4. Supplemental Information

Contents

- S1. ASCT+B Tables
- S2. CCF 3D Reference Object Library

S1. ASCT+B Tables

Table Name

Anatomical Structures, Cell Types, plus Biomarkers (ASCT+B) tables aim to capture the structure of anatomical human body parts, the typology of cells, and biomarkers used to identify cell types (e.g., gene and protein). The tables are authored and reviewed by an international team of anatomists, pathologists, physicians, and other experts.

The v1.0 release features a total of 11 tables.

1.	Bone Marrow & Blood/Pelvis v1.0	https://doi.org/10.48539/HBM963.TBFP.428
2.	Brain v1.0	https://doi.org/10.48539/HBM264.CCRF.525
3.	Heart v1.0	https://doi.org/10.48539/HBM873.NNVD.559
4.	Intestine, Large v1.0	https://doi.org/10.48539/HBM287.KVCD.758
5.	Kidney v1.0	https://doi.org/10.48539/HBM325.PTQS.258
6.	Lung v1.0	https://doi.org/10.48539/HBM868.DWJZ.874
7.	Lymph Node v1.0	https://doi.org/10.48539/HBM375.LMPC.837

DOI

S2. CCF 3D Reference Object Library

The CCF 3D Reference Object Library comprises anatomically correct reference organs. The organs are developed by specialists in 3D medical illustration and approved by organ experts.

The v1.0 release features a total of 26 reference organs.

The crosswalk table to the ASCT+B tables is available via the CCF 3D Reference Object Library page at https://hubmapconsortium.github.io/ccf/pages/ccf-3d-reference-library.html.

3D Reference Organ Name	DOI

1. Pelvis, Male v1.0	https://doi.org/10.48539/HBM672.KSST.448
2. Pelvis, Female v1.0	https://doi.org/10.48539/HBM539.RRDB.894
3. Brain, Male v1.0	https://doi.org/10.48539/HBM927.XKJR.426
4. Brain, Female v1.0	https://doi.org/10.48539/HBM438.XKJT.666
5. Heart, Male v1.0	https://doi.org/10.48539/HBM384.FDPD.646
6. Heart, Female v1.0	https://doi.org/10.48539/HBM894.FGQN.237
7. Intestine, Large, Male v1.0	https://doi.org/10.48539/HBM235.QFTP.824
8. Intestine, Large, Female v1.0	https://doi.org/10.48539/HBM734.KXRL.243
9. Kidney, Male, Left v1.0	https://doi.org/10.48539/HBM792.NPXX.335
10. Kidney, Male, Right v1.0	https://doi.org/10.48539/HBM693.RTRN.866
11. Kidney, Female, Left v1.0	https://doi.org/10.48539/HBM765.JWFB.892
12. Kidney, Female, Right v1.0	https://doi.org/10.48539/HBM726.HWKT.534
13. Lung, Male v1.0	https://doi.org/10.48539/HBM373.VPSC.692
14. Lung, Female v1.0	https://doi.org/10.48539/HBM467.NHKR.974
15. Lymph Node, Male, Left v1.0	https://doi.org/10.48539/HBM668.RBLW.256
16. Lymph Node, Male, Right v1.0	https://doi.org/10.48539/HBM699.BLKS.298
17. Lymph Node, Female, Left v1.0	https://doi.org/10.48539/HBM897.HVMV.989
18. Lymph Node, Female, Right v1.0	https://doi.org/10.48539/HBM439.ZTGH.778
19. Skin, Male v1.0	https://doi.org/10.48539/HBM689.CGPV.442
20. Skin, Female v1.0	https://doi.org/10.48539/HBM287.TJZD.872
21. Spleen, Male v1.0	https://doi.org/10.48539/HBM583.DRHV.265
22. Spleen, Female v1.0	https://doi.org/10.48539/HBM626.WZGS.532
23. Thymus, Male v1.0	https://doi.org/10.48539/HBM955.BGTP.947
24. Thymus, Female v1.0	https://doi.org/10.48539/HBM896.TWPT.542
25. Vasculature, Male v1.0	https://doi.org/10.48539/HBM784.ZDZF.357
26. Vasculature, Female v1.0	https://doi.org/10.48539/HBM253.DKWB.737