
0 50 100 150 200

10
20

30
40

50

Iteration

To
ta

l L
ik

el
ih

oo
d 

C
ha

ng
e

Figure S1: Changes in likelihood over the course of the algorithm. Executing the E step of the al-
gorithm is computationally challenging, and therefore we repeatedly split the isoforms into 200 random
subsets and use them to guide the search instead of the full log-likelihood. Here, a value on the x-axis
corresponds to one optimization step, i.e. a random partition of all isoforms into 200 sets and optimization
of the GO term assignments within each set. The y-axis shows the sum of likelihood changes divided by
the number of log-likelihood terms over all 200 sets, starting from the difference between the value of the
objective after the second step and its value after the first step. The E step terminates when the sum of
changes over its last 25 partitions does not exceed a small threshold, after which the M step optimizes the
parameters that map the number of shared GO terms to the normalized alignment score. The figure was
generated for the optimization of GO Molecular Function+Interpro2GO.
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Figure S2: Distribution of interpro2GO and isopret predictions across the three GO subontolo-
gies. The fractions of interpro2GO and isopret predictions that belong to each one of the three sub-
ontologies is shown. CC: cellular component (GO:0005575); MF: molecular function (GO:0003674); BP:
(GO:0008150).
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Figure S3: Distribution of isopret predictions and the GO corpus across the three GO subontologies.
The fractions of unique terms in GO and isopret predictions that belong to each one of the three sub-
ontologies is shown. Abbreviations as in Fig. S2. The GO corpus contains a total of 18,637 terms (version
of 2.2).
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Figure S4: The number of common Interpro domains as a function of shared Molecular Function (MF),
Biological Process (BP) and Cellular Component (CC) terms. The x-axis shows between 0 and 5 shared
terms since the number of pairs that share a given number of terms is smaller when breaking down to the
3 sub-ontologies than when the terms are combined. Left: for isoforms, the greatest increase in shared
domains is for shared MF terms, with a smaller for BP and CC. Right: for GO gene level annotation there
is an increase for MF but the median does not change for the other sub-ontologies.
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Figure S5: Expression correlation of isoforms as a function of shared Molecular Function (MF), Biolog-
ical Process (BP) and Cellular Component (CC) terms. The x-axis shows between 0 and 5 shared terms
since the number of pairs that share a given number of terms is smaller when breaking down to the 3 sub-
ontologies than when the terms are combined. Left: for isoforms, the greatest increase in correlation is for
BP and CC, with some increase for MF. Right: for GO gene level annotation there is a modest increase in
correlation for the 3 sub-ontologies.
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Figure S6: For each number of common Interpro domains on the x-axis, the figure shows the breakdown
of the median number of common GO terms to the medians of the number of common Molecular Function
(MF), Biological Process (BP) and Cellular Component (CC) terms. Left: for the Isopret annotation, MF
and BP have an equal contribution, whereas CC contributes less terms, with a nonzero median contribu-
tion when the number of shared domain is 7-10. Right: for GO gene level annotation we see an equal
breakdown between the 3 sub-ontologies for 3-10 shared domains, where only CC has a nonozero median
contribution of shared GO terms when the number of shared Interpro domains is 2.
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Figure S7: Area under the Receiver Operating Characteristic (AUROC) analysis. Isopret showed superior
performance compared to DIFFUSE, Interpro2GO and IsoResolve.
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Author Year Ref. Algorithm name Predictions? Executable? Tested?

Eski 2013 [1] IsoPred - - -
Li 2014 [2] IsoFP - - -
Li 2014 [3] not named - - -
Tseng 2015 [4] IIIDB - - -
Mitchell 2015 [5] interpro2go X - X
Luo 2017 [6] - - -
Shaw 2018 [7] DeepIsoFun - - *

Chen 2019 [8] DIFFUSE X - X
Ferrer-Bonsoms 2020 [9] IsoGO - - -
Yu 2019 [10] IsoFun - ** -
Yunes 2018 [11] Effusion - *** -

Li 2020 [12] IsoResolve - X X
Wang 2020 [13] Diso-Fun - - -
Yu 2021 [14] TS-Isofun - - -
Yu 2021 [15] DMIL-IsoFun - - -
Chen 2021 [16] FINER X - X

Table S1: Availability of predictions or executable code of previous approaches to isoform predic-
tion. The table shows published algorithms and indicated whether predictions made by the algorithm,
are available (“Predictions?”) or whether script or program is available which could be used to gener-
ate predictions for the algorithm (“Executable?”). We followed links from the original publications and
searched for updated links using standard internet search engines. In some cases, following the original
links produces a 404 Page Not Found error (e.g., [1, 2]. In others, the original papers did not provide
predictions or code (e.g.,[6]). (*) We did not test DeepIsoFun, because is was presented by the same group
as DIFFUSE, which is a later paper and was reported to outperform DeepIsoFun. (**) IsoFun, Diso-Fun
and DMIL-IsoFun require a license to matlab[10, 15, 13]; FINER provided predictions for 471 GO terms
but none of its predictions matched entries in our gold standard [16]. No open-source version is available.
(***) Unable to run provided code.
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Supplementary Note 1
A reduction is a method used in theoretical computer science to transform one problem into another
problem. In this section, we show that the graph 3-coloring problem, which is NP-complete, can be
transformed into the E step of the isoform function assignment problem as posed in the main manuscript
(we will call it isoform-GO-assignment for brevity). Although it remains to be proved, it is widely believed
that no polynomial time algorithms exist for finding solutions to NP-complete problems. Colloquially
speaking NP-complete problems belong to a class of problems that are difficult to solve efficiently. The
purpose of this proof is to motivate the need for a heuristic (approximation) at the E-step of the EM
algorithm described in the main text.

Given a graph G(V,E) where V is the set of vertices and E ⊂ V × V is the set of edges, a k-coloring
assigns to each node v ∈ V a label lv ∈ 1, 2, . . . , k such that if (u, v) ∈ E then lv 6= lu.

Let G(V,E) be an instance of a 3-coloring, i.e. any input to the 3-coloring problem. We perform the
following polynomial-time construction of an instance of isoform-GO-assignment:

1. For each node v ∈ V we create one isoform.

2. Assign the isoforms to genes arbitrarily. Every gene has the same set of 3 GO terms.

3. The observed sequence similarity scores will be S(i, j) =

{
−1 (i, j) ∈ E
0 (i, j) /∈ E

4. Let β0 = −1, β1 = 2, β2 = 0, and define a quadratic equation to predict the observed sequence
score as a function of the number of shared GO terms, f(n) = β0 + β1n+ β2n

2.

Claim 1. There is a 3-coloring for the graph if and only if there is an isoform-GO-assignment where the
sum of absolute differences between predicted and observed sequence similarities is

(|V |
2

)
− |E| , i.e. the

sum is equal to the number of vertex pairs that do not have an edge between them.

Proof. First direction: Assume that there is a 3-coloring for G. We assign GO terms as follows: For each
isoform i assign the GO term with the index of the color of its corresponding node in the graph. Since
nodes that have an edge between them do not share a color, the corresponding isoforms will not share a
GO term, and the predicted sequence similarity between them will be β0 = −1. By the construction this
is exactly the observed sequence similarity score, so the sum of differences for these nodes will be 0. For
nodes that do not have an edge between, by the construction they can either share one GO term or zero
GO terms. So the predicted sequence similarity score will be either 1 or -1, in both cases an absolute
difference of 1 from the observed sequence similarity of 0. The total sum of absolute differences is then(|V |

2

)
− |E|, which is the number of these nodes.

Second direction: Now assume that there is an isoform function assignment such that the sum of
absolute differences between predicted and observed sequence similarities is

(|V |
2

)
− |E|. First, we will

show that the sum of absolute differences between isoforms i and j such that (i, j) /∈ E is at least
(|V |

2

)
−

|E|:
If i and j share zero or one GO terms, then as we have seen in the other direction of the proof, the

absolute difference between the predicted and observed sequence similarity is 1. If they share two GO
terms, then the predicted similarity is β0 + β1 · 2 + β2 · 22 = 3, and the absolute difference is |3− 0| = 3.
Similarly, if they share three GO terms the absolute difference is 5. Since as we have shown the minimal
absolute difference is 1, and since there are

(|V |
2

)
− |E| such isoform pairs, the sum of absolute differences

between predicted and observed sequence similarity scores for these isoform pairs is at least
(|V |

2

)
− |E|.
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Since absolute difference are non-negative, and since the total sum of absolute difference in the solution
is
(|V |

2

)
− |E|, all other differences must be 0. Since the sequence similarity between all other pairs of

isoforms, i.e. those for which (i, j) ∈ E is -1, this is also the predicted sequence similarity scores between
them, and this can only happen if they do not share a GO term. Now, assign to each node the color that
corresponds to the index of the GO term that was assigned to its corresponding isoform. If the isoform
was assigned more than one G0 term, arbitrarily select one term/color from those that were assigned to
it. By the construction, none of the adjacent nodes will be assigned the same color. This completes the
proof.

Notes

1. The reduction can be slightly changed such that isoforms can be left without any GO term assigned to
them in the definition of the GO assignment problem. To obtain this, we connect each node/isoform
to |E| new nodes that are connected only to it, and have sequence similarity 1 to it - then it is easy
to see that in the optimal solution each isoform is assigned a GO term.

2. We used the L1 norm for difference between predicted and observed sequence similarities in the
definition of the GO assignment problem, but the same reduction can be done with the L2 norm with
minimal changes.
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