Supporting Information

Discovery of Potent Orally Bioavailable WD Repeat Domain 5 (WDR5) Inhibitors Using a Pharmacophore-Based Optimization

Kevin B. Teuscher,¹ Kenneth M. Meyers,¹ Qiangqiang Wei,¹ Jonathan J. Mills,¹ Jianhua Tian,⁴ Joseph Alvarado,¹ Jiqing Sai,¹ Mayme Van Meveren,¹ Taylor M. South,¹ Tyson A. Rietz,¹ Bin Zhao,¹ William J. Moore,⁶ Gordon M. Stott,⁶ William P. Tansey,^{1,2} Taekyu Lee,¹ and Stephen W. Fesik^{1,3,5*}

¹Department of Biochemistry, ²Department of Cell and Developmental Biology, and ³Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States

⁴ Molecular Design and Synthesis Center, Vanderbilt Institute of Chemical Biology, and ⁵Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0142, United States

⁶Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701-4907, United States

*To whom correspondence should be addressed: <u>stephen.fesik@vanderbilt.edu</u> Vanderbilt University, Nashville, TN 37232, Phone: (615)-322-6303

SI Contents:

Compound Synthesis	
Scheme S1. Synthesis of 58	S2
Scheme S2. Synthesis of S18 – S19	S4
X-ray Data Collection and Refinement Statistics	
Table S1. X-ray Data Collection and Refinement Statistics for 20 and 37	S12
LCMS Traces	
Figure S1 – S7. For 1, 34, 36, 37, 38, 40, and 41	S13 – S19
Reference	S20

Scheme S1.^a Synthesis of 58

^aCompound S1 was synthesized according to the previously reported procedure.¹

Methyl 5-(1-ethyl-3-(trifluoromethyl)-1*H*-pyrazol-4-yl)-1-oxo-1,2,3,4tetrahydroisoquinoline-7-carboxylate (S2). Compound S1 (2.0 g, 5.7 mmol, 1 equiv), (1-ethyl-3-(trifluoromethyl)-1*H*-pyrazol-4-yl)boronic acid (1.3 g, 6.2 mmol, 1.1 equiv), K₂CO₃ (1.96 g, 14.2 mmol, 2.5 equiv), and tetrakis(triphenylphosphine)palladium(0) (196 mg, 0.17 mmol, 0.03 equiv), were dissolved in 1,4-dioxane/H₂O (25 mL, 4:1). The reaction mixture was placed under an argon atmosphere, heated to 80 °C for 14 h, and then cooled to room temperature. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (Combi-flash Rf, EtOAc/hexanes = 0–100% gradient) to obtain the title compound (2.6 g, 5.7 mmol, 98% yield). LCMS (method 2, ESI): *m/z* = 368.0 [M + H]⁺.

7-(Bromomethyl)-5-(1-ethyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-3,4-dihydroisoquinolin-

1(2*H***)-one (S3).** A solution of lithium triethylborohydride (1 M THF, 17 mL, 17.2 mmol, 3 equiv) was added dropwise to a solution of **S2** (2.1 g, 5.7 mmol, 1 equiv) in THF at 0 °C. The reaction was stirred for 40 min, then quenched with saturated aqueous NaHCO₃. The mixture was extracted with EtOAc. The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The resulting benzyl alcohol was used without further purification. LCMS (method 2, ESI): $m/z = 340.0 [M + H]^+$. PBr₃ (1.0 mL, 11.4 mmol, 2 equiv) was added to a solution of the

benzyl alcohol (1 equiv) in CH₂Cl₂ at 0 °C. The reaction was stirred and slowly warmed to room temperature. Saturated aqueous NaHCO₃ was added and the mixture was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The title compound was used without further purification (2.0 g, 5.7 mmol, 87% yield, 2 steps). LCMS (method 2, ESI): $m/z = 402.9 [M + H]^+$.

5-(1-Ethyl-3-(trifluoromethyl)-1*H*-pyrazol-4-yl)-7-((2-methyl-1*H*-imidazol-1-yl)methyl)-3,4dihydroisoquinolin-1(2*H*)-one (58). 2-Methyl-1*H*-imidazole (557 mg, 6.8 mmol, 3 equiv) was added to a solution of S3 (909 mg, 2.3 mmol, 1 equiv) in acetonitrile (15 mL) at 23 °C. The reaction mixture was stirred for 12 h at 50 °C, then cooled to ambient temperature, filtered and concentrated. The residue was purified by preparative reversed-phase HPLC (Phenomenex Gemini C18, MeCN/H₂O = 15–95% gradient, 0.1% TFA) followed by neutralization with saturated aqueous NaHCO₃ to obtain the title compound (522 mg, 1.3 mmol, 57% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 2.1 Hz, 1H), 7.34 (d, *J* = 1.1 Hz, 1H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.94 (d, *J* = 1.4 Hz, 1H), 6.85 (d, *J* = 1.4 Hz, 1H), 5.97 (s, 1H), 5.09 (s, 2H), 4.26 (q, *J* = 7.3 Hz, 2H), 3.48 (td, *J* = 6.5, 2.8 Hz, 2H), 2.78 (t, *J* = 6.5 Hz, 2H), 2.34 (s, 3H), 1.58 (t, *J* = 7.3 Hz, 3H); LCMS (method 2, ESI): *m/z* = 404.0 [M + H]⁺.

Scheme S2. Synthesis of S18 - S19

(*S,E*)-*N*-((4-Methoxypyridin-2-yl)methylene)-2-methylpropane-2-sulfinamide (S4). Cesium carbonate (1.0 g, 3.1 mmol 1.5 equiv) was added to a solution of (*S*)-2-methylpropane-2-sulfinamide (0.28 g, 2.1 mmol, 1 equiv) and 4-methoxypicolinaldehyde (0.25 g, 2.1 mmol, 1 equiv) in CH₂Cl₂ (10 mL). The reaction was stirred at rt for 16 h, and then filtered through celite and concentrated under reduced pressure. The residue was purified by flash chromatography (Combiflash Rf, EtOAc/hexanes = 5–75% gradient) to obtain the title compound (0.38 g, 1.60 mmol, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.58 (d, *J* = 5.8 Hz, 1H), 7.55 (d, *J* = 2.6 Hz, 1H), 6.94 (dd, *J* = 5.8. 2.6 Hz, 1H), 3.94 (s, 3H), 1.31 (s, 9H); LCMS (method 2, ESI): *R*_t = 0.85 min, *m/z* = 241.2 [M + H]⁺.

(*S*,*E*)-2-Methyl-*N*-((4-methylpyridin-2-yl)methylene)propane-2-sulfinamide (S5). Cesium carbonate (7.13 g, 21.9 mmol, 1.5 equiv) was added to a solution of (*R*)-2-methylpropane-2-sulfinamide (2.2 g, 18.2 mmol, 1.1 equiv) and 4-methoxypicolinaldehyde (2.0 g, 16.5 mmol, 1 equiv) in CH₂Cl₂ (200 mL). The reaction was stirred at rt for 16 h, and then filtered through celite

and concentrated under reduced pressure. The residue was purified by flash chromatography (Combi-flash Rf, EtOAc/hexanes = 5–75% gradient) to obtain the title compound (3.7 g, 16.0 mmol, quant.). LCMS (method 2, ESI): $R_t = 1.301 \text{ min}$, $m/z = 225.1 \text{ [M + H]}^+$.

(S)-N-((S)-Cyclopropyl(4-methoxypyridin-2-yl)methyl)-2-methylpropane-2-sulfinamide

(S6). A 1.0 M solution of cyclopropyl magnesium bromide in 2-methyltetrahydrofuran (3.2 mL, 3.2 mmol, 2.0 equiv) was added dropwise to a solution of S4 (0.38 g, 1.6 mmol, 1 equiv) in THF (10 mL) at -78°C. After 30 min, the reaction was quenched with saturated aqueous NH₄Cl (30 mL), stirred for 30 min, and then filtered. The filtrate was extracted with EtOAc, the combined organic layers were dried with MgSO₄, filtered, and concentrated under reduced pressure. The major diastereomer was isolated by preparative reversed-phase HPLC (Phenomenex Gemini C18, MeCN:H₂O = 5–30%, 0.1% TFA) to afford the title compound (0.15 g, 0.53 mmol, 33% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 5.8 Hz, 1H), 6.81 (d, *J* = 2.6 Hz, 1H), 6.72 (dd, *J* = 5.8. 2.6 Hz, 1H), 4.11 (d, *J* = 4.4 Hz, 1H), 3.84 (s, 3H), 3.64 (dd, *J* = 9.1, 4.4 Hz, 1H), 1.35–1.22 (m, 1H), 1.20 (s, 9H), 0.74–0.68 (m, 1H), 0.58–0.44 (m, 3H); LCMS (method 2, ESI): *R*t = 0.95 min, *m/z* = 283.2 [M + H]⁺.

(*S*)-*N*-((*S*)-Cyclopropyl(4-methylpyridin-2-yl)methyl)-2-methylpropane-2-sulfinamide (S7). A 3.4 M solution of cyclopropyl magnesium bromide in 2-methyltetrahydrofuran (7.4 mL, 25.1 mmol, 1.5 equiv) was added dropwise to a solution of S5 (3.75 g, 16.7 mmol, 1 equiv) in THF (10 mL) at -78°C. After 30 min, the reaction was quenched with saturated aqueous NH₄Cl (30 mL), stirred for 30 min, and then filtered. The filtrate was extracted with EtOAc, the combined organic layers were dried with MgSO₄, filtered, and concentrated under reduced pressure. The major diastereomer was isolated by flash chromatography (Combi-flash Rf, EtOAc/hexanes = 0–100% gradient) to afford the title compound (1.82 g, 6.83 mmol, 41% yield). ¹H NMR (400 MHz, CDCl₃)

δ 8.39 (d, J = 5.0 Hz, 1H), 7.15 (s, 1H), 7.00 (d, J = 4.9 Hz, 1H), 5.00 (d, J = 4.9 Hz, 1H), 3.80 (dd, J = 8.2, 5.1 Hz, 1H), 2.35 (s, 3H), 1.27 (s, 9H), 1.18–1.12 (m, 1H), 0.64–0.59 (m, 1H), 0.58–0.50 (m, 2H), 0.45–0.38 (m, 1H); LCMS (method 2, ESI): R_t = 1.023 min, m/z = 267.1 [M + H]⁺. **(***S***)-Cyclopropyl(4-methoxypyridin-2-yl)methanamine hydrochloride (S8).** A 4.0 M solution of HCl in 1,4-dioxane (1.33 mL, 5.3 mmol, 10 equiv) was added to a solution of **S6** (0.15 g, 0.53 mmol, 1 equiv) in MeOH (4 mL). The reaction was stirred at room temperature for 2 h and followed by TLC. The reaction mixture was concentrated under reduced pressure to provide the title compound (0.11 g, 0.526 mmol, 99% yield), which was used without further purification. ¹H NMR (400 MHz, CD₃OD) δ 8.73 (d, J = 5.8 Hz, 1H), 7.86 (d, J = 2.6 Hz, 1H), 7.60 (dd, J = 5.8, 2.6 Hz, 1H), 4.23 (s, 3H), 4.06 (d, J = 10.6 Hz, 1H), 1.62–1.53 (m, 1H), 1.03–0.95 (m, 1H), 0.84–0.77 (m, 2H), 0.75–0.68 (m, 1H); LCMS (method 2, ESI): R_t = 0.45 min, m/z = 179.2 [M + H]⁺.

(*S*)-Cyclopropyl(4-methylpyridin-2-yl)methanamine hydrochloride (S9). A 4.0 M solution of HCl in 1,4-dioxane (17 mL, 68.3 mmol, 10 equiv) was added to a solution of S7 (1.82 g, 6.83 mmol, 1 equiv) in THF (50 mL). The reaction was stirred at rt for 2 h and followed by TLC. The reaction mixture was concentrated under reduced pressure to provide the title compound (1.33 g, 6.7 mmol, 99% yield), which was used without further purification. LCMS (method 2, ESI): $R_t = 0.579 \text{ min}, m/z = 163.2 \text{ [M + H]}^+$.

Methyl (*S*)-2-(cyclopropyl(4-methoxypyridin-2-yl)methyl)-5-hydroxy-1-oxo-1,2,3,4tetrahydroisoquinoline-7-carboxylate (S10). Dimethyl 2-hydroxy-2,3-dihydrobenzofuran-4,6dicarboxylate 42 (1.9 g, 7.6 mmol, 1 equiv), S8 (2.5 g, 9.9 mmol, 1.3 equiv), and *N*,*N*diisopropylethylamine (4.0 mL, 22.8 mmol, 3 equiv) were dissolved in CH₂Cl₂ and stirred at 30 °C for 30 min. Then sodium cyanoborohydride (1.4 g, 22.9 mmol, 3 equiv) was added and the reaction was stirred at 30 °C for 3 h. The reaction mixture was concentrated and dissolved in 1,4dioxane and heated at 110 °C overnight. Saturated aqueous NaHCO₃ was added and the mixture was extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The title compound (2.30 g, 6.0 mmol, 79% yield) was used without further purification. LCMS (method 2, ESI): $R_t = 1.14$ min, m/z = 383.1 [M + H]⁺.

Methyl (*S*)-2-(cyclopropyl(4-methylpyridin-2-yl)methyl)-5-hydroxy-1-oxo-1,2,3,4tetrahydroisoquinoline-7-carboxylate (S11). Dimethyl 2-hydroxy-2,3-dihydrobenzofuran-4,6dicarboxylate 42 (3.4 g, 13.5 mmol, 1 equiv), S9 (2.84 g, 17.5 mmol, 1.3 equiv), and *N*,*N*diisopropylethylamine (7 mL, 40.6 mmol, 3 equiv) were dissolved in CH₂Cl₂ and stirred at 30 °C for 30 min. Then sodium borohydride (0.81 g, 30.5 mmol, 2.5 equiv) was added and the reaction was stirred at 30 °C for 3 h. The reaction mixture was concentrated and dissolved in 1,4-dioxane and heated at 110 °C overnight. Saturated aqueous NaHCO₃ was added and the mixture was extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The title compound (2.44 g, 6.7 mmol, 49% yield) was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 5.1 Hz, 1H), 8.28 (s, 1H), 7.58 (s, 1H), 7.29 (s, 1H), 7.02 (d, *J* = 4.3 Hz, 1H), 5.08 (d, *J* = 10.1 Hz, 1H), 3.85 (s, 3H), 3.73– 3.64 (m, 2H), 3.03–2.95 (m, 1H), 2.92–2.84 (m, 1H), 2.33 (s, 3H), 1.22–1.18 (m, 1H), 0.81–0.75 (m, 1H), 0.66–0.60 (m, 1H), 0.56–0.49 (m, 2H); LCMS (method 2, ESI): *R*₁ = 1.137 min, *m*/*z* = 367.0 [M + H]⁺.

Methyl (*S*)-2-(cyclopropyl(4-methoxypyridin-2-yl)methyl)-1-oxo-5-(((trifluoromethyl)sulfonyl)oxy)-1,2,3,4-tetrahydroisoquinoline-7-carboxylate (S12). Phenyl triflimide (3.2 g, 9.0 mmol, 1.5 equiv) was added to a solution of S10 (2.3 g, 6.0 mmol, 1 equiv) and triethylamine (2.5 mL, 18 mmol, 3 equiv) in THF/CH₂Cl₂ (5:1) at 23 °C and stirred for 14 h. Saturated aqueous NaHCO₃ was added and the mixture was extracted with CH₂Cl₂. The combined

organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (Combi-flash Rf, EtOAc/hexanes = 0-50% gradient) to obtain the title compound (2.9 g, 5.7 mmol, 95% yield). LCMS (method 2, ESI): $R_t = 1.48 \text{ min}, m/z = 514.9 [M + H]^+$.

Methyl (*S*)-2-(cyclopropyl(4-methylpyridin-2-yl)methyl)-1-oxo-5-(((trifluoromethyl)sulfonyl)oxy)-1,2,3,4-tetrahydroisoquinoline-7-carboxylate (S13). Phenyl triflimide (2.8 g, 7.9 mmol, 1.2 equiv) was added to a solution of S11 (2.4 g, 6.6 mmol, 1 equiv) and triethylamine (2.3 mL, 16.4 mmol, 2.5 equiv) in THF/CH₂Cl₂ (5:1) at 23 °C and stirred for 14 h. Saturated aqueous NaHCO₃ was added and the mixture was extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (Combi-flash Rf, EtOAc/hexanes = 0–100% gradient) to obtain the title compound (1.7 g, 3.4 mmol, 52% yield). LCMS (method 2, ESI): $R_1 = 1.636$ min, m/z = 498.9 [M + H]⁺.

Methyl (*S*)-2-(cyclopropyl(4-methoxypyridin-2-yl)methyl)-5-(1-ethyl-3-(trifluoromethyl)-1*H*-pyrazol-4-yl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-7-carboxylate (S14). Compound S12 (2.0 g, 3.9 mmol, 1 equiv), (1-ethyl-3-(trifluoromethyl)-1*H*-pyrazol-4-yl)boronic acid (0.97 g, 4.68 mmol, 1.2 equiv), potassium carbonate (1.3 g, 9.7 mmol, 2.5 equiv), and tetrakis(triphenylphosphine)palladium(0) (224 mg, 0.19 mmol, 0.05 equiv), were dissolved in 1,4dioxane/H₂O (4:1). The reaction mixture was placed under an argon atmosphere, heated to 80 °C for 14 h, and then cooled to room temperature. The reaction mixture was diluted with water and extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (Combi-flash Rf, EtOAc/hexanes = 0–100% gradient) to obtain the title

compound (1.6 g, 3.1 mmol, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 1.8 Hz, 1H), 8.37 (d, *J* = 5.7 Hz, 1H), 8.0 (d, *J* = 1.8 Hz, 1H), 7.38 (s, 1H), 6.98 (d, *J* = 2.5Hz, 1H), 6.72 (dd, *J* = 5.7, 2.5 Hz, 1H), 5.06 (d, *J* = 10.0 Hz, 1H), 4.26 (q, *J* = 7.3 Hz, 2H), 3.91 (s, 3H), 3.84 (s, 3H), 3.76–3.68 (m, 2H), 2.82–2.72 (m, 2H), 1.68–1.61 (m, 1H), 1.56 (t, *J* = 7.3 Hz, 3H), 0.80–0.75 (m, 1H), 0.64–0.59 (m, 1H), 0.55–0.48 (m, 2H); LCMS (method 2, ESI): *R*_t = 1.47 min, *m/z* = 529.0 [M + H]⁺.

Methyl (*S*)-2-(cyclopropyl(4-methylpyridin-2-yl)methyl)-5-(1-ethyl-3-(trifluoromethyl)-1*H*pyrazol-4-yl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-7-carboxylate (S15). Compound S13 (1.7 g, 3.4 mmol, 1 equiv), (1-ethyl-3-(trifluoromethyl)-1*H*-pyrazol-4-yl)boronic acid (0.92 g, 4.4 mmol, 1.3 equiv), potassium carbonate (1.4 g, 10.2 mmol, 3 equiv), and PdCl₂(dppf) (125 mg, 0.17 mmol, 0.05 equiv), were dissolved in 1,4-dioxane/H₂O (3:1). The reaction mixture was placed under an argon atmosphere, heated to 95 °C for 2 h, and then cooled to room temperature. The reaction mixture was diluted with water and extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (Combi-flash Rf, EtOAc/hexanes = 3:1 isocratic) to obtain the title compound (1.3 g, 2.6 mmol, 76% yield). LCMS (method 2, ESI): R_t = 1.595 min, m/z = 513.0 [M + H]⁺.

(S)-2-(Cyclopropyl(4-methoxypyridin-2-yl)methyl)-5-(1-ethyl-3-(trifluoromethyl)-1H-

pyrazol-4-yl)-7-(hydroxymethyl)-3,4-dihydroisoquinolin-1(2*H***)-one (S16). A solution of lithium triethylborohydride (1 M THF, 13.2 mL, 13.2 mmol, 3 equiv) was added dropwise to a solution of S14 (2.3 g, 4.4 mmol, 1 equiv) in THF at 0 °C. The reaction was stirred for 40 min, then quenched with saturated aqueous NaHCO₃. The mixture was extracted with EtOAc. The combined organic layers were dried over MgSO₄, concentrated, and concentrated under reduced**

pressure. The residue was purified by flash chromatography (Combi-flash Rf, EtOAc/hexanes = 0-100% gradient) to obtain the title compound (1.5 g, 3.0 mmol, 68% yield). LCMS (method 2, ESI): $R_t = 1.29$ min, m/z = 501.0 [M + H]⁺.

(S)-2-(Cyclopropyl(4-methylpyridin-2-yl)methyl)-5-(1-ethyl-3-(trifluoromethyl)-1H-

pyrazol-4-yl)-7-(hydroxymethyl)-3,4-dihydroisoquinolin-1(2*H*)-one (S17). Sodium borohydride (1.10 g, 29.1 mmol, 20 equiv) was added to a solution of S15 (1.3 g, 2.54 mmol, 1 equiv) in EtOH. The reaction was refluxed for 5 h, then cooled and quenched with saturated aqueous NaHCO₃. The mixture was extracted with EtOAc. The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (Combi-flash Rf, EtOAc/hexanes = 0–100% gradient) to obtain the title compound (1.2 g, 2.46 mmol, 97% yield). LCMS (method 2, ESI): $R_t = 1.329$ min, m/z = 485.1[M + H]⁺.

(S)-7-(Bromomethyl)-2-(cyclopropyl(4-methoxypyridin-2-yl)methyl)-5-(1-ethyl-3-

(trifluoromethyl)-1*H*-pyrazol-4-yl)-3,4-dihydroisoquinolin-1(2*H*)-one (S18). A solution of S16 (0.59 g, 1.2 mmol, 1 equiv) in CH₂Cl₂ (12 mL) was cooled in an ice bath. *N*,*N*-Diisopropylethylamine (0.4 mL, 2.4 mmol, 2 equiv) and methanesulfonyl chloride (0.14 mL, 1.8 mmol, 1.5 equiv) were added and the reaction was stirred for 1 h. The reaction was diluted with saturated aqueous NaHCO₃ and the layers were separated. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. This material was dissolved in THF (8 mL). Lithium bromide (0.26 g, 3.0 mmol, 2.5 equiv) was added and reaction mixture was refluxed for 1 h. The reaction was diluted with EtOAc and washed with water. The organic layer was dried over MgSO₄ and concentrated under reduced pressure and the crude product was diluted with EtOAc and washed with water. The organic layer was dried over MgSO₄ and concentrated under reduced pressure for MgSO₄ and concentrated under reduced pressure and the crude product was diluted with EtOAc and washed with water. The organic layer was dried over MgSO₄ and concentrated under reduced pressure for MgSO₄ and concentrated under reduced pressure and the crude product was diluted with EtOAc and washed with water. The organic layer was dried over MgSO₄ and concentrated under

EtOAc/hexanes = 0–100% gradient) to obtain the title compound (0.4 g, 0.71 mmol, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 5.7 Hz, 1H), 8.15 (d, *J* = 1.9 Hz, 1H), 7.38 (d, *J* = 5.9 Hz, 1H), 7.37 (s, 1H), 6.97 (d, *J* = 2.4 Hz, 1H), 6.72 (dd, *J* = 5.7, 2.4 Hz, 1H), 5.04 (d, *J* = 10.0 Hz, 1H), 4.50 (s, 2H), 4.26 (q, *J* = 7.3 Hz, 2H), 3.84 (s, 3H), 3.76–3.63 (m, 2H), 2.77–2.64 (m, 2H), 1.68–1.61 (m, 1H), 1.56 (t, *J* = 7.3 Hz, 3H), 0.78–0.75 (m, 1H), 0.64–0.59 (m, 1H), 0.55–0.48 (m, 2H); LCMS (method 2, ESI): $R_t = 1.55 \text{ min}$, $m/z = 562.9 \text{ [M + H]}^+$.

(S)-7-(Bromomethyl)-2-(cyclopropyl(4-methylpyridin-2-yl)methyl)-5-(1-ethyl-3-

(trifluoromethyl)-1*H*-pyrazol-4-yl)-3,4-dihydroisoquinolin-1(2*H*)-one (S19). PBr₃ (0.7 mL, 0.74 mmol, 3 equiv) was added to a solution of S17 (1.2 g, 2.48 mmol, 1 equiv) in CH₂Cl₂ at 0 °C. The reaction was stirred and slowly warmed to room temperature. Saturated aqueous NaHCO₃ was added and the mixture was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The title compound (1.05 g, 1.9 mmol, 77% yield) was used without further purification. LCMS (method 2, ESI): $R_t = 1.656 \text{ min}$, $m/z = 546.9 [M + H]^+$.

Compound	20	37
PDB Accession Code	7U9Y	7UAS
Data Collection		
Space group	P 21 21 2	P1
Cell dimensions		
a, b, c (Å)	81.259, 86.122, 41.094	46.743, 53.857, 64.519
α, β, γ (°)	90, 90, 90	107.96, 91.31, 109.39
Resolution (Å)	29.55 – 1.90 (1.93 – 1.90)	28.43 – 1.81 (1.85 – 1.81)
Rmerge (%)	9.9 (61.8)	6.5 (25.2)
Mean I / σ I	23.4 (3.4)	22.6 (1.0)
Completeness (%)	100 (99.9)	97.2 (90.0)
Redundancy	8.0 (7.9)	3.3 (2.8)
Structure Refinement		
No. Reflections	23276	49755
R _{work} / R _{free}	0.1476 / 0.1887	0.1372 / 0.1749
R.m.s. deviations		
Bond lengths (%)	0.008	0.008
Bond angles (°)	0.905	1.063
Ramachandran		
Preferred regions (%)	95.38	95.67
Allowed regions (%)	4.62	4.33
Disallowed regions (%)	0	0

Table S1. X-ray Data Collection and Refinement Statistics for 20 and 37

Related to Figures 5 and 6. Last resolution shell numbers are in parentheses.

Figure S1. Compound 1 LCMS Trace

Chemical Formula: C₃₀H₃₁FN₄O₃ Exact Mass: 514.24 Molecular Weight: 514.60

Figure S2. Compound 34 LCMS Trace

34

Chemical Formula: C₂₈H₂₉F₃N₆O₂ Exact Mass: 538.23 Molecular Weight: 538.58

Figure S3. Compound 36 LCMS Trace

36

Chemical Formula: C₃₀H₃₁F₃N₆O₂ Exact Mass: 564.25 Molecular Weight: 564.61

Figure S4. Compound 37 LCMS Trace

Chemical Formula: C₃₀H₃₁F₃N₆O Exact Mass: 548.25 Molecular Weight: 548.61

Figure S5. Compound 38 LCMS Trace

38

Chemical Formula: C₂₇H₂₇F₃N₆O₂ Exact Mass: 524.21 Molecular Weight: 524.55

Figure S6. Compound 40 LCMS Trace

40

Chemical Formula: C₂₉H₂₉F₃N₆O₂ Exact Mass: 550.23 Molecular Weight: 550.59

Figure S7. Compound 41 LCMS Trace

Chemical Formula: C₂₉H₂₉F₃N₆O Exact Mass: 534.24 Molecular Weight: 534.59

References

(1) Tian, J.; Teuscher, K. B.; Aho, E. R.; Alvarado, J. R.; Mills, J. J.; Meyers, K. M.; Gogliotti, R. D.; Han, C.; Macdonald, J. D.; Sai, J.; Shaw, J. G.; Sensintaffar, J. L.; Zhao, B.; Rietz, T. A.; Thomas, L. R.; Payne, W. G.; Moore, W. J.; Stott, G. M.; Kondo, J.; Inoue, M.; Coffey, R. J.; Tansey, W. P.; Stauffer, S. R.; Lee, T.; Fesik, S. W. Discovery and structure-based optimization of potent and selective WD repeat domain 5 (WDR5) inhibitors containing a dihydroisoquinolinone bicyclic core. *J. Med. Chem.* 2020, *63* (2), 656 – 675.