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1 The Proposed Algorithms for Solving PNMF and SL-PRU

We first present the developed algorithms for solving the endmember extraction problem through
PNMF and for solving the abundance estimation problem through SL-PRU, respectively. To this
end, we first recall that the endmember m ∈ RC

+ extracted from a reference image Ym ∈ RC×N
+ and

the corresponding abundances a ∈ RN
+ are obtained through Poisson Nonnegative Matrix Factoriza-

tion (PNMF):

min
m∈RC

+,a∈RN
+

1⊤
C

[
ma⊤ −Ym ◦ log

(
ma⊤

)]
1N , (1)

where 1C and 1N are vectors of length C and N whose entries are all 1 and ◦ denotes element-wise
multiplication. PNMF (1) can be solved by multiplicative update algorithm (Lee and Seung, 2000)
which is a diagonally rescaled version of gradient descent. Denoting any variable X at the t-th,
iteration as X(t) and the maximum norm as ∥ · ∥∞, the pseudocode of the multiplicative update
algorithm is provided in Algorithm 1. The abundance vector a and the endmember vector m
are initialized with random values that follow the standard uniform distribution U(0, 1). At each
iteration, the endmember vector is standardized by dividing by its maximum for uniqueness. The
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algorithm stops when the relative change of the standardized endmember m̃ between the (t− 1)-th
and the t-th iterations given by

∥m̃(t) − m̃(t−1)∥22
∥m̃(t−1)∥22

is less than a small threshold value.

Input: A reference image Ym ∈ RC×N
+ ;

Output: The standardized endmember vector m̃;

Initialization: a(0), m(0) ;
repeat

a
(t)
n ← ã

(t−1)
n ·

(∑
c ycnm̃

(t−1)
c

m̃
(t−1)
c ã

(t−1)
n

)/(∑
c m̃

(t−1)
c

)
;

m
(t)
c ← m̃

(t−1)
c ·

(∑
n ycna

(t)
n

m̃
(t−1)
c a

(t)
n

)/(∑
n a

(t)
n

)
;

m̃
(t)
c ← m

(t)
c

/
∥m(t)∥∞;

ã
(t)
n ← a

(t)
n · ∥m(t)∥∞;

until the stopping criterion is satisfied ;
Algorithm 1: Multiplicative update algorithm for PNMF (1)

We are now in a position to detail the proposed algorithm for solving the proposed regularized
sparse and low-rank Poisson regression unmixing approach (SL-PRU) that reads

min
A∈RR×N

+

1⊤
C [MA−Y ◦ log (MA)]1N + λ1∥A∥wp,∗ + λ2∥WqA∥2,1. (2)

Inspired by the work in Giampouras et al. (2016), an alternating direction method of multipliers
(ADMM) technique (Boyd et al., 2011) is adopted in our study by first letting all elements of wp be
equal to ensure the convexity of the low-rankness regularization term in SL-PRU (2). Similar to the
work in Giampouras et al. (2016), we introduce auxiliary variables V1 ∈ RC×N , V2,V3,V4 ∈ RR×N

and reformulate SL-PRU (2) as follows

min
U,V1,V2,V3,V4

1⊤
C [V1 −Y ◦ log (V1)]1N + λ1∥V2∥wp,∗ + λ2∥WqV3∥2,1 + IR+

(V4),

s.t. V1 = MU,V2 = U,V3 = U,V4 = U,
(3)

where IR+
(·) is the indicator function which is zero if all the entries are nonnegative and infinity

otherwise. The augmented Lagrangian function for the constrained optimization problem (3) is
given as follows:

L1(U,V1,V2,V3,V4,D1,D2,D3,D4)

=1⊤
C [V1 −Y ◦ log (V1)]1N + λ1∥V2∥wp,∗ + λ2∥WqV3∥2,1 + IR+

(V4)

+ tr(D⊤
1 (V1 −MU)) + tr(D⊤

2 (V2 −U)) + tr(D⊤
3 (V3 −U)) + tr(D⊤

4 (V4 −U))

+
µ

2

(
∥MU−V1∥2F + ∥U−V2∥2F + ∥U−V3∥2F + ∥U−V4∥2F

)
,

(4)

where D1 ∈ RC×N , D2,D3,D4 ∈ RR×N denote the Lagrange multipliers, tr(·) denotes matrix trace,
µ > 0 is a Lagrange multiplier regularization parameter, and ∥ · ∥F denotes the Frobenius norm.
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Denoting the identity matrix of size k × k as Ik and the scaled Lagrange multipliers as D′
i =

Di/µ, i = 1, 2, 3, 4, the augmented Lagrangian function L1 can be rewritten as

L2(U,V,D) =1⊤
C [V1 −Y ◦ log (V1)]1N + λ1∥V2∥wp,∗ + λ2∥WqV3∥2,1 + IR+

(V4)

+
µ

2
∥GU+BV −D∥2F ,

(5)

where

V =


V1

V2

V3

V4

 ,D =


D′

1

D′
2

D′
3

D′
4

 ,G =


M
IR
IR
IR

 ,B = −IC+3R.

The proposed ADMM-type algorithm for solving SL-PRU sequentially optimizes (4) or (5) with
respect to each variable while the other variables remain as the latest values. Note that the aug-
mented Lagrangian (5) is convex w.r.t. U, V1, V2, V3, and V4, respectively, due to the assumption
that all elements of wp are equal and the fact that all entries of Wq are nonnegative. Therefore, at
the t-th iteration, the updates of the abundance matrix U and the auxiliary variables V1, V2, V3,
and V4 can be deduced, respectively, as follows:

Updating U: The minimization of L2 w.r.t. U at the t-th iteration is equivalent to

∂ µ
2 ∥GU+BV(t−1) −D∥2F

∂U
= 0,

which yields

µG⊤(GU+BV −D) = µ
[(
M⊤M+ 3IR

)
U−G⊤(BV −D)

]
= 0.

As a result, we have

U(t) =argmin
U
L2

(
U,V(t−1),D(t−1)

)
=
(
M⊤M+ 3IR

)−1[
M⊤

(
V

(t−1)
1 +D

′(t−1)
1

)
+V

(t−1)
2 +D

′(t−1)
2 +V

(t−1)
3 +D

′(t−1)
3 +V

(t−1)
4 +D

′(t−1)
4

]
.

Updating V1: Denoting the (c, n)-th entry of V1 as vcn with c = 1, · · · , C and n = 1, · · · , N ,
we have

1⊤
C [V1 −Y ◦ log (V1)]1N =

∑
c,n

[vcn − ycn log(vcn)].

Since (
∂1⊤

C [V1 −Y ◦ log (V1)]1N

∂V1

)
cn

=
∂[vcn − ycn log(vcn)]

∂vcn
= 1− ycn

vcn
,

and (
∂ µ

2 ∥MU(t) −V1 −D′
1∥2F

∂V1

)
cn

= µ[vcn + (D
′(t−1)
1 −MU(t))cn],
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we know that minimizing L2 w.r.t. vcn is equivalent to

v2cn − (V
′(t)
1 )cn · vcn −

ycn
µ

= 0,

where V
′(t)
1 = MU(t) −D

′(t−1)
1 − 1/µ. Solving the above quadratic equation w.r.t. vcn, we have

V
(t)
1 =argmin

V1

L2

U(t),


V1

V
(t−1)
2

V
(t−1)
3

V
(t−1)
4

 ,D(t−1)

 =
V

′(t)
1 +

√
V

′(t)
1 ◦V′(t)

1 + 4Y/µ

2
,

where
√
· denotes the element-wise square root.

Updating V2: Minimizing L2 w.r.t. V2 is equivalent to

min
V2

λ1∥V2∥wp,∗ +
µ

2
∥U−V2 −D′

2∥2F ,

which can be solved by a soft-thresholding operation (Cai et al., 2010) on the singular values of V2.

Recall that the singular value decomposition of U(t) − D
′(t−1)
2 is SlΣ

(t)S⊤
r , the soft-thresholding

function on each diagonal element of Σ(t), i.e., σ
(t)
p , with parameter λ1wp/µ is

max{0, σ(t)
p − λ1wp/µ},

for any p = 1, 2, · · · , rank(V2). Thus, the optimization w.r.t. V2 gives

V
(t)
2 =argmin

V2

L2

U(t),


V

(t)
1

V2

V
(t−1)
3

V
(t−1)
4

 ,D(t−1)

 = Sl[sign(Σ
(t)) ◦max{0,Σ(t) − λ1diag(wp)/µ}]S⊤

r ,

where sign(·) is the element-wise sign function, max{·, ·} denotes the element-wise max function,
and diag(·) creates a matrix with diagonal elements equal to the vector elements.

Updating V3: Minimizing L2 w.r.t. V3 is equivalent to

min
V3

λ2∥WqV3∥2,1 +
µ

2
∥U−V3 −D′

3∥2F ,

which can be solved by a vectorial soft-thresholding operation (Wright et al., 2009) on each row of

V
(t)
3 . More specifically, denotingV

(t)
3,r as the r-th row ofV

(t)
3 and x

(t)
r as the r-th row ofU(t)−D

′(t−1)
3

where r = 1, . . . , R, each row of V3 is updated sequentially as

V
(t)
3,r =argmin

V3,r

L2



U(t),



V
(t)
1

V
(t)
2

V
(t)
3,1
...

V
(t)
3,r−1

V3,r

V
(t−1)
3,r+1
...

V
(t−1)
3,R

V
(t−1)
4



,D(t−1)



=
x
(t)
r max{∥x(t)

r ∥2 − λ2wq,r/µ, 0}
max{∥x(t)

r ∥2 − λ2wq,r/µ, 0}+ λ2wq,r/µ
.
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Input: The data matrix Y ∈ RC×N
+ , and the endmember matrix M ∈ RC×R

+ ;
Output: The abundance matrix U;
Initialization: U0,V0

i ,D
0
i , i = 1, 2, 3, 4 ;

repeat

U(t) ←
(
M⊤M+ 3IR

)−1
[
M⊤

(
V

(t−1)
1 +D

′(t−1)
1

)
+V

(t−1)
2 +D

′(t−1)
2 +V

(t−1)
3 +

D
′(t−1)
3 +V

(t−1)
4 +D

′(t−1)
4

]
;

V
(t)
1 ←

(
V

(t)
1 +

√
V

(t)
1 ◦V

(t)
1 + 4Y/µ

)/
2;

V
(t)
2 ← Sl[sign(Σ) ◦max{0,Σ− λ1diag(wp)/µ}]S⊤

r ;

V
(t)
3,r ← (x

(t)
r max{∥x(t)

r ∥2 − λ2wq,r/µ, 0})/(max{∥x(t)
r ∥2 − λ2wq,r/µ, 0}+ λ2wq,r/µ), r =

1, . . . , R;

V
(t)
4 ← max

{
U(t) −D

′(t−1)
4 ,0

}
;

D
′(t)
1 ← D

′(t−1)
1 −MU(t) +V

(t)
1 ;

D
′(t)
i ← D

′(t−1)
i −U(t) +V

(t)
i , i = 2, 3, 4;

until the stopping criteria are satisfied ;
Algorithm 2: The proposed ADMM-type algorithm for SL-PRU (2)

Updating V4: Minimizing L2 w.r.t. V4 is equivalent to

min
V4

IR+
(V4) +

µ

2
∥U−V4 −D′

4∥2F ,

where the first term is to project V4 onto the nonnegative orthant. Thus, the optimization w.r.t.
V4 gives

V
(t)
4 =argmin

V4

L2

U(t),


V

(t)
1

V
(t)
2

V
(t)
3

V4

 ,D(t−1)

 = max
{
U(t) −D

′(t−1)
4 ,0

}
.

Updating D′
1, D

′
2, D

′
3, and D′

4: These scaled Lagrange multipliers are updated as follows

D
′(t)
1 = D

′(t−1)
1 −MU(t) +V

(t)
1 , D

′(t)
i = D

′(t−1)
i −U(t) +V

(t)
i , i = 2, 3, 4.

The stopping criteria adopted in the algorithm are based on the primal and dual residuals (Boyd
et al., 2011) rp and rd given by

rp = GU(t) +BV(t), rd = µG⊤B
(
V(t) −V(t−1)

)
,

that go to 0, respectively, as t→∞. The algorithm terminates whenever any of the ℓ2 norms of rp
or rd is less than a small threshold value or some number of iterations is reached. To enhance the
performance of the algorithm, as done in Giampouras et al. (2016), we also update the weights wp

and Wq based on U(t) at the t-th iteration as follows

w
(t)
p,i =

1

σi(U(t)) + ε
, wq,r =

1

∥u(t)
r ∥2 + ε

,

where u
(t)
r denotes the r-th row of U(t) and ε > 0 is assigned a small value to avoid singularities.

The pseudo-code of the proposed algorithm for solving SL-PRU is presented in Algorithm 2.
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2 Supplementary Table 1: Salient Characteristics of FISH
Probes
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Supplementary Table 1: Salient characteristics of all FISH probes used in this study
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3 Supplementary Figure 1: Emission Spectra of Endmem-
bers and the Extracted Endmembers
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Supplementary Figure 1: Empirically measured spectra of thirteen endmembers from Supplementary
Table 2 above. Top row: Fluorometer data provided by the manufacturers of the dyes sampled in
1 nm wavelength bands. Bottom row: Endmembers extracted by arithmetic mean (dashed curves)
method and PNMF (solid curves) from real images of labeled E. coli acquired on a spectral confocal
microscope with 9.8 nm wavelength bands.
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4 Supplementary Table 2: Descriptions of Fluorophores

Fluorophore Abbreviation Peak Excitation λ (nm) Peak Emission λ (nm)

Alexafluor 488 AF488 495 519
Alexafluor 514 AF514 517 542

Tetrachlorofluorescein TET 522 539
Alexafluor 532 AF532 532 553
Alexafluor 546 AF546 556 573
Alexafluor 555 AF555 555 565

Rhodamine Red-X RRX 560 580
Alexafluor 568 AF568 578 603
Alexafluor 633 AF633 621 639
Alexafluor 647 AF647 650 665
Alexafluor 660 AF660 663 690
Alexafluor 680 AF680 679 702
Alexafluor 700 AF700 702 723

Supplementary Table 2: Names, abbreviations, and peak excitation and emission wavelengths for
all fluorophores used in this study.
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5 Supplementary Figure 2: Quantitative Line Scan Analysis
on Dental Plaque Smear Images

A

B

C

D

Supplementary Figure 2: A-B. Region of interest images from the Streptococcus (Alexa-fluor 594)
channel from (A) SL-PRU unmixed image and (B) commercial least squares unmixed image. Yellow
dotted lines show where line scan analysis was performed in each image. Bar = 25 µm. C-D:
Line scan analysis results (intensity vs. pixel position) for SL-PRU unmixing (C) and least squares
unmixing (D) along the length of the lines in A & B. Magenta arrows in (C) identify peaks with
a full-width-at-half-maximum of approximately 4-5 pixels (0.7-0.9 µm), the known diameter of oral
Streptococcus cells (Baron, Samuel and Patterson, Maria Jevitz, 1996).
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6 Supplementary Movie: SL-RPU Unmixed Dental Plaque
Smear

3-D volume-rendered movie of a dental plaque smear labeled with 8 taxon-specific FISH probes (See
Figure 6 in Main Text for color legend). Spectral image was unmixed with SL-RPU.
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