Supplementary Materials for

Generalizable neuromarker for autism spectrum disorder across imaging sites and developmental stages: A multi-site study

Takashi Itahashi[†], Ayumu Yamashita[†], Yuji Takahara, Noriaki Yahata, Yuta Y. Aoki, Junya Fujino, Yujiro Yoshihara, Motoaki Nakamura, Ryuta Aoki, Haruhisa Ohta, Yuki Sakai, Masahiro Takamura, Naho Ichikawa, Go Okada, Naohiro Okada, Kiyoto Kasai, Saori C. Tanaka, Hiroshi Imamizu, Nobumasa Kato, Yasumasa Okamoto, Hidehiko Takahashi, Mitsuo Kawato, Okito Yamashita, Ryu-ichiro Hashimoto^{*}

*Corresponding author. Email: <u>dbridges50@gmail.com</u> (R.H.)

[†]These authors contributed equally to this work.

This PDF file includes:

Materials and Methods

Fig. S1. The distribution of the ASD diagnosis probability in each imaging site in the discovery dataset and the ABIDE adult validation dataset.

Fig. S2. The relation between the head motion and performance index across the validation datasets.

Fig. S3. Results of mass-univariate analyses between the discovery and validation datasets.

Fig. S4. Discriminative functional connections for the SCZ diagnosis.

Fig. S5. Discriminative functional connections for the MDD diagnosis.

Fig. S6. Relationship of the ASD and SCZ diagnosis on ASD and SCZ neuromarkers.

Fig. S7. Schematic representation of training and evaluation procedures of the ASD neuromarker.

Table S1. Demographic information of discovery and adult validation datasets.

Table S2. The classification performance of the ASD classifier in the discovery and adult validation datasets.

Table S3. Demographic information for the child and adolescent validation datasets.

Table S4. The classification performance of the ASD classifier in the child and adolescent datasets.

Table S5. The classification performance of the ASD classifier on the discovery dataset without ComBat harmonization method.

Table S6. The classification performance of the ASD classifier trained on SWA1 and UTO2 only.

Table S7. The classification performance of the ASD classifier trained on the SRPBS dataset only.

Table S8. Comparisons of classification and generalization performance between higher/lower resolutions of regions of interest.

Table S9. The list of discriminative FCs for the ASD diagnosis.

Table S10. The list of discriminative FCs reproducible across the five datasets.

Table S11. Demographic information of SCZ and MDD datasets.

Table S12. The classification performance of the SCZ and MDD neuromarkers.

Table S13. The list of discriminative FCs for SCZ.

Table S14. The list of discriminative FCs for MDD.

Table S15. Image scanning protocols for R-fMRI data in the discovery dataset.

Table S16. Image scanning protocols for R-fMRI data in the validation datasets.

References (11, 12, 25, 36, 38-40, 42, 62-67, 72-76, 78-83)

Supplementary Materials

Materials and Methods

Ethics of statement

All participants (if appropriate) and their parent/legal guardian provided written informed consent. The institutional review boards approved recruitment procedures and experimental protocols at the principal investigators' respective institutions. These procedures were conducted in accordance with the Declaration of Helsinki.

Participants

The current study used three adult resting-state fMRI (R-fMRI) datasets for the analyses: one was used as the discovery dataset, and the remaining two were used as independent validation datasets. Tables S1 and S15 show the demographic information and scanning parameters for the three datasets.

Discovery dataset

The discovery dataset contained data of 550 typically developing controls (TDCs) from five scanners at four imaging sites (University of Tokyo [UTO1 and UTO2], Kyoto University [KUT], Center for Innovation in Hiroshima University (COI), and Showa University [SWA1]) and 180 adults with autism spectrum disorder (ASD) from two institutes (SWA1 and UTO2). This dataset consisted of a part of the Strategic Research Program for the Promotion of Brain Science (SRPBS) dataset (https://bicr-resource.atr.jp/srpbsopen/) (*38*). We also included participants at SWA1 and a part of the dataset used in our prior study (*25*).

The ABIDE adult validation dataset

The first independent adult validation dataset consisted of participants from the Autism Brain Imaging Data Exchange I (ABIDE-I) (11) and -II datasets (12). Since adult participants were limited in both releases, we combined the two datasets. Of note, since some imaging sites participated in both datasets (e.g., New York University Langone Medical Center [NYU] and the University of Utah School of Medicine [USM]), we checked the consistency of the scanning protocols in each imaging site. We used 54 adults with ASD and 67 TDCs that were selected from the following three sites: the University of Leuven (Leuven), NYU, and USM. In this study, we referred this validation dataset to the ABIDE adult dataset.

The Japanese adult validation dataset

To further validate the generalization performance of our classifier, we newly collected R-fMRI data from 22 adults with ASD and 38 controls at Showa University, Karasuyama Hospital (SWA2). The data were collected under the Brain/MINDS Beyond project (BMB; <u>https://brainminds-beyond.jp/</u>). The project details were described elsewhere *(62)*.

Exclusion criteria

We applied the following exclusion criteria for participant selection; 1) participants with no whole-brain coverage were excluded; 2) participants who had less than 4 min of uncontaminated R-fMRI data (78); 3) participants with errors in any preprocessing steps (e.g., segmentation failure and failures in spatial normalization and surface mapping). For the ABIDE adult validation dataset, we excluded imaging sites that contained less than 10 participants per group, according to prior studies (79). We also excluded imaging sites that did not have some missing information about the scanning protocol (e.g., slice acquisition order).

R-fMRI data preprocessing

We preprocessed all the R-fMRI data using fMRIPrep version 1.1.8 (63). The fMRIPrep performs a series of preprocessing steps, including head motion estimation, slice timing correction, co-registration of EPI data to the corresponding T1-weighted anatomical image, distortion correction, and normalization to a standard Montreal Neurological Institute (MNI) space. We used the "fieldmap-less" distortion correction method if the fieldmap data were unavailable. We used the ciftify toolbox version 2.1.1 (64) to map the preprocessed data onto the grayordinate (80).

For each vertex, we performed nuisance regression to remove the effects of artifactual and nonneural sources. Nuisance regressors consisted of six head-motion parameters, averaged signals from subject-specific white matter and cerebrospinal fluid masks, global signal, their temporal derivatives, and linear detrending. After nuisance regression, we applied a band-pass filter (0.008-0.1 Hz) to the residuals. We computed frame-wise displacement (FD) *(65)* for each participant to characterize the frame-by-frame head motion during the scans. We used FD as a measure for detecting occasional head movement. To reduce spurious changes in FC due to head motion, we removed volumes with FD > 0.5 mm, as proposed in a previous study *(65)*.

Parcellation and network construction

We used Glasser's 379 surface-based brain parcellations (cortical 360 parcellations and subcortical 19 parcellations) as ROIs (66). We extracted the averaged, denoised signals from these ROIs. We computed the temporal correlations of signals among all possible pairs of ROIs and applied Fisher's *r*-to-*z* transformation, resulting in 71,631 unique FCs for each participant. Because the label of each ROI in Glasser's atlas was not intuitive, we utilized Yeo's resting-

state network (RSN) labels (67) to assign important ROIs to the corresponding RSN label. This study added the subcortical network label to the subcortical and cerebellar regions.

Construction of the ASD neuromarker using the discovery dataset

Based on previous studies (25, 36, 40, 72–74), we assumed that psychiatric disorder factors were associated with the limited number of FCs, rather than the whole-brain connections. We, thus, used a logistic regression analysis with least absolute shrinkage and selection operator (LASSO) method that selects an optimal subset of FCs from the whole brain connections (75). The details of our procedures were described elsewhere (40). Briefly, a logistic function is used to define the probability of a participant belonging to the ASD class label as follows:

$$P_i(y_i = 1 | x_i; w) = \frac{1}{1 + exp(-x_i \cdot w)},$$

where y_i and x_i represent the *i*-th participant's class label and FC vector, respectively. The class label was set to 1 if the participant belonged to the ASD group while setting to 0 if the participant belonged to the TDC group. The weight vector was denoted as *w*. The weight vector was optimized by minimizing the following objective function:

$$L(w) = -\frac{1}{N} \sum_{i=1}^{N} \log (P_i(y_i = 1 | x_i; w)) + \lambda \cdot ||w||_1,$$

where $|| \cdot ||_{l}$ represents L_1 -norm and λ stands for a hyperparameter that regulates the sparsity of the weight vector.

We developed the ASD neuromarker using the LASSO method with 10-fold nested crossvalidation (CV) and 10 subsampling, yielding 100 trained classifiers (fig. S7). To estimate the optimal weights and tune the hyperparameter, we used a 10-fold nested CV procedure with an undersampling method. In this procedure, we first divided the whole discovery dataset into training (9 folds of 10 folds) and test (1 fold of 10 folds) datasets using the "*cvpartition*" implemented in MATLAB (R2020b, Mathworks, USA). We then applied an undersampling method to alleviate a bias due to the imbalance in the number of participants between the groups (81). In this undersampling method, we randomly selected participants from the discovery dataset to match the number of participants between the ASD and TDC groups. Similar to our previous study, we matched the mean age between ASD and TDC groups in each subsample. To avoid any subsampling bias, we repeated this undersampling ten times, yielding ten subsampled matched training datasets. For each subsampled dataset, we fitted the logistic regression model while tuning the hyperparameter in the inner loop of the nested CV. For building a logistic regression model, we used the "lassoglm" function implemented in MATLAB. The inner CV (i.e., "CV" parameter in the lassoglm function) was set to 10, and "NumLambda" was set to 25. We determined the optimal λ according to the one standard error rule in which we selected the largest λ within the standard deviation of the minimum prediction error among all λ . The mean classifier output value was considered as diagnostic probability, indicating a likelihood of a participant belonging to the ASD class. We considered participants as those with ASD if their diagnostic probability values were higher than 0.5. We calculated the area under the curve (AUC) to assess the classification performance using the "perfcurve" implemented in MATLAB. We also computed accuracy, sensitivity, specificity, and the Matthews correlation coefficient (MCC). The MCC is suitable for the imbalanced dataset because this metric takes into account the ratio of the confusion matrix size (76, 82). We used AUC and MCC as performance indices throughout the paper.

The details of the effects of head motion, harmonization, and experimental settings on the generalization performance

To assess the impacts of head motion, harmonization, and experimental factors (i.e., diversity in the characteristics of scanning protocols and choice of atlas), we conducted several control analyses. We first assessed the association between head motion and classification performance. We calculated the value of the area under the curve (AUC) and the mean frame-wise displacement (FD) value at each imaging site in each validation dataset. We then calculated the Pearson correlation coefficient between the mean FD and AUC values across the validation datasets. A significant positive correlation was not found between the AUC and mean FD (r = -0.56, P = 0.002; fig. S2). This result indicates that the head motion did not artificially improve the generalizability of our neuromarker.

We next assessed the effects of the harmonization method on classification performance in the discovery and adult validation datasets, respectively. We trained an ASD classifier on the discovery dataset without the ComBat harmonization method. The ASD classifier showed better classification performance (accuracy = 77%, AUC = 0.85, and MCC = 0.50) in the discovery dataset (table S5). The ASD classifier, however, exhibited reduced generalizability to the ABIDE adult (accuracy = 60%, AUC = 0.64, and MCC = 0.19) and the Japanese adult (accuracy = 67%, AUC = 0.73, and MCC = 0.23). These results suggest that applying the ComBat harmonization method plays a vital role in improving the generalizability of the ASD classifier to other datasets.

We further investigated the impacts of diversity in imaging sites on the generalization performance since our discovery dataset comprised imbalanced imaging sites (i.e., COI, KUT, and UTO1) and a site with a different scanning protocol (i.e., UTO2). Three imaging sites (i.e., COI, KUT, and UTO1) contained the TDC population only, and thus there is a possibility that the inclusion of imbalanced data might influence the classifier's generalization performance. To test this, we built a neuromarker for the ASD diagnosis using two imaging sites (i.e., SWA1 and UTO2) by removing the three sites. The trained classifier showed a slightly reduced accuracy of 74%, an AUC of 0.80, and an MCC of 0.47 in the discovery dataset (table S6). The trained classifier did not change the discrimination abilities in the ABIDE adult (accuracy = 58%, AUC = 0.67, and MCC = 0.21) and the Japanese adult (accuracy = 72%, AUC = 0.83, MCC = 0.42). We next investigated the impacts of an imaging site with a different scanning protocol (i.e., UTO2) on the classification and generalization performance. We repeated the same analyses while excluding the UTO2. We did not observe significant changes in the classification and generalization performance (table S7). These results suggest that, at least in our experimental setting, the inclusion of diverse imaging sites does not influence the generalization performance of our ASD neuromarker.

Finally, we assessed whether our generalization performance was not atlas-dependent. To test this, we used Schaefer's cortical atlas (39) as an alternative to the Glasser atlas (66) because this atlas provided an atlas with multiple levels of resolutions ranging from 100 to 1,000 and thus it is suitable to investigate the effects of ROI resolutions on the generalization performance. Of note, we excluded 1,000 ROIs from analyses because some brain regions could not extract signals reliably. Classifiers with Schaefer's atlas exhibited similar or higher generalization performance in the ABIDE adult and Japanese adult datasets (table S8). These results suggest that our generalization performance was not atlas-dependent.

Consistency of the effect of ASD diagnosis across the datasets

In the mass-univariate analyses, we did not observe a significant positive correlation between the discovery dataset and the child dataset (see **Results** in the main text and fig. S3). We speculated that, instead of the whole-brain pattern, a specific set of important FCs were reproducible between the discovery dataset and the child dataset. To test this, we used a binomial test, similar to previous studies (42, 83). We calculated a t-value as the effect of the ASD diagnosis in each FC of each dataset. We then counted the number of FCs showing the same sign (i.g., the same direction of the effect of diagnosis) within the set of discriminative FCs, k, and the whole FCs, m, respectively. Since the permutation test identified 141 FCs as important FCs for the ASD diagnosis (see Results in the main text) and 98 out of 141 FCs showed the same direction of between-group difference between the discovery dataset and the child dataset (i.e., the same sign of *t*-values between the datasets), we set n = 141 (the number of important FCs), k = 98 (the number of FCs showing the same sign of *t*-values within the important FCs), and m = 35,443 (the number of FCs showing the same direction of betweengroup difference in the whole connections), respectively. The binomial test confirmed that the set of important FCs was reproducible between the discovery dataset and the child dataset (P <0.05). This observation was replicated between the discovery dataset and the adult and adolescent datasets (k = 94 and m = 38,969 for the ABIDE adult; k = 105 and m = 42,649 for the Japanese adult; k = 98 and m = 40,124 for the adolescent dataset; all P < 0.05). These results suggest that the reproducible FCs selected by our method might contribute to the generalizability of our neuromarker.

Dimensional relationships among three psychiatric disorders

We examined the exchangeability among the three psychiatric disorders, constructing classifiers for the SCZ and MDD diagnoses and applying these classifiers to the remaining psychiatric disorders. We used the same analytical procedures, including 10-fold nested CV, 10 subsampling, and parameter settings for the LASSO method. We then calculated AUC, accuracy, sensitivity, specificity, and MCC as performance indices. To test the statistical significance, we constructed null distributions using permutation tests with 100 iterations. We

set iterations to 100 instead of 500 because this procedure was computationally expensive. Statistical significance was set to P < 0.05.

We tested the sensitivity of each classifier to the remaining psychiatric disorders by applying each classifier to other psychiatric disorders. Since participants with TDC were identical to those in the discovery dataset, we focused on sensitivity instead of other performance indices. We constructed null distributions of performance indices using a permutation test with 100 iterations and applied a statistical threshold of P < 0.05, one-sided.

Cross-validated neuromarkers for schizophrenia and major depressive disorder

Similar to the ASD classifier, we used a 10-fold nested CV with 10 subsamples to determine the weights and hyperparameters. The statistical significance of both classifiers was confirmed by permutation tests with 100 iterations. The SCZ classifier exhibited an accuracy of 82%, AUC of 0.89, and MCC of 0.51 (permutation test, all P < 0.05; table S12). The corresponding sensitivity and specificity were 83% and 82%, respectively. On the other hand, the MDD classifier exhibited an accuracy of 68%, AUC of 0.78, and MCC of 0.32 (permutation test, P < 0.05; table S12). The corresponding sensitivity and specificity were 75% and 66%, respectively. These results indicate that both classifiers hold acceptable classification performance to the training dataset.

Identification of discriminative FCs for SCZ and MDD

Similar to identifying discriminative FCs for the ASD diagnosis, we used permutation tests with 100 iterations to identify important FCs for schizophrenia (SCZ) and major depressive disorder (MDD), respectively. At each iteration, we shuffled the diagnostic labels to create a permuted dataset and constructed permuted classifiers. We used the number of counts for each FC

selected by the LASSO across 10-fold cross-validation and 10 subsampling (i.e., across 100 classifiers). To control for the multiple comparisons, we only kept the maximum counts among all the connections at each iteration and constructed a null distribution using these maxima. We considered FCs as important contributors to the SCZ or MDD diagnosis if their *P*-values were below 0.05. The list of discriminative FCs and their spatial distributions are provided in fig. S4 and table S13, while those for MDD are in fig. S5 and table S14.

Supplementary Figures

Fig. S1. The distribution of the ASD diagnosis probability in each imaging site in the discovery dataset and the ABIDE adult validation dataset. (A) In the discovery dataset, we visualized the probability distributions in each imaging site. (B) In the ABIDE adult dataset, we visualized the probability distributions in each imaging site. **Abbreviations:** AUC: area under the curve, ASD: autism spectrum disorder, MCC: Matthews correlation coefficient, and TDC: typically developing control.

Fig. S2. The relation between the head motion and performance index across the validation datasets. We computed the area under the curve (AUC) and the mean framewise displacement (FD) in every imaging site. We then computed the Pearson correlation coefficient between the AUC and mean FD across imaging sites to investigate whether the head motion improved the classification performance.

Fig. S3. Results of mass-univariate analyses between the discovery and validation datasets. (A) The relationship between the discovery dataset and the ABIDE adult dataset. (B) The relationship between the discovery dataset and the Japanese adult dataset. (C) The relationship between the discovery dataset and the child dataset. (D) The relationship between the discovery dataset and the adolescent dataset. Abbreviations: ABIDE: autism brain imaging data exchange.

Fig. S4. Discriminative functional connections for the SCZ diagnosis. (A) The spatial distribution of hyper-connections for the diagnosis of schizophrenia (SCZ). (B) The spatial distribution of hypo-connections or the diagnosis of SCZ.

Fig. S5. Discriminative functional connections for the MDD diagnosis. (A) The spatial distribution of hyper-connections for the diagnosis of major depressive disorder (MDD).(B) The spatial distribution of hypo-connections or the diagnosis of MDD.

A. Relationships of the effects of diagnoses on the ASD neuromarker

B. Relationships of the effects of diagnoses on theSCZ neuromarker

Fig. S6. Relationship of the ASD and SCZ diagnosis on ASD and SCZ neuromarkers. (A)The relationship of both diagnoses on ASD neuromarker. (B) The relationship of both diagnoses on SCZ neuromarker. **Abbreviations:** ASD: autism spectrum disorder, and SCZ: schizophrenia.

1. Training the classifier using the discovery dataset

2. Evaluation using the independent validation cohorts

Fig. S7. Schematic representation of training and evaluation procedures of the ASD neuromarker. We built a neuromarker for autism spectrum disorder (ASD) using a 10fold nested cross-validation (CV) procedure with ten undersamplings. The neuromarker's generalizability was evaluated by applying 100 trained classifiers to the validation datasets. **Abbreviations:** ABIDE: autism brain imaging data exchange, ASD: autism spectrum disorder, and TDC: typically developing control.

		TDC			ASD	
	N (M/F)	Age	Mean FD (SD) [mm]	N (M/F)	Age	Mean FD (SD) [mm]
			Discovery cohort			
COI	106 (41/65)	50.75 (13.02)	0.18 (0.05)	-	-	-
KUT	148 (85/63)	36.64 (13.41)	0.13 (0.04)	-	-	-
SWA1	174 (151/23)	30.94 (7.64)	0.13 (0.04)	145 (122/23)	31.37 (7.78)	0.14 (0.06)
UTO1	86 (29/57)	44.45 (13.82)	0.11 (0.04)	-	-	-
UTO2	36 (18/18)	35.5 (7.57)	0.16 (0.06)	35 (23/12)	31.94 (8.78)	0.15 (0.04)
Total	550 (324/226)	38.70 (13.65)	0.14 (0.05)	180 (145/35)	31.48 (7.96)	0.14 (0.06)
			ABIDE adult validation da	ataset		
Leuven	15 (15/0)	23.27 (2.91)	0.13 (0.04)	13 (13/0)	21.31 (3.71)	0.13 (0.03)
NYU	20 (15/5)	23.81 (3.78)	0.08 (0.02)	13 (9/4)	24.17 (4.44)	0.08 (0.03)
USM	32 (29/3)	25.79 (6.09)	0.11 (0.04)	28 (26/2)	25.69 (6.37)	0.12 (0.04)
Total	67 (59/8)	24.63 (4.96)	0.11 (0.04)	54 (48/6)	24.27 (5.61)	0.11 (0.04)
			Japanese adult validation d	lataset		
SWA2	38 (27/11)	28.5 (6.83)	0.10 (0.03)	22 (19/3)	25.77 (5.23)	0.12 (0.05)

Table S1. Demographic information of the discovery and adult validation datasets.

Abbreviations: ABIDE: autism brain imaging data exchange, ASD: autism spectrum disorder, COI: Center of Innovation, F: female, FD: frame-wise displacement, M: male, NYU: New York University, KUT: Kyoto University TimTrio, SD: standard deviation, SWA: Showa University, TDC: typically developing control, UTO: University of Tokyo, and USM: University of Utah School of Medicine

*The discovery dataset was matched for the mean FD (p > 0.05), except for age and sex (p < 0.05).

**The US adult validation cohort was matched for age, sex, and mean FD (p > 0.05).

***The Japanese adult validation cohort was matched for age and sex (p > 0.05), but not matched for mean FD (p < 0.05)

	AUC	Accuracy [%]	Sensitivity [%]	Specificity [%]	MCC	PPV	NPV
		Cla	ssification performance	on the discovery datase	t		
All	0.84	75.62	76.11	75.45	0.46	0.50	0.91
COI	-	75.47	-	75.47	-	-	_
KUT	-	77.03	-	77.03	-	-	-
SWA1	0.79	71.16	71.72	70.69	0.42	0.67	0.75
UTO1	-	76.74	-	76.74	-	-	-
UTO2	0.97	91.55	94.29	88.89	0.83	0.89	0.94
		General	izability of ASD classifie	r to the ABIDE adult da	ataset		
All	0.70	61.98	66.67	58.21	0.25	0.56	0.68
Leuven	0.65	64.29	61.54	66.67	0.28	0.62	0.66
NYU	0.70	57.59	61.54	55.00	0.16	0.47	0.69
USM	0.74	63.33	71.43	56.25	0.29	0.59	0.69
		Generaliz	zability of ASD classifier	to the Japanese adult d	lataset		
SWA2	0.81	78.33	63.64	86.84	0.52	0.74	0.80
Abbreviati University, Tokyo, and	ions: ABIE KUT: Kyc USM: Uni	DE: autism brain imagin to University TimTrio, versity of Utah School	g data exchange, AUC: are MCC: Matthews correlati of Medicine	ea under the curve, COI: on coefficient, SWA: Sho	Center of Inno owa Universit	ovation, NYU y, UTO: Univ	: New York ersity of

Table S2. The classification performance of the ASD classifier in the discovery and adult validation datasets.

		TDC			ASD	
	N (M/F)	Age	Mean FD (SD) [mm]	N (M/F)	Age	Mean FD (SD) [mm]
			Child datase	t		
GU	13 (6/7)	9.46 (1.08)	0.12 (0.03)	19 (16/3)	10.36 (1.12)	0.12 (0.03)
OHSU	35 (16/19)	9.60 (0.98)	0.10 (0.03)	11 (8/3)	9.64 (1.43)	0.12 (0.04)
KKI	105 (61/44)	10.13 (1.01)	0.12 (0.04)	32 (24/8)	9.81 (1.23)	0.14 (0.03)
NYU	33 (28/5)	9.09 (1.62)	0.10 (0.03)	38 (34/4)	8.81 (1.80)	0.11 (0.04)
UCLA	16 (12/4)	10.30 (1.43)	0.10 (0.04)	19 (17/2)	10.69 (0.97)	0.12 (0.04)
Total	202 (123/79)	9.84 (1.22)	0.11 (0.04)	119 (99/20)	9.70 (1.55)	0.12 (0.04)
			Adolescent data	aset		
OHSU	12 (8/4)	12.58 (0.79)	0.10 (0.03)	18 (15/3)	13.39 (1.09)	0.12 (0.03)
SDSU	10 (9/1)	15.15 (1.97)	0.09 (0.04)	12 (11/1)	15.37 (1.95)	0.09 (0.03)
NYU	33 (24/9)	14.65 (1.49)	0.09 (0.04)	13 (10/3)	14.19 (1.46)	0.11 (0.03)
TRINITY	13 (13/0)	14.81 (1.60)	0.13 (0.02)	12 (12/0)	15.19 (1.37)	0.14 (0.03)
UCLA	30 (24/6)	13.79 (1.47)	0.09 (0.02)	26 (24/2)	14.73 (1.71)	0.10 (0.03)
UM	10 (7/3)	15.82 (1.75)	0.10 (0.03)	12 (10/2)	15.34 (1.55)	0.12 (0.05)
USM	11 (11/0)	14.81 (1.50)	0.12 (0.03)	18 (18/0)	16.30 (1.27)	0.13 (0.04)
YALE	13 (8/5)	14.85 (1.64)	0.11 (0.04)	10 (7/3)	14.54 (1.92)	0.13 (0.03)
Total	132 (104/28)	14.44 (1.69)	0.10 (0.03)	121 (107/14)	14.86 (1.73)	0.12 (0.04)

Table S3. Demographic information for the child and adolescent validation datasets.

Abbreviations: ASD: autism spectrum disorder, GU: Georgetown University, KKI: Kennedy Krieger Institute, NYU: New York UniversityOHSU: Oregon Health and Science University, SD: standard deviation, SDSU: San Diego State University, TDC: typically developing control, TRINITY: Trinity Centre for Health Sciences, UCLA: the University of California, Los Angeles, UM: University of Michigan, USM: University of Utah School of Medicine, and YALE: Yale Child Study Center. *The child cohort was matched for age (p > 0.05), but not matched for sex and mean FD (p < 0.05).

**The adolescent cohort was matched for age and sex (p > 0.05), but not matched for mean FD (p < 0.05).

	AUC	Accuracy [%]	Sensitivity [%]	Specificity [%]	MCC	PPV	NPV				
		Gener	alizability of ASD clas	sifier to the child dat	taset						
All	0.66	60.75	75.63	51.98	0.27	0.48	0.78				
GU	0.70	68.75	84.21	46.15	0.33	0.70	0.67				
OHSU	0.71	65.23	72.73	62.86	0.30	0.38	0.88				
KKI	0.64	56.20	75.00	50.48	0.22	0.32	0.87				
NYU	0.62	59.15	71.05	45.45	0.17	0.60	0.58				
UCLA	0.68	68.57	78.95	56.25	0.36	0.68	0.69				
	Generalizability of ASD classifier to the adolescent dataset										
All	0.71	65.61	71.07	60.61	0.32	0.62	0.70				
OHSU	0.55	46.67	55.56	33.33	-0.112	0.56	0.33				
SDSU	0.84	68.18	66.67	70.00	0.37	0.73	0.64				
NYU	0.77	67.39	76.92	63.64	0.37	0.45	0.88				
TRINITY	0.53	56.00	50.00	61.54	0.12	0.55	0.57				
UCLA	0.78	69.64	76.92	63.33	0.40	0.65	0.76				
UM	0.63	72.73	91.67	50.00	0.47	0.69	0.83				
USM	0.71	68.97	77.78	54.55	0.33	0.74	0.60				
YALE	0.74	73.91	70.00	76.92	0.47	0.70	0.77				

Table S4. The classification performance of the ASD classifier in the child and adolescent datasets.

Abbreviations: ASD: autism spectrum disorder, GU: Georgetown University, KKI: Kennedy Krieger Institute, NPV: negative predictive value, NYU: New York UniversityOHSU: Oregon Health and Science University, PPV: positive predictive value, SD: standard deviation, SDSU: San Diego State University, TDC: typically developing control, TRINITY: Trinity Centre for Health Sciences, UCLA: the University of California, Los Angeles, UM: University of Michigan, USM: University of Utah School of Medicine, and YALE: Yale Child Study Center.

	AUC	Accuracy [%]	Sensitivity [%]	Specificity [%]	MCC
	Classifica	tion performance on	the discovery dataset w	ithout harmonization	
All	0.85	76.71	80.56	75.45	0.50
COI	-	80.19	-	80.19	-
KUT	-	89.19	-	89.19	-
SWA1	0.75	66.77	0.793103	56.32	0.36
UTO1	-	79.07	-	79.07	-
UTO2	0.90	87.32	0.857143	88.89	0.75
	G	eneralizability of ASE	classifier to the ABIDI	E adult dataset	
All	0.64	59.50	59.23	59.70	0.19
Leuven	0.60	57.14	38.46	73.33	0.13
NYU	0.62	51.52	69.23	40.00	0.09
USM	0.70	65.00	64.29	65.63	0.30
	Ge	neralizability of ASD	classifier to the Japane	se adult dataset	
SWA2	0.73	66.67	36.36	84.21	0.23
Abbreviat	tions: AU(C: area under the curve	, COI: Center of Innovat	ion, NYU: New York U	niversity.
KUT: Kyo	to Univers	sity TimTrio, MCC: M	atthews correlation coeff	icient, SWA: Showa Un	iversity,
UTO: Uni	versity of [Fokvo, and USM: Univ	versity of Utah School of	Medicine	-

Table S5. The classification performance of the ASD classifier on the discovery dataset without ComBat harmonization method.

	AUC	Accuracy [%]	Sensitivity [%]	Specificity [%]	MCC
	C	lassification performa	nce on the balanced dis	covery dataset	
All	0.80	73.85	72.22	75.24	0.47
SWA1	0.76	71.16	68.28	73.56	0.42
UTO2	0.96	85.92	88.57	83.33	0.72
	G	eneralizability of ASI	O classifier to the ABIDI	E adult dataset	
All	0.67	57.85	77.78	41.79	0.21
Leuven	0.56	57.14	69.23	46.67	0.16
NYU	0.60	48.48	76.92	30.00	0.08
USM	0.72	63.33	82.14	46.88	0.31
	Ge	neralizability of ASD	classifier to the Japanes	se adult dataset	
SWA2	0.83	71.67	72.73	71.05	0.42
Abbreviat KUT: Kyo JTO: Univ	tions: AUC to Universiversity of 7	C: area under the curve sity TimTrio, MCC: Ma Fokyo, and USM: Univ	, COI: Center of Innovati atthews correlation coeffi versity of Utah School of	on, NYU: New York Un cient, SWA: Showa Un Medicine	niversity, iversity,

Table S6. The classification performance of the ASD classifier trained on SWA1 and UTO2 only.

	AUC	Accuracy [%]	Sensitivity [%]	Specificity [%]	MCC					
		Classification perf	formance on the SRP	BS dataset						
All	0.84	76.33	77.93	75.88	0.46					
COI	-	77.36	-	77.36	-					
KUT	-	78.38	-	78.38	-					
SWA1	0.82	75.24	77.93	72.99	0.51					
UTO	-	75.58	-	75.58	-					
	Generalizability of ASD classifier to the ABIDE adult dataset									
All	0.70	62.81	59.26	65.67	0.25					
Leuven	0.65	60.71	53.85	66.67	0.21					
NYU	0.68	60.61	53.85	65.00	0.19					
USM	0.74	65.00	64.29	65.63	0.30					
	Gene	ralizability of ASD	classifier to the Japan	ese adult dataset						
SWA2	0.82	73.33	63.64	78.95	0.43					
Abbrevia	ations: A	UC: area under the cu	urve, COI: Center of Ir	novation, NYU: New	York					
Universit	y, KUT:	Kyoto University Tin	nTrio, MCC: Matthews	s correlation coefficient	nt,					
SWA: Sh	owa Uni	versity, UTO: Univer	sity of Tokyo, and US	M: University of Utah	School					
of Medici	ine									

 Table S7. The classification performance of the ASD classifier trained on the SRPBS dataset only.

Atlas	AUC	Accuracy [%]	Sensitivity [%]	Specificity [%]	MCC
	Cla	ssification performa	ance on the discovery	dataset	
Glasser	0.84	75.62	76.11	75.45	0.46
Schaefer 100	0.81	71.91	72.78	71.64	0.39
Schaefer 200	0.85	75.48	80.56	73.82	0.48
Schaefer 300	0.82	73.70	75.56	73.09	0.43
Schaefer 400	0.83	74.52	78.89	73.09	0.46
Schaefer 500	0.82	74.52	76.67	73.82	0.45
Schaefer 600	0.83	74.11	77.22	73.09	0.44
Schaefer 700	0.83	74.38	77.78	73.27	0.45
Schaefer 800	0.83	73.42	76.67	72.36	0.43
Schaefer 900	0.83	73.42	75.56	72.73	0.43
		Generalizability on	the ABIDE adult dat	aset	
Glasser	0.70	61.98	66.67	58.21	0.25
Schaefer 100	0.70	65.29	64.81	65.67	0.30
Schaefer 200	0.73	65.29	59.26	70.15	0.30
Schaefer 300	0.70	65.29	57.41	71.64	0.29
Schaefer 400	0.72	66.12	59.26	71.64	0.31
Schaefer 500	0.75	71.07	74.07	68.66	0.42
Schaefer 600	0.73	69.42	68.52	70.15	0.39
Schaefer 700	0.72	67.77	74.07	62.69	0.37
Schaefer 800	0.72	66.94	64.81	68.66	0.33
Schaefer 900	0.72	71.07	77.78	65.67	0.43
	(Generalizability on t	the Japanese adult da	taset	
Glasser	0.81	78.33	63.64	86.84	0.52
Schaefer 100	0.84	76.67	86.36	71.05	0.55
Schaefer 200	0.83	73.33	68.18	76.32	0.44
Schaefer 300	0.84	71.67	72.73	71.05	0.42
Schaefer 400	0.84	76.67	72.73	78.95	0.51
Schaefer 500	0.84	76.67	72.73	78.95	0.51
Schaefer 600	0.83	73.33	63.64	78.95	0.43
Schaefer 700	0.82	70.00	68.18	71.05	0.38
Schaefer 800	0.82	73.33	72.73	73.68	0.45
Schaefer 900	0.85	71.67	77.27	68.42	0.44
Abbreviations: A	ABIDE: a	utism brain imaging	data exchange, AUC: a	rea under the curve, a	nd
MCC: Matthews	correlatio	n coefficient.			

Table S8. Comparisons of classification and generalization performance between higher/lower resolutions of regions of interest.

	ROI 1			ROI 2		7(15	<i></i>	4	Moon
Glasser's label	AAL label	Network	Glasser's label	AAL label	Network	z(AS D)	z(TD C)	<i>l</i> -value	weight
R.Amy	Hippocampus_R	Subcortical	R.A5	Temporal_Sup_R	Somatomot	0.12			
					or		0.01	8.03	1.51
R.PBelt	Temporal_Sup_R	Somatomot	L.POS2	Precuneus_L	FPN	0.03			
		or					-0.08	7.42	0.48
R.25	Olfactory_R	Limbic	L.PHT	Temporal_Mid_L	DAN	0.01	-0.05	4.32	0.41
R.MBelt	Heschl_R	Somatomot	R.LIPv	Parietal_Inf_R	DAN	-0.02			
		or					-0.08	4.51	0.41
R.A5	Temporal_Sup_R	Somatomot	R.23d	Cingulum_Mid_R	DMN	0.12			
		or					0.01	6.73	0.35
R.PBelt	Temporal_Sup_R	Somatomot	L.IFJp	Frontal_Inf_Oper_L	DAN	0.08		• • • •	0.00
		or	-	— 1 ~ —	~		0.03	3.90	0.26
R.p24	Cingulum_Ant_R	FPN	R.A5	Temporal_Sup_R	Somatomot	0.12	0.01	7.0	0.00
		C-1		T1 D.1. M.1	or Lingtin	0.02	0.01	/.62	0.26
K.MIdB	-	Subcortical	K.IGa	Temporal_Pole_Mid	Limbic	0.03	0.06	5 70	0.26
D VMV2	Lingual D	Vienel	I STG	_K Tomporal Dala Sup	Limbia	0.02	-0.00	5.70	0.20
K. V IVI V Z	Liligual_K	visuai	L.510a		Lindic	0.05	-0.01	3 53	0.25
I TGd	Temporal Pole Mi	Limbic	L FOP1	 Rolandic Oper I	VAN	-0.10	-0.01	5.55	0.25
E.TOu	I h	Liniole	L.I 01 1			0.10	-0.15	3 28	0.24
R.Amv	Hippocampus R	Subcortical	LaTGd	Temporal Pole Mid	Limbic	0.01	0.15	5.20	0.21
101111	mppooninpus_it	Succontent	21104	I comportan_1 ore_1014		0.01	-0.04	4.22	0.21
R.Amv	Hippocampus R	Subcortical	R.6d	Precentral R	Somatomot	0.07			
5	11 1		-		or		-0.04	7.20	0.16
R.PCV	Precuneus R	FPN	L.a9-46v	Frontal Mid L	FPN	-0.01	-0.09	5.00	0.16
R.Pallidum	Pallidum R	Subcortical	L.MST	Occipital Mid L	Visual	0.02	-0.05	5.97	0.15
R.s32	Frontal Med Orb	DMN	L.MIP	Parietal Sup L	DAN	-0.06	0.00	0.77	0.10
1	R			~ .r		0.00	-0.11	3.65	0.15

Table S9. The list of discriminative FCs for the ASD diagnosis.

R.6v	Precentral_R	Somatomot	L.MI	Insula_L	VAN	0.21			
		or					0.12	6.09	0.14
R.s32	Frontal_Med_Orb_	DMN	L.V6	Cuneus_L	Visual	-0.07		a (a	
	R					0.15	-0.11	2.42	0.14
L.MidB	-	Subcortical	R.STSda	Temporal_Sup_R	DMN	0.15	0.04	6.85	0.14
R.SFL	Supp_Motor_Area_	DMN	R.V3A	Occipital_Sup_R	Visual	0.00	0.00		0.12
	K	C-1	D TDO II		TAN	0.01	-0.09	6.56	0.13
L.MIdB	-	Subcortical	R.TPOJI	Temporal_Mid_K	VAN	0.01	-0.06	5.68	0.12
R.p47r	Frontal_Inf_Tri_R	FPN	L.TPOJ2	Temporal_M1d_L	DAN	-0.07	-0.13	3.51	0.12
R.VIP	Parietal_Sup_R	DAN	L.FEF	Precentral_L	DAN	0.28	0.20	4.43	0.11
L.FFC	Fusiform_L	Visual	L.RSC	-	DMN	-0.08	-0.14	4.59	0.11
R.VMV2	Lingual_R	Visual	R.STGa	Temporal_Pole_Sup	DMN	0.02			
				_R			-0.01	2.87	0.11
R.p24	Cingulum_Ant_R	FPN	R.A4	Temporal_Sup_R	Somatomot	0.10			
					or		0.02	5.49	0.11
L.OFC	Rectus_L	Limbic	L.6r	Frontal_Inf_Oper_L	VAN	-0.03	-0.07	2.92	0.10
R.HC	Hippocampus_R	Subcortical	L.A5	Temporal_Mid_L	DMN	0.12	0.04	6.02	0.10
R.PGp	Occipital_Mid_R	DAN	L.A1	Rolandic_Oper_L	Somatomot	-0.01			
					or		-0.08	5.06	0.10
R.LIPv	Parietal_Inf_R	DAN	L.6v	Precentral_L	Somatomot	0.28			
					or		0.20	4.89	0.10
R.SFL	Supp_Motor_Area_	DMN	L.V3A	Occipital_Sup_L	Visual	0.02	• • -	6.0.0	0.4.0
	R	T T 1			DIGI	0.04	-0.07	6.92	0.10
L.V/	Occipital_Mid_L	Visual	L.RSC	-	DMN	-0.04	-0.12	5.23	0.10
R.6v	Precentral_R	Somatomot	L.5mv	Cingulum_Mid_L	VAN	0.15			
D 15		or	D 00 1		DIGI		0.06	5.64	0.10
R.4/m	Frontal_Inf_Orb_R	DMN	R.v23ab	Precuneus_R	DMN	0.27	0.16	5.67	0.10
R.LBelt	Temporal_Sup_R	Somatomot	R.7Pm	Precuneus_R	FPN	-0.04			
DUACE	o	or		m 1 ~ -	a	0.00	-0.09	4.28	0.09
R.V3CD	Occipital_Mid_R	V1sual	L.MBelt	Temporal_Sup_L	Somatomot	-0.02	0.00	4.60	0.00
					or		-0.08	4.63	0.09

L.Pallidum	Pallidum_L	Subcortical	L.TE2a	Temporal_Inf_L	Limbic	0.00	-0.06	3.34	0.09
R.VMV2	Lingual_R	Visual	R.TGd	Temporal_Pole_Mid	Limbic	0.00			
				R			-0.04	2.51	0.09
R.6d	Precentral_R	Somatomot	L.FEF	Precentral_L	DAN	0.19			
		or					0.12	3.47	0.08
R.PFm	Parietal_Inf_R	DMN	R.d32	Cingulum_Ant_R	DMN	0.38	0.29	5.23	0.08
R.PCV	Precuneus_R	FPN	L.AVI	Insula_L	FPN	0.00	-0.05	3.99	0.08
R.MidB	-	Subcortical	R.PBelt	Temporal_Sup_R	Somatomot	0.17			
		~		/ _	or		0.06	6.65	0.08
L.MidB	-	Subcortical	L.PHA2	ParaHippocampal_L	DMN	0.15	0.08	4.99	0.08
R.Putamen	Putamen_R	Subcortical	R.A5	Temporal_Sup_R	Somatomot	0.05			
		C 1 1			or	0.00	-0.03	6.36	0.08
R.MidB	-	Subcortical	R.IEIa	Temporal_Mid_R	DMN	-0.02	-0.09	4.71	0.08
L.A5	Temporal_Mid_L	DMN	L.9m	Frontal_Sup_Medial	DMN	0.26	0.16	5 00	0.07
D ID1	A				DAN	0.20	0.16	5.88	0.07
K.IPI	Angular_R	DAN	R.PGp	Occipital_Mid_R		0.26	0.16	4.63	0.07
R.Amy	H1ppocampus_R	Subcortical	R.IGd	Temporal_Pole_Mid	Limbic	-0.01	0.07	4.00	0.07
P DCV	Drooupous D	FDN	L o ² 2pr	_K Cinculum Ant I	FDN	0.10	-0.07	4.23	0.07
R.FCV	Freutal Care D		L.a.52pi	Chiguluni_Ant_L		0.10	0.03	4.15	0.07
R.oma	Frontal_Sup_R	DAN	L.Pres	ParaHippocampal_L	DMN	-0.05	-0.08	2.14	0.07
R.25	Offactory_R	Limbic	K.PHI	Temporal_Inf_R	DAN	0.01	-0.04	3.90	0.06
R.s32	Frontal_Med_Orb_	DMN	L./AL	Parietal_Sup_L	DAN	-0.06	0.10	2.50	0.00
р рит	K Tomporal Inf D	DAN	L 24	Cinculum Ant I		0.12	-0.10	2.59	0.06
K.PHI D.CEI	Temporal_III_K	DAN	L.a24	Cingulum_Ant_L		-0.13	-0.16	2.25	0.06
K.SFL	Supp_Motor_Area_	DIMIN	L.9-400	Frontal_Mid_L	VAN	0.14	0.05	471	0.06
R IPS1	N Occinital Sun R	DAN	I 6v	Precentral I	Somatomot	0.20	0.05	4./1	0.00
K.II 51		DAN	L.0v		or	0.20	0.12	4 39	0.06
R.HC	Hippocampus R	Subcortical	L.V7	Occipital Mid L	Visual	-0.02	_0.02	5 10	0.00
R.25	Olfactory R	Limbic	R.IPS1	Occipital Sup R	DAN	-0.04	-0.00	3.10	0.00
R s6-8	Frontal Sun R	FPN	$I_{a}0_{-}46v$	Frontal Mid I	FPN	0.09	-0.09	3.7 4 2.40	0.00
11.50-0	TIOntal_Sup_K	1111	L.a)-+0V		1111	0.07	0.04	2.40	0.06

R.VIP	Parietal_Sup_R	DAN	L.LO2	Occipital_Inf_L	Visual	0.22	0.14	4.01	0.06
R.7Pm	Precuneus_R	FPN	L.A1	Rolandic_Oper_L	Somatomot	-0.05			
					or		-0.10	4.05	0.05
R.6v	Precentral_R	Somatomot	L.PF	SupraMarginal_L	VAN	0.22	0.10	6.00	0.05
LOFO		or	LIEG			0.05	0.10	6.88	0.05
L.OFC	Rectus_L	Limbic	L.IFSa	Frontal_Inf_Iri_L	FPN	0.05	0.01	3.21	0.05
R.7PL	Parietal_Sup_R	DAN	R.LO2	Occipital_Inf_R	Visual	0.09	0.04	2.85	0.05
R.6mp	Supp_Motor_Area_	Somatomot	R.5L	Postcentral_R	DAN	0.60			
	R	or					0.54	2.99	0.05
R.p32pr	Cingulum_Mid_R	VAN	R.7Pm	Precuneus_R	FPN	-0.03	-0.08	2.84	0.05
L.p47r	Frontal_Inf_Tri_L	FPN	L.10d	Frontal_Sup_Medial	DMN	0.10			
				L			0.05	2.16	0.05
R.10d	Frontal_Sup_Medial	DMN	L.9p	Frontal_Sup_L	DMN	0.25			
	$R_{\rm R}$					0.00	0.34	-3.93	-0.03
R.46	Frontal_Mid_R	FPN	R.47m	Frontal_Inf_Orb_R	DMN	-0.08	0.01	-5.19	-0.03
R.Ig	Insula_R	Somatomot	R.FOP2	Rolandic_Oper_R	Somatomot	0.47			
		or			or		0.54	-3.97	-0.04
L.LBelt	Temporal_Sup_L	Somatomot	L.lg	Insula_L	Somatomot	0.24	0 0 0	a 00	0.04
D 0		or	D D CLI		or	0.00	0.30	-3.88	-0.04
R.9m	Frontal_Sup_Medial	DMN	R.PCV	Precuneus_R	FPN	0.00	0.11	5 40	0.04
D TDO II		VAN	D 4	Dueseutus 1 D	Constant	0.00	0.11	-5.49	-0.04
R.IPOJI	Temporal_MId_R	VAN	K.4	Precentral_R	Somatomot	0.08	0.17	5 6 5	0.04
I DEam	Tomporal Sup I	Sometomot	I DSI	Tomporal Sup I	VAN	0.40	0.17	-3.03	-0.04
L.I PCIII		or	L.I SL	Temporar_Sup_L	VAIN	0.40	0.45	-2 62	-0.05
$I_n 10n$	Frontal Sun I	DMN	L 25	Olfactory I	Limbic	-0.03	0.43	-2.02	-0.05
D.p10p	Frontal Inf Orb R	DMN	L.23 L 471	Frontal Inf Orb I	DMN	-0.05	0.05	-3.43	-0.03
\mathbf{K} .4/1			L.4/I			0.40	0.56	-4.05	-0.05
	Linguai_L	V ISUAI	L.IPOJ3		DAN	0.08	0.16	-4.35	-0.05
K.Pır	Insula_R	Limbic	L.V3	Occipital_Sup_L	Visual	-0.10	-0.05	-3.85	-0.05
R.TPOJ1	Temporal_Mid_R	VAN	L.A5	Temporal_Mid_L	DMN	0.33	0.43	-4.98	-0.05

R.p24	Cingulum_Ant_R	FPN	L.9m	Frontal_Sup_Medial	DMN	0.27			
				_L			0.34	-3.69	-0.05
R.TPOJ1	Temporal_Mid_R	VAN	L.MT	Occipital_Mid_L	Visual	0.05	0.16	-5.72	-0.06
R.STSdp	Temporal_Sup_R	DMN	L.V4t	Occipital_Mid_L	Visual	-0.04	0.01	-3.92	-0.06
R.MidB	-	Subcortical	R.46	Frontal_Mid_R	FPN	-0.01	0.07	-6.02	-0.06
R.8Ad	Frontal_Mid_R	DMN	R.FFC	Fusiform_R	Visual	-0.20	-0.15	-3.76	-0.06
R.5m	Paracentral_Lobule	Somatomot	L.STV	Temporal_Sup_L	DMN	-0.03			
	_R	or					0.04	-4.74	-0.06
L.TE2p	Temporal_Inf_L	DAN	L.10d	Frontal_Sup_Medial	DMN	-0.18		• • • •	
				_L			-0.12	-3.69	-0.06
R.FFC	Fusiform_R	Visual	L.55b	Precentral_L	DAN	-0.07	0.00	-4.34	-0.06
R.5L	Postcentral_R	DAN	L.STV	Temporal_Sup_L	DMN	-0.03	0.04	-5.17	-0.06
R.9m	Frontal_Sup_Medial	DMN	L.SFL	Supp_Motor_Area_	DMN	0.24			
	_R			L			0.30	-3.21	-0.06
R.MidB	-	Subcortical	L.a9-46v	Frontal_Mid_L	FPN	0.01	0.10	-6.07	-0.06
R.Cereb	Cerebellum_R	Subcortical	L.44	Frontal_Inf_Oper_L	DMN	-0.03	0.05	-5.80	-0.06
L.Putamen	Putamen_L	Subcortical	R.A4	Temporal_Sup_R	Somatomot	-0.02			
					or		0.06	-6.26	-0.07
R.p32	Frontal_Sup_Medial	DMN	L.d23ab	Cingulum_Post_L	DMN	0.16			
	_R	~		T 1.7.0 D	5.111	0 0 -	0.22	-3.66	-0.07
R.A4	Temporal_Sup_R	Somatomot	R.TE2p	Temporal_Inf_R	DAN	-0.05	0.04	6.40	0.07
D	Das sug sug D	or	L - 22 ala	D		0.06	0.04	-6.49	-0.07
R.V23ab	Precuneus_R	DMN	L.V23ab	Precuneus_L	DMIN	0.96	1.05	-4.49	-0.07
R.RSC	Cingulum_Post_R	DMN	L.RSC	-	DMN	1.03	1.08	-2.94	-0.07
R.PHA2	ParaHippocampal_	Visual	R.a24	Cingulum_Ant_R	DMN	0.09			.
	R	T 7' 1	I DOLL			0.01	0.14	-3.22	-0.07
R.VMVI	Lingual_R	Visual	L.PCV	Precuneus_L	DMN	-0.01	0.08	-5.31	-0.07
L.A5	Temporal_Mid_L	DMN	L.PIT	Fusiform_L	Visual	-0.08	0.00	-5.49	-0.07
L.TPOJ3	Occipital_Mid_L	DAN	L.ProS	Precuneus_L	Visual	0.10	0.17	-3.85	-0.08
R.TPOJ1	Temporal_Mid_R	VAN	L.V4t	Occipital_Mid_L	Visual	0.00	0.11	-6.48	-0.08

R.VMV2	Lingual_R	Visual	L.PCV	Precuneus_L	DMN	0.04	0.12	-4.36	-0.08
R.a10p	Frontal_Sup_Orb_R	FPN	L.47m	Frontal_Inf_Orb_L	DMN	-0.09	0.01	-4.66	-0.08
R.MidB	-	Subcortical	B.Stem	-	Subcortical	0.23	0.31	-5.40	-0.08
R.TGv	Temporal_Inf_R	Limbic	R.TGd	Temporal_Pole_Mid	Limbic	0.49			
				_R			0.58	-3.73	-0.08
R.8Av	Frontal_Mid_R	FPN	L.V3B	Occipital_Mid_L	Visual	-0.23	-0.17	-3.89	-0.08
R.25	Olfactory_R	Limbic	R.SCEF	Supp_Motor_Area_	VAN	-0.15			
	I' 1 D	X 7° 1	D 74	R	DAN	0.00	-0.08	-5.38	-0.08
R.VMV2	Lingual_R	Visual	R./Am	Precuneus_R	DAN	0.08	0.14	-3.79	-0.08
R.10pp	Frontal_Sup_Orb_R	Limbic	L.4 ⁷ /m	Frontal_Inf_Orb_L	DMN	-0.09	0.01	-4.50	-0.09
R.VMV2	Lingual_R	Visual	R.DVT	Cuneus_R	DMN	0.29	0.38	-4.71	-0.09
R.Cereb	Cerebellum_R	Subcortical	R.LIPd	Angular_R	DAN	-0.12	-0.06	-5.12	-0.09
L.SFL	Supp_Motor_Area_	DMN	L.POS2	Precuneus_L	FPN	-0.08			
	L						0.00	-5.44	-0.09
R.V6A	Occipital_Sup_R	Visual	L.9-46d	Frontal_Mid_L	VAN	-0.12	-0.07	-3.21	-0.10
R.23c	Cingulum_Mid_R	VAN	L.STSdp	Temporal_Mid_L	DMN	-0.09	-0.03	-4.05	-0.10
L.Pallidum	Pallidum_L	Subcortical	L.Thalamus	Thalamus_L	Subcortical	-0.02	0.05	-5.07	-0.10
R.PGi	Angular_R	DMN	R.6v	Precentral_R	Somatomot	-0.18			
					or		-0.08	-6.36	-0.10
L.HP	Hippocampus_L	Subcortical	B.Stem	-	Subcortical	0.87	0.96	-4.96	-0.10
R.RSC	Cingulum_Post_R	DMN	L.SFL	Supp_Motor_Area_	DMN	-0.09			
				L			-0.01	-5.22	-0.10
R.A4	Temporal_Sup_R	Somatomot	L.A5	Temporal_Mid_L	DMN	0.37	0 - 1	() (0.10
D CEI		or	L DOG1	D I		0.10	0.51	-6.16	-0.10
R.SFL	Supp_Motor_Area_	DMN	L.POSI	Precuneus_L	DMN	-0.18	0.00	6 57	0.10
P 17s	K Incula P	DMN	Lalun	Frontal Sun Orb I	DMN	-0.01	-0.08	-0.37	-0.10
R.4/5	Cinculum Doct D		L.aTop	Frontal Sup Orb I	Limbia	-0.01	0.08	-4.94	-0.10
K.KSC	Cingulum_Post_R		L.TOpp	rionital_Sup_Oro_L		0.00	0.05	-3.88	-0.10
K.pUFC	Ullactory_K		L.IGV	Temporal_Int_L		0.07	0.16	-4.90	-0.11
K.HC	H1ppocampus_R	Subcortical	K.46	Frontal_M1d_K	FPN	0.07	0.15	-6.21	-0.11

L.VMV1	Lingual_L	Visual	L.STV	Temporal_Sup_L	DMN	0.01	0.09	-5.18	-0.12
R.A5	Temporal_Sup_R	Somatomot	R.PBelt	Temporal_Sup_R	Somatomot	0.15			
		or			or		0.29	-5.83	-0.12
R.Pir	Insula_R	Limbic	L.a10p	Frontal_Sup_Orb_L	DMN	-0.08	-0.02	-4.15	-0.12
L.LBelt	Temporal_Sup_L	Somatomot	L.RI	Rolandic_Oper_L	Somatomot	0.57			
		or			or		0.65	-3.96	-0.13
L.PFop	SupraMarginal_L	VAN	L.9m	Frontal_Sup_Medial	DMN	-0.30	0.10		0.12
D Due C	Lineval D	Vienel	L TROUI			0.02	-0.19	-5.77	-0.13
R.Pros	Lingual_R	Visual	L.TPOJI	Temporal_Mid_L	DMIN	-0.02	0.06	-4.96	-0.15
R.ProS	Lingual_R	Visual	L.IPOJ2	Temporal_Mid_L	DAN	0.00	0.07	-4.70	-0.15
R.Amy	H1ppocampus_R	Subcortical	L.IFSa	Frontal_Inf_Tri_L	FPN	0.09	0.19	-7.22	-0.17
R.25	Olfactory_R	Limbic	R.24dd	Cingulum_Mid_R	Somatomot	-0.11	0.04	4 77	0.17
		DIOI			or	0.05	-0.04	-4.77	-0.17
L.STSda	Temporal_Mid_L	DMN	L.MSI	Occipital_Mid_L	Visual	-0.05	0.04	-6.27	-0.18
R.PG1	Angular_R	DMN	R.SFL	Supp_Motor_Area_	DMN	0.16	0.24	4 4 4	0.10
D 24 day	Cinculum Mid D	Somotomot	I DI	K Tomporal Sup I	VAN	0.02	0.24	-4.44	-0.18
K.240V	Cingulum_Mid_R	Somatomot	L.PI	Temporal_Sup_L	VAN	0.02	0.10	5 1 8	0.22
R n32	Frontal Sup Medial	DMN	L 31a	Cingulum Mid L	DMN	0.08	0.10	-5.10	-0.22
10.952	R	Divity	12.5 Tu	emgulum_whu_D	Divity	0.00	0.15	-4.29	-0.22
R.s32	Frontal Med Orb	DMN	R.PHA2	ParaHippocampal R	Visual	0.11	0.10	>	0
	R						0.16	-3.52	-0.22
R.TE2p	Temporal_Inf_R	DAN	L.55b	Precentral_L	DAN	-0.12	-0.05	-4.40	-0.22
R.SFL	Supp Motor Area	DMN	L.IP1	Occipital Mid L	DAN	-0.19			
	R						-0.09	-6.90	-0.29
R.Pallidum	Pallidum_R	Subcortical	R.Putamen	Putamen_R	Subcortical	0.27	0.33	-4.12	-0.31
R.pOFC	Olfactory_R	Limbic	R.10pp	Frontal_Sup_Orb_R	Limbic	0.09	0.19	-5.11	-0.34
R.s32	Frontal_Med_Orb_	DMN	R.H	Hippocampus_R	DMN	0.12			
	R						0.20	-4.76	-0.81
Abbreviation	s: ASD: autism spectru	um disorder, D	AN: dorsal atte	ention network, DMN: o	default mode r	network,	FP: front	o-parietal	, TDC:
typically deve	loping control, and VA	N: ventral atte	ention network.						

	ROI 1			ROI 2		Di	scove	ry	Chi	ld coh	ort	Ad	olesco	ent	U	S adu	lt	Ja	pane	se
						d	latase	t				(cohor	t	(cohort	t	adu	lt coh	ort
Glas	AAL label	Netw	Gla	AAL label	Netw	z(A	<i>z</i> (T	<i>t</i> -	z(A	<i>z</i> (T	<i>t</i> -	z(A	z(T	<i>t</i> -	z(A	<i>z</i> (T	<i>t</i> -	z(A	<i>z</i> (T	<i>t</i> -
ser		ork	sser		ork	SD	DC	val	SD	DC	val	SD	DC	val	SD	DC	val	SD	DC	val
))	ue))	ue))	ue))	ue))	ue
R.A	Hippocam	Subco	R.A	Temporal_	Somat	0.1	0.0	8.0	0.1	0.1	1.8	0.1	0.0	1.2	-	-	1.3	0.1	0.0	2.7
my	pus_R	rtical	5	Sup_R	omoto	2	1	3	5	1	4	0	6	6	0.0	0.0	3	0	0	7
					r										2	6				
R.PB	Temporal_	Somat	L.P	Precuneus_	FPN	0.0	-	7.4	-	-	2.8	0.0	-	3.4	-	-	1.5	0.0	0.0	2.0
elt	Sup_R	omoto	OS2	L		3	0.0	2	0.0	0.0	8	1	0.0	9	0.0	0.0	0	8	1	0
		r					8		3	9			6		2	6				
R.A	Hippocam	Subco	R.6	Precentral_	Somat	0.0	-	7.2	0.0	0.0	0.3	0.0	0.0	0.8	0.0	-	4.6	0.1	0.0	3.2
my	pus_R	rtical	d	R	omoto	7	0.0	0	5	5	2	7	5	5	6	0.0	5	3	1	1
					r		4									9				
L.Mi	-	Subco	R.S	Temporal_	DMN	0.1	0.0	6.8	0.0	0.0	1.5	0.1	0.0	2.2	0.0	0.0	2.3	0.0	0.0	1.6
dB		rtical	TSd	Sup_R		5	4	5	7	4	4	0	5	7	7	0	8	9	2	8
			а																	
R.Mi	-	Subco	R.P	Temporal_	Somat	0.1	0.0	6.6	0.1	0.1	0.6	0.0	0.0	1.5	0.0	-	2.4	0.1	0.0	1.6
dB		rtical	Belt	Sup_R	omoto	7	6	5	3	2	6	9	6	0	6	0.0	4	4	7	0
					r											2				
R.Pu	Putamen_	Subco	R.A	Temporal_	Somat	0.0	-	6.3	0.0	0.0	0.8	0.0	0.0	1.3	0.0	-	1.9	0.0	-	1.7
tame	R	rtical	5	Sup_R	omoto	5	0.0	6	4	3	1	5	2	6	0	0.0	1	4	0.0	0
n					r		3									6			1	
R.H	Hippocam	Subco	L.A	Temporal	DMN	0.1	0.0	6.0	0.1	0.1	0.1	0.0	0.0	1.0	0.0	-	1.5	0.1	0.0	2.0
С	pus R	rtical	5	Mid L		2	4	2	3	3	2	9	7	7	2	0.0	6	1	3	9
	1 _															3				
R.Pal	Pallidum	Subco	L.M	Occipital	Visual	0.0	-	5.9	0.0	0.0	1.5	0.0	0.0	2.4	0.0	-	0.4	0.0	-	2.2
lidu	R	rtical	ST	Mid L		2	0.0	7	4	1	3	4	0	6	0	0.0	3	0	0.0	6
m				—			5									2			5	

Table S10. The list of discriminative FCs reproducible across the five datasets.

R.Mi	-	Subco	R.T	Temporal_	Limbi	0.0	-	5.7	0.0	-	2.3	-	-	1.2	0.0	-	2.6	-	-	0.8
dВ		rtical	Gđ	Pole_Mid_ R	С	3	0.0 6	0	0	0.0 5	4	0.0	0.0 5	3	3	0.0 5	0	0.0 5	0.0 8	2
L.Mi	-	Subco	R.T	Temporal_	DAN	0.0	-	5.6	0.0	-	2.2	0.0	-	1.6	-	-	2.8	0.0	-	2.2
dB		rtical	POJ	Mid_R		1	0.0	8	4	0.0	9	2	0.0	3	0.0	0.1	2	3	0.0	3
			1				6			1			2		1	0			5	
L.V7	Occipital_	Visual	L.R	-	DMN	-	-	5.2	-	-	2.5	-	-	1.3	-	-	1.0	-	-	1.8
	Mid_L		SC			0.0	0.1	3	0.0	0.0	7	0.0	0.0	1	0.0	0.0	2	0.0	0.1	8
						4	2		1	6		3	5		4	7		9	5	
R.PF	Parietal_In	DMN	R.d	Cingulum_	DMN	0.3	0.2	5.2	0.3	0.3	1.4	0.3	0.3	1.3	0.3	0.2	0.9	0.3	0.3	0.5
m	f_R		32	Ant_R		8	9	3	4	1	4	5	2	1	3	9	6	4	1	8
R.Mi	-	Subco	R.T	Temporal_	DMN	-	-	4.7	-	-	3.3	-	-	2.0	-	-	1.7	-	-	1.1
dB		rtical	Ela	Mid_R		0.0	0.0	1	0.0	0.1	3	0.0	0.1	3	0.0	0.0	2	0.0	0.1	2
	~ ~ ~ ~ ~					2	9		5	2		9	4		4	9		6	0	- -
R.SF	Supp_Mot	DMN	L.9-	Frontal_Mi	DAN	0.1	0.0	4.7	0.1	0.0	1.8	0.1	0.0	3.6	0.1	0.0	0.8	0.1	0.0	0.7
L	or_Area_R	~ 1	46d	dL		4	5	1	3	9	8	2	3	6	0	6	5	2	7	3
R.A	Hippocam	Subco	R.T	Temporal_	Limbi	-	-	4.2	-	-	0.8	0.0	-	1.4	0.0	-	1.8	-	-	0.6
my	pus_R	rtical	Gd	Pole_Mid_ R	с	0.0	$\begin{array}{c} 0.0 \\ 7 \end{array}$	3	0.0 2	0.0 4	0	1	0.0 2	0	4	0.0 2	2	0.0 2	0.0 5	9
R.7P	Precuneus	FPN	L.A	Rolandic_	Somat	-	-	4.0	-	-	0.6	-	-	0.5	-	-	0.0	-	-	1.6
m	_R		1	Oper_L	omoto	0.0	0.1	5	0.1	0.1	6	0.0	0.1	5	0.0	0.0	9	0.0	0.0	3
					r	5	0		1	2		8	0		8	8		3	7	
R.PC	Precuneus	FPN	L.A	Insula_L	FPN	0.0	-	3.9	-	-	0.7	-	-	3.7	-	-	0.7	0.0	-	2.6
V	_R		VI			0	0.0	9	0.0	0.0	6	0.0	0.1	3	0.0	0.0	8	6	0.0	3
							5		3	4		2	1		6	8			4	
R.25	Olfactory_	Limbi	R.I	Occipital_	DAN	-	-	3.9	-	-	3.0	-	-	0.1	-	-	0.6	-	-	1.0
	R	с	PS1	Sup_R		0.0	0.0	4	0.0	0.1	0	0.0	0.0	9	0.0	0.0	2	0.0	0.0	9
						4	9		5	1		7	8		1	3		6	9	
R.25	Olfactory_	Limbi	R.P	Temporal_	DAN	0.0	-	3.9	-	-	1.7	-	-	0.0	-	-	1.0	-	-	1.4
	R	с	ΗT	Inf_R		1	0.0	0	0.0	0.0	6	0.0	0.0	7	0.0	0.0	4	0.0	0.1	6
							4		2	6		3	4		2	5		5	1	

L.Pal	Pallidum_	Subco	L.T E2a	Temporal_	Limbi	0.0	-	3.3	-	-	1.3	0.0	0.0	0.5	0.0	0.0	0.8	-	-	0.5
m	L	rtical	EZa	IIII_L	C	0	0.0 6	4	0.0	0.0 6	0	2	1	0	3	0	/	0.0	0.0 4	4
R.s6-	Frontal_Su	FPN	L.a	Frontal_Mi	FPN	0.0	0.0	2.4	0.0	0.0	0.4	0.0	0.0	2.0	0.1	0.0	1.7	0.1	0.0	0.7
8	p_R		9- 46v	d_L		9	4	0	3	2	8	7	2	2	1	5	2	0	6	5
L.p4	Frontal_Inf	FPN	L.1	Frontal_Su	DMN	0.1	0.0	2.1	0.1	0.0	2.9	0.1	0.0	3.2	0.0	-	1.5	0.0	0.0	0.2
7r	_Tri_L		0d	p_Medial_ L		0	5	6	5	6	9	7	6	4	5	0.0	6	4	2	1
R.RS	Cingulum_	DMN	L.R	-	DMN	1.0	1.0	-	1.0	1.0	-	1.0	1.0	-	0.9	0.9	-	1.0	1.1	-
С	Post_R		SC			3	8	2.9	2	8	2.1	3	9	2.0	2	6	0.9	6	1	1.0
TIB	Temporal	Somat	ΙIα	Incula I	Somat	0.2	03	4	0.2	03	4	03	03	3	0.2	0.2	4	0.4	0.4	8
L.LD elt	Sup I	omoto	L.Ig	IIIsula_L	omoto	$\frac{0.2}{4}$	0.5	3.8	0.2 7	3	25	1	9	29	6	0.2 8	0.5	0.4	1	0.2
Cit	Sup_L	r			r	-	U	8	,	5	9	1)	8	U	0	1	U	1	2
R.ST	Temporal	DMN	L.V	Occipital	Visual	-	0.0	-	0.0	0.0	_	-	0.0	-	0.0	0.0	_	_	0.0	-
Sdp	Sup R		4t	Mid L		0.0	1	3.9	2	5	1.5	0.0	5	3.0	0	3	1.0	0.0	4	2.0
_				_		4		2			2	2		1			4	4		8
R.471	Frontal_Inf	DMN	L.4	Frontal_Inf	DMN	0.4	0.5	-	0.5	0.5	-	0.5	0.5	-	0.5	0.5	-	0.6	0.6	-
	_Orb_R		71	_Orb_L		8	6	4.0	3	5	0.7	2	9	2.5	4	8	1.0	1	2	0.0
5.44	~ 1		. .	- 1	51.01			5			1			6			6			1
R.23	Cingulum_	VAN	L.S	Temporal	DMN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
С	MIQ_K		150	MIId_L		0.0	0.0	4.0 5	0.0	0.0	1.5	0.1	0.0	3.3 °	0.0	0.0	1.4	0.1	0.0	2.4
R FF	Fusiform	Visual	p IS	Precentral	DAN	9	3 0.0	3) 00	$\overset{2}{0}$	3		3 0.0	8	00	$\overset{2}{0}$	0	0	3 0.0	0
C KIT	R	v isuai	5h	I lecentral_	DAN	0.0	0.0	43	3	5	05	0.0	6	2^{-}	3	3	0.0	1	3	0.6
C	ix i		50	Ľ		7	0	4	5	5	8	0	0	6	5	5	9	I	5	8
R.Pr	Lingual R	Visual	L.T	Temporal	DAN	0.0	0.0	-	0.0	0.0	-	0.0	0.0	-	-	0.0	-	0.0	0.0	-
oS	0 _		POJ	Mid_L		0	7	4.7	0	4	1.7	1	3	0.6	0.0	3	1.4	4	7	0.8
			2	—				0			0			8	2		1			2

L.HP	Hippocam	Subco	B.St	-	Subco	0.8	0.9	-	0.8	0.8	-	0.9	0.9	-	0.8	0.8	-	1.0	1.1	-
	pus_L	rtical	em		rtical	1	6	4.9 6	2	6	1.8 2	1	4	1.4 6	2	4	0.4 7	6	3	1.5 5
R.Pr	Lingual_R	Visual	L.T	Temporal_	DMN	-	0.0	-	-	0.0	-	-	0.0	-	-	0.0	-	-	0.0	-
oS			POJ	Mid L		0.0	6	4.9	0.0	3	1.6	0.0	2	2.7	0.0	4	1.7	0.0	4	2.2
			1			2		6	1		7	5		2	2		7	3		6
R.24	Cingulum_	Somat	L.PI	Temporal_	DAN	0.0	0.1	-	0.0	0.1	-	0.0	0.0	-	0.0	0.0	-	0.1	0.1	-
dv	Mid_R	omoto		Sup_L		2	0	5.1	6	0	2.6	8	8	0.2	5	8	1.0	5	9	0.8
		r						8			3			0			1			2
R.Mi	-	Subco	B.St	-	Subco	0.2	0.3	-	0.2	0.3	-	0.2	0.2	-	0.2	0.2	-	0.2	0.3	-
dB		rtical	em		rtical	3	1	5.4	5	0	2.3	2	7	1.9	3	6	0.8	2	3	3.0
								0			0			5			1			7
R.9m	Frontal_Su	DMN	R.P	Precuneus_	FPN	0.0	0.1	-	0.0	0.0	-	0.0	0.0	-	-	0.0	-	0.0	0.1	-
	p_Medial_		CV	R		0	1	5.4	7	9	1.0	4	7	1.2	0.0	5	1.5	5	2	1.1
	R							9			6			0	2		3			3
R.TP	Temporal_	VAN	R.4	Precentral_	Somat	0.0	0.1	-	0.0	0.1	-	0.1	0.1	-	0.1	0.1	-	0.1	0.1	-
OJ1	Mid_R			R	omoto	8	7	5.6	7	0	1.4	0	2	0.7	1	3	0.5	3	6	0.7
					r			5			7			5			9			2
R.TP	Temporal_	VAN	L.M	Occipital_	Visual	0.0	0.1	-	0.1	0.1	-	0.0	0.1	-	0.1	0.1	-	0.0	0.1	-
OJ1	Mid_R		Т	Mid_L		5	6	5.7	0	2	0.8	9	3	1.6	0	4	1.0	8	5	1.2
		~			-			2			1			6			7			9
R.A5	Temporal_	Somat	R.P	Temporal_	Somat	0.1	0.2	-	0.1	0.1	-	0.1	0.2	-	0.1	0.2	-	0.2	0.3	-
	Sup_R	omoto	Belt	Sup_R	omoto	5	9	5.8	6	1	0.7	6	2	2.0	5	2	2.0	0	5	2.2
		r	D 4		r		0.0	3	0.0	0.0	2		0.0	5		0.0	3		0.0	6
R.M1	-	Subco	R.4	Frontal_M1	FPN	-	0.0	-	0.0	0.0	-	-	0.0	-	-	0.0	-	-	0.0	-
dB		rtical	6	d_R		0.0	1	6.0	0	3	1.6	0.0	6	3.4	0.0	I	0.9	0.0	3	1.1
		a 1	Ŧ			l	0.1	2	0.0	0.0	1	l	0.0	9	2	0.0	4	l	0.0	6
R.M1	-	Subco	L.a	Frontal_M1	FPN	0.0	0.1	-	0.0	0.0	-	0.0	0.0	-	0.0	0.0	-	0.0	0.0	-
dB		rtical	9-	d_L		1	0	6.0	4	5	0.3	3	8	2.4	3	9	2.1	3	8	1.3
			46v					1			1			3			0			0

R.A4	Temporal_	Somat	L.A	Temporal_	DMN	0.3	0.5	-	0.3	0.4	-	0.3	0.4	-	0.3	0.4	-	0.6	0.7	-
	Sup_R	omoto	5	Mid_L		7	1	6.1	9	4	1.8	4	7	4.5	5	4	2.0	7	0	0.3
		r						6			8			6			8			5
R.H	Hippocam	Subco	R.4	Frontal_Mi	FPN	0.0	0.1	-	0.0	0.0	-	0.0	0.1	-	0.0	0.0	-	0.0	0.1	-
С	pus_R	rtical	6	d_R		7	5	6.2	6	8	1.3	7	0	1.5	3	8	1.7	7	2	1.1
								1			3			3			2			4
L.Put	Putamen_	Subco	R.A	Temporal_	Somat	-	0.0	-	0.0	0.0	-	0.0	0.0	-	0.0	0.1	-	0.0	0.1	-
amen	L	rtical	4	Sup_R	omoto	0.0	6	6.2	6	6	0.3	5	7	1.0	3	2	2.8	9	0	0.4
					r	2		6			1			6			1			3

Abbreviations: ASD: autism spectrum disorder, FP: fronto-parietal, DAN: dorsal attention network, DMN: default mode network, HP: hippocampus, MOG: middle occpital gyrus, MTG: middle temporal gyrus, MFG: middle frontal gyrus, SFG: superior frontal gyrus, FUS: fusiform gyrus, IFG: inferior frontal gyrus, Precent: Precentral gyrus, ITG: inferior temporal gyrus, IPL: inferior parietal lobule, ROI: region of interest, STG: superior temporal gyrus, TDC: typically developing control, VAN: ventral attention network

		SCZ			MDD	
	N (M/F)	Age	Mean FD [mm]	N (M/F)	Age	Mean FD [mm]
COI	-	-	-	52 (23/29)	45.23 (12.64)	0.16 (0.06)
KUT	42/ (20/22)	41.90 (10.43)	0.14 (0.06)	15 (9/6)	43.93 (11.60)	0.10 (0.04)
SWA1	18 (14/4)	42.83 (8.65)	0.19 (0.06)	-	-	-
UTO1	34 (24/10)	30.91 (10.42)	0.11 (0.03)	59 (35/24)	38.19 (11.44)	0.10 (0.04)
UTO2	-	-	-	-	-	-
Total	94 (58/36)	38.11 (11.40)	0.14 (0.06)	126 (67/59)	41.78 (12.35)	0.13 (0.06)

Table S11. Demographic information of SCZ and MDD datasets.

Abbreviations: ASD: autism spectrum disorder, COI: Center of Innovation, F: female, KUT: Kyoto University TimTrio, M: male, MDD: major depressive disorder, SCZ: schizophrenia, SD: standard deviation, SWA: Showa University, TDC: typically developing control, and UTO: University of Tokyo.

).89	Classification per	rformance of SCZ neur	omarker	
).89	<u>81 00</u>			
	01.77	82.98	81.82	0.51
-	65.09	-	65.09	-
).91	84.74	83.33	85.14	0.62
).96	85.94	88.89	85.63	0.53
).82	82.50	79.41	83.72	0.60
-	94.44	-	94.44	-
	Classification per	formance of MDD neu	romarker	
).78	67.60	74.60	66.00	0.32
).65	56.96	71.15	50.00	0.20
).85	73.01	80.00	72.30	0.32
-	69.54	-	69.54	-
).75	68.28	76.27	62.79	0.38
-	77.78	-	77.78	-
	0.91 0.96 0.82 - 0.78 0.65 0.85 - 0.75 -	0.91 84.74 0.96 85.94 0.82 82.50 - 94.44 Classification per 0.78 67.60 0.65 56.96 0.85 73.01 - 69.54 0.75 68.28 - 77.78	9.91 84.74 83.33 9.96 85.94 88.89 9.82 82.50 79.41 - 94.44 - Classification performance of MDD neuronal structure 9.78 67.60 74.60 9.65 56.96 71.15 9.85 73.01 80.00 - 69.54 - 9.75 68.28 76.27 - 77.78 -	9.91 84.74 83.33 85.14 9.96 85.94 88.89 85.63 9.82 82.50 79.41 83.72 - 94.44 - 94.44 Classification performance of MDD neuromarker 9.78 67.60 74.60 66.00 9.65 56.96 71.15 50.00 9.85 73.01 80.00 72.30 - 69.54 - 69.54 9.75 68.28 76.27 62.79 - 77.78 - 77.78

 Table S12. The classification performance of the SCZ and MDD neuromarkers.

	ROI 1			ROI 2		-(\$C7		4	Maan
Glasser's label	AAL label	Network	Glasser's label	AAL label	Network)	2(1DC)	<i>l</i> -value	weight
L.MidB	-	Subcortical	L.V2	Lingual_L	Visual	0.00	-0.12	6.90	0.20
L.MidB	-	Subcortical	L.ProS	Precuneus_L	Visual	0.11	-0.01	6.29	0.17
L.23c	Cingulum_Mid_L	VAN	L.7Pm	Precuneus_L	Frontopariet al	0.34	0.21	5.04	0.13
R.PeEc	ParaHippocampal R	Limbic	L.ProS	Precuneus_L	Visual	0.04	-0.03	4.68	0.12
L.HP	Hippocampus_L	Subcortical	L.3b	Postcentral_L	Somatomoto r	0.01	-0.13	6.62	0.11
R.Amy	Hippocampus_R	Subcortical	L.31pv	Cingulum_Post_L	DMN	0.03	-0.09	7.73	0.11
L.PoI1	Insula_L	VAN	L.6a	Frontal_Sup_L	DAN	0.16	0.05	5.69	0.10
R.AAIC	Insula_R	VAN	R.9p	Frontal_Sup_R	DMN	0.15	0.07	4.44	0.10
R.PSL	Temporal_Sup_R	VAN	L.9-46d	Frontal_Mid_L	VAN	0.22	0.10	4.99	0.09
R.Amy	Hippocampus_R	Subcortical	L.7m	Precuneus_L	DMN	0.00	-0.13	8.16	0.09
R.2	Postcentral_R	DAN	L.PF	SupraMarginal_L	VAN	0.24	0.04	6.91	0.08
R.MBelt	Heschl_R	Somatomot or	R.MIP	Occipital_Sup_R	DAN	-0.04	-0.11	4.44	0.08
L.MidB	-	Subcortical	L.VMV1	Lingual_L	Visual	0.11	-0.02	6.63	0.07
L.NAcc	Caudate_L	Subcortical	L.V8	Fusiform_L	Visual	0.04	-0.11	6.77	0.06
R.VMV3	Lingual R	Visual	R.V3A	Occipital_Sup_R	Visual	0.34	0.48	-5.42	-0.05
R.Ig	Insula R	Somatomot	L.Ig	Insula_L	Somatomoto	0.45	0.66	-7.75	-0.05
-	_	or	-	_	r				
R.FOP2	Rolandic_Oper_R	Somatomot or	R.3a	Precentral_R	Somatomoto r	0.19	0.31	-5.24	-0.07
R.43	Rolandic_Oper_R	Somatomot or	R.131	Frontal_Inf_Orb_R	Limbic	-0.14	-0.05	-5.00	-0.07

 Table S13. The list of discriminative FCs for SCZ.

L.3a	Postcentral_L	Somatomot	L.4	Precentral_L	Somatomoto r	0.76	1.03	-8.14	-0.07
R.131	Frontal_Inf_Orb_ R	Limbic	R.24dv	Cingulum_Mid_R	Somatomoto r	-0.13	-0.05	-5.00	-0.08
R.4	Precentral_R	Somatomot or	L.3a	Postcentral_L	Somatomoto r	0.68	0.92	-7.40	-0.08
R.47s	Insula_R	DMN	L.23c	Cingulum_Mid_L	VAN	-0.26	-0.17	-4.82	-0.09
R.STSdp	Temporal_Sup_R	DMN	L.FFC	Fusiform_L	Visual	-0.10	0.01	-5.56	-0.09
L.Thalamus	Thalamus_L	Subcortical	L.p24	Cingulum_Ant_L	DMN	0.07	0.17	-5.37	-0.10
R.4	Precentral_R	Somatomot	L.Ig	Insula_L	Somatomoto	0.31	0.48	-6.84	-0.10
		or			r				
R.3a	Precentral_R	Somatomot	L.4	Precentral_L	Somatomoto	0.60	0.87	-8.57	-0.12
R HC	Hinnocampus R	or Subcortical	R FOP4	Insula R	r VAN	0 14	0 33	-10 30	-0.13
L.FOP3	Insula I	VAN	L.23d	Cingulum Mid L	DMN	-0.17	-0.05	-6.33	-0.15
RHC	Hippocampus R	Subcortical	L FOP3	Insula I	VAN	0.10	0.25	-9 41	-0.15
R Amy	Hippocampus_R	Subcortical	R FOP5	Insula_E	VAN	0.10	0.23	-9.40	-0.15
it./ iiiy	mppooumpus_re	Somatomot	101010	Inbulu_IC	Somatomoto	0.07	0.25	2.10	0.10
R.3a	Precentral_R	or	R.4	Precentral_R	r	0.72	1.00	-8.44	-0.16
R.HC	Hippocampus R	Subcortical	L.p32pr	Cingulum Mid L	VAN	0.10	0.26	-9.32	-0.16
L.FOP3	Insula L	VAN	L.RSC	-	DMN	-0.13	-0.02	-6.08	-0.18
	—	Somatomot			Somatomoto				
R.24dv	Cingulum_Mid_R	or	L.OP2-3	Rolandic_Oper_L	r	0.29	0.43	-6.81	-0.19
R.HC	Hippocampus_R	Subcortical	R.p32pr	Cingulum_Mid_R	VAN	0.09	0.26	-9.80	-0.21
R.HC	Hippocampus_R	Subcortical	L.FOP4	Insula_L	VAN	0.10	0.28	-10.66	-0.24
				Supp_Motor_Area					
R.HC	Hippocampus_R	Subcortical	L.SCEF	L	VAN	0.06	0.22	-9.07	-0.27
	II' D		LCOPP	Supp_Motor_Area	***	0.07	0.04	0.00	0.25
R.Amy	Hippocampus_R	Subcortical	L.SCEF		VAN	0.06	0.24	-9.60	-0.35
R.Amy	H1ppocampus_R	Subcortical	R.p32pr	Cingulum_Mid_R	VAN	0.08	0.26	-10.45	-0.42
R.Amy	Hippocampus_R	Subcortical	L.FOP1	Rolandic_Oper_L	VAN	0.13	0.30	-9.74	-0.44

R.AmyHippocampus_RSubcorticalL.a24prCingulum_Mid_LVAN0.080.27-10.41-1.31Abbreviations:AAL: automated anatomical labelling, DAN: dorsal attention network, DMN: default mode network, FP: fronto-parietal,
ROI: region of interest, SCZ: schizophrenia, TDC: typically developing control, and VAN: ventral attention network.

	ROI 1			ROI 2	-000	-(TD	4	Maan	
Glasser's label	AAL label	Network	Glasser's label	asser's AAL label Netwo label		D)	z(1D C)	<i>t</i> -value	weight
L.Amy	Amygdala_L	Subcortical	R.VMV1	Lingual_R	Visual Somatomot	-0.03	-0.16	6.69	6.69
R.MidB	-	Subcortical	L.3b	Postcentral_L	or	0.07	-0.09	6.68	6.68
L.VMV2	Lingual_L	Visual	L.PF	SupraMarginal_L	VAN Somatomot	0.13	0.02	5.89	5.89
R.a9-46v	Frontal_Mid_R	FPN	L.3b	Postcentral_L	or	-0.02	-0.11	4.98	4.98
R.V1	Calcarine_R	Visual Somatomot	L.6ma	Frontal_Sup_L	VAN	0.06	-0.02	4.81	4.81
L.A4	Temporal_Sup_L	or	L.23c	Cingulum_Mid_L Temporal Pole Mid	VAN	0.20	0.11	4.75	4.75
R.7Pm	Precuneus_R	FPN	L.TGd	L	Limbic	-0.09	-0.16	4.52	4.52
R.PreS	Hippocampus_R Frontal Sup Orb	Visual	L.POS1	Precuneus_L	DMN	0.37	0.29	4.02	4.02
L.111	L	FPN	L.LO2	Occipital_Inf_L	Visual	-0.02	-0.08	3.87	3.87
R.131	Frontal_Inf_Orb_ R	Limbic	R.47m	Frontal_Inf_Orb_R	DMN	0.26	0.36	-4.03	-4.03
R.AVI	Insula_R Frontal_Inf_Orb_	FPN	L.ProS	Precuneus_L	Visual Somatomot	-0.05	0.01	-4.07	-4.07
R.47m	R Frontal Inf Orb	DMN	L.TA2	Temporal_Sup_L	or Somatomot	0.01	0.08	-4.34	-4.34
R.47m	R Frontal Inf_Orb_	DMN	L.MBelt	Temporal_Sup_L	or Somatomot	0.00	0.07	-4.47	-4.47
R.47m	 R	DMN	L.A1	Rolandic_Oper_L	or Somatomot	-0.01	0.06	-4.50	-4.50
R.PHA1	Fusiform_R	Visual	R.PBelt	Temporal_Sup_R	or	-0.04	0.03	-4.57	-4.57
L.TGv	Temporal_Inf_L	Limbic	L.TE2a	Temporal_Inf_L	Limbic	0.16	0.28	-5.10	-5.10

Table S14. The list of discriminative FCs for MDD.

		Somatomot			Somatomot				
R.A5	Temporal_Sup_R	or	R.OP2-3	Rolandic_Oper_R	or	0.11	0.21	-5.24	-5.24
R.Thalamus	Thalamus_R	Subcortical Somatomot	R.p32pr	Cingulum_Mid_R	VAN	-0.19	-0.10	-5.37	-5.37
L.Ig	Insula_L	or	L.POS1	Precuneus_L	DMN Somatomot	0.04	0.13	-5.38	-5.38
R.v23ab	Precuneus_R	DMN	L.Ig	Insula_L	or	-0.03	0.06	-5.61	-5.61
R.PreS	Hippocampus_R Supp_Motor_Area	Visual Somatomot	R.p32pr	Cingulum_Mid_R	VAN	-0.10	-0.01	-5.69	-5.69
R.6mp	_R	or	R.5L	Postcentral_R	DAN	0.41	0.54	-5.80	-5.80
R.a24	Cingulum_Ant_R	DMN	L.52	Temporal_Sup_L	VAN	-0.03	0.07	-5.83	-5.83
R.LO1	Occipital_Mid_R	Visual	L.LO1	Occipital_Mid_L	Visual	0.57	0.72	-5.83	-5.83
L.52	Temporal_Sup_L	VAN Somatomot	L.a24	Cingulum_Ant_L	DMN Somatomot	0.00	0.10	-5.94	-5.94
R.A4	Temporal Sup R	or	L.5m	Precuneus L	or	0.04	0.15	-5.94	-5.94
R.Pallidum	Pallidum_R	Subcortical Somatomot	R.Putamen	Putamen_R	Subcortical Somatomot	0.23	0.33	-6.01	-6.01
R.OP4	Rolandic_Oper_R	or Somatomot	L.5m	Precuneus_L	or Somatomot	0.11	0.22	-6.30	-6.30
R.OP1	Rolandic_Oper_R	or	L.5m	Precuneus_L	or Somatomot	0.20	0.33	-6.38	-6.38
R.5L	Postcentral_R	DAN	L.5L	Precuneus_L	or Somatomot	0.71	0.87	-6.40	-6.40
R.2	Postcentral_R	DAN Somatomot	L.5m	Precuneus_L	or Somatomot	0.32	0.47	-6.41	-6.41
R.A5	Temporal_Sup_R	or Somatomot	L.A4	Temporal_Sup_L	or Somatomot	0.20	0.37	-6.80	-6.80
R.A4	Temporal_Sup_R	or Somatomot	R.4	Precentral_R	or Somatomot	0.13	0.27	-6.81	-6.81
R.A4	Temporal_Sup_R	or Somatomot	R.OP2-3	Rolandic_Oper_R	or Somatomot	0.17	0.31	-6.87	-6.87
R.OP1	Rolandic_Oper_R	or	L.OP2-3	Rolandic_Oper_L	or	0.40	0.55	-6.90	-6.90

		Somatomot			Somatomot				
L.Ig	Insula_L	or	L.3a	Postcentral_L	or	0.44	0.61	-7.76	-7.76
		Somatomot			Somatomot				
L.Ig	Insula_L	or	L.RI	Rolandic_Oper_L	or	0.42	0.58	-7.86	-7.86
		Somatomot			Somatomot				
R.Ig	Insula_R	or	L.Ig	Insula_L	or	0.46	0.66	-8.25	-8.25
Abbreviation	s: AAL: automated	l anatomical labe	lling, DAN:	dorsal attention netwo	rk, DMN: defa	ult mode	networl	k, FP: fron	ito-
parietal, ROI: 1	region of interest,	MDD: major dep	ressive diso	rder, TDC: typically dev	veloping conti	ol, and V	AN: ven	tral attent	tion
network.									

Imaging site	Center of Innovation in Hiroshima University	Kyoto University	Showa University	University of Tokyo	University of Tokyo
Abbreviation	COI	KUT	SWA1	UTO1	UTO2
Data resource	SRPBS	SRPBS	SRPBS	SRPBS	-
Data category			Discovery		
MDL cooppor	Siemens	Siemens	Siemens	GE	Philips
WIKI scanner	Verio	TimTrio	Verio	MR750w	Achieva
Magnetic field strength			3.0 T		
Head coil	12	32	12	24	8
Field-of-view [mm]		212 ×	212		224 × 224, 220 × 220
Matrix size		64 ×	64		$64 \times 64, 80 \times 80$
in-plane resolution [mm]		3.3125 ×	3.3125		$3.5 \times 3.5, 2.75 \times 2.75$
Slice thickness [mm]		3.2	2		3.5, 5.0
Slice gap [mm]		0.3	8		0.0
Number of slices		4()		45, 34
Multi-band factor			-		
Number of volumes		24	0		200
Number of runs			1		
Repetition time [ms]			2,500		
Echo time [ms]			30		
Flip angle [degree]		80)		75
Slice acquisition order			Ascending		
Phase encoding	AP			PA	
Eye-status		Fixa	ate		Mixed

Table S15. Imaging scanning protocols for R-fMRI data in the discovery dataset.

Imaging site	Showa Univer sity	Unive rsity of Leuve n	New York University Langone Medical Center	University of Utah, School of Medicine	George town Univer sity	Oregon Health and Science University	Kenne dy Krieg er Institu te	University of California, Los Angeles	San Diego State Univer sity	Trinity Centre for Health Scienc es	Univer sity of Michi gan	Yale School of Medici ne
Abbrevi ation	SWA2	Leuve n	NYU	USM	GU	OHSU	KKI	UCLA	SDSU	TRINI TY	UM	YALE
Data resourc e	BMB	ABID E-I	ADBIE- I/ABIDE-II	ABIDE- I/ABIDE-II	ABIDE -II	ABIDE-II	ABID E- I/ABI DE-II	ABIDE- I/ABIDE- II	ABID E-II	ABID E-I	ABID E-I	ABID E-I
Data categor y	Japane se Adult	ABID E Adult	ABIDE Adult/Child/A dolescent	ABIDEAdult/A dolescent	Child	Child/Ado lescent	Child	Child/Ado lescent	Adoles cent	Adoles cent	Adoles cent	Adoles cent
MRI	Sieme ns	Philip s	Siemens	Siemens	Siemen s	Siemens	Philip s	Siemens	GE	Philips	GE	Sieme ns
scanner	Skyra fit	Intera	Allegra	TrioTim	TrioTi m	TrioTim	Achie va	TrioTim	MR75 0	Achiev a	Signa	TimTri 0
Magneti c field strength	3.0 T					3.0 T						
Head coil	32	8	NA	NA	12	12	8	NA	8	8	NA	NA
Field- of-view [mm]	206 × 206	230 × 230	240 × 192	220 × 220	192 × 192	240 × 240	256 × 256	192 × 192	220 × 220	240 × 240	220 × 220	220 × 220
Matrix size	86 × 86	64 × 64	80 × 64	64 × 64	64 × 64	64 × 64	84 × 84	64 × 64	64 × 64	$rac{80 imes}{80}$	64 × 64	64 × 64
in-plane resoluti	2.4 × 2.4	3.59 × 3.59	3.0×3.0	3.4 × 3.4	3.0 × 3.0	3.8 × 3.8	3.0 × 3.0	3.0 × 3.0	3.4 × 3.4	3.0 × 3.0	3.4 × 3.4	3.4 × 3.4

 Table S16. Image scanning protocols for R-fMRI data in the validation datasets.

on [mm] Slice												
thicknes s [mm] Slice	2.4	4.0	4.0	3.0	2.5	3.8	3.0	4.0	3.4	3.5	3.0	4.0
gap [mm]	0.0	0.0	0.0	0.3	0.5	0.0	0.0	0.0	0.0	0.35	0.0	0.0
Number of slices Multi-	60	32	33	40	43	36	47	34	42	38	40	34
band factor	6					-						
of volume	375	250	180	240	154	120	156	120	180	150	300	200
s Number of runs	AP: 2, PA: 2	1	1	1	1	3	1	1	1	1	1	1
n time [ms]	800	1,667	2,000	2,000	2,000	2,500	2,500	3,000	2,000	2,000	2,000	2,000
Echo time [ms]	34.4	33	15	28	30	30	30	28	30	28	30	25
Flip angle [degree]	52	90	90	90	90	90	75	90	90	98	90	60
Slice acquisit ion order	Interle aved	Ascen ding	Interleaved	Interleaved	Interlea ved	Interleave d	Ascen ding	Interleave d	Interle aved	Ascen ding	Interle aved	Interle aved

Phase encodin g	AP, PA	AP	RL	AP	AP	AP	AP	AP	RL	AP	AP	AP
Eye- status	Fixate	Fixate	Mixed	Eye-open	Eye- open	Fixate	Fixate	Fixate	Fixate	Eye- closed	Fixate	Eye- open