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First round of review
Reviewer 1

Were you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? No. 

Were you able to directly test the methods? No. 

Comments to author:

In the manuscript entitled "Droplet microfluidics based combinatorial indexing for massive-scale 
5′-end single-cell RNA sequencing" Li et al. present a new method to increase the cell 
throughput of commercial single cell microfluidics instruments like the 10X Chromium 
Controller. The work in similar in concept to the cited scifi-RNA-seq method where in an initial 
plate based step, cells are split and barcoded before loading them onto the 10X Controller for 
further partitioning and barcoding. The FIPRESCI approach presented by the author is original in 
using the tagmentation of cDNA/RNA hybrids to make it possible to capture the 5' end of RNA 
molecules instead of the 3' end like other approaches. The authors describe how that makes it 
possible to investigate TSSs and TCR VDJ sequences. 

While there clearly is promise in the approach for high throughput single cell analysis, there are 
several major issues with the work as presented: 

1) The by far largest concern that I have is that the authors describe how the FIPRESCI approach 
is compatible with 10X Genomics protocols for the sequencing of T cell receptors (TCRs). This 
involves performing two rounds of nested PCR with primers specific to the TCR constant region. 
While this works on regular 10X libraries which are only barcoded by the TSO, here it would 
very much seem like the nested PCR would eliminate the first-round barcode introduced by 
tagmentation. That would make it impossible to assign TCR VDJ sequencing reads to individual 
cells. Therefore I don't see how the analysis in the paper could have been performed as 
described. 
A lot more detail would have to be provided on how this analysis was done to explain how and 
why it was possible to do so based on the barcoding scheme that was used. 

2) Based on the data provided by the authors, the predictive power to identify enhancer loci 
based on FIPRESCI data is weak. With a pearson r of 0.33 and Fig 2 f basically being an 
uncorrelated cloud of points, I don't think FIPRESCI is actually able to identify cis-regulatory 
elements in any useful way. 

3) The structure of the paper makes it hard-to-impossible to know what conditions were used for 
individual experiments. 
Basically, what buffer system and conditions were used in the validation experiment, the 
optimization experiments, the embryo analysis and the T cell analysis. The methods section 
suggests that it was "commercial buffer 2" (Vazyme) but the optimization states that 



"commercial buffer 1" showed the highest activity. If different, experimental conditions have to 
be outlined for each separate condition. 

4) Several figure panels have missing (e.g. 2c,d) or meaningless (2a "Hela_Expression levels") 
y-axis labels. 

5) Several key stats are missing. In particular, since Tn5 will likely also cut dsDNA in the cell, it 
would be important to know what percentage of reads falls within annotated gene bodies and 
how that compares to standard 10X 5' approaches. Also, the insert length of reads would be 
important to know and whether the sequence read yield on each Illumina flow cell was affected 
by the presence of p7-p7 molecules. 

Reviewer 2
Were you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? Yes: provide more detail statistics and methods for calling enhancers based on 5' RNA seq 
data, what is the cutoff and background noise level to call significant eRNA based enhancer? What is the 
number of eRNA based enhancer as compared to ATAC and how well is this conserved across different 
conditions (e.g. poly dT, oligo, mix, fixed, non-fixed, tissues, etc).

Were you able to directly test the methods? No. 

Comments to author:

In this manuscript, Li, Huang, Zhang and coauthors described an ultra-high throughput 5'-end 
single cell combinatorial indexing RNA sequencing protocol that lowers the cost per cell. This 
protocol uses Tn5 transposome to cut and tag RNA/cDNA hybrids for the first round of 
barcoding, followed by overloading of cells into droplets for a second round of barcoding. The 
authors proceeded to apply this protocol on mouse whole embryo and human donor T cells and 
demonstrated similar performance in gene and cis-regulatory element detection with current 5' 
end sequencing protocols. 
Overall, the writing is clear, but there are a number of spelling errors, some of which are listed 
below. 
1. Page 4 Line 5 - "cell tying" should be "cell typing" 
2. Page 4 Line 8 - "inter cis-gene" should be "infer cis-gene" 
3. Page 4 Line 30 - "removal of droplets" should be "removal of doublets" 
4. Page 5 Line 6 - "throughout" should be "throughput" 
5. Page 10 Line 37 - "maker" should be "marker" 
6. Page 10 Line 47 - "donnors" should be "donor" 

1. There is a chance that Tn5 may ligate the sequence to the RNA strand instead of cDNA strand 
on the 5' end fragment. If this happens at random, it will mean that 50% of the transcripts will 
not be captured by FIPRESCI. Although the authors have shown that similar number of genes 
can be detected, how do the UMI counts compare between FIPRESCI and conventional 5' end 
scRNA seq? 
2. Please describe the template switching step in Supp Figure 2 diagram where transcript 
extension is done through the TSO but also at the 3' end. 



3. What is the frequency to which Tn5 cuts short RNAs such as eRNAs? How does this 
compared to the conventional 5' end scRNA seq that utilizes fragmentation method? 
4. What is the rate of strand invasion, and relatedly, what is the general noise (background) level 
across non-5' end regions (e.g. exons) as compared to gene expression. Please provide the scale 
on IGV track found in Figure 3C. The peaks for clusters 7 and 9 look rather low and noisy - clear 
TSS are not observed. In fact, some of the peaks in these clusters map to intronic regions of 
annotated transcripts. 
5. The authors compared the use of oligo d(T), random and mixed primers in FIPRESCI by 
looking at the number of detected genes per cell. What is the gene profile and gene detection rate 
of oligo d(T), mixed and random primer FIPRESCI datasets? Do the different primers enrich for 
different classes of RNAs? Are the different primer sets suitable for different types of analyses? 
6. In this protocol, cells are permeabilized and fixed with methanol. Previous studies have shown 
that methanol fixation is harsh on RNA and affects reverse transcription, especially with 
protocols requiring template switching (1, 2). Have the authors compared FIPRESCI with and 
without methanol fixation, or with formaldehyde fixation? 
7. FIPRESCI was performed on human donor T cells and annotated using a CITE-seq reference 
dataset. However, the purpose of imputing protein expression levels using this dataset is unclear. 
7 T cell clusters could already be identified and annotated using gene expression data. Protein 
expression was imputed from gene expression and did not improve the clustering. Can the 
authors elaborate further on the additional insights from imputing protein expression? 
8. Since Tn5 exhibits a motif and shape bias when binding dsDNA (3), does Tn5 also have a 
sequence bias when binding DNA/RNA hybrids? 

1. Phan HV, van Gent M, Drayman N, Basu A, Gack MU, Tay S. High-throughput RNA 
sequencing of paraformaldehyde-fixed single cells. Nature Communications. 2021;12(1):5636. 
2. Wang X, Yu L, Wu AR. The effect of methanol fixation on single-cell RNA sequencing data. 
BMC Genomics. 2021;22(1):420. 
3. Zhang H, Lu T, Liu S, Yang J, Sun G, Cheng T, et al. Comprehensive understanding of Tn5 
insertion preference improves transcription regulatory element identification. NAR Genomics 
and Bioinformatics. 2021;3(4):lqab094. 

Authors Response

We thank the reviewers for their critical assessment of our manuscript and for the suggestions to 
improve this effort. We have given their feedback careful thought and revised our manuscript and 
analyses to reflect their suggestions. A point-by-point response detailing what we have changed as 
well as explanations to support our claims, is presented below, in blue. 

Reviewer reports:

Reviewer #1: In the manuscript entitled "Droplet microfluidics based combinatorial indexing for 
massive-scale 5′-end single-cell RNA sequencing" Li et al. present a new method to increase the 
cell throughput of commercial single cell microfluidics instruments like the 10X Chromium 
Controller. The work in similar in concept to the cited scifi-RNA-seq method where in an initial 
plate based step, cells are split and barcoded before loading them onto the 10X Controller for 



further partitioning and barcoding. The FIPRESCI approach presented by the author is original 
in using the tagmentation of cDNA/RNA hybrids to make it possible to capture the 5' end of RNA 
molecules instead of the 3' end like other approaches. The authors describe how that makes it 
possible to investigate TSSs and TCR VDJ sequences. 

While there clearly is promise in the approach for high throughput single cell analysis, there are 
several major issues with the work as presented:

1) The by far largest concern that I have is that the authors describe how the FIPRESCI approach 
is compatible with 10X Genomics protocols for the sequencing of T cell receptors (TCRs). This 
involves performing two rounds of nested PCR with primers specific to the TCR constant region. 
While this works on regular 10X libraries which are only barcoded by the TSO, here it would very 
much seem like the nested PCR would eliminate the first-round barcode introduced by 
tagmentation. That would make it impossible to assign TCR VDJ sequencing reads to individual 
cells. Therefore I don't see how the analysis in the paper could have been performed as described.
A lot more detail would have to be provided on how this analysis was done to explain how and 
why it was possible to do so based on the barcoding scheme that was used. 

Answer: We thank the reviewer for raising this important point. We acknowledge that our method 
about high throughput single-cell TCR relevant analysis was not properly documented. We agree 
that enriching VDJ by nested PCR like conventional 10x Genomics does eliminate the first round 
of barcodes introduced by tagmentation in FIPRESCI approach. However, we still are able to 
obtain single-cell resolution TCR information, just with a relative low recovery rate. 
The cell barcode in FIPRESCI data is defined by Tn5 introduced 1st round barcode and droplet 
introduced 2ed round barcode. We identified the droplets containing a single cell as “singlet” and 
droplets containing more than one cell as “multiplet” based on the two rounds of barcode. For 
transcriptome and TSSs analysis, we include all data from singlets and multiplets. While for VDJ 
analysis, we exclude the data from multiplets. In other words, for singlet, the droplet introduced 
2ed round barcode alone can clearly define the cell barcode for both transcriptome and VDJ data.

We want to emphasize that, the proportion of useful sequencing data of FIPRESCI is higher than 
90%, since the transcriptome from multiplets can be resolved and VDJ libraries only account for 
a very small amount of whole dataset. In addition, although with the limitation in terms of the low 
recovery rate of VDJ sequencing, FIPRESCI is still a valuable approach for TCR analysis as we 
have shown that it is able to reveal the “TCR clonotype diversity” and “shared TCR clonotypes 
among cell types and across donors” due to the large number of total cells (Fig 5 and 
Supplementary Figure 12, 13). 

We have mentioned “Analysis of TCR profile from FIPRESCI” in Methods section in the previous 
version (Page 23, line 51). To address this problem, we have re-described it in the Results (Page 
9, line 44), and Methods (Page 21, line 28) of the revised version of the manuscript. 

2) Based on the data provided by the authors, the predictive power to identify enhancer loci based 
on FIPRESCI data is weak. With a pearson r of 0.33 and Fig 2 f basically being an uncorrelated 
cloud of points, I don't think FIPRESCI is actually able to identify cis-regulatory elements in any 
useful way.



Answer: We thank the reviewer for raising this important point and apologize for not presenting 
our results well in the previous manuscript. This part is actually related to two different topics: 1) 
using 5’-end RNA-seq data to identify distal transcribe cis-regulatory elements or enhancer 
derived RNAs(eRNAs); 2) using RNA-seq data to predict ATAC-seq signal at single peak level. 
Although ATAC-seq is broadly accepted to identify cis-regulatory elements, ATAC-seq alone 
cannot tell which distal open chromatin region is actively transcribed (eRNA). For the first topic, 
Drs. Jay W. Shin and Chung-Chau Hon have recently developed an elegant computational method 
called SCAFE (https://www.biorxiv.org/content/10.1101/2021.04.04.438388v2) to address this 
need, which is cited in our previous manuscript. In addition, if matched ATAC-seq data is available 
for the same sample or same cell type, it is straightforward to identify eRNA transcription start 
sites (eTSSs) by combing 5’-end RNA-seq data and ATAC-seq data. We have applied this approach 
and reanalysis our FIPERSCI-seq data in Fig 2. If a distal ATAC peak called by MACS is enriched 
with strong FIPERSCI-seq signal (RPM >0.5), we defined it as an eRNA locus. We found 
FIPERSCI can identify 4015~4913 eRNA loci, which account for 34.4%~42.1% distal ATAC 
peaks. Furthermore, in panel C, the eRNA profile among different conditions is similar, which 
indicated our eRNA detection is robust. We want to note that it is not unusual both of ATAC-seq 
data and 5’-end RNA-seq data are available for a given sample or cell type. For example, we have 
applied 5’-end scRNA-seq and scATAC-seq to 4 human fetal embryos including 15 major organs, 
and revealed more than 200 cell types and ~800K open chromatin regions 
(https://www.biorxiv.org/content/10.1101/2021.11.02.466852v1). However, this work is based on 
standard 10X Genomics procedure, which is cost prohibitive. Ultra-high-throughput methods, like 
dsciATAC-seq and FIPERSCI, will facilitate those large-scale projects.

For the second topic, using RNA-seq signal to predict ATAC-seq signal is indeed a challenging 
task. BABEL can predict ATAC-seq signals (cell vs. peak matrix) from RNA-seq data (Cell vs. 
gene matrix). The previously Fig 2 e,f,g is trying to illustrate that when using BABEL model to 
predict ATAC-seq signal, using 5’-end RNA-seq has additional benefit compared to 3’-end RNA-
seq because 5’-end RNA-seq have enriched signal centered with enhancer(Fig 2d). We agreed this 
part is premature and confusing. Thus we have moved previous Fig 2 e,d,f to supplemental results 
and replaced them with eRNA identification results mentioned above. To address the reviewer’s 
concern, we also rewrite the relevant part in Main text (line 19 on Page 6).



3) The structure of the paper makes it hard-to-impossible to know what conditions were used for 
individual experiments.
Basically, what buffer system and conditions were used in the validation experiment, the 
optimization experiments, the embryo analysis and the T cell analysis. The methods section 
suggests that it was "commercial buffer 2" (Vazyme) but the optimization states that "commercial 
buffer 1" showed the highest activity. If different, experimental conditions have to be outlined for 
each separate condition. 

Answer: We appreciate the reviewer’s comment. We apologize for not describing clearly which 
buffer systems and conditions are used. The different conditions involved in individual 
experiments include TN5 tagmentation buffer and RT primers. First, for TN5 tagmentation buffer 
condition, we used “commercial buffer 2 (Vazyme# S601-01)” in validation experiments. We then 
tested 16 tagmentation buffer conditions (the detailed components and performance of 
tagmentation buffers are provided in Supplementary Table 3 and Fig. 2a, and Supplementary Fig. 
4b) in the “optimization experiment 1” and found that “commercial buffer 1(Apexbio #K1155-
20ul)” showed the highest activity. Unfortunately, the supply of “commercial buffer 1” is disrupted 
during our project. So, for the rest of the subsequent experiments we used the customized 
tagmentation buffer (10 mM Tris-HCl at pH 7.5, 5 mM MgCl2, and 10% DMF) which had the 
second highest activity performance in the optimization experiment. Second, for the RT primers 
condition, only “optimization experiment 2” involved the use of random hexamer primer, and a 
mix of oligo d(T) and random primers, all other experiments used oligo d(T) primers only.
In the updated manuscript, we have followed the reviewer’s comments and modified the 
description in the Results (Page 5, line 26) and Methods sections (Page 14, line 26). We have 
summarized the reaction conditions, as well as additional information for each individual 
experiment below and also in Supplementary Table 3.

4) Several figure panels have missing (e.g. 2c,d) or meaningless (2a "Hela_Expression levels") y-
axis labels.
Answer: Thank you very much for pointing out those errors. We have corrected them in the revised 
version and also shown below.

5) Several key stats are missing. In particular, since Tn5 will likely also cut dsDNA in the cell, it 
would be important to know what percentage of reads falls within annotated gene bodies and how 
that compares to standard 10X 5' approaches. Also, the insert length of reads would be important 
to know and whether the sequence read yield on each Illumina flow cell was affected by the 
presence of p7-p7 molecules.  

Answer: Thank you for the constructive comments and valuable suggestions. To avoid p7-p7 
molecules, we have used biotinylated P5 primers to specifically enrich for 5'-end RNA fragments, 
which is mentioned in Supplementary Table 1 of the previous manuscript. We apologize for 
forgetting to describe this detail in the Methods. Following your suggestion, now we have modified 
the cDNA enrichment part in the Methods section (line 23 on Page 15) and updated more details 
in Supplementary Figure 2.
The percentage of reads fall in gene body in our data is shown in panel a below, which is 



comparable with the conventional 10X 5’ approach (ESCC data from PMID: 34489433; Mouse 

embryo data from our unpublished work). The results support that the reads in our data are less likely 
from dsDNA. The distribution of insert size is shown in panel b, which clearly exhibits a pattern 
different from ATAC-seq data.

Reviewer #2: In this manuscript, Li, Huang, Zhang and coauthors described an ultra-high 
throughput 5'-end single cell combinatorial indexing RNA sequencing protocol that lowers the cost 
per cell. This protocol uses Tn5 transposome to cut and tag RNA/cDNA hybrids for the first round 
of barcoding, followed by overloading of cells into droplets for a second round of barcoding. The 
authors proceeded to apply this protocol on mouse whole embryo and human donor T cells and 
demonstrated similar performance in gene and cis-regulatory element detection with current 5' end 
sequencing protocols.
Overall, the writing is clear, but there are a number of spelling errors, some of which are listed 
below.
1. Page 4 Line 5 - "cell tying" should be "cell typing"
2. Page 4 Line 8 - "inter cis-gene" should be "infer cis-gene"
3. Page 4 Line 30 - "removal of droplets" should be "removal of doublets"
4. Page 5 Line 6 - "throughout" should be "throughput"
5. Page 10 Line 37 - "maker" should be "marker"
6. Page 10 Line 47 - "donnors" should be "donor"

Answer: We apologize for those mistakes, which have been corrected in the updated version. We 
have also carefully reexamined spelling throughout the text. 

1. There is a chance that Tn5 may ligate the sequence to the RNA strand instead of cDNA 



strand on the 5' end fragment. If this happens at random, it will mean that 50% of the transcripts 
will not be captured by FIPRESCI. Although the authors have shown that similar number of genes 
can be detected, how do the UMI counts compare between FIPRESCI and conventional 5' end 
scRNA seq?

Answer: We thank the reviewer for raising this important point. Firstly, we use i7-only 
transposomes (Tn5-S7/S7 homodimer), thus the products from tagmentation is less complicated. 
Oligonucleotides Tn5-top_ME and Tn5-bottom_Read2N were synthesized for transposome 
complex assembly and sequences are provided in Supplementary Table S1. Second, based on the 
description from the literature (PMID: 12603728, 17693501, 21143862), Tn5 transposase activity 
will result in fragmentation and end-joining of the Tn5-bottom_Read2N oligo to the 5’ end of 
upper strand of DNA/RNA hybrid. Thus, the probability of Tn5 sequence ligation to the cDNA 
strand of 5' end fragment (highlighted in red box) should be 100% as shown in Panel A. The Tn5 
ligate the sequence to the RNA strand of 5' end fragment may occur only when oligonucleotides 
Tn5-top_ME_Read2N and Tn5-bottom_ME are used for transposomes assembly as shown in 
Panel B. However, it is not the case in our experiment.

For the second question, as shown in Panel C, we agree with the reviewer that the UMI counts of 
FIPERSCI is expected to be lower than the conventional 5’ method (data from PMID: 34489433). 
Probably because it is difficult for the actual efficiency of Tn5 tagmentation on RNA/DNA hybrids 
to reach 100%. However, we have confirmed that the gene number is comparable (Panel D). In 
other words, the conversion ratio of UMI to gene is much higher in our data than conventional 5’ 
method. We suspect the fixing before RT procedure of FIPERSCI may help to keep lowly 
expressed genes from RNA degradation.



2. Please describe the template switching step in Supp Figure 2 diagram where transcript 
extension is done through the TSO but also at the 3' end. 

Answer: We thank the reviewer for the nice suggestion. To address the reviewer’s concern, we 
have modified the diagram and updated more details in Supplementary Figure 2.

3. What is the frequency to which Tn5 cuts short RNAs such as eRNAs? How does this 



compared to the conventional 5' end scRNA seq that utilizes fragmentation method? 

Answer: We thank the reviewer for raising this important point. As mentioned before, currently 
we identify eRNA with the help of matched ATAC data. We have found a publicly available 
conventional 5' end scRNA-seq dataset of ESCC (Esophageal squamous-cell carcinoma) with 
matched bulk ATAC-seq data. We estimate the contribution of eRNA reads by counting 5’ end 
scRNA-seq reads which fall into ATAC-seq defined distal open chromatin regions (data from 
PMID: 34722266). As shown in the figure below, generally, the contribution of eRNAs to the 
whole dataset is low (0.25 % to 2%). This observation is consistent with the notion that eRNAs 
are short and unstable. The difference between FIPRESCI and conventional 5' end scRNA-seq is 
significant. However, the samples and batches differences should also be considered. 

4. What is the rate of strand invasion, and relatedly, what is the general noise (background) 
level across non-5' end regions (e.g. exons) as compared to gene expression. Please provide the 
scale on IGV track found in Figure 3C. The peaks for clusters 7 and 9 look rather low and noisy - 
clear TSS are not observed. In fact, some of the peaks in these clusters map to intronic regions of 
annotated transcripts. 

Answer: We thank the reviewer for raising those important points. We apologize that the data scale 
on IGV track in Figure 3C is missing. We have updated Figure 3C and add data scale on the right 
side of all the IGV tack in the manuscript and this response letter. We believe those small peaks 
from non-5’ end regions in cluster 7 and cluster 9 are not noise. Because if those signals are noise 
generated from mechanism like strand invasion, one would expect to obverse similar noise level 
across the whole genome. However, for many genes, we observed universal extremely low noise 
ratio across all the clusters. IGV tacks of Hit1and trim17 are shown as representative examples 



(panel a and b). In other word, the “noise” levels are gene specific. Thus, we suspect the “noise” 
level may related to the stability of particular genes’ promoter or RNA modification of 5’-end, or 
even varies for different promoters of the same genes. When small peaks from non-5’ end regions 
of a gene are observed, it is more likely the 5’-end of the transcript is degenerated faster than other 
genes or promoters, other than a general noise come from FIPRESCI procedure. We have 
calculated the observed FIPRESCI signal in TSS and gene region vs. random region from whole 
genome, the fold is 13.38 and 2.0 respectively (panel c). This result is consisting with our previous 
claim that FIPRESCI signal is highly enriched in transcription start region. 

5. The authors compared the use of oligo d(T), random and mixed primers in FIPRESCI by 
looking at the number of detected genes per cell. What is the gene profile and gene detection rate 
of oligo d(T), mixed and random primer FIPRESCI datasets? Do the different primers enrich for 
different classes of RNAs? Are the different primer sets suitable for different types of analyses?

Answer: We thank the reviewer for raising those important points. To address the reviewer’s 
question, we have performed the analysis. The result indicates that PolyT primers mainly capture 
protein coding genes as expected. Interestingly, the proportion of rRNA from random primers is 
only slightly higher than PolyT primers. We didn’t include ribosome RNA depletion step in our 
analysis, therefore we suspect some specific feature of rRNA may inhibit the Tn5 tagmentation. 
We conclude that although with slightly differences, the sensitivity of detecting of different classes 



of RNAs are similar for oligo d(T), random and mixed primers.

6. In this protocol, cells are permeabilized and fixed with methanol. Previous studies have 
shown that methanol fixation is harsh on RNA and affects reverse transcription, especially with 
protocols requiring template switching (1, 2). Have the authors compared FIPRESCI with and 
without methanol fixation, or with formaldehyde fixation? 

Answer: We thank the reviewer for raising this important point. Because FIPRESCI is a 
combinatorial indexing approach which require the cells or nuclei to remain intact before being 
encapsulated in droplets, we have not tested FIPRESCI without any fixation. However, in a 
separate study, we have compared standard 10x Genomics scRNA-seq (only droplet barcoding, 
without combinatorial indexing) with and without methanol fixation. Surprisingly, at the same 
sequencing depth (50K reads/cell), methanol-fixed PBMC achieved a higher median gene per 
cell compared to fresh (without methanol fixation) PBMC (as following figure shows). We 
therefore speculate that methanol fixation may inactivate endogenous RNases thus contribute 
significantly to the preservation of RNA before RT is complete.
Regarding fixing with formaldehyde, we have not compared formaldehyde v.s. methanol fixed 
cell for FIPRESCI, but we have done this comparison for nuclei based Multiome analysis. The 
results show methanol can recover more genes. We suspect that formaldehyde fixing may require 
reverse cross link thus less likely to be a better condition than methanol fixation, or need 
sustainably testing to find the optimal concentration.
We agree with the reviewer that we cannot rule out the possibility methanol is not the best fixed 
condition. However, comprehensively testing all condition is out of the scope of this work. And 
so far, methanol fixation works pretty well in our hand.



7. FIPRESCI was performed on human donor T cells and annotated using a CITE-seq 
reference dataset. However, the purpose of imputing protein expression levels using this dataset is 
unclear. 7 T cell clusters could already be identified and annotated using gene expression data. 
Protein expression was imputed from gene expression and did not improve the clustering. Can the 
authors elaborate further on the additional insights from imputing protein expression?

Answer: We highly appreciate the reviewer’s comment. We agree with the reviewer that the 
protein expression imputation has provided limited additional insights so far. And we apologize 
for not introducing well the background and motivation of this analysis. It is another angle to show 
the value of FIPRESCI approach. As the multimodality methods, like CITE-seq, usually have 
limitations about scalability, it is still difficult to generate a large-scale dataset based on CITE-seq. 
Thus, it may be a good idea to generate a large-scale multimodality dataset based on three things: 
1) generating a large-scale dataset of single-modality with a cost-effective method 2) generating a 
small-scale multimodality reference dataset 3) building a precise imputation method. Thus, when 
multimodality reference dataset and computational imputation method are available, FIPRESCI 
will be a powerful approach for this type of task as it’s an ultra-high-throughput and cost-effective 
scRNA-seq method.

8. Since Tn5 exhibits a motif and shape bias when binding dsDNA (3), does Tn5 also have a 
sequence bias when binding DNA/RNA hybrids?

Answer: We appreciate the reviewer’s comment. To address the reviewer’s question, we have 
performed motif analysis. The result (panel a) indicates that Tn5 has a sequence bias when binding 
DNA/RNA hybrids and the motif is similar to binding dsDNA (based on ATAC-seq from literature, 
panel b). But the motif signal is weaker than binding dsDNA.



Additional comments: 
-provide more detail statistics and methods for calling enhancers based on 5' RNA seq data, what 
is the cutoff and background noise level to call significant eRNA based enhancer? What is the 
number of eRNA based enhancer as compared to ATAC and how well is this conserved across 
different conditions (e.g. poly dT, oligo, mix, fixed, non-fixed, tissues, etc).

Answer: We appreciate the reviewer’s comment. As described in the answer of question 2 from 
review#1, if a distal ATAC peak called by MACS is enriched with strong FIPERSCI-seq signal 
(RPM >0.5), we defined it as an eRNA locus. We found FIPERSCI can identify 4015~4913 eRNA 
loci, which account for 34.4%~42.1% distal ATAC peaks. Furthermore, in panel C, the eRNA 
profile among different conditions is similar, which indicated our eRNA detection is robust. 
In the updated manuscript, we have followed the reviewer’s comments and updated the Methods 
sections (line 28 on Page 20) to provide more detail statistics and methods for calling enhancers 
based on 5' RNA seq data.



-Figure 4 panel a, UMAP looks unusually biased to highlight major clusters (cells in the upper left 
corner are missing?)

Answer: We appreciate the reviewer’s comment. There are several small cell clusters in the upper 
left corner of the original UMPA diagram (shown below). Since these clusters contain less than 10 
cells and are not annotated as T cells, we speculate they are FACS errors. Therefore, we have 
labeled these cells as others in the Figure 4 panel a.

1. Phan HV, van Gent M, Drayman N, Basu A, Gack MU, Tay S. High-throughput RNA 
sequencing of paraformaldehyde-fixed single cells. Nature Communications. 2021;12(1):5636.
2. Wang X, Yu L, Wu AR. The effect of methanol fixation on single-cell RNA sequencing 
data. BMC Genomics. 2021;22(1):420.
3. Zhang H, Lu T, Liu S, Yang J, Sun G, Cheng T, et al. Comprehensive understanding of 
Tn5 insertion preference improves transcription regulatory element identification. NAR 
Genomics and Bioinformatics. 2021;3(4):lqab09

Second round of review

Reviewer 1

In their point-by-point responses and the revised manuscript, the author did address my main 
concerns. 
The questions that I had about the TCR portion of the manuscript have been cleared up and the 
methods have been updated enough to make it clear how experiments were performed. 

In its current shape, the manuscript should serve as an interesting addition to the expanding 
literature of pushing the throughput of single cell genomics assays. 

Reviewer 2



The revised version raised additional key concerns. Please address the following questions based 
on previous inquiries. 
3. The eRNA capture ratio of 0.025 to 0.02 seems to contradict the eRNA number/distal peak in 
Figure 2 where it is 0.3 to 0.4. Please explain the differences in these two methods and why one 
contradicts the other. Is Figure Can the authors show the eRNA insert size profile of the 
FIPRESCI libraries compared to conventional 5’ end scRNA seq eRNAs? This will give an idea 
of the minimum eRNA length tagmented by Tn5 compared to fragmentation. 
5. The ratio of UMIs for rRNA is surprisingly low for Random as compared to Mix and PolyT. 
The authors suggest that this feature may be due to rRNA inhibiting Tn5 tagmentation. Is there 
supporting evidence or literature to claim this? Further, rRNAs are abundantly expressed than 
any other protein coding genes so the ratio of UMI should also be relatively high. Have authors 
compared the percentage of detected promoter types, where it should better reflect the diversity 
of genes that this method can detect (instead of gene expression ratios). Many of lncRNAs are 
polyA minus but this analysis seems to suggest that lncRNA detection is equal across all 
conditions. Which lncRNA annotation was used for this analysis? It will be useful to include the 
analysis results in the revised manuscript. 
6. The violin plot illustrates a strange pattern for fixed condition where the gene detection and 
UMI are bimodally distributed as compared to fresh condition. This seems to suggest that there is 
a group of genes that are more amendable to fixation conditions (e.g. possibly due to RNA 
structure, bound proteins, transcript length and GC content 
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-021-07744-6) than others and 
cause biases in gene detection and expression levels due to fixation method. This can lead to 
spurious read counts – especially at the 5’ end - thus confounding the conclusions made in this 
paper. Resolving this issue, e.g. what is the cause of this bias and addressing them will be 
absolutely critical to evaluate the conclusions made in this manuscript. 
7. Although protein expression imputation would be useful for the reasons mentioned by the 
authors, it can be implemented on all single cell RNA-seq datasets in general, and the authors 
have not shown any particular advantage in performing this analysis with the FIPRESCI dataset. 
The motivation for protein expression imputation and these results should be placed in the 
discussion section as a potential application for FIPRESCI. 

Additional comments: 
While the detection of eRNAs under the pretext that they are within ATAC peaks is notable, 
there are ample spurious reads that are mapped across the human genome derived from single 
cell RNA-seq methods including 10x 5’. Therefore it will be imperative for authors to 
demonstrate that these eRNAs are significantly more enriched than reads that are outside of 
ATAC peaks, plus the drop off rates based on varying degree of threshold set for RPM as 0.5 is 
arbitrary and difficult to grasp the sensitivity and accuracy of this level. The response from 
authors state that on page 20 line 28 provides more detail statistics and methods but the revised 
version lacks description and should provide a more detailed statistics the claim that these 
eRNAs are in fact true and not derived from random/spurious mapped reads. Furthermore, 
eRNAs exhibit bidirectional transcription. Please demonstrate that these eRNAs are divergently 
transcribed at the single base resolution derived from TSS (e.g. in Figure 2d) and that they 
largely overlap with canonical histone markers including H3K27ac. 



Point-to-point response to the reviewer's comments 
Reviewer #2 
The revised version raised additional key concerns. Please address the following 
questions based on previous inquiries. 
3. The eRNA capture ratio of 0.025 to 0.02 seems to contradict the eRNA 
number/distal peak in Figure 2 where it is 0.3 to 0.4. Please explain the differences in 
these two methods and why one contradicts the other. Is Figure Can the authors show 
the eRNA insert size profile of the FIPRESCI libraries compared to conventional 5’ 
end scRNA seq eRNAs? This will give an idea of the minimum eRNA length 
tagmented by Tn5 compared to fragmentation. 
Answer: Thanks for the reviewer’s comment. “The eRNAs capture ratio of 0.025 to 
0.02” indicates the vast majority of reads, which are generated from Tn5 cutting on 
cDNA/RNA hybrid, are from protein-coding genes. The results are calculated by #reads 
of 5’-end RNA-seq which overlap with distal ATAC peaks defined enhancer 
region/total number of reads. “eRNA number/distal peaks in Figure 2 where it is 0.3 to 
0.4” indicates a significant portion of ATAC data defined enhancer or distal ATAC peak 
have strong eRNAs signal. The result is calculated by # of distal ATAC peaks which 
overlap with eRNAs/total number of distal ATAC peaks. The difference is because the 
calculation is different and consistent with the fact that most of the RNA-seq reads are 
not overlapped with distal ATAC peaks. We have added the eRNA capture ratio as 
Supplementary Fig. S5c and updated the label and legend of Figure 2 to make it clearer. 

As suggested by the reviewer, we have plotted the eRNA insert size below (R2 
Figure 1a). The minimum eRNA length is about 80 nt (R2 Figure 1b). It is worth to note 
this size distribution is consistent with the insert size profile of whole FIPRESCI 
libraries when we addressed reviewer #1’s question 5. The length of paired-end reads 
may not reflect the real size from eRNA but simply reflect the result of size selection 
of the experimental procedure. We have added the following sentence to the discussion 
(Page 11, Line 13) to point out the limitation and also emphasize the significance. “Only 
~2% of FIPRESCI data are contributed by eRNA reads and there may be many eRNAs 
are too short to be detected. However, thousands of pairs of eRNA and protein-coding 
genes can be observed co-expressed in the same single cell, which may provide a unique 
opportunity to explore gene regulation.” 



 
5. The ratio of UMIs for rRNA is surprisingly low for Random as compared to Mix 
and PolyT. The authors suggest that this feature may be due to rRNA inhibiting Tn5 
tagmentation. Is there supporting evidence or literature to claim this? Further, rRNAs 
are abundantly expressed than any other protein coding genes so the ratio of UMI 
should also be relatively high. Have authors compared the percentage of detected 
promoter types, where it should better reflect the diversity of genes that this method 
can detect (instead of gene expression ratios). Many of lncRNAs are polyA minus but 
this analysis seems to suggest that lncRNA detection is equal across all conditions. 
Which lncRNA annotation was used for this analysis? It will be useful to include the 
analysis results in the revised manuscript.  

Answer: Thanks for the reviewer’s comment. The gtf file which includes lncRNA 
annotation is downloaded from 
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Homo_sapiens/an
notation_releases/109/GCF_000001405.38_GRCh38.p12/GCF_000001405.38_GRCh
38.p12_genomic.gtf.gz. Our bioinformatics pipeline mainly follows the one used in 
VASA-seq (Salmen et al., 2022). And we have validated it by using data from VASA-
seq to reproduce their Extended Data Fig. 2b. We noticed that whether including 
multiple mapping reads or not will affect the ratio of rRNA reads. For reads that can 
be mapped to multiple regions, we randomly chose a hit to report. Then we updated 
the calculation by including all the mapped reads not only the unique mapped reads 
(R2 Figure 2a). Of note, the length of the yellow bar does not necessary indicate 
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“lncRNA detection is equal across all conditions”, but just the relative proportion is 
similar.  

Next, as suggested by the reviewer, we have done a comprehensive literature 
investigation about scRNA-seq protocols which can detect non-polyadenylated 
RNAs. Interestingly, we found SUPeR-seq (Fan et al., 2015) is a random primer-
based RT one-tube protocol without rRNA depletion. In the main text it mentioned 
that “Unexpectedly, SUPeR-seq showed no significant amplification of rRNAs, the 
major RNA species in a cell. No more than 1.5 % of the total SUPeR-seq reads were 
mapped to rRNAs (Rn5s, Rn5.8s, Rn18s, and Rn28s) when starting with a single cell 
or single-cell amount of total RNAs”. Since SUPeR-seq is a one-tube protocol, it used 
a cell lysis buffer that lack Proteinase K. This is similar to FIPRESCI but different 
from other random primer-based RT protocols. To test whether Proteinase K is 
relevant, we have performed a bulk version of FIPRESCI RNA-seq experiment. The 
results suggest when adding Proteinase K to the lysis buffer, the proportion of rRNA 
reads will significantly increase (R2 Figure 2b). We conclude that the low rRNA ratio 
of FIPRESCI and SUPeR-seq is at least partly due to the cell lysis buffer without 
Proteinase K.  

As suggested by the reviewer, we have tried to plot the diversity of genes based 
on promoter types. We merged TSSs which are close to each other less than 500 bp as 
a single promoter region. For a promoter to be called as detected, we require at least 5 
reads. As the total promoter numbers of rRNA and protein coding genes are 8 and 
28340 respectively, the % of rRNA promoters detected will be a very small number. 
Thus, we asked how many percent of promoters are detected for each RNA category. 
The total promoter number of each category of RNA is indicated in the legend and the 
height of the bar is the proportion of promoters detected for each category of RNA 
(R2 Figure 2b).  

We have added R2_Figure 2a, b, c as Supplementary Fig. S5.d, e, f and briefly 
mentioned in the main text (Page 6, Line 28) 



 
6. The violin plot illustrates a strange pattern for fixed condition where the gene 
detection and UMI are bimodally distributed as compared to fresh condition. This 
seems to suggest that there is a group of genes that are more amendable to fixation 
conditions (e.g. possibly due to RNA structure, bound proteins, transcript length and 
GC content https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-021-
07744-6) than others and cause biases in gene detection and expression levels due to 
fixation method. This can lead to spurious read counts – especially at the 5’ end - thus 
confounding the conclusions made in this paper. Resolving this issue, e.g. what is the 
cause of this bias and addressing them will be absolutely critical to evaluate the 
conclusions made in this manuscript.  
Answer: Thanks for the reviewer’s comment. As suggested by the reviewer, we have 
identified top differentially-expressed genes between 10X Genomics 5’-end scRNA-
seq using fresh cells and methanol fixed cells (R2 Figure 3a). The fixed specific 
detected genes are within a normal GC content while fresh specific genes have an 
unusual high GC content (R2 Figure 3b). There length of those two group genes is 
different but not significant (R2 Figure 3c). This is partially consistent with Angela R 
Wu's observation (Wang et al., 2021). The TSO oligos used in 10X Genomics and 
Smart-seq2 mentioned in (Wang et al., 2021) are different, and different TSOs are 
known also contribute to the difference among transcriptome detected (Hagemann-
Jensen et al., 2020; Jia et al., 2022; Hagemann-Jensen et al., 2022). It will be hard to 
dissect exactly which component contributes to the difference. On the other hand, it is 
generally accepted that compare to reverse transcription based RNA-seq, results from 
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smFISH will be more close to the ground truth of gene expression level (Grün et al., 
2014). Although scRNA-seq with the fresh cell is the most popular procedure, we 
cannot rule out that the difference observed in (R2 Figure 3a) is due to some bias 
introduced by fresh cell procedure. Because the RNA degradation is not completely 
stopped even RNase inhibitors are present after the cell lysis. We agree with the 
reviewer that deepening understanding of the “bias” or “technique variation” is 
important, but we believe the experiment needs to do is systematically compare 
sc(n)RNA-seq with the fresh condition, fixed condition, and smFISH. However, this 
kind of work is beyond the scope of this study.  

 
Furthermore, although FIPRESCI is based on the 10X Genomics platform, it is 

conceptually more similar to sci-RNA-seq or SPLiT-seq, and fixation of the cell is 
commonly used in those types of protocols. Thus, FIPRESCI should be considered as 
a SPLiT-seq-like new technique when compared with the standard 10X Genomics 
procedure. In practice, people usually do not use SPLiT-seq to profiling a sample of 



health conditions and then compare it to a sample of disease conditions profiled by 
10X Genomics to identify differentially-expressed genes. The solution for preventing 
making a conclusion based on technical bias is to do the comparison within the 
dataset generated from the same technique. For example, Cole Trapnell applied sci-
Plex(sci- RNA-seq3 with cellular hashing) to screen three cancer cell lines exposed to 
188 compounds(Srivatsan et al., 2020). It should be reasonable to expect that most of 
the differentially-expressed genes identified among different treatments are caused by 
the drug. It should also be reasonable to expect that the cell type marker identified by 
sci-RNA-seq or SPLiT-seq is consistent if the same sample is profiled by 10X 
Genomics. However, if compare the dataset of sci-RNA-seq or SPLiT-seq with 10X 
Genomics from similar tissue, it is not surprising a lot of differentially-expressed 
genes will be found. Thus, it is reasonable to conclude the differential expressed genes 
in Supplementary Figure S10 identified between healthy donor and cancer patients are 
reliable, because all the data involved in comparison are generated from FIPRESCI 
protocols. 

On the other hand, thanks to the advances in the computational algorithm, the 
single-cell dataset from different batches, different protocols, and even different 
modalities now can be integrated with high accuracy. For example, canonical 
correlation analysis (CCA) based Seurat V3(Butler et al., 2018), integrative non-
negative matrix factorization (iNMF) based LIGER(Welch et al., 2019), and neural 
network based scJoint(Lin et al., 2022) all can integrate atlas-scale, heterogeneous 
collections of scRNA-seq and scATAC-seq data. J. C. Marioni and colleagues have 
successfully integrated seqFISH data, which only measures 387 genes, with a 10X 
Genomics scRNA-seq dataset (Lohoff et al., 2022). ScRNA-seq and snRNA-seq data 
are believed to be very different. However, the Jay Shendure group has integrated a 
sci-RNA-seq(nuclei) and 10X Genomics(cell) dataset successfully (Qiu et al., 2022). 
Jens C. Brüning's group did a comprehensive evaluation of the integration algorithm 
for scRNA-seq and snRNA-seq data from the hypothalamus, and conclude that scVI 
performs best (Steuernagel et al., 2022). Theoretically, the integration of data from 
FIPRESCI and standard 10X genomics procedure is much less challenging than the 
task mentioned above. Indeed, using the dataset mentioned in the previous response, 
we have evaluated Harmony, Seurat V3(CCA), and scVI and found Seurat V3(CCA) 
can remove the technique variation and batch effects between the two datasets pretty 
well even without tuning the parameters (R2 Figure 3d, e). The difference between 
our analysis and Jens C. Brüning’s work may be due to we didn’t systematically 
optimize the parameters for scVI. Thus, the comparison between FIPRESCI and 
publicly available 10X Genomics data in Figure 3b and Supplementary Figure S9c, 
which get similar cellular composition results from a similar type of sample, further 
support that our approach and results are reliable. 

To address the reviewer’s concern and take note of the limitation of FIPRESCI, 
we have added the statement below to the discussion section (Page 11, Line 33) and 
cited Angela R Wu’s BMC Genomics paper mentioned by the reviewer. “Similar to 
the previous report, we found methanol fixation does not affect the cell type 
clustering, but certain types of biological analyses that may be influenced by the GC-



content or transcript length need to use caution when interpreting the results from 
FIPRESCI data with methanol fixation”. 
7. Although protein expression imputation would be useful for the reasons mentioned 
by the authors, it can be implemented on all single cell RNA-seq datasets in general, 
and the authors have not shown any particular advantage in performing this analysis 
with the FIPRESCI dataset. The motivation for protein expression imputation and 
these results should be placed in the discussion section as a potential application for 
FIPRESCI.  
Answer: Thanks for the reviewer’s comment. We agree with the reviewer and have 
moved Fig. 4b to Supplementary Fig S9a, and mentioned this part in the discussion 
section (Page 11, Line 18). 
 
Additional comments: 
While the detection of eRNAs under the pretext that they are within ATAC peaks is 
notable, there are ample spurious reads that are mapped across the human genome 
derived from single cell RNA-seq methods including 10x 5’. Therefore, it will be 
imperative for authors to demonstrate that these eRNAs are significantly more 
enriched than reads that are outside of ATAC peaks, plus the drop off rates based on 
varying degree of threshold set for RPM as 0.5 is arbitrary and difficult to grasp the 
sensitivity and accuracy of this level. The response from authors states that on page 
20 line 28 provides more detail statistics and methods but the revised version lacks 
description and should provide a more detailed statistics the claim that these eRNAs 
are in fact true and not derived from random/spurious mapped reads. Furthermore, 
eRNAs exhibit bidirectional transcription. Please demonstrate that these eRNAs are 
divergently transcribed at the single base resolution derived from TSS (e.g. in Figure 
2d) and that they largely overlap with canonical histone markers including H3K27ac.  
Answer: Thanks for the reviewer’s comment. To evaluate the baseline level of 
FIPRESCI reads and exclude the signal from protein coding genes and other RNA 
from regulatory elements, we have calculated the RPKM from 
H3K9me3(GSE198978) peaks (R2 Figure 4a bottom). In contrast, the FIPRESCI 
signal from distal ATAC peaks has a very different distribution (R2 Figure 4a upper). 
The result clearly shows that threshold of RPKM>1 should separate eRNA signal 
from random noise. In addition, we require the core region have significant (adjusted 
p-value <0.01, Wilcox test and Benjamini-Hochberg p-value adjustment) higher 
signal than the surrounding region. See more detail in (Page 21, Line 4) in the revised 
manuscript. Based on this result, we have updated Figure 2e,f,g.  

We noticed that in our FIPRESCI data, only the read2 from a paired-end reads are 
exactly start from the 5’-end of the RNA. The read1 are from the internal of the RNA, 
and using the mixture of read1 and read2 to plot Figure 2d will lose the single base 
resolution for identifying enhancer TSSs. Thus, we have re ploted the Figure 2d with 
only read2. There is a bimodal distribution centered around the start and end site of 
the distal ATAC peak. Those results support that eRNAs we identified are 
bidirectional transcribed. 

For the updated set of eRNAs, we compared them with a public available H3K27ac 



data (GSM733684). The result suggests that more than 60% of the eRNA are 
overlapped with H3K27ac peaks (R2 Figure 4b). And across the condition, the eRNA 
result is highly correlated. Since the requirement of both ATAC peaks and high 
FIPRESCI signal is stringent, we speculate the eRNA candidates in our results are from 
strong enhancers. And eRNA from weak enhancers may be missed in our analysis. 
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