodynamics of bipartite systems: transfer
entropy inequalities and a maxwell’s demon interpretation,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2014, no. 2, p. P02016, 2014.

[10] H. Kiwata, “Relationship between schreiber’s transfer entropy and liang-kleeman information flow from
the perspective of stochastic thermodynamics,” Physical Review E, vol. 105, no. 4, p. 044130, 2022.

[11] B. Pietras and A. Daffertshofer, “Network dynamics of coupled oscillators and phase reduction tech-
niques,” Physics Reports, vol. 819, pp. 1–105, 2019.

[12] E. M. Izhikevich, Dynamical systems in neuroscience. MIT press, 2007.

[13] H. R. Wilson and J. D. Cowan, “Evolution of the wilson–cowan equations,” Biological cybernetics, vol.
115, no. 6, pp. 643–653, 2021.

[14] E. Grannan, D. Kleinfeld, and H. Sompolinsky, “Stimulus-dependent synchronization of neuronal assem-
blies,” Neural computation, vol. 5, no. 4, pp. 550–569, 1993.

[15] A. Ghosh, Y. Rho, A. R. McIntosh, R. Kötter, and V. K. Jirsa, “Noise during rest enables the exploration
of the brain’s dynamic repertoire,” PLoS computational biology, vol. 4, no. 10, p. e1000196, 2008.

[16] J. Zirkle and L. L. Rubchinsky, “Spike-timing dependent plasticity effect on the temporal patterning of
neural synchronization,” Frontiers in Computational Neuroscience, vol. 14, p. 52, 2020.

[17] Y.-M. Kang, M. Wang, and Y. Xie, “Stochastic resonance in coupled weakly-damped bistable oscillators
subjected to additive and multiplicative noises,” Acta Mechanica Sinica, vol. 28, no. 2, pp. 505–510,
2012.

[18] Z. Zhu, G. Ren, X. Zhang, and J. Ma, “Effects of multiplicative-noise and coupling on synchronization
in thermosensitive neural circuits,” Chaos, Solitons & Fractals, vol. 151, p. 111203, 2021.

[19] J. Kurths and C. Zhou, “Noise-enhanced phase synchronization of weakly coupled chaotic oscillators,”
in 2003 International Conference Physics and Control. Proceedings, vol. 2. IEEE, 2003, pp. 353–357.

[20] A. Koseska, E. Volkov, and J. Kurths, “Oscillation quenching mechanisms: Amplitude vs. oscillation
death,” Physics Reports, vol. 531, no. 4, pp. 173–199, 2013.

28


