
Supplemental Methods

Genome browser visualization.

Genome browser (Kent et al. 2002) images were taken
from the following track hub: http://guertinlab.
cam.uchc.edu/adipo_hub/hub.txt. An iden-
tical track is reproduced on a public server: https:
//data.cyverse.org/dav-anon/iplant/home/

guertin/adipo_hub/hub.txt

DNA binding domain alignments.

DNA binding domains were extracted from the TFClass
database (Wingender et al. 2018) and TF paralogs that were
absent from the database were extracted from the NCBI
protein database. DNA binding domains were aligned us-
ing FASTA (Pearson and Lipman 1988) and the following
command: ssearch36 -s MD40 -m 8CBl. Although
there are six DNA motifs, the TWIST and ZNF families of
DNA binding domains recognize the same motif, despite
their lack of evolutionary conservation.

Compartment modeling.

Detailed analysis and raw code is available at https:
//github.com/guertinlab/modeling_PRO_

composites. We calculated pause region signal by sum-
ming the PRO-seq signal over a 50 base pair window cen-
tered on the summit of the pause peak. The gene body RNA
polymerase density was determined by averaging the PRO-
seq signal over the region from the end of the pause win-
dow to the transcription termination site determined by
primaryTranscriptAnnotation. We described
RNA polymerase density dynamics in each compartment
using differential equations that incorporate rates of tran-
scription initiation, premature termination, pause release,
and elongation. We determined how different rate constants
would affect hypothetical pause region and gene body den-
sities and the pause index using the pksensi package
(Hsieh et al. 2020). We varied initiation, premature ter-
mination, and pause release rate constants from 0.01 to 1
molecules per second and varied elongation rate from 600-
6000 bp/minute and calculated compartment density with
each parameter set. We excluded any parameter estimates
that result in more than 1 RNA polymerase molecule in the
pause region at any given time. We selected all sets of pa-
rameters that resulted in the observed median composite
pause index for all time points from Fig. 4. Next, we sought
to determine if changing the rate constants could explain
observed changes in compartment density at different gene
sets for the indicated time point comparisons. We varied rate
constants from the early time point values to model RNA
polymerase density ratio changes between time points. We
varied the initiation and pause release constants from their
initial values over a 5-fold range in each direction and de-
termined which sets of constants produced the observed
changes in pause density ratio for each gene. We allowed
the target ratio to vary by 5% compared to the observed. We
plotted model RNA polymerase density curves by choosing
the set of parameters with the elongation rate closest to a

consensus rate of 2500 bases / min (Ardehali and Lis 2009;
Jonkers and Lis 2015), while still accurately reproducing
the composite profiles densities within 5% of the original.
In order to reproduce composite plots, we spread the pause
density over a 50 base region and fit the density profiles to a
waveform as previously described (Sathyan et al. 2019).
For the model, our only assumption is that elongation rate
of a particular gene does not change between time points.
In fact, if elongation rate was increasing in activated genes
then we would expect a decrease in gene body PRO-seq
signal. This finding has not been observed in other datasets.
Of all the rate constants in the model, it is most reasonable
to assume that the elongation rate stays constant while the
others are affected by different regulatory mechanisms.

Twist2 Overexpression Construct Cloning.

Doxycycline-regulated expression of Twist2 was cloned by
PCR into pEN_TT_miRc2 3xFLAG (Addgene #83274),
then was verified by sequencing and LR recombined with
pSLIK neo (Addgene #25735) for lentiviral packaging.
pSLIK 3xFLAG-LacZ neo (Addgene #83105) was used
as a control. The plasmids were deposited with Addgene
(#197935 and #197936).

shRNA-Mediated Knockdown.

We purchased lentiviral shRNA-expressing con-
structs targeting Twist2 (Millipore Sigma clone
IDs TRCN0000086084, TRCN0000086085,
TRCN0000086086) and a non-mammalian control (Mil-
lipore Sigma SHC202). HEK-293T cells were transfected
with shRNA constructs and lentiviral packaging con-
structs pMD2.G (Addgene #12259) and psPAX2 (Addgene
#12260). We isolated and filtered supernatant after 24 and
48 hours. We transduced 3T3-L1s with virus in 8 µg/mL
polybrene. Cells were switched into puromycin-containing
selection media after 48 hours. After another 48 hours sur-
viving cells were plated for further experiments.

Oil Red O staining.

For Oil Red O assays 3T3-L1s were cultured and differen-
tiated as described above. During differentiation media was
changed every 2 days. At day 6 of differentiation we stained
cells with Oil Red O as previously described (Kraus et al.
2016). Briefly, cells were washed with PBS, fixed with 4%
formaldehyde for 15 minutes, and stained with a 0.2% Oil
Red O and 40% 2-propanol solution. After incubating for
30 minutes adipocytes were washed five times with distilled
water and the dye was eluted with 2-propanol. Absorbance
was measured at 540 nm using 2-propanol as a blank.

RNA extraction and RNA-seq.

3T3-L1s were cultured and differentiated as described
above. At the indicated time points we harvested cells and
extracted RNA using the Direct-zol-96 RNA kit (Zymo #11-
331H). Samples were then sent to Novogene for bulk RNA-
seq.
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Immunoblotting.

3T3-L1s were cultured and differentiated as described
above. Immunoblotting was performed on 7.5 µg RIPA
lysate as previously described (Janes 2015). Samples were
electrophoresed through 1.5-mm thick 12% polyacry-
lamide in tris-glycine running buffer (25 mM tris base,
250 mM glycine, and 0.1% SDS) at 130 V for 90 minutes.
Proteins were transferred to a PVDF membrane (Milli-
pore; Immobilon-FL, 0.45 mm pore size) in transfer buffer
(25 mM tris, 192 mM glycine, 0.0375% SDS, and 20%
methanol) at 100 V for 1 hour on ice. Membranes were
blocked with 0.5X Odyssey blocking buffer in TBS. Pri-
mary antibodies were diluted in 0.5X Odyssey blocking
buffer + 0.1% Tween-20. The following primary antibodies
were used: Flag (Millipore Sigma F1804, 1:2000), HSP90
(Santa Cruz Biotechnology sc-13119, 1:2000), Tubulin (Cell
Signaling Technology 2148S, 1:2000). Membranes were
washed with TBS-T and exposed to fluorophore-conjugated
secondary antibody diluted in 0.5X Odyssey blocking buffer
+ 0.1% Tween-20 + 0.01% SDS. Following another round
of washing, membranes were scanned on an Odyssey in-
frared scanner (LI-COR).

Mouse experiments.

All mouse experiments were performed in accordance with
the relevant guidelines and regulations of the University of
Virginia and approved by the University of Virginia Ani-
mal Care and Use Committee. Mice were housed in specific
pathogen-free conditions under standard 12-h-light/dark
cycle conditions in rooms equipped with control for temper-
ature (21±1.5°C) and humidity (50±10%). Twist2 knockout
mice were purchased from Jackson Laboratories (Strain
008712). Preadipocytes were isolated from inguinal WAT
as previously described (Galmozzi et al. 2021) from P3
mice. Preadipocyte differentiation and staining was carried
out as with 3T3-L1s. Interscapular skin and BAT samples
were isolated from P3 or P14 mice respectively. Tissue sam-
ples were fixed with 4% formaldehyde. Fixed tissues were
paraffin-embedded and H&E stained by the Research His-
tology Core at the University of Virginia.
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Supplemental Fig S1. Detailed analyses of dynamic ATAC-seq peaks reveals potential regulatory transcription factors A) Principal component analysis of ATAC-seq
samples shows clear separation of samples by time. B) Fraction of reads within peaks does not vary significantly across samples. C) Calling peaks on progressively larger
subsets of all reads leads shows the sequencing libraries are approaching saturation. D) We used a likelihood ratio test to define ATAC-seq peaks as dynamic or nondy-
namic using an adjusted p-value cutoff of 1 ◊ 10-8. E) After clustering ATAC-seq peaks based on accessibility dynamics, we combined clusters into more inclusive response
classes by cutting the dendrogram at the indicated height of 2. F) In addition to the motifs discussed in Fig. 1, de novo motif analysis identified 8 factor families as potential
regulators of ATAC-seq peak dynamics. These motifs are less enriched than those in Fig. 1. G) Expression of all members of potential regulatory TF families as measured
by RNA-seq of 3T3-L1 cells before addition of differentiation media. H) We plotted enrichment of each motif family around peak summits as in Fig. 1E. I) Composite motif
extraction on all peaks with either SP or KLF motifs returns a KLF-like motif in the increased peaks and an SP-like motif in the decreased peaks, suggesting that KLF and
SP factor families are associated with increased and decreased accessibility respectively. We scored each SP/KLF motif in a dynamic peak against an SP composite and a
KLF composite and plotted the two scores against one another. Each data point is colored based on the dynamics of the peak. The dividing line separates points such that
all motifs on the left are labeled as KLF motifs and all motifs on the right are labeled SP motifs. The line is drawn in such a way as to maximize the number of increased KLF
peaks and decreased SP peaks.
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Supplemental Fig S2. dREG peak analysis reveals potential factors driving bidirectional transcription A) We used a likelihood ratio test to define dREG peaks as
dynamic or nondynamic using an adjusted p-value cutoff of 1 ◊ 10-5. B) ATAC-seq and dREG-defined REs - including dynamic and nondynamic peaks - largely overlap
in promoter regions. Genome regions are defined as described in Fig. 2 legend. Overlapping categories are not equal between ATAC and dREG peaks because multiple
ATAC peaks may overlap a single dREG peak and vice versa. C) PRO-seq signal plotted around ATAC peaks separated by whether they overlap with dREG peaks. D)
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divided into nondynamic peaks that are not inferred binding events, attenuated peaks that increase early in the time course but decrease toward the end, and nonattenuated
peaks that do not decrease in accessibility at any point. F) Composite ChIP-seq signal is plotted at indicated genomic regions. Regions are classified into dynamic REs that
intersect with ChIP-seq peaks, dynamic REs that do not intersect with ChIP-seq peaks, and TF motifs that are not found in ATAC-seq peaks and are therefore inaccessible.
G-H) Box and whisker plots representing genes within 10 kb of either (G) a single increased peak or (H) a single decreased peak. Genes were split into four quartiles based
on the distance between the peak summit and the TSS of the gene. Box and whisker plots on the left contain the smallest distances, while those on the right represent the
largest. The y-value is the transcription of the genes over the first hour of the time course. We find that for genes near increased peaks, the closer the peak is to the gene
the more likely gene transcription and peak accessibility dynamics will covary. We do not find a similar relationship for genes near decreased peaks. I) Box and whisker
plots representing genes within 10 kb of either a single increased peak (red plot) or a single decreased peak (blue plot). The y-value represents the distance between the
peak summit and the TSS of the gene. Genes near decreased peaks are generally closer to the peak summit than the increased peak-gene pairs. J-K) Scatter plot of
genes dynamically transcribed between J) 60 and 0 minutes or K) 240 and 60 minutes. Each data point represents a gene. The x-value is total accessibility change over the
time period scaled by the distance between the TSS and each peak. Positive x-values indicate increases in local accessibility. The y-value is change in transcription over
the same time period. A gene with positive x and y-values or negative x and y-values exhibits positive covariation between local accessibility and transcription dynamics.
The majority of genes for both time point comparisons exhibit positive covariation, indicating a correlative relationship between accessibility and transcription. Chi-squared
p-values are (J) 1.41 ◊ 10-98 and (K) 4.35 ◊ 10-54.
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Supplemental Fig S4. Modular networks downstream of CEBP, KLF, and TWIST identify genes and transcriptional steps regulated by individual factors Modular
networks downstream of (A) CEBP, (B) KLF, and (C) TWIST. Networks constructed as described in Fig. 4. Composite PRO-seq signal plotted around pause peak summits
of (D) 223 genes solely regulated by CEBP, (E) 150 genes solely regulated by KLF, (F) 621 genes solely regulated by TWIST, (G) 1224 genes solely regulated by AP-1, and
(H) 174 genes solely regulated by GR at the indicated time points illustrate average changes in RNA polymerase density within the pause region and gene bodies. Inset
violin plots indicate pause indices as described in Fig. 4.
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Supplemental Fig S5. Dexamethasone-activated genes in C7 cells recapitulate findings at predicted GR target genes in 3T3-L1 differentiation A) Composite
polymerase density at 70 genes activated by dexamethasone treatment in C7 cells at indicated times. B) Compartment modeling of the activated genes holding kpre and krel

constant. We find an approximate 1.33-fold increase in pause release rate explains the observed changes in polymerase density. C) A simulated composite derived from
the parameters estimated in (B).
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Supplemental Fig S6. Total local accessibility influences magnitude of gene transcription changes A) The bar plot quantifies the number of REs and genes that are
activated by the indicated number of activating factors: GR, AP-1, CEBP, or KLF. B) This network depicts REs and genes downstream of TWIST binding and repression
and/or SP dissociation and attenuation. C) Data points represent all REs bound by AP-1, CEBP, GR, and KLF. REs are stratified based on number of binding factors. Y-
values are the fold change in accessibility. D-F) Data points represent all genes activated by AP-1, CEBP, GR, and TWIST. D) Genes are stratified based on number of
upstream regulatory factors. Y-values are the fold change in nascent transcription. There is a positive correlation between transcriptional change and number of regulatory
factors. E) Genes are stratified as in (D), but y-values represent fold change in transcription divided by fold change in local accessibility. There is no correlation between
normalized transcription and number of regulatory factors when controlling for changes in accessibility. F) Repressed genes proximal to SP motifs tend to exhibit a lower
magnitude of transcriptional change. G) Repressed genes proximal to SP motifs tend to exhibit higher basal transcription.
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Supplemental Fig S7. Number of regulatory factors does not influence magnitude of gene transcription changes All predicted activated target genes are stratified
by number of regulatory peaks (rows) and number of regulatory factors (columns). The y-axis indicates the log fold change in transcription for each gene for the time range
over which the gene exhibits its greatest activation. Transcription change is plotted against total local accessibility change over the same comparison. Blue points represent
the indicated number of regulatory factors and regulatory peaks. Red points represent the genes from the same number of regulatory factors but one fewer regulatory
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Conversely, the number of regulatory factors does not affect transcription.
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Supplemental Fig S8. TF families are transiently regulated by other factors, interconnected with one another, and exhibit distinct binding and dissociation kinet-

ics A) The percentage of each factor’s attenuated cis-edges highlights the transient nature of gene expression changes in adipogenesis. Early activators show the highest
proportion of attenuated edges, meaning early activation is followed by a return to baseline expression. There are no attenuated SP cis-edges, meaning genes with de-
creased expression downstream of SP dissociation do not return to baseline within the time course. B) The percentage of each factor’s attenuated trans-edges indicates
that binding is more stable than gene expression changes. GR trans-edges are most likely to be attenuated. There are no attenuated SP trans-edges. C) TF genes are
highly interconnected; arrows represent direct regulatory relationships between factors. Arrows emanate from regulatory factor family and point to target factor family. Solid
arrows represent gene activation, blunt-ended arrows represent repression, and dashed arrows represent attenuation. The numbers indicate how many TF family members
exhibit the indicated regulatory relationship. For example, the arrow from AP-1 to KLF represents the 7 KLF family genes activated by AP-1 factors. D) Wedged bar plots
quantify the regulatory kinetics across the time course for indicated factors. The x-axis intervals represent the time range in which the specified factor regulates changes in
accessibility of the indicated number of peaks (y-axis). Wedges between bars indicate carryover peaks from previous time interval and the outer "wings" represent peaks
that are not included in the previous time interval. The top shaded purple wedges represent peaks regulated by multiple factors; bottom wedges represent peaks that are
solely regulated by the indicated factor.
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Supplemental Fig S9. Twist2 depletion derepresses target genes A) Baseline expression of predicted TWIST2 target genes repressed in the RNA-seq time course plot-
ted as in Fig. 8A. B) Fold change of predicted TWIST2 target genes repressed in the RNA-seq time course plotted as in Fig. 8A. C) Similar results with a moderate Twist2
knockdown further support our hypothesis that TWIST2 acts as a repressor of gene expression and negative regulator preadipocyte differentiation. D) Immunoblotting indi-
cating our tetracycline-inducible 3xFlag-tagged Twist2 / LacZ constructs work appropriately. HSP90 and Tubulin are used as loading controls. E & F) Images taken at 10◊
magnification of either (E) 3T3-L1 overexpressing the indicated protein or (F) primary preadipocytes harvested from mice with the indicated genotype. Adipocytes are either
unstained (left) or stained with Oil Red O (right).
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