
 

EXPERIMENTAL METHODS 
 

Animal care and behavioral experiments 

Unless otherwise noted, behavioral recordings were performed on 8–16-week-old 
C57/BL6 mice (The Jackson Laboratory stock no. 000664). Mice were transferred to our 
colony at 6-8 weeks of age and housed in a reverse 12-hour light/12-hour dark cycle. 
We single-housed mice after stereotactic surgery, and group-housed them otherwise. 
On recording days, mice were brought to the laboratory, habituated in darkness for at 
least 20 minutes, and then placed in an open field arena for 30-60 mins. We recorded 6 
male mice for 10 sessions (6 hours) in the initial round of open field recordings; and 5 
male mice for 52 sessions (50 hours) during the accelerometry recordings. The 
dopamine photometry recordings were obtained from a recent study1. They include 6 
C57/BL6 mice and 8 DAT-IRES-cre (The Jackson Laboratory stock no. 006660) mice of 
both sexes, recorded for 378 sessions. Of these, we selected a random subset of 95 
sessions (~50 hours) for benchmarking keypoint-MoSeq.  
 

Stereotactic surgery procedures 

For all stereotactic surgeries, mice were anaesthetized using 1–2% isoflurane in 
oxygen, at a flow rate of 1 L/min for the duration of the procedure. Anterior-posterior 
(AP) and medial-lateral (ML) coordinates were zeroed relative to bregma, the dorso-
ventral (DV) coordinate was zeroed relative to the pial surface, and coordinates are in 
units of mm. For dopamine recordings, 400nL of AAV5.CAG.dLight1.1 (Addgene 
#111067, titer: 4.85 × 1012) was injected at a 1:2 dilution into the DLS (AP 0.260; ML 
2.550; DV −2.40) and a single 200-μm diameter, 0.37–0.57 NA fiber cannula was 
implanted 200 μm above the injection site (see ref1 for additional details). For 
accelerometry recordings, we surgically attached a millmax connector (DigiKey 
ED8450-ND) and head bar to the skull and secured it with dental cement (Metabond). A 
9 degree-of-freedom absolute orientation inertial measurement unit (IMU; Bosch 
BN0055) was mounted on the millmax connector using a custom printed circuit board 
(PCB) with a net weight below 1g.  
 

Data acquisition from the IMU 

The IMU was connected to a Teensy microcontroller, which was programmed using the 
Adafruit BNO055 library with default settings (sample rate: 100 Hz, units: m/s2). To 
synchronize the IMU measurements and video recordings, we used an array of near 
infrared LEDs to display a rapid sequence of random 4-bit codes that updated 
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throughout the recording. The code sequence was later extracted from the behavioral 
videos and used to fit a piecewise linear model between timestamps from the videos 
and timestamps from the IMU. 
 

Recording setup 

For the initial set of open field recordings (Fig 1-3, 4a-g Fig 6g-l), mice were recorded in 
a square arena with transparent floor and walls (30cm length and width). Microsoft 
Azure Kinect cameras captured simultaneous depth and near-infrared video at 30Hz. 
Six cameras were used in total: one above, one below, and four side cameras at right 
angles at the same height as the mouse. For the accelerometry recordings, we used a 
single Microsoft Azure Kinect camera placed above the mouse, and an arena with 
transparent floor and opaque circular walls (45cm diameter). Data was transferred from 
the IMU using a light-weight tether attached to a custom-built active commutator. For 
the dopamine perturbation experiments, we used a slightly older camera model – the 
Microsoft Kinect 2 – to capture simultaneous depth and near-infrared at 30Hz. The 
recording arena was circular with opaque floor and walls (45cm diameter). Photometry 
signals were conveyed from the mouse using a fiber-optic patch cord attached to a 
passive commutator. 
 
 

COMPUTATIONAL METHODS 
 

Processing depth videos 

Applying MoSeq to depth videos involves: (1) mouse tracking and background 
subtraction; (2) egocentric alignment and cropping; (3) principal component analysis 
(PCA); (4) probabilistic modeling. We applied steps (2-4) as described in the MoSeq2 
pipeline2. For step (1), we trained a convolutional neural network (CNN) with a Unet++3 
architecture to segment mouse from background using ~5000 hand-labeled frames as 
training data.  
 

Keypoint tracking 

We used CNNs with an HRNet4 architecture (https://github.com/stefanopini/simple-
HRNet) with a final stride of 2 for pose tracking. The networks were trained on ~1000 
hand-labeled frames each for the overhead, below-floor, and side-view camera angles. 
Frame-labelling was crowdsourced through a commercial service (Scale AI). For the 
overhead camera, we tracked two ears and 6 points along the dorsal midline (tail base, 
lumbar spine, thoracic spine, cervical spine, head, and nose). For the below-floor 
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camera, we tracked the tip of each forepaw, the tip and base of each hind paw, and four 
points along the ventral midline (tail base, genitals, abdomen, and nose). For the side 
cameras, we tracked the same eight points as for the overhead camera, and also 
included the six limb points that were used for the below-floor camera (14 total). We 
trained a separate CNN for each camera angle. Target activations were formed by 
centering a Gaussian with 10px standard deviation on each keypoint. We used the 
location of the maximum pixel in each output channel of the neural network to determine 
keypoint coordinates and used the value at that pixel to set the confidence score. The 
resulting mean absolute error (MEA) between network detections and manual 
annotations was 2.9 pixels (px) for the training data and 3.2 px for heldout data. We also 
trained DeepLabCut and SLEAP models on the overhead-camera and below-floor-
camera datasets. For DeepLabCut, we used version 2.2.1, setting the architecture to 
resnet50 architecture and the “pos_dist_thresh” parameter to 10, resulting in train and 
test MEAs of 3.4 px and 3.8 px respectively. For SLEAP, we used version 1.2.3 with the 
baseline_large_rf.single.json configuration, resulting in train and test MEAs of 3.5 px 
and 4.7 px.  
 

3D pose inference 

Using 2D keypoint detections from six cameras, 3D keypoint coordinates were 
triangulated and then refined using GIMBAL, a model-based approach that leverages 
anatomical constraints and motion continuity5. To fit GIMBAL, we computed initial 3D 
keypoint estimates using robust triangulation (i.e. by taking the median across all 
camera pairs, as in 3D-DeepLabCut6) and then filtered to remove outliers using the 
EllipticEnvelope method from sklearn; We then fit the skeletal parameters and 
directional priors for GIMBAL using expectation maximization with 50 pose states (see 
ref5 for details). Finally, we applied the fitted GIMBAL model to each recording, using 
the following parameters for all keypoints: obs_outlier_variance=1e6, 
obs_inlier_variance=10, pos_dt_variance=10. The latter parameters were chosen based 
on the accuracy of the resulting 3D keypoint estimates, as assessed from visual 
inspection.  
 

Inferring model-free changepoints 

We defined changepoints as sudden, simultaneous shifts in the trajectories of multiple 
keypoints. We detected them using a procedure similar to the filtered derivative 
algorithm described in ref7, but with changes to emphasize simultaneity across multiple 
keypoints. The changes account for the lower dimensionality of keypoint data compared 
to depth videos, and for the unique noise structure of markerless keypoint tracking, in 
which individual keypoints occasionally jump a relatively large distance due to detection 
errors. Briefly, the new procedure first defines a continuous change score by: (1) 
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calculating the rate of each in each keypoint coordinate; (2) quantifying simultaneity in 
the change-rates across keypoints; (3) transforming the signal based on statistical 
significance with respect to a temporally shuffled null distribution; (4) identifying local 
peaks in the resulting significance score. The details of each step are as follows.  
 

1) Calculating rates of change: We transformed the keypoint coordinates on each 
frame by centering and aligned them along the tail-nose axis. We then computed 
the derivative of each coordinate for each keypoint, using a sliding window of 
length 3 as shown below, where !! denotes the value of a coordinate at time ". 
 

!̇! ≈
"

#
	(!!%# + !!%& + !!%" − !!'" − !!'& − !!'#) 

 
2) Quantifying simultaneous changes: The derivatives for each keypoint were Z-

scored and then binarized with a threshold. We then counted the number of 
threshold crossings on each frame and smoothed the resulting time-series of 
counts using a Gaussian filter with a one-frame kernel. The value of the threshold 
was chosen to maximize the total number of detected changepoints. 
 

3) Comparing to a null distribution: We repeated step (2) for 1000 shuffled 
datasets, in which each keypoint trajectory was cyclically permuted by a random 
interval. Using the shuffles as a null distribution, we computed a P-value for each 
frame and defined the final change score as − log"((pval)  
 

4) Identifying local peaks in the change score: We identified local peaks in the 
change score /!, i.e., times	"	for which /!'" < /! > /!%". Peaks were classified as 
statistically significant when they corresponded to a p-value below 0.01, which 
was chosen to control the false-discovery rate at 10%. The statistically significant 
peaks were reported as changepoints for downstream analysis. 

 

Spectral Analysis 

To analyze keypoint jitter, we quantified the magnitude of fluctuations across a range of 
frequencies by computing a spectrogram for each keypoint along each coordinate axis. 
Spectrograms were computed using the python function scipy.signal.spectrogram with 
nperseg=128 and noverlap=124. The spectrograms were then combined through 
averaging: each keypoint was assigned a spectrogram by averaging over the two 
coordinate axes, and the entire animal was assigned a spectrogram by averaging over 
all keypoints.  
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We used the keypoint-specific spectrograms to calculate cross-correlations with 
−log"((neural	network	detection	confidence), as well as the “error magnitude” (Fig 2f). 
Error magnitude was defined as the distance between the detected 2D location of a 
keypoint (based on a single camera angle) and a reprojection of its 3D position (based 
on consensus across six camera angles; see “3D pose inference” above). We also 
computed the cross-correlation between nose- and tail-base-fluctuations at each 
frequency, as measured by the overhead and below-floor cameras respectively. Finally, 
we averaged spectral power across keypoints to compute the cross-correlation with 
model transition rates (Fig 2f), defined as the per-frame probability of a state transitions 
across 20 model restarts. 
 

Applying keypoint-MoSeq 

The initial open field recordings (Fig 1-4), as well as the accelerometry, dopamine, and 
two benchmark datasets were modeled separately. Twenty models with different 
random seeds were fit for each dataset (except for the accelerometry data, in which 
case one model was fit).  
 
Modeling consisted of two phases: (1) Fitting an autoregressive hidden Markov model 
(AR-HMM) to a fixed pose trajectory derived from PCA of egocentric-aligned keypoints; 
(2) Fitting a full keypoint-MoSeq model initialized from the AR-HMM. References in the 
text to “MoSeq applied to keypoints” or “MoSeq (keypoints)”, e.g., in Figs 2-3, refer to 
output of step (1). Both steps are described below, followed by a detailed description of 
the model and inference algorithm in the mathematical modeling section. In all cases, 
we excluded rare states (frequency < 0.5%) from downstream analysis. We have made 
the code available as a user-friendly package, available at Moseq4all.org.  
 

1) Fitting an initial AR-HMM:  
 
We first modified the keypoint coordinates, defining keypoints with confidence 
below 0.5 as missing data and in imputing their values via linear interpolation, 
and then augmenting all coordinates with a small amount of random noise; The 
noise values were uniformly sampled from the interval [-0.1, 0.1] and helped 
prevent degeneracy during model fitting. Importantly, these preprocessing steps 
were only applied during AR-HMM fitting – the original coordinates were used 
when fitting the full keypoint-MoSeq model. 
 
Next, we centered the coordinates on each frame, aligned them using the tail-
nose angle, and then transformed them using PCA with whitening. The number 
of principal components (PCs) was chosen for each dataset as the minimum 
required to explain 90% of total variance. This resulted in 4 PCs for the overhead 
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camera 2D datasets, 6 PCs for the below-floor-camera 2D datasets, and 6 PCs 
for the 3D dataset.  
 
We then used Gibbs sampling to infer the states and parameters of an AR-HMM, 
including the state sequence >, the autoregressive parameters ?, A, B, and the 
transition parameters C, D. The hyper-parameters for this step, listed in the 
mathematical modeling section below, were generally identical to those in the 
original depth-MoSeq model7. The one exception was E which we adjusted 
separately for each dataset to ensure a median state duration of 400ms.  

 
2) Fitting a full keypoint-MoSeq model:  

 
We next fit the full set of variables for keypoint-MoSeq, which include the AR-
HMM variables mentioned above, as well as the location F and heading ℎ, latent 
pose trajectory !, per-keypoint noise level H&, and per-frame/per-keypoint noise 
scale /. Fitting was performed using Gibbs sampling for 500 iterations, at which 
point the log joint probability appeared to have stabilized. 

 
The hyper-parameters for this step are enumerated in the mathematical modeling 
section below. In general, we used the same hyper-parameter values across 
datasets. The two exceptions were E, which again had to be adjusted to maintain 
a median state duration of 400ms, and /(, which determines a prior on the noise 
scale. Since low-confidence keypoint detections often have high error, we set /( 
using a logistic curve that transitions between a high-noise regime (/( = 100) for 
detections with low confidence and a low-noise regime (/( = 1) for detections 
with high confidence: 
 

/( = 1 + 	100L1 +	M&((*+,-./0,*0'(.2)N
'" 

 

Trajectory plots 

To visualize the modal trajectory associated with each syllable (Fig 3e), we (1) 
computed the full set of trajectories for all instances of all syllables (2) used a local 
density criterion to identify a single representative instance of each syllable (3) 
computed a final trajectory using the nearest neighbors of the representative trajectory. 
 

1) Computing the trajectory of individual syllable instances: Let O!, F!, and ℎ! denote 
the keypoint coordinates, centroid and heading of the mouse at time ", and let 
P(F, ℎ; O) denote the rigid transformation that egocentrically aligns O using 
centroid F and heading ℎ. Given a syllable instance with onset time R, we 
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computed the corresponding trajectory S4 by centering and aligning the 
sequence of poses (O4'5, … , O4%"5) using the centroid and heading on time R. In 
other words, 
 

S4 = [P(F4 , ℎ4; O4'5), … , P(F4 , ℎ4; O4%"5)] 
 

2) Identifying a representative instance of each syllable: The collection of 
trajectories computed above can be thought of as a set of points in a high 
dimensional trajectory space (for W keypoints in 2D, this space would have 
dimension 40W). Each point has a syllable label, and the segregation of these 
labels in the trajectory space represents the kinematic differences between 
syllables. To capture these differences, we computed a local probability density 
function for each syllable, and a global density function across all syllables. We 
then selected a representative trajectory S for each syllable by maximizing the 
ratio: 

 
local	density(S)

global	density(S)
 

 
The density functions were computed as the mean distance from each point to its 
50 nearest neighbors. For the global density, the nearest neighbors were 
selected from among all instances of all syllables. For the local densities, the 
nearest neighbors were selected from among instances of the target syllable.  

 
3) Computing final trajectories for each syllable: For each syllable and its 

representative trajectory S, we identified the 50 nearest neighbors of S from 
among other instanes of the same syllable and then computed a final trajectory 
as the mean across these nearest neighbors. The trajectory plots in Fig 3e 
consist of 10 evenly-space poses along this trajectory, i.e., the poses at times 
R − 5, R − 3,… , R + 13. 

 

Cross-syllable likelihoods 

We defined each cross-syllable likelihood7 as the probability (on average) that instances 
of one syllable could have arisen based on the dynamics of another syllable. The 
probabilities were computed based on the discrete latent states >!, continuous latent 
states !!, and autoregressive parameters ?, A, B output by keypoint-MoSeq. The 
instances ^(_) of syllable _ were defined as the set of all sequences ("6, … , "7) of 
consecutive timepoints such that >! = _ for all "6 ≤ " ≤ "7 and >!!'"	 ≠ _ ≠ >!"%".  For 
each such instance, one can calculate the probability bL!!! , … , !!"c?8, A8, B8)	that the 
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corresponding sequence of latent states arose from the autoregressive dynamics of 
syllable d. The cross-syllable likelihood e98 is defined in terms of these probabilities as  

e98 =
1

|^(_)|
g

L!!! , … , !!"c?8, A8, B8)

L!!! , … , !!"c?9, A9, B9)(!!,…,!")∈=(,)

 

 

Generating synthetic keypoint data 

To generate the synthetic keypoint trajectories used for Extended Data Fig 3c, we fit a 
linear dynamical system (LDS) to egocentrically aligned keypoint trajectories and then 
sampled randomly generated outputs from the fitted model. The LDS was identical to 
the model underlying keypoint-MoSeq (see mathematical modeling section below), 
except that it only had one discrete state, lacked centroid ad heading variables, and 
allowed separate noise terms for the x- and y- coordinates of each keypoint.  
 

Applying B-SOiD 

B-SOiD is an automated pipeline for behavioral clustering that: (1) preprocesses 
keypoint trajectories to generate pose and movement features; (2) performs 
dimensionality reduction on a subset of frames using UMAP; (3) clusters points in the 
UMAP space; (4) uses a classifier to extend the clustering to all frames8. We fit B-SOiD 
separately for each dataset. In each case, steps 2-4 were performed 20 times with 
different random seeds, and the pipeline was applied with standard parameters; 50,000 
randomly sampled frames were used for dimensionality reduction and clustering, and 
the min_cluster_size range was set to 0.5% - 1%. Since B-SOiD uses a hardcoded 
window of 100ms to calculate pose and movement features, we re-ran the pipeline with 
falsely inflated framerates for the window-size scan in Extended Data Fig 4a. In all 
analyses involving B-SOiD, rare states (frequency < 0.5%) were excluded from analysis.  
 

Applying VAME 

VAME is a pipeline for behavioral clustering that: (1) preprocesses keypoint trajectories 
and transforms them into egocentric coordinates; (2) fits a recurrent neural network 
(RNN); (3) clusters the latent code of the RNN9. We applied these steps separately to 
each dataset, in each case running step (3) 20 times with different random seeds. For 
step (1), we used the same parameters as in keypoint-MoSeq – egocentric alignment 
was performed along the tail-nose axis, and we set the pose_confidence threshold to 
0.5. For step (2), we set time_window=30 and zdims=20 for all datasets, except for the 
zdim-scan in Extended Data Fig 4a. VAME provides two different options for step (3): 
fitting an HMM (default) or applying K-Means (alternative). We fit an HMM for all 
datasets and additionally applied K-Means to the initial open dataset. In general, we 
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approximately matched the number of states/clusters in VAME to the number identified 
by keypoint-MoSeq, except when scanning over state number in Extended Data Fig 4a. 
In all analyses involving VAME, rare states (frequency < 0.5%) were excluded from 
analysis.  

 

Applying MotionMapper 

MotionMapper performs unsupervised behavioral segmentation by: (1) applying a 
wavelet transform to preprocessed pose data; (2) nonlinearly embedding the 
transformed data in 2D; (3) clustering the 2D data with a watershed transform10. We 
applied MotionMapper separately to each dataset using the python package 
https://github.com/bermanlabemory/motionmapperpy. In general, the data were 
egocentrically aligned along the tail-nose axis and then projected into 8 dimensions 
using PCA. 10 log-spaced frequencies between 0.25 and 15Hz were used for the 
wavelet transform, and dimensionality reduction was performed using tSNE. The 
threshold for watershedding was chosen to produce at least 25 clusters, consistent with 
keypoint-MoSeq for the overhead camera data. Rare states (frequency < 0.5%) were 
excluded from analysis. For the parameter scan in Extended Data Fig 4a, we varied the 
each of these parameters while holding the others fixed, including the threshold for 
watershedding, the number of initial PCA dimensions, and the frequency range of 
wavelet analysis. We also repeated a subset of these analyses using an alternative 
autoencoder-based dimensionality reduction approach, as described in the 
motionmapperpy tutorial 
(motionmapperpy/demo/motionmapperpy_mouse_demo.ipynb). 
 

Predicting kinematics from state sequences 

We trained decoding models based on spline regression to predict kinematic 
parameters (height, velocity, turn speed) from state sequences output by keypoint-
MoSeq and other behavior segmentation methods (Fig 4e, Extended Data Fig 4c). Let 
>! represent an unsupervised behavioral state sequence and let h denote a spline 
basis, where h!,> is the value of spline i and frame ". We generated such a basis using 
the “bs” function from the python package “patsy”, passing in five log-spaced knot 
locations (1.0, 2.0, 3.9, 7.7, 15.2, 30.0) and obtaining basis values over a 300-frame 
interval. This resulted in a 300-by-5 basis matrix h. The spline basis and state sequence 
were combined to form a 5j-dimensional design matrix, where j is the number of 
distinct behavioral states. Specifically, for each instance ("6, … , "7) of state _ (see 
“Cross-syllable likelihoods” section above for a definition of state instances), we inserted 
the first "7 − "6 frames of h into dimensions 5_,… ,5_ + 5 of the design matrix, aligning 
the first frame of h to frame "6 in the design matix. Kinematic features were regressed 
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against the design matrix using Ridge regression from scikit-learn and 5-fold cross-
validation. We used a range of values from 10-3 to 103 for the regularization parameter k 
and reported the results with greatest accuracy.  
 

Rearing analysis 

To compare the dynamics of rear-associated states across methods, we systematically 
identified all instances of rearing in our initial open field dataset. During a stereotypical 
rear, mice briefly stood on their hindlegs and extended their head upwards, leading to a 
transient increase in height from its modal value of 3cm-5cm to a peak of 7cm-10cm. 
Rears were typically brief, with mice exiting and then returning to a prone position within 
a few seconds. We encoded these features using the following criteria. First, rear 
onsets were defined as increases in height from below 5cm to above 7cm that occurred 
within the span of a second, with onset formally defined as the first frame where the 
height exceeded 5cm. Next, rear offsets were defined as decreases in height from 
above 7cm to below 5cm that occurred within the span of a second, with offset formally 
defined as the first frame where the height fell below 7cm. Finally, we defined complete 
rears as onset-offset pairs defining an interval with length between 0.5 and 2 seconds. 
Height was determined from the distribution of depth values in cropped, aligned and 
background-segmented videos. Specifically, we used the 98th percentile of the 
distribution in each frame.    
 

Accelerometry processing 

From the IMU we obtained absolute rotations	l? , l@, lA (yaw, pitch, and roll) and 
accelerations mB , m? , mC (dorsal/ventral, posterior/anterior, left/right). To control for subtle 
variations in implant geometry and chip calibration, we centered the distribution of 
sensor readings for each variable on each session. We defined total acceleration as the 
norm of the 3 acceleration components: 
 

|m| = nmB
& + m?

& + mC
& 

 
Similarly, we defined total angular velocity as the norm |o| of rotation derivative: 
 

o = p
ql?

q"
,
ql@

q"
,
qlA

q"
r	 

 
    

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.03.16.532307doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532307
http://creativecommons.org/licenses/by-nc-nd/4.0/


Finally, to calculate jerk, we smoothed the acceleration signal with a 50ms Gaussian 
kernel, generating a time-series ms, and then computed the norm of its derivative: 
 

jerk = u
qms

q"
u 

 

Aligning dopamine fluctuations to behavior states 

For a detailed description of photometry data acquisition and preprocessing, see ref1. 
Briefly, photometry signals were: (1) ΔF/F0-normalized using a 5-second window; (2) 
adjusted against a reference to remove motion artefacts and other non-ligand-
associated fluctuations; (3) z-scored using a 20-second sliding window; (4) temporally 
aligned to the 30Hz behavioral videos. 
 
Given a set of state onsets (either for a single state or across all states), we computed 
the onset-aligned dopamine trace by averaging the dopamine signal across onset-
centered windows. From the resulting traces, each of which can be denoted as a time-
series of dopamine signal values (q'4 , … , q4) we defined the total fluctuation size (Fig 
5d) and temporal asymmetry (Fig 5e) as  
 

temporal	asymmetry = 	
1

15
gq!

"5

!D(

−
1

15
g q!

(

!D'"5

, AUC = 	 g |q!|

"5

!D'"5

 

 
A third metric – the average dopamine during each state (Extended Data Figure 6b) – 
was defined simply as the mean of the dopamine signal across all frames bearing that 
state label. For each metric, shuffle distributions were generated by repeating the 
calculation with a temporally reversed copy of the dopamine times-series.  
 

Supervised behavior benchmark 

Videos and behavioral annotations for the supervised open field behavior benchmark 
(Fig 4a-c) were obtained from (Bohnslav, 2019)11. The dataset contains 20 videos that 
are each 10-20 minutes long. Each video includes frame-by-frame annotations of five 
possible behaviors: locomote, rear, face groom, body groom, and defecate. We 
excluded “defecate” from the analysis because it was extremely rate (< 0.1% of frames).  
 
For pose tracking we used DLC's SuperAnimal inference API that performs inference on 
videos without the need to annotate poses in those videos. Specifically, we used 
SuperAnimal-TopViewMouse that applies DLCRNet-50 as the pose estimation 
model11.  Keypoint detections were obtained using DeepLabCut's API function 
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deeplabcut.video_inference_superanimal. The API function uses a pretrained model 
called SuperAnimal-TopViewMouse and performs video adaptation that applies multi-
resolution ensemble (i.e., the image height resized to 400, 500, 600 with a fixed aspect 
ratio) and rapid self-training (model trained on zero shot predictions with confidence 
above 0.1) for 1000 iterations to counter domain shift and reduce jittering predictions. 
The code to reproduce this analysis is: 
 

videos = ['path_to_video'] 
superanimal_name = 'superanimal_topviewmouse' 
scale_list = [400, 500, 600] 

 
deeplabcut.video_inference_superanimal(videos,  
  superanimal_name,  
  videotype=".mp4",  
  video_adapt = True,  
  scale_list = scale_list) 

 
Keypoint coordinates and behavioral annotations for the supervised social behavior 
benchmark (Fig 4d-f) were obtained from the CalMS21 dataset12 (task1). The dataset 
contains 70 videos of resident-intruder interactions with frame-by-frame annotations of 
four possible behaviors: attack, investigate, mount, or other. All unsupervised behavior 
segmentation methods were fit to 2D keypoint data for the resident mouse.  
 
We used four metrics9 to compare supervised annotations and unsupervised states 
from each method. These included normalized mutual information, homogeneity, 
adjusted rand score, and purity. All metrics besides purity were computed using the 
python library scikit-learn (i.e., with the function normalized_mutual_info_score, 
homogeneity_score, adjusted_rand_score). The purity score was defined as in ref9.  
 
 

MATHEMATICAL MODELING 
 

Notation 
 

1. z'&({, |&) denotes the scaled inverse Chi-squared distribution. 

2. ⊗ denotes the Kronecker product. 

3. ~E is the j-dimensional simplex. 
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4. ^E is the j × j identity matrix. 

5. ÄE×G is the j ×Å matrix of ones. 

6. !!#:!$ denotes the concatenation Ç!!#!!#%", … , !!$É where "" < "&. 

 

Generative model 

Keypoint-MoSeq learns syllables by fitting a switching linear dynamical systems (SLDS) 
model13, which decomposes an animal’s pose trajectory into a sequence of stereotyped 
dynamical motifs. In general, SLDS models explain time-series observations O", . . . , O4 
through a hierarchy of latent states, including continuous states !! ∈ ℝG that represent 
the observations O! in a low-dimensional space, and discrete states >! ∈ {1, . . . , j} that 
govern the dynamics of !! over time. In keypoint-MoSeq, the discrete states correspond 
to syllables, the continuous states correspond to pose, and the observations are 
keypoint coordinates. We further adapted SLDS by (1) including a sticky Hierarchical 
Dirichlet prior (HDP); (2) excplicitly modeling the animal’s location and heading; (3) 
including a robust (heavy-tailed) observation distribution for keypoints. Below we review 
SLDS models in general and then describe each of the customizations implemented in 
keypoint-MoSeq. 

 

Switching linear dynamical systems 

The discrete states >! ∈ {1, . . . , j} are assumed to form a Markov chain, meaning 

>!%" ∣ >! ∼ CatLCC%N 

where C> ∈ ~E is the probability of transitioning from discrete state i to each other state. 
Conditional on the discrete states >!, the continuous states !! follow an ã-order vector 
autoregressive process with Gaussian noise. This means that the expected value of 
each !! is a linear function of the previous ã states !!'I:!'", as shown below, 

!! ∣ >! , !!'I:!'" ∼ åL?C%!!'I:!'" + AC% , BC%N 

where ?> ∈ ℝG×IG is the autoregressive dynamics matrix, A> ∈ ℝG is the dynamics bias 
vector, and B> ∈ ℝG×G is the dynamics noise matrix for each discrete state i = 1,… ,j. 
The dynamics parameters (?> , A> , B>) have a matrix normal inverse Wishart (MNIW) 
prior, 

[?> ∣ A>], B> ∼ MNIW({(, ç(, Å(, W() 
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where {( > Å − 1 is the degrees of freedom, ç( ∈ ℝG×G is the prior covariance matrix, 
Å( ∈ ℝ

G×(IG%") is the prior mean dynamics matrix, and W( ∈ ℝ(IG%")×(IG%") is the prior 
scale matrix. Finally, in the standard formulation of SLDS (which we modify for keypoint 
data, as described below), each observation O! ∈ ℝJ is a linear function of !! plus noise: 

O! ∣ >! , !! ∼ å(e!! + q, ç) 

Here we assume that the observation parameters e, q and ç do not depend on >!. 

 

Sticky hierarchical Dirichlet prior 

A key feature of depth Moseq7 is the use of a sticky HDP prior14 for the transition matrix. 
In general, HDP priors allow the number of distinct states in a hidden Markov model to 
be inferred directly from the data. The “sticky” variant of the HDP prior includes an 
additional hyper-parameter E that tunes the frequency of self-transitions in the discrete 
state sequence >!, and thus the distribution of syllable durations. As in depth MoSeq, 
we implement a sticky-HDP prior using the weak limit approximation14, as shown below: 

D ∼ Dir(é/j,… , é/j)
C> ∣ D ∼ Dir(kD", … , kDK + E… , kDE)

 

where E is being added in the ith position. Here D ∈ ~E is a global vector of augmented 
syllable transition probabilities, and the hyperparameters é, k, E control the sparsity of 
states, the weight of the sparsity prior, and the bias toward self-transitions respectively. 

 

SLDS for postural dynamics 

Keypoint coordinates reflect not only the pose of an animal, but also its location and 
heading. To disambiguate these factors, we define a canonical, egocentric reference 
frame in which the postural dynamics are modeled. The canonically aligned poses are 
then transformed into global coordinates using explicit centroid and heading variables 
that are learned by the model. 

Concretely, let ê! ∈ ℝL×J represent the coordinates of W keypoints at time ", where ë ∈

{2,3}. We define latent variables F! ∈ ℝJ and ℎ! ∈ [0,2C] to represent the animal’s 
centroid and heading angle. We assume that each heading angle ℎ! has an 
independent, uniform prior and that the centroid is autocorrelated as follows: 

ℎ! ∼ Unif(0,2C)
F! ∣ F!'" ∼ åLF!'", Hloc

& N
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At each time point ", the pose ê! is generated via rotation and translation of a centered 
and oriented pose êì! that depends on the current continuous latent state !!: 

ê! = êì!î(ℎ!) + ÄLF!
M	 where 	vecLêì!N ∼ åL(ï ⊗ ^J)(e!! + q), ç!N 

where î(ℎ!) is a matrix that rotates by angle ℎ! in the xy-plane, and ï ∈ îL×(L'") is 
defined by the truncated singular value decomposition ï~ïM = ^L − ÄL×L/W. Note that ï 
encodes a linear transformation that isometrically maps ℝ(L'")×J to the set of all 
centered keypoint arrangements in ℝL×J, and thus ensures that ñLêì!N is always 
centered15. The parameters e ∈ ℝ(L'")J×G, and q ∈ ℝ(L'")J are initialized using 
principal components analysis (PCA) applied to the transformed keypoint coordinates 
ï4êì!. In principle e and q can be adjusted further during model fitting, and we describe 
the corresponding Gibbs updates in the inference section below. In practice, however, 
we keep e and q fixed to their initial values when fitting keypoint-MoSeq.  

 

Robust observations 

To account for occasional large errors during keypoint tracking, we use the heavy-tailed 
Student’s t-distribution, which corresponds to a normal distribution whose variance is 
itself a random variable. Here, we instantiate the random variances explicitly as a 
product of two parameters: a baseline variance HN for each keypoint and a time-varying 
scale /!,N. We assume: 

HN
& ∼ z'&({O , H(

&)

/!,N
& ∼ z'&L{6, /(,!,NN

 

where {O > 0 and {6 > 0 are degrees of freedom, H(& > 0 is a baseline scaling 
parameter, and /(,!,N > 0 is a local scaling parameter, which encodes a prior on the 
scale of error for each keypoint on each frame. Where possible, we calculated the local 
scaling parameters as a function of the neural network confidences for each keypoint. 
The function was calibrated using the empirical relationship between confidence values 
and error sizes. The overall noise covariance ç! is generated from HN and /!,N as follows: 

ç! = diagLH"&/!,"& , … , HL&/!,L& N ⊗ ^J 

 

Related work 

Keypoint-MoSeq extends the model used in depth MoSeq7, where a low-dimensional 
pose trajectory !! (derived from egocentrically aligned depth videos) is used to fit an 
autoregressive hidden Markov model with a transition matrix C, autoregressive 
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parameters ?> , A> , B> and discrete states >! like those described here. Indeed, conditional 
on !!, the models for keypoin-MoSeq and depth MoSeq are identical. The main 
differences are that keypoint-MoSeq treats !! as a latent variable (i.e. updates it during 
fitting), includes explicit centroid and heading variables, and uses a robust noise model. 

Disambiguating pose from position and heading is a common task in unsupervised 
behavior algorithms, and researchers have adopted a variety of approaches. VAME9, 
for example, isolates pose by centering and aligning data ahead of time, whereas B-
SOiD8 transforms the keypoint data into a vector of relative distances and angles. The 
statistical pose model GIMBAL5, on the other hand, introduces latent heading and 
centroid variables that are inferred simultaneously with the rest of the model. Keypoint-
MoSeq adopts this latter approach, which is able to remove spurious correlations 
between egocentric features that can arise from errors in keypoint localization. 

 

Inference algorithm 
 
Our full model contains latent variables F, ℎ, !, >, / and parameters ?, A, B, e, q, H, D, C. We 
fit each of these variables – with the exception of e and q – using Gibbs sampling, in 
which each variable is iteratively resampled from its posterior distribution conditional on 
the current values of all the other variables. The posterior distributions b(C, D ∣ >) and 
b(?, A, B ∣ >, !) are unchanged from the original MoSeq paper and will not be be 
reproduced here (see ref7, pages 42-44, and note the changes of notation B → ò, > → !, 
and ! → O). ℎ are described below. 

 

Resampling b(e, q ∣ /, H, !, F, ℎ, ê) 

Let !s! represent !! with a 1 appended and define 

çô! = LïMdiagLH"&/!,", . . . , HL&/!,LNïN ⊗ ^J 

The posterior update is (e, q) ∼ å(vec(e, q) ∣ ö9, ò9) where 

ò9 = LHP
'&^ + çB,BN

'"
				 and 				ö9 = ò9ç?,B 

with 

çB,B =g!s!

4

!D"

!s!
M⊗ïMçô!

'"ï ⊗ ^J				 and 				ç?,B =gL!s!
M⊗çô'"ï ⊗ ^JN

4

!D"

vecLêì!N
M 
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Resampling b(/ ∣ e, q, H, !, F, ℎ, ê) 

Each /!,N is conditionally independent with posterior 

/!,N ∣ e, q, HN , !, ê ∼ z'& õ{6 + ë,	L{6/( + HN
'& ∥ (ï(e!! + q))N − êì!,N ∥

&N/({6 + ë)ù 

 

Resampling b(H ∣ e, q, /, !, F, ℎ, ê) 

Each HN is conditionally independent with posterior 

HN
& ∼ z'&L{O + ëR,	L{OH(

& + ç?N({O + ëR)
'"N 

where ç? = ∑ ∥E
!D" ï(e!! + q)N − êì!,N ∥

&//!,N 

 

Resampling b(F ∣ e, q, H, /, !, ℎ, ê) 

Since the translations F", . . . , F4 form a linear dynamical system, they can be updated by 
Kalman sampling. The observation potentials have the form å(F! ∣ ö, é

&^J) where 

ö =g
é!
&

HN
&/!,N

N

[ê!,N − î(ℎ!)
Mï(e!! + q)N], 			

1

é!
& =g

1

HN
&/!,N

N

 

 

Resampling b(ℎ ∣ e, q, H, /, !, F, ê) 

The posterior of ℎ! is the von-Mises distribution vM(ü, E) where E and ü ∈ [0,2C] are the 
unique parameters satisfying [Ecos(ü), Esin(ü)] = Çç"," + ç&,&, ç",& − ç&,"É for 

ç =g
1

/!,NHN
&

N

ï(e!! + q)NLê!,N − F!N
M

 

Resampling b(! ∣ e, q, H, /, F, ℎ, ê) 

To resample !, we first express its temporal dependencies as a first-order 
autoregressive process, and then apply Kalman sampling. The change of variables is 

?′ = °

^

^
^

?" ?& ⋯ ?I A

£ 		B′ = °

0
0

0
B

£ 		e′ = °

0 0

⋮ ⋮

0 0
e q

£		!!′ = •

!!'I%"
⋮
!!
1

¶ 

Kalman sampling can then be applied to the sample the conditional distribution, 
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bL!′":4 ∣ êì":4N ∝®å

4

!D"

L!′! ∣ ?′
(C%)!′!'", B′

(C%)N	åLvecLêì!N ∣ e′!′! , ç!N. 

(Assume !′ is left-padded with zeros for negative time indices.) 

 

Hyper-parameters 

We used the following hyper-parameter values throughout the paper. 

 

Transition matrix 

j = 100

é = 1000

k = 100

E 		fit to each dataset

 

 

Autoregressive process 

Å set using PCA explained variance curve
ã = 3

{( = Å + 2

ç( = 0.01^G
Å( = [0G×(I'") ^G 1G×"]

W( = 10^G(I%")

 

 

Observation process 

H(
& = 1

{O = 105

{6 = 5

/(,!,N set based on neural network confidence

 

 

Centroid autocorrelation 

Hloc
& = 0.4 
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Derivation of Gibbs updates 
 

Derivation of e, q updates 

To simply notation, define 

çô! = diagLH"&/!,", . . . , HL&/!,LN, 				!s! = (!! , 1), 				eô = (e, q) 

The likelihood of the centered and aligned keypoint locations êì  can be expanded as 
follows. 

bLêì ∣ eô, !s, çôN =®å

4

!D"

LvecLêì!N ∣ (ï ⊗ ^J)eô!s! , 	 çô! ⊗ ^JN

∝ exp ™−
1

2
gõ!s!

MeôMLïMçô!
'"ï ⊗ ^JNeô!s! − 2vecLêì!N

M
Lçô!

'"ï ⊗ ^JNeô!s!ù

4

!D"

´

∝ exp ™−
1

2
gõFM¨LeôN

M
L!s!!s!

M⊗ïMçô!
'"ï ⊗ ^JNFM¨LeôN

4

!D"

−2vecLeôNML!s!M⊗çô!
'"ï ⊗ ^JNvecLêì!N≠	Æ

∝ exp Ø−
1

2
õFM¨LeôN

M
çB,BFM¨LeôN − 2FM¨LeôN

M
çB,?ù∞

 

where 

çB,B =g!s!

4

!D"

!s!
M⊗ïMçô!

'"ï ⊗ ^J				 and 				çB,? =gL!s!
M⊗çô'"ï ⊗ ^JN

4

!D"

vecLêì!N 

Multiplying by the prior vecLeôN ∼ å(0, HP
&^) yields 

bLeô ∣ êì, !s, çôN ∝ åLvecLeôN ∣ ö9, ò9N 

where 

ò9 = LHP
'&^ + çB,BN

'"
				 and 				ö9 = ò9ç?,B 

 

Derivation of HN , /!,N updates 

For each time " and keypoint ±, let ê̄!,N = ï(e!! + q). The likelihood of the centered and 
aligned keypoint location êì!,N is 
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bLêì!,N ∣ ê̄!,N , /!,N , HNN = åLêì!,N ∣ ê̄!,N , 	HN
&/!,N^JN ∝ LHN

&/!,NN
'J/&

exp ≥−
∥ êì!,N − ê‾!,N ∥

&

2HN
&/!,N

µ 

We can then calculate posteriors bL/!,N ∣ HNN and bLHN ∣ /!,NN as follows. 

bL/!,N ∣ HN , êì!,N , ê̄!,NN ∝ z'"L/!,N ∣ {6, /(NåLêì!,N ∣ ê̄!,N , 	HN
&/!,N^JN

∝ /!,N
'"'(R!%J)/&exp ≥

−{6/(

2/!,N
−
∥ êì!,N − ê‾!,N ∥

&

2HN
&/!,N

µ

∝ z'&L/!,N ∣ {6 + ë,	L{6/( + HN
'& ∥ êì!,N − ê‾!,N ∥

&N({6 + ë)
'"N

 

bLHN ∣ {/!,N , êì!,N , ê̄!,N}!D"
4 N ∝ z'"(HN

& ∣ {O , H(
&)®å

4

!D"

Lêì!,N ∣ ê̄!,N , 	HN
&/!,N^JN

∝ HN
'&'R&'J4exp ™

−{OH(
&

2HN
& −

1

2HN
&g

∥ êì!,N − ê‾!,N ∥
&

/!,N

4

!D"

´

∝ z'&LHN
& ∣ {O + ëR,	 L{OH(

& + ç?N({O + ëR)
'"N

 

where ç? = ∑ ∥! êì!,N − ê‾!,N ∥
&//!,N 

 

Derivation of F! update 

We assume an improper uniform prior on F!, hence 

b(F! ∣ ê!) ∝ b(ê! ∣ F!)b(F!) ∝ b(ê! ∣ F!)

∝ åLFM¨L(ê! − ÄLF!
M)î(ℎ!)

MN ∣ ï(e!! + q),	ç!N

=®å

N

Lî(ℎ!)Lê!,N − F!N ∣ ï(e!! + q)N , 	 /!,NHN
&^JN

=®å

N

LF! ∣ ê!,N − î(ℎ!)
Mï(e!! + q)N , 	 /!,NHN

&^JN

= å(F! ∣ ö! , é!
&^J)

 

where 

ö =g
é!
&

HN
&/!,N

N

Lê!,N − î(ℎ!)
Mï(e!! + q)NN, 			

1

é!
& =g

1

HN
&/!,N

N

 

 

Derivation of ℎ! update 

We assume a proper uniform prior on ℎ!, hence 
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b(ℎ! ∣ ê!) ∝ b(ê! ∣ ℎ!)b(ℎ!) ∝ b(ê! ∣ ℎ!)

∝ exp ™g
Lê!,N − F!N

M
î(ℎ!)ï(e!! + q)N

/!,NHN
&

N

´

= exp •
tr ∂î(ℎ!)ï(e!! + q)NLê!,N − F!N

M
Æ

/!,NHN
& ¶

∝ exptr[î(ℎ!)ç]				where			ç =gï

N

(e!! + q)NLê!,N − F!N
M
/L/!,NHN

&N

∝ expÇcos(ℎ!)Lç"," + ç&,&N + sin(ℎ!)Lç",& − ç&,"NÉ

 

Let [Ecos(ü), Esin(ü)] represent Çç"," + ç&,&, ç",& − ç&,"É in polar coordinates. Then 

b(ê! ∣ ℎ!) ∝ exp[Ecos(ℎ!)cos(ü) + sin(ℎ!)sin(ü)]

= exp[Ecos(ℎ! − ü)] ∝ vM(ℎ! ∣ ü, E)
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