
S1 Appendix: Model Description

Our ABM extends an existing ABM that describes infiltration of microbeads [1] and
macrophages [2] into tumour spheroids growing in vitro. Here, we consider an in vivo
scenario, where tumour cells are embedded within a tissue containing stromal cells and
oxygen is supplied by blood vessels. We use an overlapping-spheres model, representing
each cell as a point whose movement and position are determined by balancing the
forces that act on it. We distinguish four types of agent: macrophages, tumour cells,
stromal cells and necrotic cells. We also consider five diffusible species: oxygen
(ω(x, t)), colony stimulating factor-1 (CSF-1, c(x, t)), transforming growth
factor-β (TGF-β, g(x, t)), epidermal growth factor (EGF, ϵ(x, t)), and C-X-C
motif chemokine 12 (CXCL12, ξ(x, t)). Their dynamics are defined by
reaction-diffusion equations (RDEs). Following [1, 2], we use the open source Chaste
(Cancer, Heart and Soft Tissue Environment) modelling environment to generate
simulation [3–5].

Diffusible species

The distribution of the diffusible species is modelled using RDEs, with each equation
solved numerically on a triangular finite element mesh that spans the domain. We
consider a square domain Ω, with height and width equal to 50 cell diameters
(approximately 1 mm in dimensional units). In this Section we describe the role of each
diffusible species, the factors that govern their rates of production and depletion, and
the RDEs that define their evolution. Fig 2 in the main text summarises how the
diffusible species interact with tumour cells and macrophages. Since we assume oxygen
and CXCL12 are produced from the (static) blood vessels, we make a quasi-steady state
assumption for their distribution. By contrast, changes in the distributions of EGF,
TGF-β and CSF-1 are assumed to happen on the slower timescale associated with
tumour cell and macrophage movement. Therefore we do not make the quasi-steady
assumption when calculating these distributions.

Oxygen (ω) Oxygen is supplied by blood vessels which are represented by static point
sources, and is consumed by tumour cells and stromal cells as it diffuses through the
domain. We assume that the oxygen concentration at each blood vessel is constant, ω0.

Since the timescale of diffusion for an oxygen molecule is faster than the timesteps
used in our model to describe cell movement, we assume that the distribution of oxygen
can be approximated using a steady state solution [1, 2]. For simplicity, we rescale the
oxygen concentrations with a factor of ω0, so that ω = 1 at each blood vessel. The
governing equation is then given by

0 = Dω∇2ω − κωω
∑
i

δ(x− xi) (1)

for x ∈ Ω, where xi is the location of stromal or tumour cell i, the parameter Dω is the
assumed constant diffusion coefficient of oxygen, κω is the oxygen consumption rate and
δ is the delta function (δ(x) = 1 when x = 0, δ(x) = 0 otherwise). We impose Neumann
boundary conditions (∂ω∂x = 0) on domain boundaries, and assume that initially
ω(x, t = 0) = 1 for all x that do not represent a blood vessel.

CXCL12 (C-X-C motif chemokine 12, ξ) CXCL12 is produced by perivascular
cancer-associated fibroblasts (CAFs) and acts as a diffusible chemoattractant for M2

macrophages [6]. We suppose that CAFs localise close to blood vessels, and, hence,
make the simplifying assumption that blood vessels act as constant sources of CXCL12.
We therefore assume that the concentration of CXCL12, ξ, is maintained at a fixed



value ξ = ξ0 at all blood vessels. We assume that CXCL12 decays naturally at a
constant rate, λξ. The distribution of CXCL12 in the domain is then given by

0 = Dξ∇2ξ − λξ (2)

where Dξis the diffusion coefficient for CXCL12. We impose Neumann boundary

conditions ( ∂ξ∂x = 0) on domain boundaries, and assume that initially ξ(x, t = 0) = 0 for
all x that do not represent a blood vessel.

CSF-1 (Colony stimulating factor-1, c) The macrophage chemoattractant CSF-1
is produced by tumour cells. It acts with EGF as part of a paracrine loop [7, 8] and
stimulates macrophage extravasation [6]. We assume that CSF-1 is produced at a
constant rate, κc, by each tumour cell, and decays at a constant rate, λc. The
distribution of CSF-1 is therefore described by the equation

∂c

∂t
= Dc∇2c− λcc+ κc

∑
i

δ(x− xi) (3)

where Dc is the diffusion coefficient of CSF-1 and the sum runs over all tumour cells i.
We impose Neumann boundary conditions ( ∂c

∂x = 0) on domain boundaries, and assume
that initially c(x, t = 0) = 0 for all x.

TGF-β (Transforming growth factor-β, g) TGF-β causes macrophages to alter
their phenotype, and is produced by tumour cells. We suppose that it decays at a
constant rate, λg, and is produced by tumour cells at a constant rate, κg. Combining
these effects, we arrive at the following RDE for g(x, t):

∂g

∂t
= Dg∇2g − λgg + κg

∑
i

δ(x− xi) (4)

where Dg is the diffusion coefficient of TGF-β and the sum is over all tumour cells, i.

As for CSF-1, we impose Neumann boundary conditions ( ∂g∂x = 0 on domain
boundaries), and assume that g(x, t = 0) = 0 ∀x ∈ Ω.

EGF (Epidermal growth factor, ϵ) EGF is a diffusible chemoattractant for
tumour cells that is produced by tumour associated macrophages. We assume that EGF
is produced by macrophages at a rate that is linearly dependent on their phenotype p,
so that macrophages with an extreme M1 phenotype (p = 0) produce no EGF and
macrophages with an extreme M2 phenotype (p = 1) produce κϵ. We assume that EGF
naturally decays at a constant rate, λϵ. Combining these effects, we obtain the following
RDE for EGF, ϵ(x, t):

∂ϵ

∂t
= Dϵ∇2ϵ− λϵϵ+ κϵ

∑
i

piδ(x− xi) (5)

where Dϵ is the constant diffusion coefficient of EGF, κϵ is the maximum rate of
production of EGF, the sum is over all macrophages i, and pi ∈ [0, 1] is the phenotype
of macrophage i and is defined below. As for CSF-1 and TGF-β, we impose Neumann
boundary conditions ( ∂ϵ

∂x = 0 on the boundaries of the domain Ω), and assume that
ϵ(x, t = 0) = 0 ∀x ∈ Ω.



Agents

Our model distinguishes four types of agents: macrophages, tumour cells, stromal
cells and necrotic cells. A fixed number of static blood vessels are also distributed
throughout the domain. The location of each agent is represented by its cell centre.

We use Newton’s second law to determine the equations of motion for macrophages,
tumour cells, stromal cells and necrotic cells. Neglecting inertial effects in the
overdamped limit, the force balance for cell i can be written as:

ν
dxi

dt
= Fi, (6)

where ν is the drag coefficient (assuming that the drag on a cell is proportional to its
velocity), and Fi denotes the net force acting on cell i. The forces that act on each cell
type are indicated in Fig 2 in the main text.

All cells are subject to mechanical forces due to cell-cell interactions (incorporating
repulsion due to volume exclusion and attraction due to intercellular adhesion). Here we
use the overlapping spheres approach [9, 10], assuming that two cells interact if the
distance between their cell centres is less than a fixed distance Rint. Specifically, for
cells at locations xi and xj , if |xi − xj | < Rint then the interaction force between cells i
and j is parallel to the vector (xi − xj) connecting their centres. The resting spring
length between the cell centres, si,j , is the sum of the equilibrium spring lengths
associated with each cell (si,j = si + sj). For most cells i, the resting spring length is
equal to the approximate radius of a cell (si = RCell ≡ 0.5 in non-dimensional units).
For newly divided and necrotic cells, si changes over time to account for cell growth and
shrinkage (see below).

The net mechanical force acting on cell i is the sum of all interaction forces due to
cells within its interaction radius:

Fm
i =

∑
{j : |xi−xj |≤Rint}

Fm
i,j . (7)

where Fm
i,j is the mechanical force between cells i and j. This force always points in the

direction of the vector connecting the cell centres and has magnitude:

|Fm
i,j | =

{
µsi,j log (1 +

x
si,j

) if x < 0 (Repulsive)

µxsi,j exp (−α x
si,j

) if x ≥ 0 (Adhesive)
(8)

where x = |xi − xj | − si,j is the overlap between cells i and j, µ is a parameter
describing the spring stiffness and α determines the strength of intercellular adhesion
between neighbouring cells.

We normalise lengths with the lengthscale RCell, assuming that
1 cell diameter = 2RCell = 20µm. Following cell division, the radius of the daughter
cells is set to si =

RCell

2 and increases linearly over one hour until si = RCell. For
necrotic cells, si decreases linearly to zero over τ̄i hours (see below), and then the cell is
removed from the simulation. The associated spring stiffness µ of springs attached to a
necrotic cell is reduced linearly at the same rate.

Macrophages

Extravasation Macrophages extravasate from blood vessels in response to local levels
of CSF-1. At each timestep, the probability that a macrophage extravasating in a one
hour time period is Pex, where:

Pex = P ⋆ × c

c+ c1/2
(9)



where the parameter P ⋆ controls the maximum possible probability of macrophage
extravasation per hour from each vessel, and c1/2 is the concentration of CSF-1 at which
this probability is half-maximal.

Phenotype The diffusible species included in our model bind to receptors on the
outer membranes of macrophages and tumour cells and regulate behaviours including
chemotaxis and the production of other species. While we do not explicitly model
surface receptors, the receptor CXCR4 (C-X-C motif chemokine receptor type 4) plays
an important role in this system: when exposed to TGF-β, macrophages increase
expression of CXCR4 and become sensitive to gradients of CXCL12 [6]. We model this
by associating each macrophage with a phenotype, p ∈ [0, 1], which determines the
extent to which it exhibits M1- or M2 behaviour. When a macrophage first enters the
spatial domain, it has phenotype p = 0. Exposure to TGF-β causes its phenotype to
increase irreversibly. The rate of change of the phenotype of macrophage i at location
xi is:

dp

dt
= H(g(xi, t)− gcrit)×H(1− p)×∆p (10)

where g(xi, t) is the concentration of TGF-β at xi at time t, H(x) is the Heaviside
function (H(x) = 0 if x < 0, H(x) = 1 otherwise), the non-negative parameter ∆p
determines the rate at which phenotype changes, and gcrit is a critical TGF-β threshold
above which macrophage phenotype increases. When p = 1 the macrophage has a fully
M2 phenotype, and p no longer changes.

Phenotype affects the following macrophage behaviours:

• the rate at which they produce EGF;

• the rate at which they kill tumour cells;

• their chemotactic sensitivity to spatial gradients of CSF-1 and CXCL12.

Equation (5) describes how the rate of EGF production depends on p; we now describe
how cell killing and phenotype-dependent chemotaxis are implemented.

Cell killing Macrophage phenotype determines the probability that a macrophage
kills a tumour cell on a given timestep. The probability that macrophage i of phenotype
pi kills a tumour cell in one hour is

Pφ =

{
P ⋆
φ × (1− p10

i

p10
i +0.510

) for tφ ≥ tcool

0 otherwise
(11)

where P ⋆
φ is the maximum probability that a macrophage kills a tumour cell in one hour.

tφ is the time since the macrophage last killed a tumour cell, and the parameter tcool
defines a ‘cooldown’ period during which the macrophage cannot kill another tumour
cell. On each timestep the probability of each macrophage attempting cell killing is
evaluated. If a macrophage attempts killing, any cells within distance 1 of the
macrophage are identified and, if there is at least one tumour cell, one of the tumour
cells is selected at random to be killed. The tumour cell is labelled as necrotic, and tφ is
reset to 0 for that macrophage.

Force laws for macrophages In addition to mechanical forces, macrophages are
subject to forces which account for random movement and chemotactic forces due to
spatial gradients of CXCL12 and CSF-1. We account for random movement via the
force Fr

i = (F r
x , F

r
y ) where

Fr
i =

√
2Ddtn, (12)



where the coefficient D describes the strength of the random force and n = (nx, ny),
where nx and ny are random variables drawn from a standard normal distribution.

The net force due to chemotaxis acting on macrophage i depends on its phenotype,
pi, as follows:

Fχ
i = χm

c (1− pi)
∇c

|∇c|
+ χm

ξ pi
∇ξ

|∇ξ|
(13)

where the parameters χm
c and χm

ξ control macrophage sensitivity to spatial gradients of
CSF-1 and CXCL12 respectively. We suppose that macrophage sensitivity to CSF-1 and
CXCL12 gradients scales linearly with phenotype.

The net force acting on macrophage i in Equation (6) is:

Fi = Fm
i + Fr

i + Fχ
i . (14)

Tumour cells

Cell cycle and proliferation Each tumour cell has an internal cell cycle which
advances at a rate that depends on the local oxygen concentration and two oxygen
thresholds, ωtum

H < 1 and ωtum
N ≤ ωtum

H . When ωtum
N < ω ≤ ωtum

H , the cell becomes
hypoxic and pauses its cell cycle until ω increases above this threshold. If 0 ≤ ω ≤ ωtum

N ,
then the tumour cell dies and becomes a necrotic cell. We also account for contact
inhibition in our model. If a cell’s area falls below a proportion AH

i tum of its target area,
then its cell cycle pauses until space is available for proliferation. Each tumour cell i has
a subcellular variable denoted Ti which tracks its progress through the cell cycle cell as
follows:

dTi

dt
= min

(
H(ω(xi, t)− ωtum

H ),H(Ai −AH
i tumπR

2
Cell)

)
. (15)

where Ai is the area of the cell calculated as Ai = πr2i and ri is the estimated cell radius
calculated via the average separation between cells within the interaction radius of i.

Each cell has a target cell cycle duration τi, drawn at random from a uniform
distribution of U (0.75τtum, 1.25τtum) with average cell cycle duration τtum. When
Ti = τi, cell division occurs and a new cell is placed at a distance half a cell diameter
away, in a randomly chosen direction. Both cells are assigned new cell cycle durations.
Ti is set to 0 for each cell, and then evolves according to Eq (15). The equilibrium
spring length associated with the new cells is set to si = 0.5RCell to account for their
reduced size, and increases linearly over the course of 1 hour until it reaches si = RCell.

Force laws for tumour cells Tumour cell movement is governed by the force
balance described in Equation (6). The net force incorporates intercellular interactions
as described above, and a chemotactic force due to spatial gradients in EGF. The
chemotactic force, denoted Fχϵ

i , has the form

Fχϵ

i = χT
ϵ

∇ϵ

|∇ϵ|
(16)

where the parameter χT
ϵ determines tumour cell sensitivity to EGF gradients. The net

force used in Equation (6) is therefore

Fi = Fm
i + Fχϵ

i . (17)



Stromal cells

Cell cycle and proliferation The same cell cycle model is used for stromal and
tumour cells, but it is parameterised differently to account for the increased ability of
tumour cells to survive in adverse conditions such as lower oxygen environments or
increased mechanical pressure from neighbouring cells. Like tumour cells, stromal cells
possess a subcellular age variable Ti which evolves according to the equation

dTi

dt
= min

(
H(ω(xi, t)− ωstr

H ),H(Ai −AH
i strπR

2
Cell)

)
(18)

where the parameter ωstr
H determines the oxygen threshold below which stromal cells

become hypoxic and the parameter AH
i strdefines the proportion of a stromal cell’s

target area below which the cell cycle stops.
As with tumour cells, we define a second oxygen threshold ωstr

N , below which stromal
cells become necrotic. We suppose that ωstr

H < ωtum
H and AH

i str < AH
i tum to account for

the ability of tumour cells to proliferate in more adverse environments than stromal
cells.

Force laws Stromal cells are subject to the same intercellular forces as macrophages
and tumour cells, and defined by Equations (7)-(8). The force balance for stromal cells
used in Equation (6) is

Fi = Fm
i . (19)

Necrotic cells

When a stromal or tumour cell is marked for cell death, as a result of oxygen starvation
or being killed by a macrophage, it irreversibly becomes necrotic. A necrotic cell i
occupies space for τ̄i hours, where τ̄i is drawn from a uniform distribution
U(0.75 τ̄ , 1.25 τ̄) and τ̄ is the average duration of necrosis. Over this time period, the
necrotic cell shrinks in size, by reducing its equilibrium spring constant, si, at a
constant rate until si = 0. The cell is then removed from the simulation. While si is
being reduced, the spring constant µ associated with the cell is also reduced to 0 at a
constant rate, to account for weakening of the intercellular forces between degrading
necrotic cells and other cells.

Initial and boundary conditions for cells

RDEs describing the diffusible species are solved numerically on a regular triangular
mesh with edge length 1 cell diameter. We initialise the simulation by selecting lattice
sites to act as point vessels, which do not occupy space or interact directly with cells in
our model. All lattice sites more than RB cell diameters from the centre of the domain
are possible locations for blood vessels, and NB of these sites are chosen, at random, to
be blood vessels. This ensures that the centre of the domain is at least RB cell
diameters from the nearest blood vessel and, hence, that there is sufficient space to
observe macrophage movement between blood vessels and the tumour, while also
ensuring that cells near the domain boundaries are well-oxygenated.

The domain is initialised with stromal cells filling the domain in rows that are 0.75
cell diameters apart, with alternating rows offset by 0.375 cell diameters (i.e., forming a
hexagonal lattice). We place four tumour cells in a cluster at the centre of the domain
approximately 0.5 cell diameters apart. Stromal and tumour cells are assigned cell cycle
durations τi from the relevant distributions, and cell cycle progression times Ti selected
at random from a uniform distribution U (0, τi). All cells are constrained to remain
within the domain by imposing reflective boundary conditions.



Schematic

The schematic in Fig S0 shows the order in which the above processes occur. After
initialisation, on each timestep the concentrations of diffusible species are updated and
macrophage extravasation occurs. Individual cell cycles, target spring lengths,
phenotype changes, and proliferation are then updated. Finally, cells are moved to their
new locations.

Initialise cell population

Initialise diffusible species

For each timestep:

Update concentrations of diffusible species

Check for macrophage extravasation

For each cell:

If tumour or stromal cell:

If macrophage:

Check for cell division and death

Update target spring length

Update target spring length

Check for cell removal

Calculate force balance

Move cells

Update cell cycle

Check for tumour cell killing

If necrotic:

Update phenotype

Fig S0. Model overview
Schematic showing an overview of the order in which the model is initialised, updated at
each timestep, and updated at a cell level.

Table of ABM parameters

In Table 1 we list the model parameters, their default dimensional and dimensionless
values or ranges, and supporting references where these are available. Values of some
parameters, indicated with ∗, have been estimated based on model behaviour.

Our model is implemented such that typical scales are given by:

• Length: 1 cell diameter (taken as 20µm) is 1 unit of length.

• Time: 1 hour is 1 unit of time.

• Concentration: the boundary concentration of oxygen is 1.



Table 1. Table of parameters

Parameter Symbol Value Units Dimensionless value Reference

Timestep dt 1/120 hours 1/120 [1]
Damping coefficient ν 0.4 N s−1m−1 1 [1, 11,12]
Blood vessel exclusion radius RB 340 µm 17 ∗
Number of blood vessels NB 35 - 35 ∗
Radius of interaction Rint 21 - 36 µm 1.5 [12]
Cell radius RCell 7 - 12 µm 0.5 [13]

Spring constant µ 3 - 50 µgCell diameter−1 hours−2 5 [12,14]
Intercellular adhesion scaling coefficient α - - 5 [1, 12]
Random force coefficient D Assumed Cell diameter2 hours−1 0.01 [1]
Concentration of oxygen at blood vessels ω0 100 - 150 mm Hg 1.0 [15,16]
Oxygen diffusion coefficient Dω 1,750 µm2 s−1 1.0 [1, 17]
Oxygen consumption rate κω 20× 10−18 mol cell−1 s−1 0.03 [1, 17]
Tumour cell hypoxia threshold ωtum

H 30 - 70 mm Hg 0.01 [1], ∗
Tumour cell necrosis threshold ωtum

N 10 mm Hg 0.01 [1], ∗
Stromal cell hypoxia threshold ωstr

H 30 - 70 mm Hg 0.1 [1], ∗
Stromal cell necrosis threshold ωstr

N 10 mm Hg 0.01 [1], ∗
CSF-1 diffusion coefficient Dc 160 µm2 s−1 1.0 [18], ∗
CSF-1 production rate κc 1.7× 10−23 mol m−3 s−1 0.25 [18], ∗
CSF-1 decay rate λc 1.9× 10−4 s−1 0.02 [18], ∗
TGF-β diffusion coefficient Dg 21.3 µm2 s−1 0.1 [19], ∗
TGF-β production rate κg 0.01-0.11 ng (million cells × day)−1 0.1 [19], ∗
TGF-β decay rate λg 0.23-0.34 min−1 0.1 [20], ∗
EGF diffusion coefficient Dϵ 160 µm2 s−1 0.2 [18], ∗
EGF production rate κϵ 1.7× 10−23 mol m−3 s−1 0.2 [18], ∗
EGF decay rate λϵ 1.9× 10−4 s−1 0.1 [18], ∗
Concentration of CXCL12 at blood ves-
sels

ξ0 Assumed mm Hg 1.0 ∗

CXCL12 diffusion coefficient Dξ 150× 10−6 µm2 s−1 1.0 [21], ∗
CXCL12 decay rate λξ 2× 10−5 s−1 0.02 [21], ∗
Chemotaxis sensitivity coefficient
(macrophage to CSF-1)

χm
c Assumed Cell diameter2 hour−1

nM−1
0 - 5 ∗

Chemotaxis sensitivity coefficient
(macrophage to CXCL-12)

χm
ξ Assumed Cell diameter2 hour−1

nM−1
0 - 5 ∗

Chemotaxis sensitivity coefficient (tu-
mour cell to EGF)

χT
ϵ Assumed Cell diameter2 hour−1

nM−1
0 - 5 ∗

Half-maximal macrophage extravasation
CSF-1 concentration

c1/2 Assumed mol Cell diameter−3 0.1 - 0.5 ∗

Maximum probability of macrophage ex-
travasation

P ⋆ Assumed - 0.01 - 0.1 ∗

Critical TGF-β threshold gcrit Assumed mol Cell diameter−3 0 - 2 ∗
Average duration of tumour cell cycle τtum 24 hours 24 [1], ∗
Average duration of stromal cell cycle τstr 32 hours 32 ∗
Average duration of necrosis τ̄ 48 hours 48 [1], ∗
Proportion of equilibrium area for con-
tact inhibition (tumour cell)

AH
i tum Assumed - 0.6 ∗

Proportion of equilibrium area for con-
tact inhibition (stromal cell)

AH
i str Assumed - 0.75 ∗

Macrophage phenotype increment ∆p Assumed hours−1 0.01 ∗
Maximum killing probability per hour P ⋆

φ Assumed - 0.2 ∗
Killing cooldown duration tcool Assumed hours 4 ∗
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