

EXPERIMENTAL METHODS

Animal care and behavioral experiments

Unless otherwise noted, behavioral recordings were performed on 8–16-week-old
C57/BL6 mice (The Jackson Laboratory stock no. 000664). Mice were transferred to our
colony at 6-8 weeks of age and housed in a reverse 12-hour light/12-hour dark cycle.
We single-housed mice after stereotactic surgery, and group-housed them otherwise.
On recording days, mice were brought to the laboratory, habituated in darkness for at
least 20 minutes, and then placed in an open field arena for 30-60 mins. We recorded 6
male mice for 10 sessions (6 hours) in the initial round of open field recordings; and 5
male mice for 52 sessions (50 hours) during the accelerometry recordings. The
dopamine photometry recordings were obtained from a recent study1. They include 6
C57/BL6 mice and 8 DAT-IRES-cre (The Jackson Laboratory stock no. 006660) mice of
both sexes, recorded for 378 sessions. Of these, we selected a random subset of 95
sessions (~50 hours) for benchmarking keypoint-MoSeq.

Stereotactic surgery procedures

For all stereotactic surgeries, mice were anaesthetized using 1–2% isoflurane in
oxygen, at a flow rate of 1 L/min for the duration of the procedure. Anterior-posterior
(AP) and medial-lateral (ML) coordinates were zeroed relative to bregma, the dorso-
ventral (DV) coordinate was zeroed relative to the pial surface, and coordinates are in
units of mm. For dopamine recordings, 400nL of AAV5.CAG.dLight1.1 (Addgene
#111067, titer: 4.85 × 1012) was injected at a 1:2 dilution into the DLS (AP 0.260; ML
2.550; DV −2.40) and a single 200-μm diameter, 0.37–0.57 NA fiber cannula was
implanted 200 μm above the injection site (see ref1 for additional details). For
accelerometry recordings, we surgically attached a millmax connector (DigiKey
ED8450-ND) and head bar to the skull and secured it with dental cement (Metabond). A
9 degree-of-freedom absolute orientation inertial measurement unit (IMU; Bosch
BN0055) was mounted on the millmax connector using a custom printed circuit board
(PCB) with a net weight below 1g.

Data acquisition from the IMU

The IMU was connected to a Teensy microcontroller, which was programmed using the
Adafruit BNO055 library with default settings (sample rate: 100 Hz, units: m/s2). To
synchronize the IMU measurements and video recordings, we used an array of near
infrared LEDs to display a rapid sequence of random 4-bit codes that updated

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

throughout the recording. The code sequence was later extracted from the behavioral
videos and used to fit a piecewise linear model between timestamps from the videos
and timestamps from the IMU.

Recording setup

For the initial set of open field recordings (Fig 1-3, 4a-g Fig 6g-l), mice were recorded in
a square arena with transparent floor and walls (30cm length and width). Microsoft
Azure Kinect cameras captured simultaneous depth and near-infrared video at 30Hz.
Six cameras were used in total: one above, one below, and four side cameras at right
angles at the same height as the mouse. For the accelerometry recordings, we used a
single Microsoft Azure Kinect camera placed above the mouse, and an arena with
transparent floor and opaque circular walls (45cm diameter). Data was transferred from
the IMU using a light-weight tether attached to a custom-built active commutator. For
the dopamine perturbation experiments, we used a slightly older camera model – the
Microsoft Kinect 2 – to capture simultaneous depth and near-infrared at 30Hz. The
recording arena was circular with opaque floor and walls (45cm diameter). Photometry
signals were conveyed from the mouse using a fiber-optic patch cord attached to a
passive commutator.

COMPUTATIONAL METHODS

Processing depth videos

Applying MoSeq to depth videos involves: (1) mouse tracking and background
subtraction; (2) egocentric alignment and cropping; (3) principal component analysis
(PCA); (4) probabilistic modeling. We applied steps (2-4) as described in the MoSeq2
pipeline2. For step (1), we trained a convolutional neural network (CNN) with a Unet++3
architecture to segment mouse from background using ~5000 hand-labeled frames as
training data.

Keypoint tracking

We used CNNs with an HRNet4 architecture (https://github.com/stefanopini/simple-
HRNet) with a final stride of 2 for pose tracking. The networks were trained on ~1000
hand-labeled frames each for the overhead, below-floor, and side-view camera angles.
Frame-labelling was crowdsourced through a commercial service (Scale AI). For the
overhead camera, we tracked two ears and 6 points along the dorsal midline (tail base,
lumbar spine, thoracic spine, cervical spine, head, and nose). For the below-floor

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

camera, we tracked the tip of each forepaw, the tip and base of each hind paw, and four
points along the ventral midline (tail base, genitals, abdomen, and nose). For the side
cameras, we tracked the same eight points as for the overhead camera, and also
included the six limb points that were used for the below-floor camera (14 total). We
trained a separate CNN for each camera angle. Target activations were formed by
centering a Gaussian with 10px standard deviation on each keypoint. We used the
location of the maximum pixel in each output channel of the neural network to determine
keypoint coordinates and used the value at that pixel to set the confidence score. The
resulting mean absolute error (MEA) between network detections and manual
annotations was 2.9 pixels (px) for the training data and 3.2 px for heldout data. We also
trained DeepLabCut and SLEAP models on the overhead-camera and below-floor-
camera datasets. For DeepLabCut, we used version 2.2.1, setting the architecture to
resnet50 architecture and the “pos_dist_thresh” parameter to 10, resulting in train and
test MEAs of 3.4 px and 3.8 px respectively. For SLEAP, we used version 1.2.3 with the
baseline_large_rf.single.json configuration, resulting in train and test MEAs of 3.5 px
and 4.7 px.

3D pose inference

Using 2D keypoint detections from six cameras, 3D keypoint coordinates were
triangulated and then refined using GIMBAL, a model-based approach that leverages
anatomical constraints and motion continuity5. To fit GIMBAL, we computed initial 3D
keypoint estimates using robust triangulation (i.e. by taking the median across all
camera pairs, as in 3D-DeepLabCut6) and then filtered to remove outliers using the
EllipticEnvelope method from sklearn; We then fit the skeletal parameters and
directional priors for GIMBAL using expectation maximization with 50 pose states (see
ref5 for details). Finally, we applied the fitted GIMBAL model to each recording, using
the following parameters for all keypoints: obs_outlier_variance=1e6,
obs_inlier_variance=10, pos_dt_variance=10. The latter parameters were chosen based
on the accuracy of the resulting 3D keypoint estimates, as assessed from visual
inspection.

Inferring model-free changepoints

We defined changepoints as sudden, simultaneous shifts in the trajectories of multiple
keypoints. We detected them using a procedure similar to the filtered derivative
algorithm described in ref7, but with changes to emphasize simultaneity across multiple
keypoints. The changes account for the lower dimensionality of keypoint data compared
to depth videos, and for the unique noise structure of markerless keypoint tracking, in
which individual keypoints occasionally jump a relatively large distance due to detection
errors. Briefly, the new procedure first defines a continuous change score by: (1)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

calculating the rate of each in each keypoint coordinate; (2) quantifying simultaneity in
the change-rates across keypoints; (3) transforming the signal based on statistical
significance with respect to a temporally shuffled null distribution; (4) identifying local
peaks in the resulting significance score. The details of each step are as follows.

1) Calculating rates of change: We transformed the keypoint coordinates on each
frame by centering and aligned them along the tail-nose axis. We then computed
the derivative of each coordinate for each keypoint, using a sliding window of
length 3 as shown below, where !! denotes the value of a coordinate at time ".

!̇! ≈
"

#
	(!!%# + !!%& + !!%" − !!'" − !!'& − !!'#)

2) Quantifying simultaneous changes: The derivatives for each keypoint were Z-

scored and then binarized with a threshold. We then counted the number of
threshold crossings on each frame and smoothed the resulting time-series of
counts using a Gaussian filter with a one-frame kernel. The value of the threshold
was chosen to maximize the total number of detected changepoints.

3) Comparing to a null distribution: We repeated step (2) for 1000 shuffled
datasets, in which each keypoint trajectory was cyclically permuted by a random
interval. Using the shuffles as a null distribution, we computed a P-value for each
frame and defined the final change score as − log"((pval)

4) Identifying local peaks in the change score: We identified local peaks in the
change score /!, i.e., times	"	for which /!'" < /! > /!%". Peaks were classified as
statistically significant when they corresponded to a p-value below 0.01, which
was chosen to control the false-discovery rate at 10%. The statistically significant
peaks were reported as changepoints for downstream analysis.

Spectral Analysis

To analyze keypoint jitter, we quantified the magnitude of fluctuations across a range of
frequencies by computing a spectrogram for each keypoint along each coordinate axis.
Spectrograms were computed using the python function scipy.signal.spectrogram with
nperseg=128 and noverlap=124. The spectrograms were then combined through
averaging: each keypoint was assigned a spectrogram by averaging over the two
coordinate axes, and the entire animal was assigned a spectrogram by averaging over
all keypoints.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

We used the keypoint-specific spectrograms to calculate cross-correlations with
−log"((neural	network	detection	confidence), as well as the “error magnitude” (Fig 2f).
Error magnitude was defined as the distance between the detected 2D location of a
keypoint (based on a single camera angle) and a reprojection of its 3D position (based
on consensus across six camera angles; see “3D pose inference” above). We also
computed the cross-correlation between nose- and tail-base-fluctuations at each
frequency, as measured by the overhead and below-floor cameras respectively. Finally,
we averaged spectral power across keypoints to compute the cross-correlation with
model transition rates (Fig 2f), defined as the per-frame probability of a state transitions
across 20 model restarts.

Applying keypoint-MoSeq

The initial open field recordings (Fig 1-4), as well as the accelerometry, dopamine, and
two benchmark datasets were modeled separately. Twenty models with different
random seeds were fit for each dataset (except for the accelerometry data, in which
case one model was fit).

Modeling consisted of two phases: (1) Fitting an autoregressive hidden Markov model
(AR-HMM) to a fixed pose trajectory derived from PCA of egocentric-aligned keypoints;
(2) Fitting a full keypoint-MoSeq model initialized from the AR-HMM. References in the
text to “MoSeq applied to keypoints” or “MoSeq (keypoints)”, e.g., in Figs 2-3, refer to
output of step (1). Both steps are described below, followed by a detailed description of
the model and inference algorithm in the mathematical modeling section. In all cases,
we excluded rare states (frequency < 0.5%) from downstream analysis. We have made
the code available as a user-friendly package, available at Moseq4all.org.

1) Fitting an initial AR-HMM:

We first modified the keypoint coordinates, defining keypoints with confidence
below 0.5 as missing data and in imputing their values via linear interpolation,
and then augmenting all coordinates with a small amount of random noise; The
noise values were uniformly sampled from the interval [-0.1, 0.1] and helped
prevent degeneracy during model fitting. Importantly, these preprocessing steps
were only applied during AR-HMM fitting – the original coordinates were used
when fitting the full keypoint-MoSeq model.

Next, we centered the coordinates on each frame, aligned them using the tail-
nose angle, and then transformed them using PCA with whitening. The number
of principal components (PCs) was chosen for each dataset as the minimum
required to explain 90% of total variance. This resulted in 4 PCs for the overhead

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

camera 2D datasets, 6 PCs for the below-floor-camera 2D datasets, and 6 PCs
for the 3D dataset.

We then used Gibbs sampling to infer the states and parameters of an AR-HMM,
including the state sequence >, the autoregressive parameters ?, A, B, and the
transition parameters C, D. The hyper-parameters for this step, listed in the
mathematical modeling section below, were generally identical to those in the
original depth-MoSeq model7. The one exception was E which we adjusted
separately for each dataset to ensure a median state duration of 400ms.

2) Fitting a full keypoint-MoSeq model:

We next fit the full set of variables for keypoint-MoSeq, which include the AR-
HMM variables mentioned above, as well as the location F and heading ℎ, latent
pose trajectory !, per-keypoint noise level H&, and per-frame/per-keypoint noise
scale /. Fitting was performed using Gibbs sampling for 500 iterations, at which
point the log joint probability appeared to have stabilized.

The hyper-parameters for this step are enumerated in the mathematical modeling
section below. In general, we used the same hyper-parameter values across
datasets. The two exceptions were E, which again had to be adjusted to maintain
a median state duration of 400ms, and /(, which determines a prior on the noise
scale. Since low-confidence keypoint detections often have high error, we set /(
using a logistic curve that transitions between a high-noise regime (/(= 100) for
detections with low confidence and a low-noise regime (/(= 1) for detections
with high confidence:

/(= 1 + 	100L1 +	M&((*+,-./0,*0'(.2)N
'"

Trajectory plots

To visualize the modal trajectory associated with each syllable (Fig 3e), we (1)
computed the full set of trajectories for all instances of all syllables (2) used a local
density criterion to identify a single representative instance of each syllable (3)
computed a final trajectory using the nearest neighbors of the representative trajectory.

1) Computing the trajectory of individual syllable instances: Let O!, F!, and ℎ! denote
the keypoint coordinates, centroid and heading of the mouse at time ", and let
P(F, ℎ; O) denote the rigid transformation that egocentrically aligns O using
centroid F and heading ℎ. Given a syllable instance with onset time R, we

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

computed the corresponding trajectory S4 by centering and aligning the
sequence of poses (O4'5, … , O4%"5) using the centroid and heading on time R. In
other words,

S4 = [P(F4 , ℎ4; O4'5), … , P(F4 , ℎ4; O4%"5)]

2) Identifying a representative instance of each syllable: The collection of
trajectories computed above can be thought of as a set of points in a high
dimensional trajectory space (for W keypoints in 2D, this space would have
dimension 40W). Each point has a syllable label, and the segregation of these
labels in the trajectory space represents the kinematic differences between
syllables. To capture these differences, we computed a local probability density
function for each syllable, and a global density function across all syllables. We
then selected a representative trajectory S for each syllable by maximizing the
ratio:

local	density(S)

global	density(S)

The density functions were computed as the mean distance from each point to its
50 nearest neighbors. For the global density, the nearest neighbors were
selected from among all instances of all syllables. For the local densities, the
nearest neighbors were selected from among instances of the target syllable.

3) Computing final trajectories for each syllable: For each syllable and its

representative trajectory S, we identified the 50 nearest neighbors of S from
among other instanes of the same syllable and then computed a final trajectory
as the mean across these nearest neighbors. The trajectory plots in Fig 3e
consist of 10 evenly-space poses along this trajectory, i.e., the poses at times
R − 5, R − 3,… , R + 13.

Cross-syllable likelihoods

We defined each cross-syllable likelihood7 as the probability (on average) that instances
of one syllable could have arisen based on the dynamics of another syllable. The
probabilities were computed based on the discrete latent states >!, continuous latent
states !!, and autoregressive parameters ?, A, B output by keypoint-MoSeq. The
instances ^(_) of syllable _ were defined as the set of all sequences ("6, … , "7) of
consecutive timepoints such that >! = _ for all "6 ≤ " ≤ "7 and >!!'"	 ≠ _ ≠ >!"%". For
each such instance, one can calculate the probability bL!!! , … , !!"c?8, A8, B8)	that the

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

corresponding sequence of latent states arose from the autoregressive dynamics of
syllable d. The cross-syllable likelihood e98 is defined in terms of these probabilities as

e98 =
1

|^(_)|
g

L!!! , … , !!"c?8, A8, B8)

L!!! , … , !!"c?9, A9, B9)(!!,…,!")∈=(,)

Generating synthetic keypoint data

To generate the synthetic keypoint trajectories used for Extended Data Fig 3c, we fit a
linear dynamical system (LDS) to egocentrically aligned keypoint trajectories and then
sampled randomly generated outputs from the fitted model. The LDS was identical to
the model underlying keypoint-MoSeq (see mathematical modeling section below),
except that it only had one discrete state, lacked centroid ad heading variables, and
allowed separate noise terms for the x- and y- coordinates of each keypoint.

Applying B-SOiD

B-SOiD is an automated pipeline for behavioral clustering that: (1) preprocesses
keypoint trajectories to generate pose and movement features; (2) performs
dimensionality reduction on a subset of frames using UMAP; (3) clusters points in the
UMAP space; (4) uses a classifier to extend the clustering to all frames8. We fit B-SOiD
separately for each dataset. In each case, steps 2-4 were performed 20 times with
different random seeds, and the pipeline was applied with standard parameters; 50,000
randomly sampled frames were used for dimensionality reduction and clustering, and
the min_cluster_size range was set to 0.5% - 1%. Since B-SOiD uses a hardcoded
window of 100ms to calculate pose and movement features, we re-ran the pipeline with
falsely inflated framerates for the window-size scan in Extended Data Fig 4a. In all
analyses involving B-SOiD, rare states (frequency < 0.5%) were excluded from analysis.

Applying VAME

VAME is a pipeline for behavioral clustering that: (1) preprocesses keypoint trajectories
and transforms them into egocentric coordinates; (2) fits a recurrent neural network
(RNN); (3) clusters the latent code of the RNN9. We applied these steps separately to
each dataset, in each case running step (3) 20 times with different random seeds. For
step (1), we used the same parameters as in keypoint-MoSeq – egocentric alignment
was performed along the tail-nose axis, and we set the pose_confidence threshold to
0.5. For step (2), we set time_window=30 and zdims=20 for all datasets, except for the
zdim-scan in Extended Data Fig 4a. VAME provides two different options for step (3):
fitting an HMM (default) or applying K-Means (alternative). We fit an HMM for all
datasets and additionally applied K-Means to the initial open dataset. In general, we

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

approximately matched the number of states/clusters in VAME to the number identified
by keypoint-MoSeq, except when scanning over state number in Extended Data Fig 4a.
In all analyses involving VAME, rare states (frequency < 0.5%) were excluded from
analysis.

Applying MotionMapper

MotionMapper performs unsupervised behavioral segmentation by: (1) applying a
wavelet transform to preprocessed pose data; (2) nonlinearly embedding the
transformed data in 2D; (3) clustering the 2D data with a watershed transform10. We
applied MotionMapper separately to each dataset using the python package
https://github.com/bermanlabemory/motionmapperpy. In general, the data were
egocentrically aligned along the tail-nose axis and then projected into 8 dimensions
using PCA. 10 log-spaced frequencies between 0.25 and 15Hz were used for the
wavelet transform, and dimensionality reduction was performed using tSNE. The
threshold for watershedding was chosen to produce at least 25 clusters, consistent with
keypoint-MoSeq for the overhead camera data. Rare states (frequency < 0.5%) were
excluded from analysis. For the parameter scan in Extended Data Fig 4a, we varied the
each of these parameters while holding the others fixed, including the threshold for
watershedding, the number of initial PCA dimensions, and the frequency range of
wavelet analysis. We also repeated a subset of these analyses using an alternative
autoencoder-based dimensionality reduction approach, as described in the
motionmapperpy tutorial
(motionmapperpy/demo/motionmapperpy_mouse_demo.ipynb).

Predicting kinematics from state sequences

We trained decoding models based on spline regression to predict kinematic
parameters (height, velocity, turn speed) from state sequences output by keypoint-
MoSeq and other behavior segmentation methods (Fig 4e, Extended Data Fig 4c). Let
>! represent an unsupervised behavioral state sequence and let h denote a spline
basis, where h!,> is the value of spline i and frame ". We generated such a basis using
the “bs” function from the python package “patsy”, passing in five log-spaced knot
locations (1.0, 2.0, 3.9, 7.7, 15.2, 30.0) and obtaining basis values over a 300-frame
interval. This resulted in a 300-by-5 basis matrix h. The spline basis and state sequence
were combined to form a 5j-dimensional design matrix, where j is the number of
distinct behavioral states. Specifically, for each instance ("6, … , "7) of state _ (see
“Cross-syllable likelihoods” section above for a definition of state instances), we inserted
the first "7 − "6 frames of h into dimensions 5_,… ,5_ + 5 of the design matrix, aligning
the first frame of h to frame "6 in the design matix. Kinematic features were regressed

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

against the design matrix using Ridge regression from scikit-learn and 5-fold cross-
validation. We used a range of values from 10-3 to 103 for the regularization parameter k
and reported the results with greatest accuracy.

Rearing analysis

To compare the dynamics of rear-associated states across methods, we systematically
identified all instances of rearing in our initial open field dataset. During a stereotypical
rear, mice briefly stood on their hindlegs and extended their head upwards, leading to a
transient increase in height from its modal value of 3cm-5cm to a peak of 7cm-10cm.
Rears were typically brief, with mice exiting and then returning to a prone position within
a few seconds. We encoded these features using the following criteria. First, rear
onsets were defined as increases in height from below 5cm to above 7cm that occurred
within the span of a second, with onset formally defined as the first frame where the
height exceeded 5cm. Next, rear offsets were defined as decreases in height from
above 7cm to below 5cm that occurred within the span of a second, with offset formally
defined as the first frame where the height fell below 7cm. Finally, we defined complete
rears as onset-offset pairs defining an interval with length between 0.5 and 2 seconds.
Height was determined from the distribution of depth values in cropped, aligned and
background-segmented videos. Specifically, we used the 98th percentile of the
distribution in each frame.

Accelerometry processing

From the IMU we obtained absolute rotations	l? , l@, lA (yaw, pitch, and roll) and
accelerations mB , m? , mC (dorsal/ventral, posterior/anterior, left/right). To control for subtle
variations in implant geometry and chip calibration, we centered the distribution of
sensor readings for each variable on each session. We defined total acceleration as the
norm of the 3 acceleration components:

|m| = nmB
& + m?

& + mC
&

Similarly, we defined total angular velocity as the norm |o| of rotation derivative:

o = p
ql?

q"
,
ql@

q"
,
qlA

q"
r	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

Finally, to calculate jerk, we smoothed the acceleration signal with a 50ms Gaussian
kernel, generating a time-series ms, and then computed the norm of its derivative:

jerk = u
qms

q"
u

Aligning dopamine fluctuations to behavior states

For a detailed description of photometry data acquisition and preprocessing, see ref1.
Briefly, photometry signals were: (1) ΔF/F0-normalized using a 5-second window; (2)
adjusted against a reference to remove motion artefacts and other non-ligand-
associated fluctuations; (3) z-scored using a 20-second sliding window; (4) temporally
aligned to the 30Hz behavioral videos.

Given a set of state onsets (either for a single state or across all states), we computed
the onset-aligned dopamine trace by averaging the dopamine signal across onset-
centered windows. From the resulting traces, each of which can be denoted as a time-
series of dopamine signal values (q'4 , … , q4) we defined the total fluctuation size (Fig
5d) and temporal asymmetry (Fig 5e) as

temporal	asymmetry = 	
1

15
gq!

"5

!D(

−
1

15
g q!

(

!D'"5

, AUC = 	 g |q!|

"5

!D'"5

A third metric – the average dopamine during each state (Extended Data Figure 6b) –
was defined simply as the mean of the dopamine signal across all frames bearing that
state label. For each metric, shuffle distributions were generated by repeating the
calculation with a temporally reversed copy of the dopamine times-series.

Supervised behavior benchmark

Videos and behavioral annotations for the supervised open field behavior benchmark
(Fig 4a-c) were obtained from (Bohnslav, 2019)11. The dataset contains 20 videos that
are each 10-20 minutes long. Each video includes frame-by-frame annotations of five
possible behaviors: locomote, rear, face groom, body groom, and defecate. We
excluded “defecate” from the analysis because it was extremely rate (< 0.1% of frames).

For pose tracking we used DLC's SuperAnimal inference API that performs inference on
videos without the need to annotate poses in those videos. Specifically, we used
SuperAnimal-TopViewMouse that applies DLCRNet-50 as the pose estimation
model11. Keypoint detections were obtained using DeepLabCut's API function

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

deeplabcut.video_inference_superanimal. The API function uses a pretrained model
called SuperAnimal-TopViewMouse and performs video adaptation that applies multi-
resolution ensemble (i.e., the image height resized to 400, 500, 600 with a fixed aspect
ratio) and rapid self-training (model trained on zero shot predictions with confidence
above 0.1) for 1000 iterations to counter domain shift and reduce jittering predictions.
The code to reproduce this analysis is:

videos = ['path_to_video']
superanimal_name = 'superanimal_topviewmouse'
scale_list = [400, 500, 600]

deeplabcut.video_inference_superanimal(videos,
 superanimal_name,
 videotype=".mp4",
 video_adapt = True,
 scale_list = scale_list)

Keypoint coordinates and behavioral annotations for the supervised social behavior
benchmark (Fig 4d-f) were obtained from the CalMS21 dataset12 (task1). The dataset
contains 70 videos of resident-intruder interactions with frame-by-frame annotations of
four possible behaviors: attack, investigate, mount, or other. All unsupervised behavior
segmentation methods were fit to 2D keypoint data for the resident mouse.

We used four metrics9 to compare supervised annotations and unsupervised states
from each method. These included normalized mutual information, homogeneity,
adjusted rand score, and purity. All metrics besides purity were computed using the
python library scikit-learn (i.e., with the function normalized_mutual_info_score,
homogeneity_score, adjusted_rand_score). The purity score was defined as in ref9.

MATHEMATICAL MODELING

Notation

1. z'&({, |&) denotes the scaled inverse Chi-squared distribution.

2. ⊗ denotes the Kronecker product.

3. ~E is the j-dimensional simplex.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

4. ^E is the j × j identity matrix.

5. ÄE×G is the j ×Å matrix of ones.

6. !!#:!$ denotes the concatenation Ç!!#!!#%", … , !!$É where "" < "&.

Generative model

Keypoint-MoSeq learns syllables by fitting a switching linear dynamical systems (SLDS)
model13, which decomposes an animal’s pose trajectory into a sequence of stereotyped
dynamical motifs. In general, SLDS models explain time-series observations O", . . . , O4
through a hierarchy of latent states, including continuous states !! ∈ ℝG that represent
the observations O! in a low-dimensional space, and discrete states >! ∈ {1, . . . , j} that
govern the dynamics of !! over time. In keypoint-MoSeq, the discrete states correspond
to syllables, the continuous states correspond to pose, and the observations are
keypoint coordinates. We further adapted SLDS by (1) including a sticky Hierarchical
Dirichlet prior (HDP); (2) excplicitly modeling the animal’s location and heading; (3)
including a robust (heavy-tailed) observation distribution for keypoints. Below we review
SLDS models in general and then describe each of the customizations implemented in
keypoint-MoSeq.

Switching linear dynamical systems

The discrete states >! ∈ {1, . . . , j} are assumed to form a Markov chain, meaning

>!%" ∣ >! ∼ CatLCC%N

where C> ∈ ~E is the probability of transitioning from discrete state i to each other state.
Conditional on the discrete states >!, the continuous states !! follow an ã-order vector
autoregressive process with Gaussian noise. This means that the expected value of
each !! is a linear function of the previous ã states !!'I:!'", as shown below,

!! ∣ >! , !!'I:!'" ∼ åL?C%!!'I:!'" + AC% , BC%N

where ?> ∈ ℝG×IG is the autoregressive dynamics matrix, A> ∈ ℝG is the dynamics bias
vector, and B> ∈ ℝG×G is the dynamics noise matrix for each discrete state i = 1,… ,j.
The dynamics parameters (?> , A> , B>) have a matrix normal inverse Wishart (MNIW)
prior,

[?> ∣ A>], B> ∼ MNIW({(, ç(, Å(, W()

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

where {(> Å − 1 is the degrees of freedom, ç(∈ ℝG×G is the prior covariance matrix,
Å(∈ ℝ

G×(IG%") is the prior mean dynamics matrix, and W(∈ ℝ(IG%")×(IG%") is the prior
scale matrix. Finally, in the standard formulation of SLDS (which we modify for keypoint
data, as described below), each observation O! ∈ ℝJ is a linear function of !! plus noise:

O! ∣ >! , !! ∼ å(e!! + q, ç)

Here we assume that the observation parameters e, q and ç do not depend on >!.

Sticky hierarchical Dirichlet prior

A key feature of depth Moseq7 is the use of a sticky HDP prior14 for the transition matrix.
In general, HDP priors allow the number of distinct states in a hidden Markov model to
be inferred directly from the data. The “sticky” variant of the HDP prior includes an
additional hyper-parameter E that tunes the frequency of self-transitions in the discrete
state sequence >!, and thus the distribution of syllable durations. As in depth MoSeq,
we implement a sticky-HDP prior using the weak limit approximation14, as shown below:

D ∼ Dir(é/j,… , é/j)
C> ∣ D ∼ Dir(kD", … , kDK + E… , kDE)

where E is being added in the ith position. Here D ∈ ~E is a global vector of augmented
syllable transition probabilities, and the hyperparameters é, k, E control the sparsity of
states, the weight of the sparsity prior, and the bias toward self-transitions respectively.

SLDS for postural dynamics

Keypoint coordinates reflect not only the pose of an animal, but also its location and
heading. To disambiguate these factors, we define a canonical, egocentric reference
frame in which the postural dynamics are modeled. The canonically aligned poses are
then transformed into global coordinates using explicit centroid and heading variables
that are learned by the model.

Concretely, let ê! ∈ ℝL×J represent the coordinates of W keypoints at time ", where ë ∈

{2,3}. We define latent variables F! ∈ ℝJ and ℎ! ∈ [0,2C] to represent the animal’s
centroid and heading angle. We assume that each heading angle ℎ! has an
independent, uniform prior and that the centroid is autocorrelated as follows:

ℎ! ∼ Unif(0,2C)
F! ∣ F!'" ∼ åLF!'", Hloc

& N

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

At each time point ", the pose ê! is generated via rotation and translation of a centered
and oriented pose êì! that depends on the current continuous latent state !!:

ê! = êì!î(ℎ!) + ÄLF!
M	 where 	vecLêì!N ∼ åL(ï ⊗ ^J)(e!! + q), ç!N

where î(ℎ!) is a matrix that rotates by angle ℎ! in the xy-plane, and ï ∈ îL×(L'") is
defined by the truncated singular value decomposition ï~ïM = ^L − ÄL×L/W. Note that ï
encodes a linear transformation that isometrically maps ℝ(L'")×J to the set of all
centered keypoint arrangements in ℝL×J, and thus ensures that ñLêì!N is always
centered15. The parameters e ∈ ℝ(L'")J×G, and q ∈ ℝ(L'")J are initialized using
principal components analysis (PCA) applied to the transformed keypoint coordinates
ï4êì!. In principle e and q can be adjusted further during model fitting, and we describe
the corresponding Gibbs updates in the inference section below. In practice, however,
we keep e and q fixed to their initial values when fitting keypoint-MoSeq.

Robust observations

To account for occasional large errors during keypoint tracking, we use the heavy-tailed
Student’s t-distribution, which corresponds to a normal distribution whose variance is
itself a random variable. Here, we instantiate the random variances explicitly as a
product of two parameters: a baseline variance HN for each keypoint and a time-varying
scale /!,N. We assume:

HN
& ∼ z'&({O , H(

&)

/!,N
& ∼ z'&L{6, /(,!,NN

where {O > 0 and {6 > 0 are degrees of freedom, H(& > 0 is a baseline scaling
parameter, and /(,!,N > 0 is a local scaling parameter, which encodes a prior on the
scale of error for each keypoint on each frame. Where possible, we calculated the local
scaling parameters as a function of the neural network confidences for each keypoint.
The function was calibrated using the empirical relationship between confidence values
and error sizes. The overall noise covariance ç! is generated from HN and /!,N as follows:

ç! = diagLH"&/!,"& , … , HL&/!,L& N ⊗ ^J

Related work

Keypoint-MoSeq extends the model used in depth MoSeq7, where a low-dimensional
pose trajectory !! (derived from egocentrically aligned depth videos) is used to fit an
autoregressive hidden Markov model with a transition matrix C, autoregressive

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

parameters ?> , A> , B> and discrete states >! like those described here. Indeed, conditional
on !!, the models for keypoin-MoSeq and depth MoSeq are identical. The main
differences are that keypoint-MoSeq treats !! as a latent variable (i.e. updates it during
fitting), includes explicit centroid and heading variables, and uses a robust noise model.

Disambiguating pose from position and heading is a common task in unsupervised
behavior algorithms, and researchers have adopted a variety of approaches. VAME9,
for example, isolates pose by centering and aligning data ahead of time, whereas B-
SOiD8 transforms the keypoint data into a vector of relative distances and angles. The
statistical pose model GIMBAL5, on the other hand, introduces latent heading and
centroid variables that are inferred simultaneously with the rest of the model. Keypoint-
MoSeq adopts this latter approach, which is able to remove spurious correlations
between egocentric features that can arise from errors in keypoint localization.

Inference algorithm

Our full model contains latent variables F, ℎ, !, >, / and parameters ?, A, B, e, q, H, D, C. We
fit each of these variables – with the exception of e and q – using Gibbs sampling, in
which each variable is iteratively resampled from its posterior distribution conditional on
the current values of all the other variables. The posterior distributions b(C, D ∣ >) and
b(?, A, B ∣ >, !) are unchanged from the original MoSeq paper and will not be be
reproduced here (see ref7, pages 42-44, and note the changes of notation B → ò, > → !,
and ! → O). ℎ are described below.

Resampling b(e, q ∣ /, H, !, F, ℎ, ê)

Let !s! represent !! with a 1 appended and define

çô! = LïMdiagLH"&/!,", . . . , HL&/!,LNïN ⊗ ^J

The posterior update is (e, q) ∼ å(vec(e, q) ∣ ö9, ò9) where

ò9 = LHP
'&^ + çB,BN

'"
				 and 				ö9 = ò9ç?,B

with

çB,B =g!s!

4

!D"

!s!
M⊗ïMçô!

'"ï ⊗ ^J				 and 				ç?,B =gL!s!
M⊗çô'"ï ⊗ ^JN

4

!D"

vecLêì!N
M

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

Resampling b(/ ∣ e, q, H, !, F, ℎ, ê)

Each /!,N is conditionally independent with posterior

/!,N ∣ e, q, HN , !, ê ∼ z'& õ{6 + ë,	L{6/(+ HN
'& ∥ (ï(e!! + q))N − êì!,N ∥

&N/({6 + ë)ù

Resampling b(H ∣ e, q, /, !, F, ℎ, ê)

Each HN is conditionally independent with posterior

HN
& ∼ z'&L{O + ëR,	L{OH(

& + ç?N({O + ëR)
'"N

where ç? = ∑ ∥E
!D" ï(e!! + q)N − êì!,N ∥

&//!,N

Resampling b(F ∣ e, q, H, /, !, ℎ, ê)

Since the translations F", . . . , F4 form a linear dynamical system, they can be updated by
Kalman sampling. The observation potentials have the form å(F! ∣ ö, é

&^J) where

ö =g
é!
&

HN
&/!,N

N

[ê!,N − î(ℎ!)
Mï(e!! + q)N], 			

1

é!
& =g

1

HN
&/!,N

N

Resampling b(ℎ ∣ e, q, H, /, !, F, ê)

The posterior of ℎ! is the von-Mises distribution vM(ü, E) where E and ü ∈ [0,2C] are the
unique parameters satisfying [Ecos(ü), Esin(ü)] = Çç"," + ç&,&, ç",& − ç&,"É for

ç =g
1

/!,NHN
&

N

ï(e!! + q)NLê!,N − F!N
M

Resampling b(! ∣ e, q, H, /, F, ℎ, ê)

To resample !, we first express its temporal dependencies as a first-order
autoregressive process, and then apply Kalman sampling. The change of variables is

?′ = °

^

^
^

?" ?& ⋯ ?I A

£ 		B′ = °

0
0

0
B

£ 		e′ = °

0 0

⋮ ⋮

0 0
e q

£		!!′ = •

!!'I%"
⋮
!!
1

¶

Kalman sampling can then be applied to the sample the conditional distribution,

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

bL!′":4 ∣ êì":4N ∝®å

4

!D"

L!′! ∣ ?′
(C%)!′!'", B′

(C%)N	åLvecLêì!N ∣ e′!′! , ç!N.

(Assume !′ is left-padded with zeros for negative time indices.)

Hyper-parameters

We used the following hyper-parameter values throughout the paper.

Transition matrix

j = 100

é = 1000

k = 100

E 		fit to each dataset

Autoregressive process

Å set using PCA explained variance curve
ã = 3

{(= Å + 2

ç(= 0.01^G
Å(= [0G×(I'") ^G 1G×"]

W(= 10^G(I%")

Observation process

H(
& = 1

{O = 105

{6 = 5

/(,!,N set based on neural network confidence

Centroid autocorrelation

Hloc
& = 0.4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

Derivation of Gibbs updates

Derivation of e, q updates

To simply notation, define

çô! = diagLH"&/!,", . . . , HL&/!,LN, 				!s! = (!! , 1), 				eô = (e, q)

The likelihood of the centered and aligned keypoint locations êì can be expanded as
follows.

bLêì ∣ eô, !s, çôN =®å

4

!D"

LvecLêì!N ∣ (ï ⊗ ^J)eô!s! , 	 çô! ⊗ ^JN

∝ exp ™−
1

2
gõ!s!

MeôMLïMçô!
'"ï ⊗ ^JNeô!s! − 2vecLêì!N

M
Lçô!

'"ï ⊗ ^JNeô!s!ù

4

!D"

´

∝ exp ™−
1

2
gõFM¨LeôN

M
L!s!!s!

M⊗ïMçô!
'"ï ⊗ ^JNFM¨LeôN

4

!D"

−2vecLeôNML!s!M⊗çô!
'"ï ⊗ ^JNvecLêì!N≠	Æ

∝ exp Ø−
1

2
õFM¨LeôN

M
çB,BFM¨LeôN − 2FM¨LeôN

M
çB,?ù∞

where

çB,B =g!s!

4

!D"

!s!
M⊗ïMçô!

'"ï ⊗ ^J				 and 				çB,? =gL!s!
M⊗çô'"ï ⊗ ^JN

4

!D"

vecLêì!N

Multiplying by the prior vecLeôN ∼ å(0, HP
&^) yields

bLeô ∣ êì, !s, çôN ∝ åLvecLeôN ∣ ö9, ò9N

where

ò9 = LHP
'&^ + çB,BN

'"
				 and 				ö9 = ò9ç?,B

Derivation of HN , /!,N updates

For each time " and keypoint ±, let ê̄!,N = ï(e!! + q). The likelihood of the centered and
aligned keypoint location êì!,N is

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

bLêì!,N ∣ ê̄!,N , /!,N , HNN = åLêì!,N ∣ ê̄!,N , 	HN
&/!,N^JN ∝ LHN

&/!,NN
'J/&

exp ≥−
∥ êì!,N − ê‾!,N ∥

&

2HN
&/!,N

µ

We can then calculate posteriors bL/!,N ∣ HNN and bLHN ∣ /!,NN as follows.

bL/!,N ∣ HN , êì!,N , ê̄!,NN ∝ z'"L/!,N ∣ {6, /(NåLêì!,N ∣ ê̄!,N , 	HN
&/!,N^JN

∝ /!,N
'"'(R!%J)/&exp ≥

−{6/(

2/!,N
−
∥ êì!,N − ê‾!,N ∥

&

2HN
&/!,N

µ

∝ z'&L/!,N ∣ {6 + ë,	L{6/(+ HN
'& ∥ êì!,N − ê‾!,N ∥

&N({6 + ë)
'"N

bLHN ∣ {/!,N , êì!,N , ê̄!,N}!D"
4 N ∝ z'"(HN

& ∣ {O , H(
&)®å

4

!D"

Lêì!,N ∣ ê̄!,N , 	HN
&/!,N^JN

∝ HN
'&'R&'J4exp ™

−{OH(
&

2HN
& −

1

2HN
&g

∥ êì!,N − ê‾!,N ∥
&

/!,N

4

!D"

´

∝ z'&LHN
& ∣ {O + ëR,	 L{OH(

& + ç?N({O + ëR)
'"N

where ç? = ∑ ∥! êì!,N − ê‾!,N ∥
&//!,N

Derivation of F! update

We assume an improper uniform prior on F!, hence

b(F! ∣ ê!) ∝ b(ê! ∣ F!)b(F!) ∝ b(ê! ∣ F!)

∝ åLFM¨L(ê! − ÄLF!
M)î(ℎ!)

MN ∣ ï(e!! + q),	ç!N

=®å

N

Lî(ℎ!)Lê!,N − F!N ∣ ï(e!! + q)N , 	 /!,NHN
&^JN

=®å

N

LF! ∣ ê!,N − î(ℎ!)
Mï(e!! + q)N , 	 /!,NHN

&^JN

= å(F! ∣ ö! , é!
&^J)

where

ö =g
é!
&

HN
&/!,N

N

Lê!,N − î(ℎ!)
Mï(e!! + q)NN, 			

1

é!
& =g

1

HN
&/!,N

N

Derivation of ℎ! update

We assume a proper uniform prior on ℎ!, hence

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

b(ℎ! ∣ ê!) ∝ b(ê! ∣ ℎ!)b(ℎ!) ∝ b(ê! ∣ ℎ!)

∝ exp ™g
Lê!,N − F!N

M
î(ℎ!)ï(e!! + q)N

/!,NHN
&

N

´

= exp •
tr ∂î(ℎ!)ï(e!! + q)NLê!,N − F!N

M
Æ

/!,NHN
& ¶

∝ exptr[î(ℎ!)ç]				where			ç =gï

N

(e!! + q)NLê!,N − F!N
M
/L/!,NHN

&N

∝ expÇcos(ℎ!)Lç"," + ç&,&N + sin(ℎ!)Lç",& − ç&,"NÉ

Let [Ecos(ü), Esin(ü)] represent Çç"," + ç&,&, ç",& − ç&,"É in polar coordinates. Then

b(ê! ∣ ℎ!) ∝ exp[Ecos(ℎ!)cos(ü) + sin(ℎ!)sin(ü)]

= exp[Ecos(ℎ! − ü)] ∝ vM(ℎ! ∣ ü, E)

Supplemental References

1 Markowitz, J. E. et al. Spontaneous behaviour is structured by reinforcement without

explicit reward. Nature 614, 108-117 (2023). https://doi.org:10.1038/s41586-022-
05611-2

2 Lin, S. et al. Characterizing the structure of mouse behavior using Motion Sequencing.
(2022). https://doi.org:10.48550/ARXIV.2211.08497

3 Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N. & Liang, J. in Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support. (eds Danail
Stoyanov et al.) 3-11 (Springer International Publishing).

4 Sun, K., Xiao, B., Liu, D. & Wang, J. in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 5686-5696.

5 Zhang, L., Dunn, T., Marshall, J., Olveczky, B. & Linderman, S. in Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics Vol. 130 (eds Banerjee
Arindam & Fukumizu Kenji) 2800--2808 (PMLR, Proceedings of Machine Learning
Research, 2021).

6 Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and
behaviors. Nature Protocols 14, 2152-2176 (2019). https://doi.org:10.1038/s41596-019-
0176-0

7 Wiltschko, A. B. et al. Mapping Sub-Second Structure in Mouse Behavior. Neuron 88,
1121-1135 (2015). https://doi.org:10.1016/j.neuron.2015.11.031

8 Hsu, A. I. & Yttri, E. A. B-SOiD, an open-source unsupervised algorithm for identification
and fast prediction of behaviors. Nature Communications 12, 5188 (2021).
https://doi.org:10.1038/s41467-021-25420-x PMID - 34465784

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

9 Luxem, K. et al. Identifying behavioral structure from deep variational embeddings of
animal motion. Commun Biol 5, 1267 (2022). https://doi.org:10.1038/s42003-022-
04080-7

10 Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the stereotyped
behaviour of freely moving fruit flies. Journal of the Royal Society, Interface / the Royal
Society 11 (2014). https://doi.org:papers3://publication/doi/10.1098/rsif.2014.0672

11 Bohnslav, J. P. et al. DeepEthogram, a machine learning pipeline for supervised behavior
classification from raw pixels. eLife 10, e63377 (2021).
https://doi.org:10.7554/eLife.63377

12 Sun, J. J. et al. Caltech Mouse Social Interactions (CalMS21) Dataset. (2021).
https://doi.org:10.22002/D1.1991

13 Ackerson, G. & Fu, K. On state estimation in switching environments. IEEE Transactions
on Automatic Control 15, 10-17 (1970). https://doi.org:10.1109/TAC.1970.1099359

14 Fox, E. B., Sudderth, E. B., Jordan, M. I. & Willsky, A. S. in Proceedings of the 25th
International Conference on Machine Learning 312–319 (Association for Computing
Machinery, 2008).

15 Andreella, A. & Finos, L. Procrustes Analysis for High-Dimensional Data. Psychometrika
87, 1422-1438 (2022). https://doi.org:10.1007/s11336-022-09859-5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/

