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Fig S1. Quality control of the RATE-seq experiment. 

A, schematics of the cortical neuronal differentiation protocol including a neuronal enrichment 

step. B-C, 4sU does not impact neuronal viability (2 independent biological replicates). Error 

bars= standard deviation. D, representative agarose gel of 4sU-labeled pulled-down RNAs. We 

run independent gels for each biological replicate (n=2). E, 4sU incorporation kinetics of 

human mRNA normalized to fly spike-in RNA. F, Pearson’s correlation between replicates 

and time-points of the human RNAs. G, principal component analysis of NEUWT and NEURTT 

data showing significant separation between genotypes and time-points. Steady-state samples= 

red outline and cluster with the 24-hour time-point samples. H, spike-in RNA read counts: 

unlabeled yeast vs. fly RNA for all time-points. Unlabeled yeast RNA spike-in RNA was used 

as pull-down negative control. The absence of yeast RNA indicates that the pull-down of 4sU 

labeled RNAs had minimal contamination of unlabeled human RNAs, but readily detectable 

in the steady-state samples. I-J, Pearson’s correlation of ERCC spike-in RNAs between 

replicates and spike-in concentration. ERCC spike-in RNA was used as a control for library 

quality. High Pearson’s correlations indicate the quality of the library samples. K, transcription 

rates measured using only 0.5-hour or 0.5 and 1-hour time-points were highly correlated. L-N, 

half-life measured with 4sU saturation curve method. (L) percentage of genes with measured 

half-life depending on transcription rate. Error bars= 95% CI, loess fit. M, the accuracy of half-

life shown against half-life magnitude. CI50= 50% confidence interval. Black points denote 

genes with poorly fit saturation curves and removed from analysis in panel N. N, comparison 

of half-life estimated with two methods for well-measured genes. O, examples of transcription-

mediated changes in steady-state (log2 fold-change and SD bars output from DESeq2). DLX6= 

high autism-risk gene. P, transcription rate fold-changes measured using 0.5-hour or 0.5- and 

1-hour time-points orthogonally validated by 5EU-labeling method. Q, genes with the highest 

transcription rate fold-change are enriched for MECP2-binding9. R, genes with the highest 

transcription rate increase in NEURTT had the lowest basal transcription rate in NEUWT 

neurons17. TR= transcription rate, HL= half-life, SS= steady-state. Transcription rates derived 

from 4 (O and Q) or 2 (P) biological replicates. Error bars= 95% CI. Panel A was created 

with BioRender.com. 
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Figure S2. Classifier model to predict DNA sequence features affecting transcription rate 

in the absence of MECP2. 

A, gene length is not associated with changes in steady-state, transcription rate, or half-life in 

NEURTT as seen for adult mice9 (steady-state and half-life= 2 biological replicates, transcription 

rate= 4 biological replicates). Up and low hinges= 25th and 75th percentiles. Up and low 

whiskers= 1.5 *IQR (inter-quartile range) above and below the corresponding hinges. Notches 

are 1.58 * IQR/sqrt(n), which matches 95% CI for median comparison. B, schematic 

representation of the classifier decision tree utilized. A collection of decision trees forms the 

random forest model. C, 3ʹUTR or CDS mRNA sequence features-based random forest 

classifier for prediction of transcription rate fold-change in NEURTT. D, receiver operating 

characteristic curve (ROC) and precision-recall curve (PRC) showing overall performance of 

the classifier for prediction of human transcription rate fold-changes. E, predictive model for 

transcription rate fold-changes in the mice using either nuclear or chromatin-associated RNA 

samples. While the fraction of mCA and gene-body length offer some accuracy to distinguish 

transcription rate up versus unchanged or up versus down in some cases, the classifier found 

that other sequence features offer higher prediction accuracies (see also figure 2C). Error bars= 

95% CI. F, ROC and PRC showing overall performance of the classifier for prediction of 

mouse transcription rate fold-change relative to panel E. G, gene-body or number and 

frequencies of mCA/mCG mRNA sequence features-based random forest classifier for 

prediction of transcription rate fold-changes in the mouse Mecp2 y/-. Error bars= 95% CI. H, 

3ʹUTR or CDS mRNA sequence features-based random forest classifier for prediction of 

transcription rate fold-changes in the mouse RTT model. Error bars= 95% CI. I, ROC and PRC 

show the overall performance of the classifier for predicting mouse transcription rate fold-

change based on the nuclear dataset. TR= transcription rate, HL= half-life, SS= steady-state. 

For panels C, E, G, and H, error bars= 95% CI, and are estimated from approximately 400 

genes for human and 500 for mice. Log2 fold-change for each gene is derived from 4 

independent replicates (30 minutes and 1h) for human and 10 replicates for mice. Panels C, E, 

and G were created with BioRender.com. 
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Figure S3. Human RTT neurons show half-life changes in steady-state mRNA levels. 

A, DESeq2 outputs (log2) of genes with mRNA half-life only changes, causing changes in the 

steady-state independent of transcription rate (derived from 2 biological replicates). GRIA1 is 

known to confer a high risk for autism when mutated. Standard error bars are also output from 

DESeq2. B, number of genes with changes in transcription rate only (TR-only), partially or 

fully buffered by half-life changes, and genes whose change in steady-state are caused by 

altered half-life only (HL-only). These calculations were made using the 0.5h time-point for 

both cell types, and the figure only shows genes whose transcription rates were altered by at 

least 4-fold. C, percentage of genes with no significant transcription rate shift or HL-only 

changes in steady-state (y-axis) as a function of the FDR (x-axis) and fold-change (color) 

thresholds. D, percentage of genes with no significant steady-state shift or fully buffered by 

mRNA stability mechanisms (y-axis) as a function of the FDR (x-axis) and fold-change (color) 

thresholds. E, human genes with steady-state, transcription rate, or half-life fold-changes in 

NEURTT do not show significant enrichment for transcript length as seen for adult mice9. F, the 

buffering of transcription rate is observed independently of the underlying abundance levels of 

measured transcripts. This indicates that most genes transcriptionally dysregulated are buffered 

by half-life changes independent of their abundances. G-H, the buffering effect is also present 

when half-life was calculated using the saturation method including all genes (H, low and high 

standard error bars) or just genes with low standard error bars (I, high confidence). 2 biological 

replicates for steady-state and half-life, and 4 biological replicates for transcription rate 

measurements. The transcriptional level changes for each gene are derived from data 

represented in Figure 3H-I. For F-I, up and low hinges are 25th and 75th percentiles. Up and 

low whiskers are 1.5 * IQR (inter-quartile range) above and below the corresponding hinges. 

Notches are 1.58 * IQR / sqrt(n) which matches 95% CI for median comparison. Panels A and 

B were created with BioRender.com. 
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Figure S4. Mouse RTT models corroborate the human data and show half-life changes in 

steady-state mRNA levels. 

A, the overlap of genes altered at transcription rate based on nuclear (left panel) or chromatin-

associated RNA (right panel) and steady-state (whole-cell) in the Mecp2 R306C mouse 

neurons. B, percentage of genes with no significant steady-state shift or fully buffered by half-

life (y-axis) as a function of the FDR (x-axis) and fold-change (color) thresholds in the Mecp2 

y/- and Mecp2 R306C mice. C, percentage of genes with no significant transcription rate shift 

or with half-life change (y-axis) as a function of the FDR (x-axis) and fold-change (color) 

thresholds in the Mecp2 y/- and Mecp2 R306C mice. D-E comparison of the fold-changes 

between genes in human (Hs) and mouse (Mm) RTT models showing limited agreement in the 

identity of genes with altered transcription rate (D) and half-life (E) between species. F-G, the 

identity of genes differentially regulated at half-life and transcription rate is also limited when 

comparing the Mecp2 y/- and Mecp2 R306C mouse models. Pearson correlations for each 

comparison are depicted inside boxes in red fonts. TR= transcription rate, HL= half-life, SS= 

steady-state. Panels A to G were created with BioRender.com.  
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Figure S5. Quantification of 3ʹUTR and alternatively-spliced isoforms in humans and 

mice, and predictive models of half-life changes in mice. 

A, Proximal poly-Adenylation site usage index (pPAU) is the percentage of mRNA isoforms 

cleaved and poly-Adenylated at the proximal pA site. 0 or 100= all mRNA isoforms of a gene 

use the proximal site or the distal pA site, respectively. High correlation between pPAU values 

in NEUWT and NEURTT. B, most genes show small changes <10% in pPAU in NEURTT. C, 

sequencing read peaks showing the absence of MECP2 3ʹUTR reads in the NEURTT sample 

and peaks corresponding to DICER1 pA sites (arrowheads) as an example of genes with similar 

pPAU index values in NEUWT and NEURTT. D, 3ʹUTR isoforms also undergo buffering. Data 

derived from Figures 3H-I (10 biological replicates). Up and low hinges= 25th and 75th 

percentiles. Up and low whiskers= 1.5*IQR above and below the hinges. Notches= 

1.58*IQR/sqrt(n), matching 95% CI for median comparison. E, Pearson’s correlation of 

alternatively-spliced mRNAs in the Mecp2 y/- mouse shows that canonical CDS and non-

protein-coding isoforms undergo buffering. F, quantification of mRNA isoforms stability in 

WT mice using nuclear or chromatin-associated RNA confirms that nonsense-mediated decay, 

processed transcripts, and retained-intron mRNAs are less stable than the canonical CDS and 

alternatively-spliced protein-coding isoforms. This underscores the quality of the mRNA 

stability calculations based on whole-cell versus nuclear or chromatin-associated mRNA ratios. 

G-H, ROC and PRC for predicting stability changes based on 3ʹUTR (G) or CDS (H). I, CDS-

specific features random forest predicting stability changes for human and Mecp2 y/- mouse. 

Error bars= 95% CI. J, Pearson’s correlation shows significant similarities between sequence 

composition between CDS and 3ʹUTRs. K, 3ʹUTR- features random forest predicting stability 

changes for Mecp2 y/- mouse based on chromatin-associated RNAs. Error bars= 95% CI. L, 

sequence features random forest predicting stability changes based on chromatin-associated 

RNAs in Mecp2 y/- mouse model, indicating that 3ʹUTR and CDS contain highly accurate 

predicting elements for stability changes. Error bars= 95% CI. M-N, ROC and PRC classifier 

performance for half-life fold-change prediction in Mecp2 y/- mouse based on nuclear (M) or 

chromatin-associated RNA (N). TR= transcription rate, HL= half-life, SS= steady-state. 

Steady-state and half-life= 2 biological replicates; transcription rate= 4 biological replicates. 

Panels E, F, I, and K were created with BioRender.com. 
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Primer list for qRT-PCRs 

CAV2 Forward ATTCTCTTTGCCACCCTCAG 
  Reverse GTCCTACGCTCGTACACAATG 
PI15 Forward TCGCAGAATGACATGATCGC 
  Reverse TGGTCCCAAATGCAAGTAGC 
FOXB1 Forward CGCGCAACTTGAAGCAAC 
  Reverse TCAGCGAGATGTACGAGTAGG 
DTX3L Forward AAAGGAAATCAGCCAGAGGG 
  Reverse GGGTATCTCTTTCCTGGGTTTG 
PHLDA1 Forward ACCAAATACCGCACCCAC 
  Reverse AGAAATGTGCTCGTCCCAC 
FOXG1 Forward CCTGCCCTGTGAGTCTTTAAG 
  Reverse GTTCACTTACAGTCTGGTCCC 
LHX2 Forward GGTCTTCCCTACTACAATGGC 
  Reverse GTCGTTTTCGTTGCAGCTTAG 
FEZF1 Forward CTGTGGCAAAGGGTTTCATC 
  Reverse TCTTGTCGTTGTGGGTGTG 
SIX3 Forward CAACCCCAGCAAGAAACG 
  Reverse CTCGGTCCAATGGCCTG 
DLK1 Forward CGAGGATGACAATGTTTGCAG 
  Reverse CAGAGTCCGTGAAGGCAG 
DCX Forward TATGCGCCGAAGCAAGTCTCCA 
  Reverse CATCCAAGGACAGAGGCAGGTA 
ACTB Forward TGAAGTGTGACGTGGACATC 
  Reverse GGAGGAGCAATGATCTTGAT 
GAPDH Forward CATGAGAAGTATGACAACAGCCT 
  Reverse AGTCCTTCCACGATACCAAAGT 
AGO3 Forward TCCTGTTGGGAGGCAAATAACA 
  Reverse AAGAGTAGTGGTTCTGTCACAGA 
FZD3 Forward GCTTTGCACTCTGCTCTTGTAG 
  Reverse TTGTACACTCACAGTTAAAGTGCT 
NT5DC2 Forward CAACCCCACCTACTTCTCAAGG 
  Reverse GTAGAAGGTGAAGTCCACGCG 
KIF3A Forward TGAGTAATCAAGGGAAGGGTCG 
  Reverse AAAACAACTCCCTTTCTCCAGA 
RBL2 Forward AAACTTATGACCTCTTCCTTTAGG 
  Reverse TTTTAAACTGCCAGGAACACCC 
SKP2 Forward GTTGCACAGGAAATGATGATGCT 
  Reverse AACCCCAGCTCTTGTCACTAAT 
18S Forward GATGGGCGGCGGAAAATAG 
  Reverse GCGTGGATTCTGCATAATGGT 
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