
S4 Appendix: Comparison of different weighting functions

In this appendix we consider different choices of the weighting, or kernel, function wp,
and apply them to synthetic data. In Fig S6 we place 50 pink crosses uniformly along
the line y = 1, and 1000 circles according to complete spatial randomness throughout
the (2× 2) square domain. The circles are labelled with a ‘phenotype’ p based on their
distance from y = 1, such that for circle i the label pi is given by:

pi =

{
1− yi if yi < 1

2− yi if yi ≥ 1
. (1)

By construction, this results in two prominent values of p which are correlated with
pink crosses at distance r: p = r (below y = 1) and p = 1− r (above y = 1).
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Fig S6. Synthetic data generated to demonstrate different weighting
functions
The test data consists of 50 pink crosses (’blood vessels’ uniformly positioned along the
line y = 1) and 1000 circles randomly positioned in the domain (‘macrophages’ with
different phenotypes placed according to complete spatial randomness). Circles are
labelled according to their distance from the line y = 1.

In Fig S7 we present wPCFs for this point cloud for different choices of the weighting
function wp(P, pi) in Equation (11). In Fig S7A, we use the kernel from the main text,

which has the form wp(P, pi) = max
(
1− |P−pi|

∆P , 0
)
, and consider different values of

∆P . In the main text, we fixed ∆P = 0.2, as it produces a kernel that is sufficiently
compact to identify variations in phenotype while being broad enough to reduce noise.

In Fig S7B, we fix wp(P, pi) = max
(
1− (P−pi)

2

∆P , 0
)
, which leads to a smoother kernel

and, hence, a smoother wPCF. In all cases, we present the wPCF and wp(0.5, pi).



A B

Fig S7. wPCFs generated from different weighting functions
wPCF (r, P,B) for the point pattern in Fig S6. Changing the shape of the weighting
function adjusts the balance between signal and noise in the wPCF: the narrower the
support of w, the more clearly the relationship between label and distance can be
discerned. Using a weighting function with extremely narrow support relative to the
range of labels results in more noise in the wPCF, most evident in the triangular
weighting functions with ∆P = 0.05 and ∆P = 0.01.
A: wPCFs generated using weighting functions of the form w(P, p) = 1−m|P − p|,
together with w(0.5, p)
B: wPCFs generated using weighting functions of the form w(P, p) = 1−m(P − p)2,
together with w(0.5, p)

Fig S7 shows how the shape of the weighting function influences the balance between
signal and noise in the wPCF. When the support of the weighting function is broad
(e.g., ∆P ≥ 1), the wPCF does not identify correlations between r and the target



phenotype P . On the other hand, when the support of the weighting function is narrow
(e.g., ∆P = 0.01 for the triangular weighting function), the resulting wPCF identifies
correlation well but contains a lot of noise. We conclude that the choice of weighting
function can have a strong effect on the resulting wPCF, and should be chosen with
care. Selecting a weighting function which is too ‘narrow’ will result in noisy wPCFs,
while one that is too ‘broad’ will produce wPCFs that are unable to resolve resolution
key features. In practice, the appropriate choice is likely to depend on both the
distribution of labels in the data and the number of points available, in the same way
that the selection of an appropriate annulus radius for the PCF must be tailored to the
dataset in question.


