Appendix 2

Comparative effectiveness of various physical exercise interventions on executive

functions and related symptoms in children and adolescents with attention deficit

hyperactivity disorder: A systematic review and network meta-analysis

Feilong Zhu¹, Xiaotong Zhu¹, Xiaoyu Bi¹, Dongqing Kuang¹, Boya Liu², Jingyi

Zhou¹, Yiming Yang¹, Yuanchun Ren^{1*}

¹ College of Physical Education and Sports, Beijing Normal University, China

² School of Social Ecology, University of California, Irvine, USA

* Corresponding author

Yuanchun Ren

Email: yuanchun-ren@bnu.edu.cn

S1. Updated protocol

Table S1 Protocol deviations

Section	Previous protocol	Update
Title	Comparative efficacy of	Comparative effectiveness of
	physical activity modalities in	various physical exercise
	children and adolescents with	interventions on executive
	attention deficit/hyperactivity	functions and related symptoms
	disorder: A systematic review	in children and adolescents with
	and network meta-analysis	attention deficit hyperactivity
		disorder: A systematic review
		and network meta-analysis
Authors	Feilong Zhu, Xiaotong Zhu, Yu	Feilong Zhu, Xiaotong Zhu,
	Wu, Xiaoyu Bi, Dongqing	Xiaoyu Bi, Dongqing Kuang,
	Kuang, Yuanchun Ren	Boya Liu, Jingyi Zhou,
		Yuanchun Ren
Search strategy	With no limitation on language	We searched the Web of Science,
	and publication data, the	PubMed, Embase, Cochrane
	databases for Web of Science,	Central Register of Controlled
	PubMed, Embase, Cochrane	Trials, SPORTDiscus,
	Central Register of Controlled	PsycINFO, CNKI and clinical
	Trials, SPORTDiscus, PEDro,	trials databases without

ScienceDirect, PsycINFO and restrictions on language.

ClinicalTrials.gov was

searched.

Study quality

assessment

Risk of bias was assessed by 2 The methodological quality of

authors according to the included randomized controlled

Cochrane Collaboration's risk- trials and non-randomized

of-bias tool, which consists of controlled studies was assessed

seven items: random sequence by 2 reviewers using the

generation, allocation Physiotherapy Evidence

concealment, blinding of Database scale (PEDro).

participants and personnel,

blinding of outcome assessors,

incomplete outcome data,

incomplete outcome reporting,

and other bias.

Data synthesis

No meta regression analysis.

We also conducted meta

regression analysis (with

frequency, intensity, duration,

and length of PA interventions as

covariates) for the primary

outcomes.

S2. Search strategy

PubMed 549

- "Attention Deficit Disorder with Hyperactivity" [Mesh] OR Attention Deficit
 Disorders with Hyperactivity[tiab] OR Attention Deficit Hyperactivity
 Disorder*[tiab] OR Hyperkinetic Syndrome*[tiab] OR ADDH[tiab] OR
 ADHD[tiab] OR Attention Deficit Disorder*[tiab] OR ADD[tiab] OR
 Hyperactivit*[tiab] OR Inattenti*[tiab] OR Impulsivit*[tiab] OR attention-deficit
 hyperactivity disorder*[tiab] OR Attention Deficit-Hyperactivity Disorder*[tiab]
 OR Hyperkinet*[tiab] OR Overactive*[tiab]
- #2 "Exercise" [Mesh] OR "Sports" [Mesh] OR Exercise* [tiab] OR Physical Activit*[tiab] OR Physical Exercise*[tiab] OR Isometric Exercise*[tiab] OR Aerobic Exercise*[tiab] OR Exercise Training*[tiab] OR Sport*[tiab] OR Movement[tiab] OR Workout*[tiab] OR Physical Training*[tiab] OR Energy expenditure[tiab] OR Athletic*[tiab] OR Acute Exercise*[tiab] OR Chronic Exercise*[tiab] OR Exercise intervention[tiab] OR Intervention* [tiab] OR Training*[tiab] OR Program[tiab] OR Physical education[tiab] OR Locomotor Activit*[tiab] OR Physical therap*[tiab] OR motor activit*[tiab] OR Soccer[tiab] OR Swim*[tiab] OR Aquatic*[tiab] OR Div*[tiab] OR Football[tiab] OR Pin pang[tiab] OR Ping-pong[tiab] OR Ping pang[tiab] OR Basketball[tiab] OR Cricket[tiab] OR Tennis[tiab] OR Rugby[tiab] OR Danc*[tiab] OR Martial art*[tiab] OR Netball[tiab] OR Hockey[tiab] OR Gym*[tiab] OR Horse rid*[tiab] OR Horseback rid*[tiab] OR Equestrian[tiab] OR Baseball[tiab] OR Yoga[tiab] OR Badminton[tiab] OR Taekwondo[tiab] OR Judo[tiab] OR Cycling[tiab] Physical fitness[tiab] OR Fitness[tiab] OR Resistance exercise[tiab] OR Bicycling[tiab] OR Boxing[tiab] OR Golf[tiab] OR Tai Ji[tiab] OR

Mountaineering[tiab] OR Racquet sports[tiab] OR Skating[tiab] OR Snow sports skiing[tiab] OR Wrestling[tiab] OR Weight lifting[tiab] OR Games recreational[tiab] OR Weight bearing exercise[tiab] OR Strength training[tiab] OR Running[tiab] OR Agility[tiab] OR Trampoline[tiab] OR Snowshoeing[tiab] OR Skating[tiab] OR Exergaming[tiab] OR Skateboarding[tiab] OR Walking[tiab] OR Treadmill[tiab]

"Child" [Mesh] OR "Adolescent" [Mesh] OR "Young Adult" [Mesh] OR "Minor" [Mesh] OR Adolescen* [tiab] OR Teen* [tiab] OR Teenager* [tiab] OR Youth* [tiab] OR "Minors" [tiab] OR Minor* [tiab] OR "Child" [tiab] OR Child* [tiab] OR Kids [tiab] OR Girl* [tiab] OR Boy* [tiab] OR Under age* [tiab] OR Underage* [tiab] OR Young people [tiab] OR young person [tiab] OR Prepubescen* [tiab] OR Pubescen* [tiab] OR Young Adult* [tiab] OR School age [tiab] OR Preschool* [tiab] OR Student* [tiab]

#4 #1 AND #2 AND #3

Web of Science 6236

H1 TS = ("Attention Deficit Disorder with Hyperactivit*" OR "attention-deficit hyperactivity disorder*" OR "attention deficit disorder*" OR "ADHD" OR adhd OR addh OR add OR "Attention Deficit Disorder* with Hyperactivity" OR "Attention Deficit Hyperactivity Disorder*" OR "Attention Deficit-Hyperactivity Disorder*" OR "attention deficit disorder hyperactivity" OR "attention deficit" OR "child attention deficit disorder" OR hyperactiv* OR "Hyperkinetic Syndrome*" OR "syndrome* hyperkinetic" OR "hyperkinetic syndrome childhood" OR "attention deficit hyperkinetic disorder" OR "hyperkinetic disorder" OR hyperkinetic disorder" OR "hyperkinetic disorder" OR hyperkinetic disorder" OR hyperkinetic disorder" OR "hyperkinetic disorder" OR hyperkinetic disorder" OR hyperkinetic disorder" OR hyperkinet* OR overactive* OR "overactive child syndrome" OR

- inattenti* OR "attention problem*" OR "syndrome hyperkinetic" OR "hyperkinetic syndrome" OR "hyperactivity disorder" OR "hyperactive child syndrome" OR "childhood hyperkinetic syndrome")
- #2 TS = (Attention Deficit Disorder with Hyperactivity)
- #3 TS = (Sport* OR Exercis* OR "Locomotor Activit*" OR "Physical* therap*" OR "physical* activit*" OR "motor activit*" OR Soccer OR Swim* OR Aquatic* OR Dive OR Diving OR Football OR Pin pang OR Ping-pong OR Ping pang OR Basketball OR Cricket OR Tennis OR Rugby OR Danc* OR Athletic* OR "Martial art*" OR Netball OR Hockey OR Gym* OR "horse rid*" OR "horseback rid*" OR Equestrian OR Baseball OR Yoga OR Badminton OR Taekwondo OR Danc* OR Judo OR Cycling)
- #4 TS = (Sports OR Exercise)
- #5 TS=(Child OR Adolescent OR Young Adult OR Minor OR Adolescen* OR Teen* OR Teenager* OR Youth* OR Minors OR Minor* OR Child* OR Kid OR Kids OR Girl* OR Boy* OR Under age* OR Underage* OR Young people OR young person OR Prepubescen* OR Pubescen* OR Young Adult* OR School age OR Preschool* OR Student*)
- #6 TS = (Child OR Adolescent OR Young Adult OR Minor)
- #7 #1 OR #2
- #8 #3 OR #4
- #9 #5 OR #6
- #10 #7 AND #8 AND#9

Cochrane Library 1164

- #1 (Attention Deficit Disorder with Hyperactivit* OR attention-deficit hyperactivity disorder* OR attention deficit disorder* OR ADHD OR adhd OR addh OR add OR Attention Deficit Disorder* with Hyperactivity OR Attention Deficit Hyperactivity Disorder* OR Attention Deficit-Hyperactivity Disorder* OR attention deficit disorder hyperactivity OR attention deficit" OR child attention deficit disorder OR hyperactiv* OR Hyperkinetic Syndrome* OR syndrome* hyperkinetic OR hyperkinetic syndrome childhood OR attention deficit hyperkinetic disorder OR hyperkinetic disorder OR hyperkinet* OR overactive* OR "overactive child syndrome OR inattenti* OR attention problem* OR syndrome hyperkinetic OR hyperkinetic syndrome OR hyperactivity disorder OR hyperactive child syndrome OR childhood hyperkinetic syndrome): ti, ab, kw
- #2 Attention Deficit Disorder with Hyperactivity [Mesh]
- "Sport* OR Exercis* OR "Locomotor Activit*" OR "Physical* therap*" OR "physical* activit*" OR "motor activit*" OR Soccer OR Swim* OR Aquatic* OR Dive OR Diving OR Football OR Pin pang OR Ping-pong OR Ping pang OR Basketball OR Cricket OR Tennis OR Rugby OR Danc* OR Athletic* OR "Martial art*" OR Netball OR Hockey OR Gym* OR "horse rid*" OR "horseback rid*" OR Equestrian OR Baseball OR Yoga OR Badminton OR Taekwondo OR Danc* OR Judo OR Cycling): ti, ab, kw
- #4 Sports [Mesh]
- #5 Exercise [Mesh]
- #6 (Child OR Adolescent OR Young Adult OR Minor OR Adolescen* OR Teen* OR

 Teenager* OR Youth* OR Minors OR Minor* OR Child* OR Kid OR Kids OR

 Girl* OR Boy* OR Under age* OR Underage* OR Young people OR young

person OR Prepubescen* OR Pubescen* OR Young Adult* OR School age OR Preschool* OR Student*): ti, ab, kw

- #7 Child [Mesh] OR Adolescent [Mesh] OR Young Adult [Mesh] OR Minor [Mesh]
- #8 #1 OR #2
- #9 #3 OR #4 OR #5
- #10 #6 OR #7
- #11 #8 AND #9 AND #10

Embase 2653

- disorder* 'OR 'attention deficit disorder with hyperactivit*' OR 'attention-deficit hyperactivity disorder*' OR 'attention deficit disorder* OR 'adhd' OR adhd OR addh OR add OR 'attention deficit disorder* with hyperactivity' OR 'attention deficit hyperactivity disorder*' OR 'attention deficit-hyperactivity disorder*' OR 'attention deficit disorder hyperactivity' OR 'attention deficit' OR 'child attention deficit disorder' OR hyperactiv* OR 'hyperkinetic syndrome*' OR 'syndrome* hyperkinetic' OR 'hyperkinetic syndrome childhood' OR 'attention deficit hyperkinetic disorder' OR 'hyperkinetic disorder' OR hyperkinet* OR overactive* OR 'overactive child syndrome' OR inattenti* OR 'attention problem*' OR 'syndrome hyperkinetic' OR 'hyperkinetic syndrome' OR 'hyperactivity disorder' OR 'hyperactive child syndrome' OR 'childhood hyperkinetic syndrome'
- #2 'attention deficit disorder'/exp
- #3 sport* OR exercis* OR 'locomotor activit*' OR 'physical* therap*' OR 'physical* activit*' OR 'motor activit*' OR soccer OR swim* OR aquatic* OR dive OR

diving OR football OR 'pin pang' OR 'ping pong' OR 'ping pang' OR basketball OR cricket OR tennis OR rugby OR athletic* OR 'martial art*' OR netball OR hockey OR gym* OR 'horse rid*' OR 'horseback rid*' OR equestrian OR baseball OR yoga OR badminton OR taekwondo OR danc* OR judo OR cycling

- #4 'sport'/exp
- #5 'exercise'/exp
- #6 Child OR Adolescent OR Young Adult OR Minor OR Adolescen* OR Teen* OR Teenager* OR Youth* OR Minors OR Minor* OR Child* OR Kid OR Kids OR Girl* OR Boy* OR Under age* OR Underage* OR Young people OR young person OR Prepubescen* OR Pubescen* OR Young Adult* OR School age OR Preschool* OR Student*
- #7 'Child'/exp
- #8 'Adolescent'/exp
- #9 #1 OR #2
- #10 #3 OR #4 OR #5
- #11 #6 OR #7 OR #8
- #12 #9 AND #10 AND #11

SPORTDiscus 1765

- #1 DE "Attention Deficit Disorder with Hyperactivity"
- #2 ("Attention Deficit Disorder with Hyperactivit*" OR "attention-deficit hyperactivity disorder*" OR "attention deficit disorder*" OR "ADHD" OR adhd OR add OR "Attention Deficit Disorder* with Hyperactivity" OR

"Attention Deficit Hyperactivity Disorder*" OR "Attention Deficit-Hyperactivity Disorder*" OR "attention deficit disorder hyperactivity" OR "attention deficit" OR "child attention deficit disorder" OR hyperactiv* OR "Hyperkinetic Syndrome*" OR "syndrome* hyperkinetic" OR "hyperkinetic syndrome childhood" OR "attention deficit hyperkinetic disorder" OR "hyperkinetic disorder" OR hyperkinete* OR overactive* OR "overactive child syndrome" OR inattenti* OR "attention problem*" OR "syndrome hyperkinetic" OR "hyperkinetic syndrome" OR "hyperkinetic syndrome" OR "hyperactivity disorder" OR "hyperactive child syndrome" OR "childhood hyperkinetic syndrome"). TX

- #3 DE "Sports"
- #4 DE "Exercise"
- #5 (Sport* OR Exercis* OR "Locomotor Activit*" OR "Physical* therap*" OR "physical* activit*" OR "motor activit*" OR Soccer OR Swim* OR Aquatic* OR Dive OR Diving OR Football OR Pin pang OR Ping-pong OR Ping pang OR Basketball OR Cricket OR Tennis OR Rugby OR Danc* OR Athletic* OR "Martial art*" OR Netball OR Hockey OR Gym* OR "horse rid*" OR "horseback rid*" OR Equestrian OR Baseball OR Yoga OR Badminton OR Taekwondo OR Danc* OR Judo OR Cycling). TX
- #6 DE "Child"
- #7 DE "Adolescent"
- #8 (Child OR Adolescent OR Young Adult OR Minor OR Adolescen* OR Teen* OR
 Teenager* OR Youth* OR Minors OR Minor* OR Child* OR Kid OR Kids OR
 Girl* OR Boy* OR Under age* OR Underage* OR Young people OR young
 person OR Prepubescen* OR Pubescen* OR Young Adult* OR School age OR
 Preschool* OR Student*). TX

#9 #1 OR #2

#10 #3 OR #4 OR #5

#11 #6 OR #7 OR #8

#12 #9 AND #10 AND #11

PsycINFO 3042

- "Attention Deficit Disorder with Hyperactivity" OR Attention Deficit Disorders with Hyperactivity OR Attention Deficit Hyperactivity Disorder* OR Hyperkinetic Syndrome* OR ADDH OR ADHD OR Attention Deficit Disorder* OR ADD OR Hyperactivit* OR Inattenti* OR Impulsivit* OR attention-deficit hyperactivity disorder* OR Attention Deficit-Hyperactivity Disorder* OR Hyperkinet* OR Overactive*
- Exercise OR Sports OR Exercise* OR Physical Activit* OR Physical Exercise*
 OR Isometric Exercise* OR Aerobic Exercise* OR Exercise Training* OR Sport*
 OR Movement OR Workout* OR Physical Training* OR Energy expenditure OR
 Athletic* OR Acute Exercise* OR Chronic Exercise* OR Exercise intervention
 OR Intervention* OR Training* OR Program OR Physical education OR
 Locomotor Activit* OR Physical therap* OR motor activit* OR Soccer OR
 Swim* OR Aquatic* OR Div* OR Football OR Pin pang OR Ping-pong OR Ping
 pang OR Basketball OR Cricket OR Tennis OR Rugby OR Danc* OR Martial art*
 OR Netball OR Hockey OR Gym* OR Horse rid* OR Horseback rid* OR
 Equestrian OR Baseball OR Yoga OR Badminton OR Taekwondo OR Judo OR
 Cycling Physical fitness OR Fitness OR Resistance exercise OR Bicycling OR
 Boxing OR Golf OR Tai Ji OR Mountaineering OR Racquet sports OR Skating
 OR Snow sports skiing OR Wrestling OR Weight lifting OR Games recreational

- OR Weight bearing exercise OR Strength training OR Running OR Agility OR
 Trampoline OR Snowshoeing OR Skating OR Exergaming OR Skateboarding OR
 Walking OR Treadmill
- #3 Child OR Adolescent OR "Young Adult" OR Minor OR Adolescen* OR Teen*
 OR Teenager* OR Youth* OR "Minors" OR Minor* OR "Child" OR Child* OR
 Kid OR Kids OR Girl* OR Boy* OR Under age* OR Underage* OR Young
 people OR young person OR Prepubescen* OR Pubescen* OR Young Adult* OR
 School age OR Preschool* OR Student*
- #4 #1 AND #2 AND #3

S3. The inter-rater agreement for selecting studies

Table S2 The inter-rater agreement for reading the title and abstract

Daviawan 1		Reviewer 2					
Reviewer 1 -	Exclude	Include	Unclear	· Total			
Exclude	13514	8	11	13533			
Include	9	78	8	95			
Unclear	14	6	10	30			
Total	13537	92	29	13658			

Kappa score: 0.77 (0.72-0.83)

Table S3 The inter-rater agreement for full-text review

Davissas 1		T-4-1		
Reviewer 1	Exclude	Include	Unclear	• Total
Exclude	67	1	3	71
Include	1	54	0	55
Unclear	2	2	0	4
Total	70	57	3	130

Kappa score: 0.87 (0.79-0.95)

S4. Study quality assessment

Table S4 Quality assessment for RCTs and quasi-RCTs

		Itam					T4	T4	T4	There	T4	Carre
Reference	Item	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Score
Messler et al.	1	1	0	1	0	0	0	1	1	10	1	6/10
(2018)	1	1	U	1	U	U	U	1	1	1	1	0/10
Benzing et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2019)	1	1	U	1	U	U	U	1	1	1	1	0/10
Bustamante et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2016)	-	-	ŭ	-	v	Ü		•	-	-	-	0, 10
Chang et al.	1	0	0	1	0	0	0	1	1	1	1	5/10
(2014)												
Choi et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2015)												
Chou et al.	1	0	0	1	0	0	0	1	1	1	1	5/10
(2017)												
Faramarzi et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2016)												
Gelade et al.	1	1	0	1	1	0	1	1	1	1	1	8/10
(2017)												
Kadri et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2019)												
Lee et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2017)			0		0	^	^					6/10
Memarmoghaddam et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2016)	1	1	0	1	0	0	0	1	1	1	1	6/10
Pan et al. (2016)	1	1	0	1	0	0	0	1	1	1	1	6/10
Pan et al.	1	0	0	1	0	0	0	1	1	1	1	5/10
(2019)	1	U	U	1	U	U	U	1	1	1	1	3/10
Rezaei et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2018)	1	1	U	1	O	U	U	1	1	1	1	0/10
Silva et al.	1	1	0	1	0	0	0	0	1	1	1	5/10
(2020)												
Smith et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2020)												
Verret et al.	1	0	0	1	0	0	0	1	1	1	1	5/10
(2012)												
Ziereis et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2015)												
Benzing et al.	1	1	0	1	1	0	0	1	1	1	1	7/10
(2018)												
Chang et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2012)												

Reference	Item	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item	Item	Score
Gawrilow et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2013)												-
Kang et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2011)												
Chang et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2022)												
Smith et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2019)			0		0	0	0					C/3.0
Ahmed et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2011)	1	1	0	1	0	0	0	1	1	1	1	6/10
Hattabi et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2019) Hoza et al.	1	1	0	1	1	0	0	1	1	1	1	7/10
(2014)	1	1	U	1	1	U	U	1	1	1	1	//10
Jensen et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2004)	1	1	U	1	V	U	V	1	1	1	1	0/10
Garcia-Gomez et al.	1	0	0	1	0	0	0	1	1	1	1	5/10
(2016)												
Porter et al.	1	1	0	1	0	0	0	0	1	1	1	5/10
(1984)												
Oh et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2018)												
Liu et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2018)	_										_	<i>-</i> 1
Bahram et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2014)	1	0	0	0	0	0	0	1	1	1	1	4/10
Hattabi et al. (2021)	1	0	0	0	0	0	0	1	1	1	1	4/10
Felmet et al.	1	1	0	1	0	0	0	1	1	1	1	5/10
(1998)	1	1	U	1	U	U	U	1	1	1	1	5/10
Gelade et al.	1	1	1	1	0	0	0	1	1	1	1	7/10
(2018)	-	-	-	-	-	-	-	-	-	-	-	+ 0
Soori et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2020)												
Song et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2022)												
Chen et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2022)												
Xu et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2021)			0		0	0	0					611.0
Chuang et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2015)	1	1	0	1	0	0	0	1	1	1	1	6/10
Ludyga et al.	1	1	0	1	0	0	0	1	1	1	1	6/10
(2020)												

Reference	Item	Score										
	1	2	3	4	5	6	7	8	9	10	11	
Silva et al. (2015)	1	0	0	1	0	0	0	1	1	1	1	5/10
Liang et al. (2022)	1	1	0	1	0	0	0	1	1	1	1	6/10

Item1, eligibility criteria; Item 2, random allocation; Item 3, concealed allocation; Item 4, baseline comparability; Item 5, blind subjects; Item 6, blind therapists; Item 7, blind assessors; Item 8, adequate follow-up; Item 9, intention-to-treat analysis; Item 10, between-group comparisons; Item 11, estimates and variability.

Table S5 Quality assessment for self-control trials

Reference	Item	Item	Item	Item	Item 5	Item	Item	Item	Item
				4		6		8	9
So et al.	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	Yes
(2017)									
Hernandez-Reif et al.	Yes	NA	NA	No	Yes	Yes	Yes	Yes	Unclear
(2001)									
Lufi et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
(2011)									
Cuypers et al.	Yes	NA	NA	No	Yes	Yes	Yes	Yes	Yes
(2011)									
Jang et al.	Yes	NA	NA	No	Yes	Yes	Yes	Yes	Yes
(2015)									
Schoenfelder et al.	Yes	NA	NA	No	Yes	Yes	Yes	Yes	Yes
(2017)									
Siu et al.	Yes	NA	NA	No	Yes	Yes	Yes	Yes	Yes
(2020)									
Shema-Shiratzky et al.	Yes	NA	NA	No	Yes	Yes	Yes	Yes	Yes
(2019)									
Smith et al.	Yes	NA	NA	No	Yes	Yes	Yes	Yes	Yes
(2013)									
Pontifex et al.	Yes	No	NA	Yes	Yes	Yes	Yes	Yes	Yes
(2013)									
Piepmeier et al.	Yes	Yes	NA	Yes	Yes	Yes	Yes	Yes	Yes
(2015)									
Hung et al.	Yes	No	NA	Yes	Yes	Yes	Yes	Yes	Yes
(2016)									
Ludyga et al.	Yes	NA	NA	Yes	Yes	Yes	Yes	Yes	Yes
(2017)									
Craft et al.	Yes	NA	NA	No	No	Yes	Yes	Unclear	Unclear
(1983)									
McKune et al.	Yes	Unclear	Yes	Yes	No	Yes	Yes	Yes	Yes
(2003)									

Item 1, Were the causal relationships in the study clearly stated?

Item 2, Were the baselines comparable between groups?

Item 3, Were the groups receiving the same intervention besides to be validated?

Item 4, Was a control group set up?

Item 5, Were the outcome measures diversified before and after the intervention?

Item 6, Was follow-up complete and, if not, was loss to follow-up reported and addressed?

Item 7, Were the outcome measures used in the same way in each group?

Item 8, Were the outcomes measured in a valid and reliable way?

Item 9, Was appropriate statistical analysis used?

S5. Summary table of pairwise comparison results

Table S6 Direct comparison treatment effect with control group

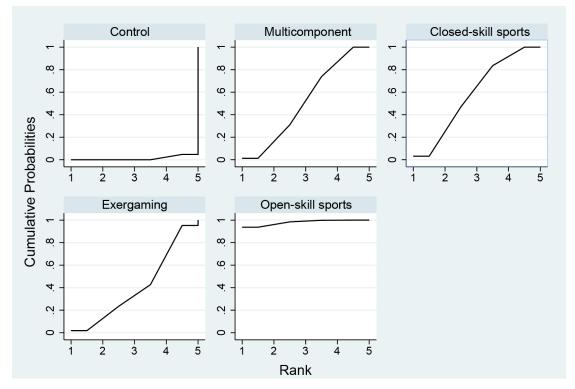

Outcomes	Types	Trials	Participants	Effect size	I^2
Executive	Open-skill activities	4	110	1.94 [1.11, 2.77]	66.0
functions	Closed-skill activities	13	400	1.09 [0.63, 1.55]	77.0
	Multicomponent PA	10	355	0.74 [0.32, 1.17]	62.0
	Exergaming	3	129	0.56 [0.21, 0.92]	0
Hyperactivity/	Closed-skill activities	7	288	-1.84 [-2.67, -1.02]	81.0
impulsivity	Multicomponent PA	2	115	0.16 [-0.21, 0.52]	0
	High-intensity interval training	1	43	-0.43 [-1.05, 0.19]	NA
	Exergaming	1	51	-0.28 [-0.83, 0.28]	NA
	Open-skill activities	1	14	-0.25 [-1.35, 0.85]	NA
Inattention	Closed-skill activities	5	184	-1.57 [-2.58, -0.57]	80.0
	High-intensity interval training	1	43	-0.43 [-1.05, 0.19]	NA
	Exergaming	1	51	-0.02 [-0.57, 0.53]	NA
	Multicomponent PA	3	209	0.03 [-0.24, 0.30]	0
	Open-skill activities	1	14	-0.24 [-1.33, 0.86]	NA

Figure S1 Loop-specific heterogeneity for executive functions

Loop	IF	seIF	z_value	p_value	CI_95	Loop_Heterog_tau2
A-D-E	0.580	6.340	0.092	0.927	(0.00,13.01)	2.223
A-B-E	0.344	1.158	0.297	0.766	(0.00,2.61)	0.637
A-B-C	0.145	1.142	0.127	0.899	(0.00,2.38)	0.609

Inconsistency plot for the executive network, assuming loop-specific heterogeneity estimates.

Figure S2 The ranking of effects for executive functions

Plots of the surface under the cumulative ranking curves (SUCRA) for all comparisons in the executive functions network.

Figure S3 Network of eligible comparisons for inhibitory control

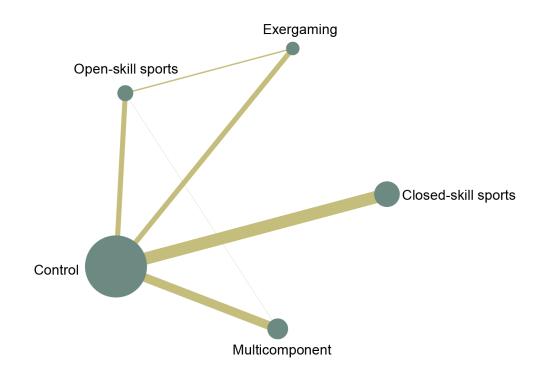
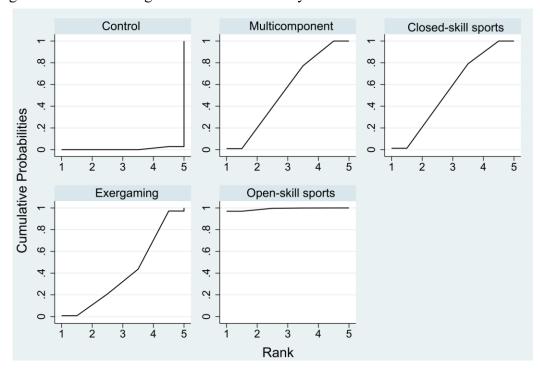



Figure S4 The ranking of effects for inhibitory control

Plots of the surface under the cumulative ranking curves (SUCRA) for all comparisons in the inhibitory control.

Figure S5 Relative effect sizes of treatments efficacy based on network metaanalysis for inhibitory control

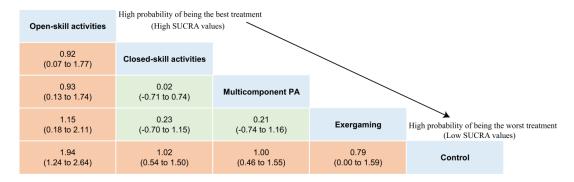


Figure S6 Loop-specific heterogeneity for inhibitory control

Loop	IF	seIF	z_value	p_value	CI_95	Loop_Heterog_tau2
A-D-E		6.340	0.092	0.927	(0.00,13.01)	2.223
A-B-E		1.013	0.393	0.694	(0.00,2.38)	0.512

Figure S7 Network of eligible comparisons for working memory

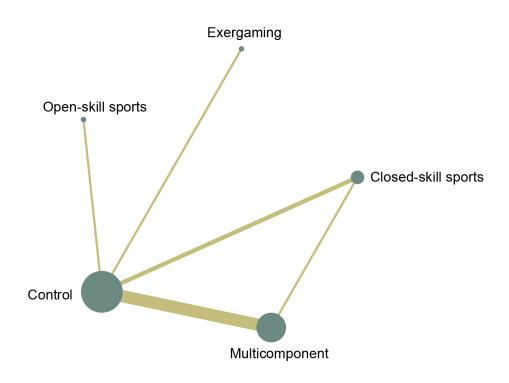
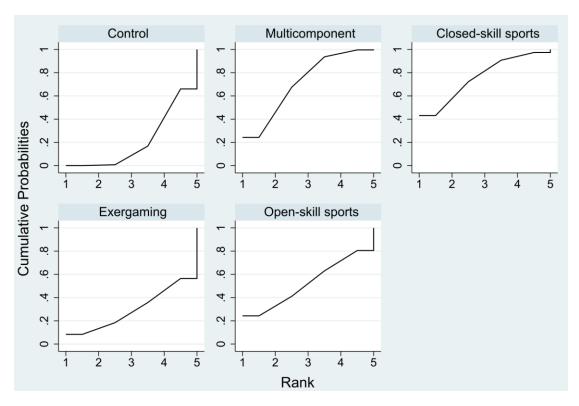



Figure S8 The ranking of effects for working memory

Plots of the surface under the cumulative ranking curves (SUCRA) for all comparisons in the working memory.

Figure S9 Relative effect sizes of treatments efficacy based on network metaanalysis for working memory

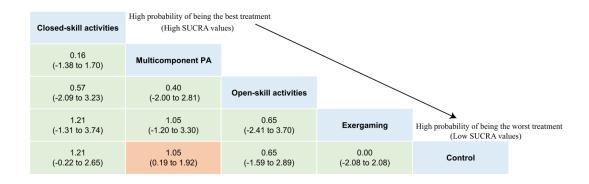


Figure S10 Loop-specific heterogeneity for working memory

Loop	IF	seIF	z_value	p_value	CI_95	Loop_Heterog_tau2
A-B-C	0.129	1.579	0.082	0.935	(0.00,3.22)	0.954

Figure S11 Network of eligible comparisons for cognitive flexibility

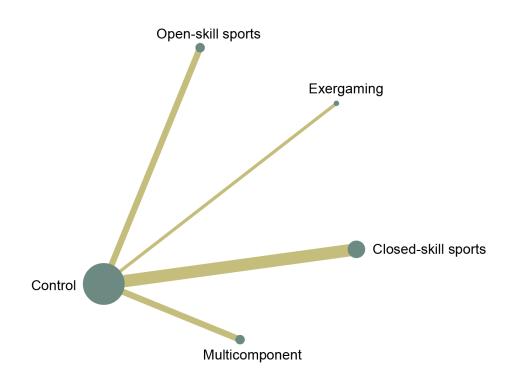
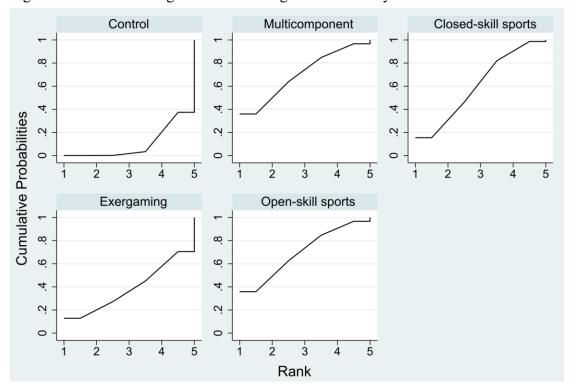



Figure S12 The ranking of effects for cognitive flexibility

Plots of the surface under the cumulative ranking curves (SUCRA) for all comparisons in the cognitive flexibility.

Figure S13 Relative effect sizes of treatments efficacy based on network metaanalysis for cognitive flexibility

Multicomponen	nt PA	High probability of being the (High SUCRA val				
0.01 (-2.33 to 2.34	4)	Open-skill activities				
0.30 (-1.64 to 2.24	4)	0.29 (-1.68 to 2.26)	Closed-skill activities			
0.87 (-1.89 to 3.62	2)	0.86 (-1.92 to 3.64)	0.57 (-1.89 to 3.02)	Exergaming	High probability of being the (Low SUCRA val	
1.44 (-0.19 to 3.07	7)	1.43 (-0.24 to 3.11)	1.14 (0.09 to 2.20)	0.58 (-1.64 to 2.79)	Control	

Figure S14 Comparison-adjusted funnel plot for the inhibitory control network

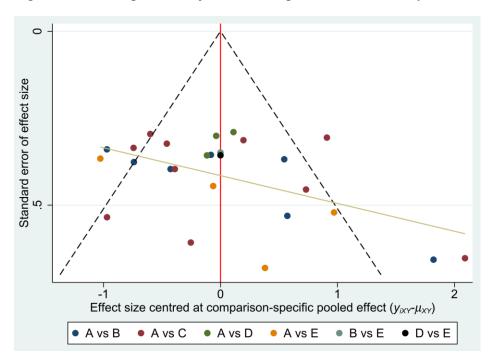


Figure S15 Comparison-adjusted funnel plot for the working memory network

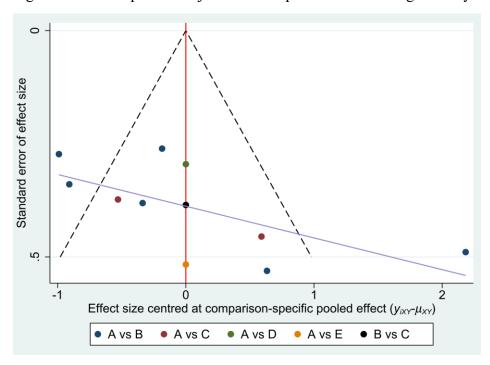
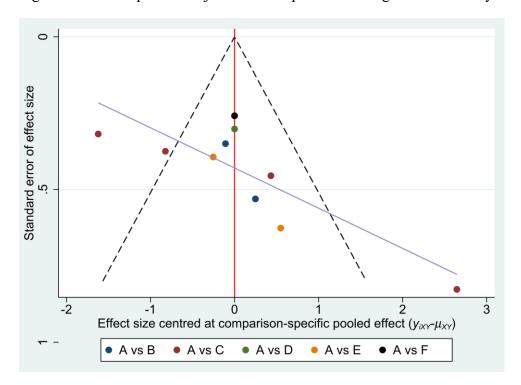



Figure S16 Comparison-adjusted funnel plot for the cognitive flexibility network

S9. Meta-regression analyses for executive functions

Figure S17 The results of meta-regression analyses for executive functions

 Empirical mean and standard deviation for each variable, plus standard error of the mean:
 Empirical mean and standard deviation for each variable, plus standard error of the mean:

Mean SD Naive SE Time-series SE d.1.2 -5.486 33.26 0.07438 0.05904 d.1.3 -7.474 45.89 0.10261 0.07430 d.1.4 53.634 46.24 0.10339 0.21210 d.1.5 9.466 36.17 0.08089 0.24116 sd.d 72.784 14.20 0.03175 0.07296 beta[2] 61.152 147.28 0.32932 2.68689 beta[3] -52.624 173.51 0.38797 2.48008 beta[4] -46.523 90.23 0.20175 1.67674	Mean SD Naive SE Time-series SE d.1.2 3.195 31.97 0.07149 0.11707 d.1.3 10.426 29.27 0.06545 0.06062 d.1.4 63.410 62.45 0.13965 0.83461 d.1.5 15.209 55.19 0.12341 2.51334 sd.d 92.756 28.64 0.06404 0.33395 beta[2] -134.064 267.77 0.59875 1.93663 beta[3] 75.541 196.18 0.43866 10.31818 beta[4] 53.412 111.77 0.24992 5.12928
beta[5] 22.289 40.41 0.09036 4.79158	beta[5] 3.580 97.12 0.21717 27.90645
2. Quantiles for each variable:	2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%	2.5% 25% 50% 75% 97.5%
d.1.2 -65.21 -30.814 -7.270 20.44 56.64	d.1.2 -61.63 -15.889 3.581 21.574 69.81
d.1.3 -98.84 -40.537 -2.725 29.49 65.69	d.1.3 -48.36 -6.985 10.090 27.180 72.30
d.1.4 -37.48 23.302 53.691 83.77 145.33	d.1.4 -62.75 24.472 63.320 102.297 190.20
d.1.5 -61.68 -14.519 9.587 33.49 80.22	d.1.5 -96.90 -17.612 15.501 47.220 130.31
sd.d 49.76 62.281 70.982 81.75 104.89	sd.d 33.73 76.440 107.970 114.201 116.78
beta[2] -177.90 -45.205 95.149 197.73 219.81	beta[2] -411.45 -335.930 -211.048 -6.783 304.15
beta[3] -303.22 -188.890 -29.329 95.77 153.45	beta[3] -246.20 -32.453 100.148 174.012 373.85
beta[4] -236.99 -101.322 -42.237 11.40 124.19	beta[4] -162.82 -14.318 49.465 117.996 284.31
beta[5] -58.43 -3.595 21.564 48.67 105.27	beta[5] -191.80 -55.466 2.781 50.791 234.38
Deta[5] -36.43 -3.393 21.304 46.07 103.27	beta[5] 151.00 55.400 2.701 50.751 254.50
Model fit (residual deviance):	Model fit (residual deviance):
Dbar pD DIC 59.68413 59.57809 119.26222	Dbar pD DIC 60.12699 59.88563 120.01263
60 data points, ratio 0.9947, I^2 = 1%	60 data points, ratio 1.002, I^2 = 2%

Frequency

 Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time-serie	s SE
d.1.2	-2.721	41.73	0.09330	0.0	7622
d.1.3	-2.024	27.14	0.06068	0.0	5953
d.1.4	40.738	59.56	0.13317	0.4	2610
d.1.5	-10.005	62.37	0.13946	1.7	8242
sd.d	89.197	33.67	0.07530	0.0	6562
beta[2]	5.699	318.68	0.71259	1.7	7069
beta[3]	-170.018	110.94	0.24807	3.2	3154
beta[4]	-58.316	100.38	0.22445	1.9	6895
beta[5]	94.306	160.01	0.35778	29.5	3184
2. Quant	tiles for	each va	ariable:		
	2.5%	25%	6 509	6 75%	97.5%
d.1.2	-98.35	-25.333	3 5.762	22.180	70.03
d.1.3	-60.51	-18.640	1.577	7 14.638	49.71

d.l.3 -60.51 -18.640 l.577 l4.638 49.71 d.l.4 -80.66 6.786 38.519 74.573 l66.15 d.l.5 -151.59 -48.583 2.016 33.756 90.75 sd.d 25.62 67.176 l06.098 l14.188 l16.81 beta[2] -301.75 -184.538 -111.585 87.320 543.93 beta[3] -292.94 -242.965 -203.325 -122.932 l8.37 beta[4] -271.10 -116.669 -55.308 3.941 l35.93 beta[5] -141.73 -21.680 52.870 l84.445 453.49

Duration

-- Model fit (residual deviance):

Dbar pD DIC 59.32767 59.26679 118.59446

60 data points, ratio 0.9888, I^2 = 0.6%

Intensity

 Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time-series SE
d.1.2	4.142	15.081	0.03372	0.1324
d.1.3	-37.369	17.006	0.03803	0.1546
d.1.4	31.759	31.463	0.07035	0.1480
d.1.5	14.099	22.664	0.05068	0.3777
sd.d	44.525	9.132	0.02042	0.1091
beta[2]	-210.405	153.631	0.34353	4.9610
beta[3]	-276.574	70.211	0.15700	6.5498
beta[4]	-126.473	155.298	0.34726	1.5388
beta[5]	-202.883	152.215	0.34036	1.4528

2. Quantiles for each variable:

	2.5%	25%	50%	75%	97.5%
d.1.2	-25.70	-5.6254	4.112	13.82	34.287
d.1.3	-74.11	-47.9211	-36.045	-25.53	-7.227
d.1.4	-29.45	11.1038	31.356	52.05	95.110
d.1.5	-30.69	-0.4763	14.030	28.55	59.342
sd.d	29.94	37.8359	43.479	50.08	64.947
beta[2]	-426.93	-343.7890	-212.081	-86.22	11.372
beta[3]	-404.87	-318.6580	-266.985	-215.57	-171.765
beta[4]	-488.60	-213.9582	-101.443	-19.37	122.065
beta[5]	-424.53	-339.7806	-211.227	-60.94	27.259

-- Model fit (residual deviance):

Dbar pD DIC 59.29099 58.70358 117.99458

60 data points, ratio 0.9882, I^2 = 0.5%

Length

S10. GRADE assessment for executive functions

Table S7 Summary of GRADE assessment for the certainty in executive functions

Comparisons	Nature of evidence	Certainty	Reason for downgrading
Open-skill sports vs. closed-skill sports	Indirect	Very low	Imprecision, indirectness
Open-skill sports vs. multicomponent	Mixed	Very low	Imprecision, inconsistency
Open-skill sports vs. exergaming	Mixed	Moderate	Risk of bias
Open-skill sports vs. control	Mixed	High	No downgrade
Closed-skill sports vs. multicomponent	Mixed	Low	Imprecision
Closed-skill sports vs. exergaming	Indirect	Low	Imprecision, indirectness
Closed-skill sports vs. control	Mixed	Moderate	Risk of bias
Multicomponent vs. exergaming	Indirect	Low	Imprecision, risk of bias
Multicomponent vs. control	Mixed	Moderate	Risk of bias
Exergaming vs. control	Mixed	Low	Imprecision, risk of bias

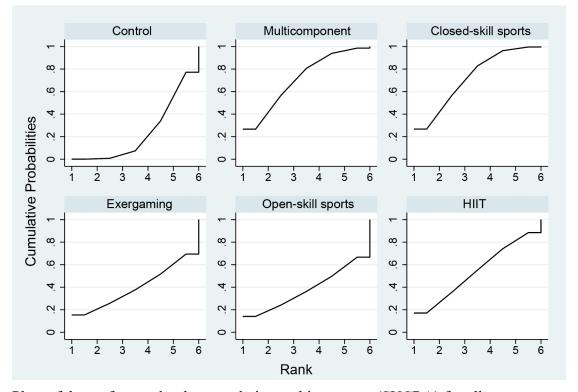

S11. Analysis for hyperactivity/impulsivity

Figure S18 Loop-specific heterogeneity for hyperactivity/impulsivity

Loop	IF	seIF	z_value	p_value	CI_95	Loop_Heterog_tau2
A-B-F	1.312	5.464	0.240	0.810	(0.00,12.02)	4.098

Inconsistency plot for the hyperactivity/impulsivity, assuming loop-specific heterogeneity estimates.

Figure S19 The ranking of effects for hyperactivity/impulsivity

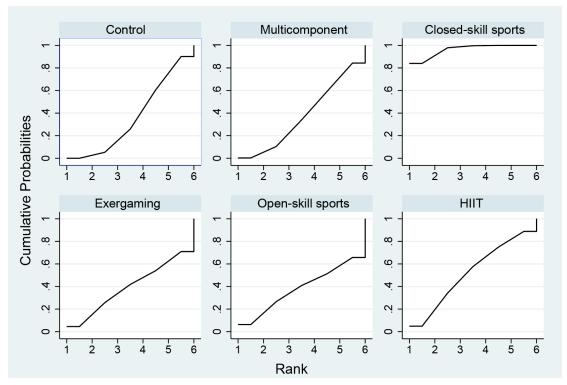

Plots of the surface under the cumulative ranking curves (SUCRA) for all comparisons in the hyperactivity/impulsivity network.

Figure S20 Loop-specific heterogeneity for inattention

Loop	IF	seIF	z_value	p_value	CI_95	Loop_Heterog_tau2
A-B-F	0.358	0.512	0.700	0.484	(0.00,1.36)	0.000

Inconsistency plot for the inattention, assuming loop-specific heterogeneity estimates.

Figure S21 The ranking of effects for inattention

Plots of the surface under the cumulative ranking curves (SUCRA) for all comparisons in the inattention network.

Figure S22 Comparison-adjusted funnel plot for the hyperactivity/impulsivity network

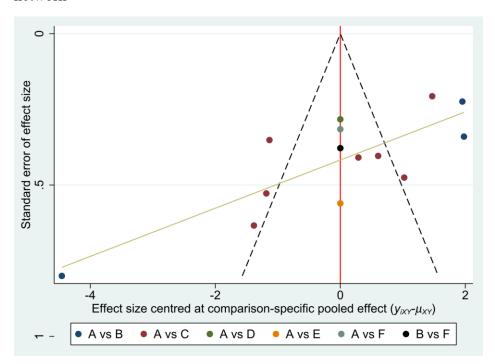


Figure S23 Comparison-adjusted funnel plot for the inattention network

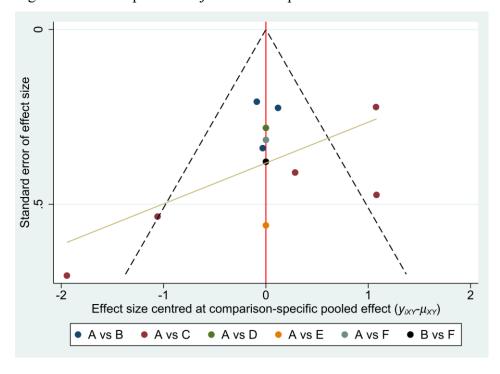


Figure S24 The results of meta-regression analyses for hyperactivity/impulsivity

Empirical mean and standard deviation for each variable, plus standard error of the mean:
 Empirical mean and standard deviation for each variable, plus standard error of the mean:

Mean SD Naive SE Time-series SE	Mean SD Naive SE Time-series SE			
d.1.2 -0.5812 3.085 0.006899 0.021236	d.1.2 -0.7493 3.604 0.008059 0.04618			
d.1.3 -5.4553 2.195 0.004908 0.006217	d.1.3 -4.5065 2.610 0.005835 0.03069			
d.1.4 -1.5094 6.531 0.014604 0.103103	d.1.4 -3.8149 27.144 0.060695 2.68218			
d.1.5 -2.9040 26.179 0.058538 0.995287	d.1.5 -3.2766 40.382 0.090298 2.07924			
d.1.6 -1.6540 4.881 0.010915 0.084347	d.1.6 12.8579 29.130 0.065137 2.12090			
sd.d 5.1460 1.867 0.004174 0.026200	sd.d 5.7165 2.323 0.005194 0.05207			
beta[2] 1.2361 6.488 0.014509 1.132292	beta[2] 1.5202 6.144 0.013739 2.05077			
beta[3] 6.4383 3.392 0.007585 0.576225	beta[3] 4.5842 5.407 0.012091 0.60388			
beta[4] -0.7476 139.261 0.311397 4.799500	beta[4] -4.7028 54.476 0.121812 5.60773			
beta[5] 1.7722 81.373 0.181955 3.398466	beta[5] -0.2878 60.649 0.135616 3.13102			
beta[6] -8.4963 93.248 0.208509 4.991421	beta[6] 138.4542 265.517 0.593713 24.50683			
Deta[0] -0.4903 93.240 0.200309 4.991421	beta[0] 130.4342 203.317 0.393713 24.30003			
2 Overtiles for each verichles	2. Quantiles for each variable:			
Quantiles for each variable:	2. Quantities for each variable.			
2.5% 25% 50% 75% 97.5%	2.5% 25% 50% 75% 97.5%			
	d.1.2 -8.686 -2.655 -0.6072 1.362 6.0932			
	d.1.2 -8.686 -2.633 -0.6072 1.362 6.0932 d.1.3 -10.130 -5.987 -4.3506 -2.880 0.3141			
d.1.3 -9.9394 -6.754 -5.41262 -4.132 -1.125				
d.1.4 -14.2462 -5.172 -1.52422 2.129 11.613	d.1.4 -60.461 -11.926 -2.1137 7.443 44.4534			
d.1.5 -52.2607 -12.981 -3.38063 6.152 55.786	d.1.5 -97.842 -17.881 -3.1702 11.867 86.9248			
d.1.6 -11.4081 -4.590 -1.69322 1.217 8.459	d.1.6 -18.794 -4.736 0.2603 18.829 84.7473			
sd.d 2.5541 3.845 4.79175 6.054 9.786	sd.d 2.605 4.108 5.2322 6.777 11.7273			
beta[2] -9.5725 -3.685 0.75760 5.165 15.634	beta[2] -7.036 -1.916 0.6971 3.153 21.6595			
beta[3] 0.6883 4.027 6.09224 8.475 14.021	beta[3] -6.975 1.136 4.9575 8.309 14.5036			
beta[4] -228.5349 -19.038 -0.11935 18.566 212.332	beta[4] -119.848 -17.867 -1.1542 15.033 92.7916			
beta[5] -154.3489 -17.769 0.04431 17.965 191.149	beta[5] -137.792 -18.745 -0.3204 17.537 144.8557			
beta[6] -267.7240 -21.814 -1.17367 17.775 170.818	beta[6] -117.531 -11.539 8.3265 166.304 799.2862			
Model fit (residual deviance):	Model fit (residual deviance):			
noder the (restaur dettailes).				
Dbar pD DIC	Dbar pD DIC			
28.25290 27.27184 55.52474	29.02003 27.65391 56.67395			
LUILILIO JIIILII				
28 data points, ratio 1.009, I^2 = 4%	28 data points, ratio 1.036, I^2 = 7%			
20 data points, fatio 1.009, 172 = 4%	20 auca politics, rueto 11050, 1.12 = 770			

Frequency

Intensity

 Empirical mean and standard deviation for each variable, plus standard error of the mean: Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time-series SE	Mean SD Naive SE Time-series SE		
d.1.2	-0.3208	4.304	0.009624	0.07900	d.1.2 0.5798 6.221 0.013911 0.07922		
d.1.3	-5.5271	2.927	0.006545	0.02329	d.1.3 -4.8710 3.162 0.007071 0.01593		
d.1.4	-3.5194	18.108	0.040491	1.18002	d.1.4 -3.9461 19.878 0.044449 1.73929		
d.1.5	-8.3134	49.515	0.110718	6.31522	d.1.5 -3.5579 15.496 0.034649 0.27860		
d.1.6	-2.0667	6.109	0.013661	0.09206	d.1.6 -2.2788 16.306 0.036462 2.40598		
sd.d	6.8054	2.450	0.005478	0.04633	sd.d 7.3199 3.136 0.007013 0.09077		
beta[2]	-0.5968	9.684	0.021653	1.56276	beta[2] -2.6801 12.542 0.028046 1.93115		
beta[3]	1.3807	4.654	0.010407	0.63109	beta[3] 6.0030 6.467 0.014460 0.37275		
beta[4]	-6.7224	56.938	0.127317	3.82885	beta[4] -11.0508 83.599 0.186932 7.98800		
beta[5]	-16.8375	166.351	0.371971	20.63453	beta[5] -0.0343 98.868 0.221077 2.68488		
beta[6]	2.2116	13.752	0.030751	1.23620	beta[6] -3.5561 32.833 0.073416 6.70267		
2. Quant	iles for	each va	riable:		2. Quantiles for each variable:		
	2.5%	25%	50%	75% 97.5%	2.5% 25% 50% 75% 97.5%		
d.1.2	-8.904	-2.912	-0.34354	2.229 8.4657	d.1.2 -12.642 -2.990 1.090387 4.403 12.437		
d.1.3	-11.596	-7.235	-5.45416	-3.754 0.2086	d.1.3 -11.664 -6.625 -4.711963 -3.006 1.248		
d.1.4	-52.336	-9.857	-1.89190	5.728 26.5852	d.1.4 -49.308 -9.394 -2.052721 4.820 26.723		
d.1.5	-85.090	-13.702	-3.42559	6.815 48.9464	d.1.5 -32.686 -11.662 -3.496361 4.722 25.820		
d.1.6	-14.154	-5.767	-2.10760	1.511 10.5028	d.1.6 -36.338 -12.390 -2.431034 7.558 31.105		
sd.d	3.445	5.076	6.31948	7.997 13.0743	sd.d 2.845 4.995 6.741931 9.059 15.065		
beta[2]	-18.602	-6.589	-1.11532	4.731 22.1422	beta[2] -23.372 -11.841 -4.044479 4.519 19.939		
beta[3]	-8.457	-1.380	1.09995	4.227 10.9737	beta[3] -7.108 1.855 6.277181 10.261 18.467		
beta[4]	-170.847	-18.882	-0.57326	16.532 85.2987	beta[4] -211.099 -19.997 -1.247831 15.342 109.021		
beta[5]	-275.011	-18.383	0.08046	18.614 173.8948	beta[5] -183.795 -18.786 0.003472 18.632 176.454		
beta[6]	-23.956	-6.256	1.57100	10.131 30.8826	beta[6] -69.979 -23.828 -3.898496 13.285 67.490		
Model	fit (re	sidual d	eviance):		Model fit (residual deviance):		
Dbar	lq	D D	IC		Dbar pD DIC		
28.20935 27.55312 55.76247					28.53632 27.84102 56.37734		
28 data points, ratio 1.007, I^2 = 4%			007, I^2	= 4%	28 data points, ratio 1.019, I^2 = 5%		

Duration Length

Figure S25 The results of meta-regression analyses for inattention

1.	Empirical	mean a	nd standard	deviation	for	each	variable,
	nlus stand	dard er	or of the	mean:			

	Mean	SD	Naive SE	Time-series SE
d.1.2	-765.7497	322.75	0.7217	0.5181
d.1.3	203.0258	207.01	0.4629	1.2455
d.1.4	0.8808	384.68	0.8602	1.0512
d.1.5	175.6291	384.45	0.8597	1.5661
d.1.6	-331.2501	304.22	0.6803	0.7678
sd.d	381.5777	53.02	0.1186	0.2129
beta[2]	1375.8814	448.10	1.0020	3.1573
beta[3]	830.3693	460.35	1.0294	45.8009
beta[4]	-55.5421	698.51	1.5619	71.9162
beta[5]	-102.8309	680.50	1.5216	37.4808
beta[6]	-460.6770	1615.18	3.6116	111.4816

2. Quantiles for each variable:

	2.5%	25%	50%	75%	97.5%
d.1.2	-1335.8	-1005.4	-796.2192	-519.4	-147.5
d.1.3	-203.8	65.5	203.1539	338.5	615.2
d.1.4	-762.2	-252.2	0.9565	254.4	763.0
d.1.5	-501.4	-93.7	134.8288	426.4	985.9
d.1.6	-949.2	-529.6	-322.8615	-126.2	249.0
sd.d	238.8	360.9	399.2422	420.7	435.0
beta[2]	650.0	1161.0	1517.6509	1741.3	1810.6
beta[3]	128.8	453.2	761.3566	1169.4	1698.0
beta[4]	-1774.5	-326.8	-12.0002	274.6	1220.2
beta[5]	-864.3	-663.3	-322.2507	305.4	1192.8
beta[6]	-3464.2	-1242.0	-172.9161	896.6	1667.1

-- Model fit (residual deviance):

Dbar pD DIC 26.01698 26.01658 52.03356

26 data points, ratio 1.001, I^2 = 4%

Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time-series SE
d.1.2	132.762	209.6	0.4688	0.4453
d.1.3	-12.647	144.6	0.3234	0.3232
d.1.4	-2.276	348.5	0.7792	5.6318
d.1.5	275.541	236.0	0.5278	1.2007
d.1.6	227.596	894.0	1.9990	0.7175
sd.d	293.973	132.6	0.2964	1.1397
beta[2]	-668.542	661.5	1.4792	8.3149
beta[3]	-367.752	325.7	0.7283	69.7450
beta[4]	-18.942	1130.5	2.5279	285.7163
beta[5]	-674.084	692.6	1.5487	101.8300
beta[6]	-104.112	1549.4	3.4646	5.4004

2. Quantiles for each variable:

	2.5%	25%	50%	75%	97.5%
d.1.2	-311.35	23.88	134.828	248.53	559.21
d.1.3	-321.11	-86.17	-9.645	60.41	291.24
d.1.4	-711.73	-197.28	-16.957	190.93	735.67
d.1.5	-220.59	150.49	282.475	392.60	777.05
d.1.6	-641.77	-420.26	-171.748	771.00	2088.87
sd.d	51.48	184.49	349.846	401.60	433.28
beta[2]	-1399.47	-1268.76	-804.363	-174.30	295.60
beta[3]	-1036.76	-631.15	-284.033	-85.29	82.78
beta[4]	-1743.34	-609.39	-37.844	316.03	3782.31
beta[5]	-2168.57	-1045.81	-620.733	-124.82	424.51
beta[6]	-1349.65	-1315.02	-785.369	446.97	2492.09

-- Model fit (residual deviance):

Dbar pD DIC 25.99697 25.99628 51.99325

26 data points, ratio 0.9999, I^2 = 4%

Frequency

Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time-series SE
d.1.2	-26.842	169.88	0.3799	0.4086
d.1.3	-162.220	167.77	0.3751	0.7733
d.1.4	-55.765	525.68	1.1755	8.5620
d.1.5	439.904	311.04	0.6955	4.3656
d.1.6	1.387	225.76	0.5048	0.5456
sd.d	262.084	90.78	0.2030	0.8559
beta[2]	20.985	349.57	0.7817	10.4803
beta[3]	408.895	299.34	0.6693	17.1421
beta[4]	-220.677	1784.66	3.9906	194.7646
beta[5]	455.421	496.60	1.1104	47.9472
beta[6]	-369.315	353.20	0.7898	15.4733

2. Quantiles for each variable:

	2.5%	25%	50%	75%	97.5%
d.1.2	-353.3	-143.75	-24.250	84.83	310.3
d.1.3	-563.0	-246.13	-133.269	-52.17	109.0
d.1.4	-1186.2	-332.20	6.694	253.91	935.2
d.1.5	-121.1	201.42	450.003	666.08	1029.2
d.1.6	-433.6	-145.70	-4.027	140.90	468.0
sd.d	115.0	187.13	251.741	338.35	425.5
beta[2]	-583.3	-66.85	132.169	262.04	370.7
beta[3]	115.0	199.17	259.590	548.78	960.3
beta[4]	-4239.0	-924.02	118.404	852.48	2289.1
beta[5]	-448.3	-11.21	647.521	871.86	1056.2
beta[6]	-874.9	-671.06	-354.544	-97.13	191.0

-- Model fit (residual deviance):

Dbar pD DIC 25.99193 25.99003 51.98196

26 data points, ratio 0.9997, $I^2 = 4\%$

Intensity

 Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time-series SE
d.1.2	132.762	209.6	0.4688	0.4453
d.1.3	-12.647	144.6	0.3234	0.3232
d.1.4	-2.276	348.5	0.7792	5.6318
d.1.5	275.541	236.0	0.5278	1.2007
d.1.6	227.596	894.0	1.9990	0.7175
sd.d	293.973	132.6	0.2964	1.1397
beta[2]	-668.542	661.5	1.4792	8.3149
beta[3]	-367.752	325.7	0.7283	69.7450
beta[4]	-18.942	1130.5	2.5279	285.7163
beta[5]	-674.084	692.6	1.5487	101.8300
beta[6]	-104.112	1549.4	3.4646	5.4004

2. Quantiles for each variable:

d.1.2 d.1.3 d.1.4 d.1.5 d.1.6 sd.d beta[2] beta[3] beta[4]	2.5% -311.35 -321.11 -711.73 -220.59 -641.77 51.48 -1399.47 -1036.76 -1743.34 -2168.57	184.49 -1268.76 -631.15 -609.39	50% 134.828 -9.645 -16.957 282.475 -171.748 349.846 -804.363 -284.033 -37.844 -620.733		433.28
beta[5]	-2168.57 -1349.65	-1045.81	-620.733	-124.82	

-- Model fit (residual deviance):

Dbar pD DIC 25.99697 25.99628 51.99325

26 data points, ratio 0.9999, I^2 = 4%

Duration

Length

S15. GRADE assessment for major symptoms

Table S8 Summary of GRADE assessment for the certainty in hyperactivity/impulsivity

Comparisons	Nature of evidence	Certainty	Reason for downgrading
Closed-skill sports vs. multicomponent	Indirect	Low	Imprecision, indirectness
Closed-skill sports vs. HIIT	Indirect	Low	Imprecision, indirectness
Closed-skill sports vs. exergaming	Indirect	Low	Imprecision, indirectness
Closed-skill sports vs. open-skill sports	Indirect	Low	Imprecision, indirectness
Closed-skill sports vs. control	Mixed	Moderate	Risk of bias
Multicomponent vs. HIIT	Mixed	Low	Imprecision
Multicomponent vs. exergaming	Indirect	Low	Imprecision, indirectness
Multicomponent vs. open-skill sports	Indirect	Low	Imprecision, indirectness
Multicomponent vs. control	Mixed	Low	Imprecision, inconsistency
HIIT vs. exergaming	Indirect	Low	Imprecision, indirectness
HIIT vs. open-skill sports	Indirect	Low	Imprecision, indirectness
HIIT vs. control	Mixed	Very low	Imprecision, inconsistency
Exergaming vs. open-skill sports	Indirect	Low	Imprecision, indirectness
Exergaming vs. control	Mixed	Low	Imprecision, risk of bias
Open-skill sports vs. control	Mixed	Very low	Imprecision, inconsistency

Table S9 Summary of GRADE assessment for the certainty in inattention

Comparisons	Nature of evidence	Certainty	Reason for downgrading
Closed-skill sports vs. HIIT	Indirect	Low	Imprecision, indirectness
Closed-skill sports vs. exergaming	Indirect	Low	Imprecision, indirectness
Closed-skill sports vs. open-skill sports	Indirect	Low	Imprecision, indirectness
Closed-skill sports vs. multicomponent	Indirect	Very low	Imprecision, indirectness
Closed-skill sports vs. control	Mixed	High	No downgrade
HIIT vs. exergaming	Indirect	Low	Imprecision, indirectness
HIIT vs. open-skill sports	Indirect	Low	Imprecision, indirectness
HIIT vs. multicomponent	Mixed	Low	Imprecision
HIIT vs. control	Mixed	Low	Imprecision, risk of bias
Exergaming vs. open-skill sports	Indirect	Low	Imprecision, indirectness
Exergaming vs. multicomponent	Indirect	Low	Imprecision, indirectness
Exergaming vs. control	Mixed	Low	Imprecision, risk of bias
Open-skill sports vs. multicomponent	Indirect	Low	Imprecision, indirectness
Open-skill sports vs. control	Mixed	Very low	Imprecision, inconsistency
Multicomponent vs. control	Mixed	Low	Imprecision, risk of bias

S16. A partially contextualized framework

Table S10 A partially contextualized framework was used for classification of interventions based on network meta-analysis

Outcomes	Classification	Intervention	Effect size	Surface under the	Certainty of
				cumulative ranking	evidence
				curve	
Inhibitory Control	Large beneficial effect	Open-skill activities	1.94 (1.24 to 2.64)	99.1%	High
		Closed-skill activities	1.02 (0.54 to 1.50)	55.2%	Moderate
		Multicomponent PA	1.00 (0.46 to 1.55)	54.4%	Moderate
	Moderate beneficial effect	Exergaming	0.79 (0.00 to 1.59)	40.6%	Low
Working memory	Large beneficial effect	Closed-skill activities	1.21 (-0.22 to 2.65)	75.9%	Moderate
		Multicomponent PA	1.05 (0.19 to 1.92)	71.3%	Moderate
	Moderate beneficial effect	Open-skill activities	0.65 (-1.59 to 2.89)	52.2%	Low
	Trivial to no effect	Exergaming	0.00 (-2.08 to 2.08)	29.7%	Very low

Outcomes	Classification	Intervention	Effect size	Surface under the	Certainty of
				cumulative ranking	evidence
				curve	
Cognitive flexibility	Large beneficial effect	Multicomponent PA	1.44 (-0.19 to 3.07)	70.3%	Moderate
		Open-skill activities	1.43 (-0.24 to 3.11)	70.0%	Low
		Closed-skill activities	1.14 (0.09 to 2.20)	60.6%	Low
	Moderate beneficial effect	Exergaming	0.58 (-1.64 to 2.79)	38.9%	Low
Hyperactivity/impulsivity	Large beneficial effect	Closed-skill activities	-1.60 (-0.32 to -0.19)	72.5%	Moderate
		Multicomponent PA	-1.58 (-3.60 to 0.43)	71.3%	Low
		High-intensity interval training	-0.97 (-3.77 to 1.83)	54.2%	Very low
	Small beneficial effect	Exergaming	-0.28 (-3.96 to 3.40)	40.0%	Low
		Open-skill activities	-0.25 (-4.05 to 3.55)	38.2%	Very low

Outcomes	Classification	Intervention	Effect size	Surface under the	Certainty of
				cumulative ranking	evidence
				curve	
Inattention	Large beneficial effect	Closed-skill activities	-1.51 (-2.33 to -0.69)	96.3%	High
	Small beneficial effect	High-intensity interval training	-0.28 (-1.54 to 0.98)	52.1%	Low
	Trivial to no effect	Exergaming	-0.02 (-1.65 to 1.61)	39.4%	Low
		Multicomponent PA	-0.02 (-0.89 to 0.85)	37.6%	Low
	Small harmful effect	Open-skill activities	0.04 (-1.87 to 1.94)	38.1%	Very low