Supplementary Information

SI Text 1. Analysis including participants aged "3 or younger" and "17 or older"

In the main text, we excluded participants who reported their age in the ambiguous response categories of "3 or under" or "17 or older", as these spanned wider ranges of possible ages than the other, one-year response categories, complicating their interpretation. As this exclusion decision was not preregistered, for transparency we repeated the main analyses without excluding these two groups, so as to ensure that the post-hoc exclusion decision did not affect our conclusions.

It did not: accurate discrimination was robustly replicated within both "3 or under" (lullaby d' = 1.16, 95% CI [1.00 1.32]; dance d' = 1.21, 95% CI [1.09 1.32]; healing d' = 0.56, 95% CI [0.44 0.67]) and "17 or older" (lullaby d' = 1.36, 95% CI [1.29 1.42]; dance d' = 1.30, 95% CI [1.25 1.35]; healing d' = 0.48, 95% CI [0.43 0.53]). These findings raise the possibility that the ability to discriminate form and function in music may well extend to children younger than four years of age.

Other key findings reported in the main text, such as those concerning age effects, did not change substantively when including these two groups. For brevity, we did not repeat them here, but readers interested in exploring this question are welcome to use our open data and code to do so.

SI Text 2. Variation across countries, languages, and songs

Because the instructions of the experiment were only presented in English, there could be differences in performance between children whose native language is English and children whose native language is not English.

We tested this question in two ways. First, we replicated the main d' analyses using only data from Englishspeaking participants. The findings robustly replicated, with slightly lower scores (dance d' = 1.03; lullaby d' = 0.96; healing d' = 0.23; ps < 0.05). The effect of age was not statistically significant for any of the song types (ps > 0.05).

Second, as a more general test of this issue, we measured the degree of variability across the 127 countries of origin and the 128 languages using coefficient of variation scores derived from a mixed-effects model predicting accuracy. In each case we found very little variation (0.045 and 0.034, respectively). To put these scores in context, the coefficient of variation for the 88 songs used in the experiment was 0.463 (i.e., $\sim 10/20$ times larger).

Together, this suggests that the heterogeneity of our participants, and the varying degrees to which the children may have comprehended English, likely had a negligible influence on our results.

Supplementary Figures

SI Figure 1. The distributions of ages and genders of the participants.

SI Figure 2. The approximate locations of societies in which the *Natural History of Song Discography* recordings used in the experiment were originally recorded.

SI Figure 3. The time-series of recruitment in children and adults. The histograms show the number of participants (after exclusion) that completed the experiments (the child version, top; or adult version, bottom) between 2019 and 2022. The date of participation is indicated on the x-axis. The annotations on each plot indicate specific events that coincided with spikes in participation, such as viral posts on social media, news coverage, etc. Other than these explicable spikes in participation, we see evidence of steady recruitment commensurate with all of our prior and current online experiments, suggesting that the participants were genuine, and not malicious entities (i.e., bots).

Children from Turkey

Children from the United Kingdom

Adults from the United States

Adults from Turkey

0/24

12

Children

81%

19%

Children

83%

17%

Adults

70%

30%

Adults

58%

42%

SI Figure 4. The timing of participation differs across children and adults across five high-recruitment countries. The polar histograms show the relative proportion of the cohort that participated at a particular time of day (on a 24-hour clock); the two shades differentiate an arbitrary threshold of 'day' versus 'late night/early morning' participation (see legend). The bar plots show the proportions between these two cutoffs in the data. The distributions of participation times differ markedly across the cohorts, with general consistency across countries within each cohort. This suggests that the participants who self-report being children are, in fact, children, as they are less likely to participate late at night. Note that four of the plotted countries have a single time zone; the United States data is aggregated across three time zones, but is included here as that country had the largest samples of children and adults.

SI Figure 5. Children's response times, aggregated across all trials, as a function of age. Response times were comparable across song types. Note that the *y*-axis is on a log scale.

SI Figure 6. Response biases and criterion scores for the children were stable across ages. (a) The stacked-bar graphs represent the proportion of responses for each of the three song categories over age. The colors of the bars represent the response types; evidently, they were not evenly used. (b) We estimated criterion values for each age group, where higher criterion denotes more conservative guessing and lower criterion values denote more liberal guessing. The circles represent the criterion estimates; the lines depict a linear regression for each song type; and the shaded regions represent the 95% confidence intervals from each regression. None of the regressions were statistically significant (ps > 0.05). Participants required the strongest evidence to make a lullaby guess and required the least evidence to make a dance guess.

SI Figure 7. A simulation shows that the pooled d-prime provides a less biased estimate of sensitivity than does an average of participant-level d-prime estimates. The typical approach for calculating cohort-level sensitivity is to first calculate d-prime scores for each participant, and then take their average. However, our experiment had a small number of trials per participant (in part because young children have short attention spans); this meant that there were limited numbers of signal and noise trials for each participant, rendering the participant-level estimates difficult to interpret. In cases like these, Macmillan & Kaplan (1985) advocate for a collapsed/pooled d-prime approach. To test whether our particularly large sample size (~5000 children) would compensate for the deficiencies of sparse within-subject sampling, we ran a simulation to test whether averaged d-prime or pooled d-prime would be optimal. The simulation used the same number of participants in our study and simulated the ability of each approach to estimate a true effect size over a range of within-subject trial counts. The two plots show the estimated size of error in each method (on the *y*-axes), at differing numbers of signal trials per participant (on the *x*-axes). The results show that the averaging d-prime approach underestimates the true effect by ~20%, and the pooled approach is unbiased. We therefore opted to use the pooled d-prime approach in the main analyses.

SI Figure 8. Children's accuracy of classifying songs was not related to their in-home musical experiences: across different levels of (\mathbf{a}) the frequency of parental singing and (\mathbf{b}) the frequency of recorded music listening, person-wise accuracy did not change. The thick lines represent medians; the boxes represent interquartile ranges; the lines represent ranges; and the shaded areas depict kernel density estimates.

SI Figure 9. The similarity between between children's and adult's inferences is high and modestly increases through childhood. We measured the similarity between children's and adult's inferences as the proportion of variance explained (\mathbb{R}^2) by regressing the average song-wise inferences of children on the adults, for each of the 13 yearlong age bins. We then constructed a regression model that predicted these \mathbb{R}^2 values from the interaction between the guessed category for each song and age of the children, producing the regression lines shown in the figure for each response type (dance, lullaby, or healing song). The shaded areas representing 95% confidence interval and the points representing the raw values. The main effect of age was statistically significant (p < 0.001) but the interaction of age with song-type was not (p = 0.09).

Supplementary Tables

Children		Adults		
Language	n	Language	n	
English	2,941	English	52,63	
Turkish	316	Spanish	11,32	
Spanish	294	Turkish	5,099	
Chinese/Mandarin	131	German	4,350	
German	128	French	3,122	
Chinese/Cantonese/Yue	66	Polish	3,048	
French	63	Portuguese	2,917	
Italian	61	Dutch	2,754	
Polish	52	Danish	2,590	
Russian	52	Russian	2,288	
Indonesian	48	Swedish	2,281	
Vietnamese	44	ChineseMandarin	1,750	
Portuguese	43	Italian	1,645	
Dutch	37	Indonesian	1,093	
Arabic	34	ChineseCantoneseYue	1,065	
Tagalog	30	Norwegian	939	
Tamil	30	Finnish	896	
Swedish	27	Greek	831	
Hebrew	26	Romanian	788	
Hindi	25	Tagalog	768	
Romanian	25	Arabic	716	
Chinese/Taiwanese/Min	21	Hindi	654	
Nan/Hokkien				
Catalan	18	Hungarian	610	
Malayalam	18	Croatian	533	
Norwegian	18	Vietnamese	509	
Greek	17	Czech	500	
Korean	17	Japanese	463	
Khmer	16	Other	431	
Other	16	Serbian	421	
Czech	15	Hebrew	382	

SI Table 1 The native languages of participants, reported in the child and adult cohorts. For brevity, only the 30 most-commonly reported languages are displayed here.

Children		Adults			
Country	n	Country	\overline{n}		
United States	2,031	United States	32,848		
Canada	361	United Kingdom	$7,\!119$		
Turkey	313	Canada	4,956		
United Kingdom	269	Turkey	4,661		
Australia	201	Australia	4,164		
Germany	124	Germany	$3,\!978$		
Spain	83	Spain	3,042		
China	80	Denmark	2,700		
Singapore	79	Argentina	2,627		
New Zealand	73	Poland	$2,\!607$		
Argentina	65	Sweden	2,365		
Italy	63	France	2,057		
Hong Kong	60	Brazil	1,861		
Indonesia	60	India	1,735		
India	56	Mexico	1,711		
Malaysia	52	Italy	1,502		
Poland	46	The Netherlands	1,499		
Philippines	44	Russia	1,415		
France	43	Singapore	1,394		
Mexico	42	Belgium	1,087		
Russian Federation	40	Indonesia	1,041		
Sweden	38	Norway	1,006		
Netherlands	35	Colombia	996		
Brazil	33	Philippines	970		
Taiwan	33	Chile	948		
Vietnam	32	Finland	934		
Colombia	31	China	883		
Austria	27	Kingdom of the Netherlands	834		
Israel	26	Portugal	810		
Chile	25	Malaysia	765		

SI Table 2 The countries where participants were located, reported in the child and adult cohorts. For brevity, only the 30 most-commonly reported countries are displayed here.

Song ID	Туре	Society	Country (present-day)	Language
1	Lullaby	Lardil	Australia	Aranda
2	Healing	Anggor	Papua New Guinea	Anggor
3	Lullaby	Blackfoot	USA	Blackfoot
4	Healing	Uttar Pradesh	India	Andamans
5	Dance	Emberá	Colombia	Emberá
6	Healing	Akan	Côte d'Ivoire	Akan
7	Lullaby	Nahua	Mexico	Maya (Yucatan Peninsula)
8	Healing	Yapese	Federated States of Micronesia	Chuuk
9	Dance	Yolngu	Australia	Aranda
10	Dance	Aymara	Chile	Aymara
11	Lullaby	Saami	USA	Saami
12	Dance	Bahia Brazilians	Brazil	Bahia Brazilians
14	Healing	Seri	Mexico	Huichol
15	Healing	Ye'kuana	Venezuela	Javaé
16	Dance	Aka	Central African Republic	Aka
17	Healing	Lunda	Democratic Republic of the Congo	Bemba
18	Dance	Greeks	Greece	Georgia
19	Dance	Sweden	Sweden	Saami
20	Healing	Iroquois	Canada	Iroquois
21	Dance	Iroquois	New York	Iroquois
22	Healing	Maya (Yucatan Peninsula)	Mexico	Maya (Yucatan Peninsula)
23	Lullaby	Goajiro	Venezuela	Chachi
24	Dance	Gourara	Algeria	Gourara
25	Dance	Ojibwa Jarra ć	USA Brezil	Copper Inuit
20 27	Hopling	Javae Bahia Brazilians	Brozil	Javae Bahia Brazilians
21	Lullaby	Chewa	Malawi	Bemba
20	Lullaby	Aka	Central African Republic	Aka
30	Healing	Georgia	East Georgia	Georgia
31	Dance	Ainu	Japan	Ainu
32	Lullaby	Highland Scots	United Kingdom	Highland Scots
33	Lullaby	Seri	Mexico	Huichol
34	Dance	Garo	India	Andamans
35	Lullaby	Kurds	Iran	Kurds
36	Lullaby	Fut	Cameroon	Akan
37	Dance	Hawaiians	USA	Hawaiians
38	Lullaby	Samoans	Samoa	Hawaiians
39	Healing	Kuna Manathi	Panama	Embera
40	Hoaling	Pawpoo		Blackfoot
41	Lullaby	Guarani	Bolivia	Bahia Brazilians
43	Healing	Meratus	Indonesia	Central Thai
44	Lullaby	Ainu	Japan	Ainu
45	Dance	Maasai	Tanzania	Amhara
46	Healing	Korea	South Korea	Ainu
47	Healing	Turkmen	Iran	Kurds
48	Lullaby	Chukchee	Russia	Chukchee
49	Dance	Lozi	Zambia	Bemba
50	Lullaby	Kanaks	New Caledonia	Anggor
51	Lullaby	Greeks	Greece	Georgia
52	Dance	Thingit	USA	Haida
53 54	Lullaby	Tuareg	Mall	Gourara
55	Lullaby	Nyangatom	Ethiopia	Amhara
56	Dance	Chachi	Ecuador	Chachi
57	Dance	Chuuk	Federated States of Micronesia	Chuuk
58	Healing	Quechan	USA	Норі
59	Healing	Hawaiians	USA	Hawaiians
60	Dance	Kanaks	New Caledonia	Anggor
61	Healing	Tunisians	Tunisia	Gourara
62	Dance	Kurds	Iran	Kurds
63	Lullaby	Haida	Canada	Haida
64	Dance	Mataco	Argentina	Alacaluf
65	Dance	Saramaka	Suriname	Javaé
66	Dance	Mentawaians	Indonesia	Central Thai
67 68	Dance	Ewe	Ghana	Akan
60 60	Lullaby	Kuna	Argontino	Embera
09	Lunaby	Ona	Argentina	Alacalul

Song ID	Type	Society	Country (present-day)	Language
70	Healing	Oiibwa	USA	Copper Inuit
71	Dance	Tzeltal	Mexico	Mava (Yucatan Peninsula)
72	Lullaby	Iglulik Inuit	Canada	Copper Inuit
73	Lullaby	Q'ero Quichua	Peru	Aymara
74	Lullaby	Iroquois	Canada	Iroquois
75	Healing	Nanai	Russia	Chukchee
76	Dance	Highland Scots	United Kingdom	Highland Scots
77	Dance	Chukchee	Russia	Chukchee
78	Healing	Mataco	Argentina	Alacaluf
79	Healing	Walbiri	Central and North-Central Australia	Aranda
80	Healing	Kogi	Colombia	Chachi
81	Dance	Норі	USA	Норі
82	Lullaby	Норі	USA	Норі
83	Healing	Otavalo Quichua	Ecuador	Aymara
84	Healing	Ganda	Uganda	Amhara
85	Lullaby	Yapese	Federated States of Micronesia	Chuuk
86	Dance	Yaqui	Mexico	Huichol
87	Healing	Mbuti	Congo	Aka
88	Lullaby	Phunoi	Laos	Central Thai

SI Table 3 Summary information about the songs chilren heard.

Feature	Туре	Selection	Definition	Scoring
Accent	Expert Annotation	Dance, Lullaby	The differentiation of musical pulses, usually by volume or emphasis of articulation. A fluid, gentle song will have few accents and a correspondingly low value.	"none" (0); "a little" (0.5); or "a lot" (1).
Tempo	Expert Annotation	Dance, Lullaby, Healing	The rate of salient rhythmic pulses (measured by having annotators tap the beat), adjusted to correspond with 'quarter note' equivalent; measured in beats per minute; the perceived speed of the music. A fast song will have a high value.	range: 61-205
Metrical stability	Expert Annotation	Dance Lullaby, Healing	The perceived clarity of the metrical rhythmic structure (groupings of perceived strong and weak beats).	Scale from 1 - 6, ranging from "No macrometer" (1) to "Totally clear macrometer" (6)
Melodic simplicity	Transcription	Lullaby, Healing	Variety versus monotony of the melody, measured as the proportion of notes in the transcription corresponding to the most common pitch-class.	range: 0.15 - 1
Vibrato	Expert Annotation	Lullaby, Healing	Presence of vibrato in the singing. Vibrato is a rapid, slight oscillation in pitch that is typically perceived as adding intensity.	"not present" (0); "present" (1)
Syncopation	Expert Annotation	Healing	The degree of of syncopation in the song (roughly equateable with 'rhythmic complexity'). Syncopation is when rhythmic accents align with metrically weak positions of a metrical beat structure (e.g., having accents half way between when people tap their foot rather than directly aligned with the foot taps).	"none" (0); "a little" (0.5); or "a lot" (1).
Maj (-) / min (-) tonality	Transcription	Healing, Lullaby	Tonal quality or mode of the transcription (major or minor) based on the Krumhansl-Schmuckler key-finding algorithm.	"Major" (0); "Minor" (1)
Ornamentation	Expert Annotation	Lullaby	Melodic embellishment by the singer, usually via rapid 'passing notes' that decorate a simpler underlying melodic structure.	"not present" (0); "present" (1)
Note Density	Transcription	Lullaby	The average number of notes per second in a given song	range: 0.44 - 6.82
Note Duration	Transcription	Dance, Lullaby	The average duration per note, in seconds.	range: 0.17 - 2.04
Intervallic distinctiveness	Transcription	Lullaby, Healing	Fraction of melodic intervals that belong to the second most common interval divided by the fraction of melodic intervals belonging to the most common interval; 0 if there are not two distinct most common melodic intervals.	range: 0 - 1
Duple rhythm	Expert Annotation	Dance, Lullaby	The presence of duple subdivisions of the beat	range: 0 - 1

SI Table 4 Musical features selected by LASSO procedure. The features were derived from either *Transcription* or *Expert Annotation* datasets from Mehr et al. (2019). The "Selection" column denotes which of the three song types the feature was selected for. The "Scoring" column denotes the original scale of the feature score (note, however, that all features were z-scored in the analysis).

		Children				Adults (relative to Children)			
Predictor	β	SE	t	р	β	SE	t	р	
Intercept	0.346	0.019	18.698	< 0.001	0.076	0.026	2.885	0.004	
Accentuation	0.137	0.021	6.372	< 0.001	0.026	0.030	0.871	0.385	
Tempo	0.138	0.022	6.308	< 0.001	0.000	0.031	-0.002	0.998	
Metrical clarity	0.145	0.020	7.272	< 0.001	-0.003	0.028	-0.096	0.924	
Duple rhythm	0.061	0.019	3.152	0.002	0.008	0.027	0.285	0.776	
Note duration	0.063	0.021	2.956	0.004	0.006	0.030	0.197	0.844	

SI Table 5 Musical features influencing children's "dance" guesses, compared to those of adults. The LASSO-selected correlates for children are listed on the left side of the table; those of adults are on the right side and are tested relative to the children (i.e., from the interaction terms in the model). No musical features show a significant difference between children and adults, indicating that the two groups' inferences are guided similarly by the musical features studied here.

		Children				Adults (relative to Children)				
Predictor	β	SE	t	р	β	SE	t	р		
Intercept	0.274	0.017	15.798	< 0.001	-0.058	0.025	-2.368	0.019		
Accentuation	-0.131	0.022	-5.928	< 0.001	0.021	0.031	0.673	0.502		
Melodic simplicity	-0.091	0.022	-4.164	< 0.001	0.012	0.031	0.393	0.695		
Tempo	-0.052	0.023	-2.308	0.022	0.004	0.032	0.118	0.906		
Note duration	-0.096	0.024	-3.995	< 0.001	0.020	0.034	0.601	0.549		
Maj(-)/min(+) tonality	0.047	0.019	2.506	0.013	-0.005	0.026	-0.204	0.838		
Ornamentation	-0.054	0.023	-2.402	0.018	0.002	0.032	0.065	0.948		
Intervallic distinctiveness	-0.047	0.020	-2.356	0.020	-0.002	0.028	-0.056	0.955		
Note density	-0.068	0.027	-2.514	0.013	0.016	0.038	0.404	0.687		
Metrical clarity	-0.064	0.021	-3.031	0.003	0.012	0.030	0.416	0.678		
Vibrato	-0.031	0.022	-1.394	0.165	0.018	0.031	0.593	0.554		
Duple rhythm	-0.043	0.019	-2.303	0.023	0.007	0.026	0.279	0.781		

SI Table 6 Musical features influencing children's "lullaby" guesses, compared to those of adults. The LASSO-selected correlates for children are listed on the left side of the table; those of adults are on the right side and are tested relative to the children (i.e., from the interaction terms in the model). No musical features show a significant difference between children and adults, indicating that the two groups' inferences are guided similarly by the musical features studied here.

		Children				Adults (relative to Children)			
Predictor	β	SE	t	р	β	SE	t	р	
Intercept	0.379	0.016	24.199	< 0.001	-0.017	0.022	-0.785	0.434	
Metrical clarity	-0.070	0.018	-3.978	< 0.001	-0.011	0.025	-0.454	0.651	
Tempo	-0.058	0.018	-3.184	0.002	-0.016	0.026	-0.619	0.537	
Maj(-)/min(+) tonality	-0.056	0.016	-3.494	< 0.001	0.017	0.023	0.731	0.466	
Syncopation	-0.018	0.018	-1.009	0.315	-0.015	0.025	-0.604	0.547	
Vibrato	0.057	0.016	3.456	< 0.001	-0.031	0.023	-1.344	0.181	
Melodic simplicity	0.064	0.017	3.855	< 0.001	-0.021	0.024	-0.889	0.375	

SI Table 7 Musical features influencing children's "healing" guesses, compared to those of adults. The LASSO-selected correlates for children are listed on the left side of the table; those of adults are on the right side and are tested relative to the children (i.e., from the interaction terms in the model). No musical features show a significant difference between children and adults, indicating that the two groups' inferences are guided similarly by the musical features studied here.

		Children				Objective (relative to Children)			
Predictor	β	SE	t	р	β	SE	t	р	
Intercept	0.422	0.014	31.166	< 0.001	-0.083	0.019	-4.312	< 0.001	
Accentuation	0.163	0.016	10.405	< 0.001	-0.101	0.022	-4.535	$<\!0.001$	
Tempo	0.137	0.016	8.626	< 0.001	-0.054	0.023	-2.401	0.017	
Metrical clarity	0.142	0.015	9.765	< 0.001	-0.072	0.021	-3.469	< 0.001	
Duple rhythm	0.068	0.014	4.865	< 0.001	-0.071	0.020	-3.598	< 0.001	
Note duration	0.069	0.016	4.425	< 0.001	-0.069	0.022	-3.134	0.002	

SI Table 8 Musical features influencing children's "dance" guesses, compared to the features that objectively distinguish song types from one another. The LASSO-selected correlates for children are listed on the left side of the table; those that reliably correlate with song types across world regions are on the right side and are tested relative to the children (i.e., from the interaction terms in the model). Contrasting SI Tables 5-7, quite a few features differ significantly, indicating that in many cases, chilren's intuitions (erroneously) deviate from the objective differences between song types.

		Children				Objective (relative to Children)				
Predictor	β	SE	t	р	β	SE	t	р		
Intercept	0.216	0.011	19.128	< 0.001	0.125	0.016	7.789	< 0.001		
Accentuation	-0.110	0.014	-7.645	< 0.001	-0.016	0.020	-0.782	0.435		
Melodic simplicity	-0.079	0.014	-5.544	< 0.001	0.078	0.020	3.890	< 0.001		
Tempo	-0.049	0.015	-3.289	0.001	0.015	0.021	0.735	0.463		
Note duration	-0.076	0.016	-4.833	< 0.001	0.078	0.022	3.545	< 0.001		
Maj(-)/min(+) tonality	0.041	0.012	3.407	< 0.001	-0.032	0.017	-1.852	0.066		
Melodic ornamentation	-0.052	0.015	-3.549	< 0.001	0.050	0.021	2.395	0.018		
Intervallic distinctiveness	-0.048	0.013	-3.742	< 0.001	0.048	0.018	2.655	0.009		
Note density	-0.053	0.018	-2.985	0.003	0.051	0.025	2.048	0.042		
Metrical clarity	-0.051	0.014	-3.754	< 0.001	0.018	0.019	0.925	0.356		
Vibrato	-0.012	0.014	-0.853	0.395	0.014	0.020	0.717	0.475		
Duple meter	-0.036	0.012	-2.933	0.004	0.040	0.017	2.304	0.023		

SI Table 9 Musical features influencing children's "lullaby" guesses, compared to the features that objectively distinguish song types from one another. The LASSO-selected correlates for children are listed on the left side of the table; those that reliably correlate with song types across world regions are on the right side and are tested relative to the children (i.e., from the interaction terms in the model). Contrasting SI Tables 5-7, quite a few features differ significantly, indicating that in many cases, chilren's intuitions (erroneously) deviate from the objective differences between song types.

		Children				Objective (relative to Children)			
Predictor	β	SE	t	р	β	SE	t	р	
Intercept	0.362	0.011	31.847	< 0.001	-0.042	0.016	-2.613	0.010	
Metrical clarity	-0.082	0.013	-6.372	< 0.001	0.051	0.018	2.840	0.005	
Tempo	-0.074	0.013	-5.599	< 0.001	0.042	0.019	2.257	0.025	
Maj(-)/min(+) tonality	-0.040	0.012	-3.395	< 0.001	0.027	0.017	1.627	0.106	
Sycopation	-0.033	0.013	-2.570	0.011	0.058	0.018	3.169	0.002	
Vibrato	0.026	0.012	2.146	0.033	-0.015	0.017	-0.881	0.380	
Melodic simplicity	0.043	0.012	3.583	< 0.001	-0.028	0.017	-1.655	0.100	

SI Table 10 Musical features influencing children's "healing" guesses, compared to the features that objectively distinguish song types from one another. The LASSO-selected correlates for children are listed on the left side of the table; those that reliably correlate with song types across world regions are on the right side and are tested relative to the children (i.e., from the interaction terms in the model). Contrasting SI Tables 5-7, quite a few features differ significantly, indicating that in many cases, chilren's intuitions (erroneously) deviate from the objective differences between song types.