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Supplementary Fig.1 LoopDenoise training procedure, performance, and visualization.  
a, Detailed LoopDenoise convolutional autoencoder model architecture showing five convolution 
layers, two in the encoding path using eight 13x13 filters, two transpose convolution layers in the 
decoding path using eight 2x2 filters, and one final convolution layer using a single 13x13 filter. 
The matrices dimensions of each layer output were also shown. Each layer is visualized by the 
filters used, the output of convolving the input with this filter, the result of applying ReLU activation, 
and the result of max pooling. The convolution operation is denoted by *. b, Venn diagram 
showing the reproducible loop pixels between three human fetal brain replicates. The table 
showing the number of overlapped pixels between significant pixels in the pooled data and each 
part of pixels shown in the Venn diagram. The pixels that are significant in both pooled data and 
at least one of the three replicates are the training target in the LoopDenoise model. The 
significance of loop pixels come from the negative binomial test wrapped in HiCorr package. c, 
Pairwise reproducibility at pixel level (defined as the fraction of common ones when calling the 
same number of loop pixels from two datasets) between biological replicates of human fetal cortex 
Hi-C data, when the same numbers of the loop pixels were called. d, The heatmap examples from 
8 locus in three human fetal brain replicates, and LoopDenoise output showing more reproducible 
contact patterns. The maximum color scale value is labeled on the bottom left of each heatmap.  
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Supplementary Fig.2 LoopDenoise generalization across cell types and species.  
a, Ten heatmap examples in GM12878, the highlight row is the output from LoopDenoise. The 
maximum color scale value is labeled on the bottom left of each heatmap. b, The distance 
distribution of top 300K pixels in H1(hESC), GM12878, IMR90 and mESC. All data are presented 
as means ± SEM from triplicate experiments. c, The number of loops pixels with at least one 
anchor overlapped with ChIP-seq peaks out of top 300K pixels. d, Density plots show the 
distribution of distances between loop anchors (top 100K loop pixels used) and their nearest 
ChIP-seq peaks in GM12878, IMR90, H1(hESC) and mESC. e, The heatmap examples of six loci 
with known long-range gene regulation. The maximum color scale value is labeled on the bottom 
left of each heatmap. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Methods 

Reproducibility between replicates  

We took variable numbers of top loops identified from datasets before and after 
LoopDenoise or LoopEnhance. For each certain number of top loops 𝑁𝑁 , the 
percentage of the overlapping loops between 𝑟𝑟𝑟𝑟𝑟𝑟1 and 𝑟𝑟𝑟𝑟𝑟𝑟2 is the reproducibility.  

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟1⋂𝑟𝑟𝑟𝑟𝑟𝑟2

𝑁𝑁
 

Distance analysis between ChIP-seq peak and Hi-C loops  

We used macs2 (v2.2.7.1) (default parameter) to call peaks for ChIP-seq data in bed 
format. For each bias corrected Hi-C dataset, we ranked the ratio before or after 
denoise and took the top loops. The distance distribution between each anchor region 
involved in the top loops and its closest ChIP-seq peak was shown by 3D-density plots. 
The p-values were calculated by Wilcox test. The 3D-density plots were generated by 
performing multivariate kernel density estimation on the set of all distances to the 
closest ChIP-seq peak for the two anchors participating in each loop. 

Dynamic loop identification between CP and GZ  

All the loops (ratio>=2) from CP and GZ before and after LoopDenoise were taken to 
plot the scatter plot and fed to the linear model (GZ~CP). We took the union of top 500 
loops ranked by residuals from datasets before and after LoopDenoise. The processed 
ATAC-seq bed files were downloaded and merged. 

Compare DeepLoop loop callings to pcHi-C 

To validate the loops identified by LoopDenoise or LoopEnhance with loops identified 
by Promoter Capture Hi-C (pcHi-C), we used a confusion matrix to analyze precision, 
recall, and a ROC curve. To do this, we treated the significant (p-value < 0.01) pcHi-C 
loops as positive labels and all other pcHi-C loops as negative labels. When analyzing 
the PP (promoter-promoter) loops, we only considered the Hi-C loops with two ends 
containing promoters tested in pcHi-C. When analyzing the PO (promoter-other region) 
loops, we considered the loops with at least one end overlapping with promoter tested. 
The selected loops were ranked by ratio values. We treated the top k loops as positive 
classifications and the rest of the values as negative classifications. The true positives 
were the common loops between the significant pcHi-C loops and the top k loops we 
took. False positives were the common loops between the insignificant pcHi-C loops 
and the top k loops we took. False negatives were the loops not in the top k loops but 
were significant in pcHi-C. True negatives were the common loops between the 
insignificant pcHi-C loops and the unselected loops. We varied k from zero up to the 



total number of loops we were considering. This allowed us to measure the true 
positive rate and false positive rate from a purely negative class classifier up to a purely 
positive class classifier and every point in between to plot a ROC curve. For PP 
analysis, we used an interval of 1000 loops when varying k, and for PO we use an 
interval of 5000. mESC pcHi-C loops called by CHICAGO are in Supplementary Table 
3. 

Compare DeepLoop loop callings to ChIA-PET and HiChIP 

The loop callings from ChIA-PET and HiChIP experiments in GM12878 were 
downloaded from the original study13,14 (Supplementary Table 1). We grouped loops in 
these 5 experiments by the number of sharing loops among them. Then we 
summarized the overlapping loops between the grouped loops and the top500K and 
top1M loops identified from down sampled 50M Hi-C datasets before and after 
LoopEnhance, and high-depth data (~380M) before LoopDenoise (shown by pie charts 
in Figure 2f). 
 

Compare the performance of DeepLoop to published Hi-C data analytical 
pipelines 

HiCPlus, HiCNN215, and SRHiC16 studies all provide enhance models trained by 1/16 
down sampled 4-cutter (MboI) GM12878 Hi-C dataset. To avoid the difference of 
training these models by our own, we directly used these models downloaded from 
their original studies. We chose a LoopEnhance model trained by 50M down sampled 
6-cutter (HindIII) human fetal cortex data for the comparison.  For 4-cutter Hi-C 
datasets, we chose a 94M down-sampled dataset (1/16 of the original depth) used in 
HiCPlus, HiCNN2, and SRHiC studies, and the 1.35 billion full-depth as reference. For 
6-cutter Hi-C datasets, we chose a 50M down-sampled dataset and the 380M full-
depth as reference. The conventional pipeline for Hi-C data processing involves 
KR/ICE normalization, we further added distance correction step for a fair comparison 
to HiCorr. The HiCPlus, HiCNN2, and SRHiC models were trained on raw data, the 
pipelines for all three models are to enhance raw contact matrix first and following 
KR/ICE normalization and we further added another column of heatmaps examples by 
correcting distance bias. The LoopEnhance models were trained on HiCorr normalized 
contact matrix, so the DeepLoop pipeline requires HiCorr normalization first and then 
enhanced. In Supplementary Figure. 5, DeepLoop pipelines reveals cleaner contact 
patterns matched with ChIP-seq peak signals in different enzyme based Hi-C datasets. 
 

Compare DeepLoop loop callings to HiCCUPS loop callings from Micro-C  

As we mentioned in “Micro-C” data processing section, we used Juicebox to convert 
5kb bin contact pairs to “Micro-C.hic” format, and then we ran HICCUPS at 5kb 
resolution for all the chromosomes as follows: 



java -jar juicer_ml_tools.jar hiccups –cpu -m 500 -r 5000 -c 
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,X,Y -k KR --threads 12 
MicroC.hic all_hiccups_loops 
We took file “merged_loops.bedpe” as the loop calls to compare with other datasets. 
HiCorr includes distance correction step, therefore, for a fair comparison, we calculated 
“KR-ratio”, which is KR normalization and distance correction, for enhanced low-depth 
output of HiCPlus, HiCNN2, and SRHiC. And the low and high depth “KR-ratio” were 
also included as the reference. For each dataset, we ranked contact pairs by their 
enhanced or normalized value and varied the top ranked contact pairs to calculate 
TPR and RPR comparing to the ground truth data, microC HiCCUPS loop calls. Then 
we used a series of TPR and FPR values to plot ROC curves. 

Compare Hi-C datasets with different restriction enzymes and Micro-C  

The DeepLoop output contacts are 5kb anchor based, which were converted to 5kb 
bin pairs for comparison across restriction enzymes or methods. The Spearman 
correlation was calculated for measurement of consistency between Hi-C datasets and 
Micro-C dataset.  

Compare scHi-C and bulk Hi-C  

ROC curves 
We measured true positive rate and false positive as the following: 

𝑇𝑇𝑇𝑇𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝑁𝑁
 

𝐹𝐹𝑇𝑇𝑅𝑅 =
𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇 +  𝑇𝑇𝑁𝑁
 

Then we plot the true positive rate versus the false positive rate to obtain a Receiver 
Operating Characteristic (ROC) curve. The area under the ROC curve (AUC) is a 
common metric used to validate model performance. To compute this value, we 
considered a set of discrete points in the ROC curve and performed a trapezoidal sum 
to approximate the area under the curve. This is an approximation of the following 
integral: 

� 𝑓𝑓(𝑥𝑥)𝑅𝑅𝑥𝑥
1

0
≈ �∆𝑥𝑥𝑘𝑘

𝑁𝑁

𝑘𝑘=0

 
𝑓𝑓(𝑥𝑥𝑘𝑘−1)  + 𝑓𝑓(𝑥𝑥𝑘𝑘)

2
 

We took the top 300K loops from bulk Hi-C data after LoopDenoise as ground truth 
and took the variable number of top loops from single-cell Hi-C datasets before and 
after LoopEnhance to plot the ROC curve, which is the same strategy as described 
above. 
Accuracy 
We took the top 300,000 loops from high-depth data after LoopDenoise as ground truth 
loops 𝑇𝑇 and took the variable numbers of top loops 𝑅𝑅 from the datasets before and 
after LoopDenoise or LoopEnhance. For each certain number of top loops 𝑁𝑁𝑖𝑖 , the 
fraction between the number of loops overlapped with ground truth and the number of 



top loops is the accuracy. 
 

𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝐴𝐴𝑅𝑅𝑅𝑅 =  𝑁𝑁𝑖𝑖 ∩ 𝑇𝑇 
𝑖𝑖

 , 𝑅𝑅 𝜖𝜖 (1000, 3000, 5000, 100000, 200000, 300000)   

Chromatin Loop-level tissue cluster 

We took the top 100K loops from 14 tissue datasets before and after LoopEnhance 
and calculated the fraction of overlapped loops between every two tissues. Then we 
used corrplot (v0.92) function to generate hierarchical clustering heatmap.  

Human prefrontal cortex sn-m3C-seq methylation clustering 

We compute CG methylation levels (mCG) for non-overlapping 100kb bins in each of 
the 4,238 cells as outlined in the sn-m3C-seq paper. The same filtering strategy is also 
applied by selecting only the bins with at least 20 CG reads in at least 90% of the cells. 
We then use Linear Discriminant Analysis (LDA) to perform a linear dimensionality 
reduction step on the cell-bin matrix. The first 50 dimensions of the LDA embedding 
were visualized with t-SNE. 

Identification of escape loops and repressive loops 

In the top300K loop pixels of maternal and paternal loops, 3,605 loops are on chrX. 
The loops that are in the top300K ranked in both maternal and paternal were defined 
as “escape loops”. The loops that are only identified in maternal (active allele) but not 
in paternal (inactive allele) were identified as “repressive loops”.  

Identification of SVs by loops 

We applied HiCorr and 50M LoopEnhance models on the two alleles datasets from 4-
cutter GM12878 and took the union of the top 300K loops from each allele. The 10-
fold was used to define the extremely specific loops between two alleles. We merged 
these loops with distance less than 50kb, and found they mainly locate in four loci. We 
extended 100kb upstream and downstream of escape gene promoters to overlap with 
loop pixels (Supplementary Table 4). 

Fix Inversion Hi-C 

To fix two inversion loci identified from extremely specific loops, we estimated the 
breakpoints considering the Hi-C heatmap pattern and location reported in other 
studies. We reverted the inversion loci before applying HiCorr and flipped the region 
when the HiCorr and DeepLoop were done. 

Motif analysis on specific loops 

The 769 human motifs (.meme format) was downloaded from HOCOMOCO (v11) motif 



database17 (https://hocomoco11.autosome.ru/downloads_v11). The 51bp (25bp 
up/down) long sequence centered around SNPs in allele-specific loop anchors from 
two allele genomes were treated as loop-positive sequence and loop-negative 
sequence. We used fimo (v4.11.2)18 to scan each motif in the database on the two 
sequence datasets. Considering the bias of motif length, we chose “q-value<0.3” as 
the cutoff to summarize the frequency of each motif on the loop-positive and loop-
negative sequence sets. Then, the fisher. Exact test was performed to measure the 
motif enrichment in two sets, the motifs with “p-value<=0.05” were defined as 
significantly enriched motifs in loop-positive sequence (Supplementary Table 5). 

Identification of SNPs that impact chromatin loops 

In the 20,772 CTCF peaks with CTCF motif, 809 CTCF peaks contain SNPs. We 
further filtered these peaks by overlapping the top 300K loops identified in two alleles. 
Two-fold was chosen to define specific binding peaks and specific loops between two 
alleles. The consistently specific peaks refer to the peaks with specific binding and 
specific loops (e.g., maternal-specific binding peaks overlap maternal-specific loops) 
(Supplementary Table 6). 
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