

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Monitoring SARS-CoV-2 incidence and seroconversion in a university cohort in California, June to August 2020

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063999
Article Type:	Original research
Date Submitted by the Author:	20-Apr-2022
Complete List of Authors:	Hunter, Lauren; University of California Berkeley, School of Public Health Wyman, Stacia; University of California Berkeley, Innovative Genomics Institute Packel, Laura; University of California Berkeley, School of Public Health Facente, Shelley; University of California Berkeley, School of Public Health Facente Consulting, Li, Yi; University of California Berkeley, School of Public Health Harte, Anna; University of California Berkeley, University Health Services Nicolette, Guy; University of California Berkeley, University Health Services the IGI SARS-CoV-2 Testing Consortium, N/A; University of California Berkeley, Innovative Genomics Institute Di Germanio, Clara; Vitalant Research Institute; University of California San Francisco, Department of Laboratory Medicine Reingold, Art; University of California Berkeley, School of Public Health Petersen, Maya L.; University of California Berkeley, School of Public Health
Keywords:	COVID-19, EPIDEMIOLOGY, Public health < INFECTIOUS DISEASES, Infection control < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
5
6
6 7 8 9 10
, Q
0
9
10
11
12
13
14
15
16
17
18
12 13 14 15 16 17 18 19
20
20
22 23
23
22 23 24 25 26 27 28 20
25
26
27
28
29
30
31
32
33
34 35
35
36
36 37 38
20
20
39
40
41
42
43
44
45
46
47
48
49
50
50
52
52 53
53 54
55
56
57
58
59

1 2

3

1 **Title:** Monitoring SARS-CoV-2 incidence and seroconversion in a university cohort in California,

- June to August 2020 2
- 4 Authors: Lauren A. Hunter, MPH¹; Stacia Wyman, PhD, MS²; Laura Packel, PhD¹; Shelley
- 5 Facente, PhD^{1,3-4}; Yi Li, BS¹; Anna Harte, MD⁵; Guy Nicolette, MD⁵; the IGI SARS-CoV-2
- Testing Consortium²; Clara Di Germanio, PhD⁴; Michael P. Busch, MD PhD^{4,6}; Arthur Reingold, 6
- MD¹; Maya Petersen, MD PhD¹ 7
- 8 ¹ School of Public Health; University of California, Berkeley; Berkeley, CA
- 9 ² Innovative Genomics Institute; University of California, Berkeley; Berkeley, CA
- 10 ³ Facente Consulting; Richmond, CA
- 11 ⁴ Vitalant Research Institute; San Francisco, CA
- 12 ⁵ University Health Services; University of California, Berkeley; Berkeley, CA
- 13 ⁶ Department of Laboratory Medicine: University of California, San Francisco; San Francisco,
- 14

15

16 **Correspondence to:**

CA

- 17 Ms. Lauren Hunter
- 18 **Division of Epidemiology and Biostatistics**
- 19 University of California, Berkeley School of Public Health
- 20 2121 Berkeley Way #5302
- 21 Berkeley, CA 94720
- 22 lahunter@berkeley.edu

60

- 24 **Word count:** 3,916
- 25 Abstract word count: 290
- 26 Number of tables/figures: 5 (2 supplementary)

BMJ Open

2 3 4	27	Abstract
5 6	28	Objective: To inform effective SARS-CoV-2 mitigation strategies in university settings, we
7 8	29	piloted an integrated symptom and exposure monitoring and testing system among a cohort of
9 10	30	university students and employees.
11 12	31	Methods: We aimed to identify incident SARS-CoV-2 infections in a longitudinal cohort of 2,180
13 14	32	students and 738 employees of a public university in California from June to August 2020. At
15 16	33	baseline and endline, we tested participants for active SARS-CoV-2 infection via quantitative
17 18	34	polymerase chain reaction (qPCR) test and collected blood for antibody testing. Participants
19 20	35	received notifications to complete additional qPCR tests throughout the study if they reported
21 22 22	36	symptoms or exposures in daily surveys or were selected for surveillance testing. Viral whole
23 24 25	37	genome sequencing was performed on positive qPCR samples, and phylogenetic trees were
25 26 27	38	constructed with these genomes and external genomes retrieved from GISAID.
28 29	39	Results: Over the study period, 57 students (2.6%) and 3 employees (0.3%) were diagnosed
30 31	40	with SARS-CoV-2 infection via qPCR test. Phylogenetic analyses revealed that a super-
32 33	41	spreader event among undergraduates in congregate housing accounted for at least 48% of
34 35	42	cases but did not spread beyond campus. Test positivity was higher among participants who
36 37	43	self-reported symptoms (incidence rate ratio [IRR]: 12.4; 95% confidence interval [CI]: 7.3, 21.3)
38 39	44	or had household exposures (IRR: 12.3; 95% CI: 5.6, 26.9) which triggered notifications to test.
40 41 42	45	Most (91%) participants with newly identified antibodies at endline had been diagnosed with
42 43 44	46	incident infection via qPCR test during the study.
45 46	47	Conclusions: Our findings suggest that integrated monitoring systems can successfully identify
47 48	48	and link at-risk students to SARS-CoV-2 testing. Building upon such systems may prove key in
49 50	49	the next stage of the pandemic, as universities grapple with highly transmissible variants,
51 52	50	incomplete vaccine coverage and breakthrough infections, and reduced reliance on prevention
53 54	51	strategies such as masking and remote learning.
55 56		
57		

1 2 3	52	Strengths and limitations of this study
4 5 6	53	• The study is strengthened by rich longitudinal data including more than 117,000 daily
7 8	54	symptom surveys; 17,000 weekly exposure surveys; 7,600 qPCR tests to detect active
9 10	55	SARS-CoV-2 infection; and 4,900 antibody tests to detect previous infection collected
11 12	56	from 2,918 university students and employees over three months.
13 14	57	Using seroconversion data from serial antibody tests and phylogenetic analyses
15 16	58	comparing viral genome sequences to a broader database, we were able to evaluate the
17 18	59	extent to which the study system identified incident cases and contained an outbreak
19 20 21	60	among university students. However, our identification of participants who seroconverted
21 22 23	61	between baseline and endline may be incomplete due to loss-to-follow up and imperfect
24 25	62	sensitivity of SARS-CoV-2 antibody testing.
26 27	63	A high proportion of identified cases were traced to one outbreak, limiting the
28 29	64	generalizability of our exploratory assessment of risk factors for incident infection. While
30 31	65	self-referral into the study in the context of the outbreak is likely to induce selection bias,
32 33	66	it also illustrates the utility of implementing non-stigmatizing, incentivized testing
34 35	67	approaches to increase testing uptake among at-risk students.
36 37	68	As the study took place before the development of highly transmissible variants and
38 39 40	69	vaccine rollout, further research is necessary to adapt and evaluate similar systems in
41 42	70	the context of both heightened transmissibility and more prevalent natural and vaccine-
43 44	71	induced immunity.
45 46		
47 48		
49 50		
51 52		
53 54		
55 56 57		
57 58		3

BMJ Open

3
4
5
6
7
8
9
9 10
11 12
12
13 14
14 15
16
17 18
18 19
19 20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
<u> </u>

60

72 Background

73 Universities have been identified as hotspots for SARS-CoV-2 transmission in the United 74 States,¹ where SARS-CoV-2 incidence is highest among young adults.² Young adults may be 75 less likely to adhere to social distancing guidelines and more likely to experience workplace 76 exposure (for example, at food service or retail jobs).² Their risk may be heightened in university 77 settings where many live in congregate housing, interact with wide social networks, or attend 78 large gatherings.³ Although young adults are at low risk of serious acute illness or death from 79 COVID-19 (the disease caused by SARS-CoV-2),⁴ the higher likelihood of asymptomatic or 80 mildly symptomatic infection in this age group makes young adults a key population through 81 which SARS-CoV-2 may be spread to other, more vulnerable groups.^{2,5} Indeed, there is 82 evidence that transmission among university students may lead to increased COVID-19-related 83 mortality in the surrounding counties.^{6–8} Although widespread vaccination has enabled most 84 campuses to return to in-person activities, the elimination of SARS-CoV-2 transmission in 85 campus populations may be stymied by vaccine hesitancy among students and employees and 86 breakthrough infection and subsequent transmission by vaccinated persons, particularly in the 87 context of waning immunity and viral variants which reduce vaccine efficacy.^{9,10} Therefore, rapid 88 and resource-efficient identification of incident cases in university populations is a critical first 89 step of outbreak investigation and control, followed by isolation, case investigation, and contact 90 tracing, to minimize transmission within campus and to the broader community.

91 Universities have adopted a wide range of approaches for testing and outbreak
 92 mitigation.^{11–13} While a number of well-resourced universities have scaled up testing capacity in
 93 order to frequently test all students and employees accessing campus or living in university 94 affiliated housing,¹³ many other universities do not have well-defined testing strategies or restrict
 95 testing to those with symptoms or known exposure.¹² Beyond investing in testing programs,
 96 some universities have sought to reduce on-campus transmission by mandating the completion
 97 of self-administered symptom screening tools by students and employees. However, such tools

have primarily been used to regulate daily access to campus (i.e., deny entry to those who
report COVID-19-like symptoms), rather than to detect emergent outbreaks among university
populations. As universities resume normal operations and discontinue mitigation strategies
such as masking, non-punitive, resource-efficient strategies which can both identify those who
are at highest risk of infection *and* expediently link them to low-barrier testing services may play
a key role in transitioning from a "one-size-fits-all" approach of uniform testing to a sustainable
monitoring paradigm.

In 2020, we piloted an integrated symptom and exposure monitoring and testing system designed to identify incident SARS-CoV-2 infections among a cohort of university students and employees.¹⁴ Here we describe the incidence and seroprevalence of SARS-CoV-2 infection within this cohort to evaluate the extent to which incident infections were successfully detected and contained over the study period, identify sociodemographic factors associated with incident infection, and ascertain which self-reported symptoms and exposures tracked by the monitoring system were predictive of test positivity, with the ultimate objective of informing monitoring and testing strategies in university settings.

7 114 Methods

115 Study design and setting

The study comprised three prospective cohorts of University of California, Berkeley affiliates followed from June to August 2020: students, essential workers (i.e., employees working on campus in health, facilities, or key student services), and other employees (hereafter, "faculty/staff"). We report the findings according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist for cohort studies.¹⁵ Throughout the study period, UC Berkeley did not offer in-person classes, and on-campus work was restricted to essential workers and a small subset of faculty, staff, and student researchers. Although few students were living in on-campus residence halls, many

BMJ Open

1 2		
3 4	124	students continued to live in congregate living settings off campus, such as fraternities,
5 6	125	sororities, and co-operative housing.
7 8	126	
9 10	127	Participant recruitment and eligibility
11 12	128	The study was promoted through targeted messages from university officials to campus
13 14	129	email listservs and social media platforms from early June to mid-July 2020. To increase reach
15 16	130	to students expected to be at higher risk of COVID-19, we also placed flyers in congregate living
17 18 10	131	settings and conducted in-person recruitment for student athletes who had resumed training on
19 20 21	132	campus. Participants were eligible to enroll in the study if they were at least 18 years of age,
21 22 23	133	were a current student or employee at UC Berkeley, and planned to live in or near Berkeley
24 25	134	during summer 2020. Specific eligibility criteria and enrollment windows varied by cohort
26 27	135	(Supplementary Table 1, Supplementary Figure 1).
28 29	136	Upon enrollment, participants were linked to an online baseline survey that collected
30 31	137	sociodemographic data and information about their COVID-19-related health history.
32 33	138	Participants were then referred to a baseline testing appointment at University Health Services
34 35	139	(UHS) which included a SARS-CoV-2 quantitative polymerase chain reaction (qPCR) test and
36 37 38	140	blood collection for antibody testing (procedures described below). To facilitate daily
38 39 40	141	temperature monitoring, study staff also provided participants with free oral thermometers upon
40 41 42	142	request at testing appointments. Participants who completed this appointment or a non-study
43 44	143	qPCR test at UHS by July 20th were eligible to remain in the study. We pre-specified a
45 46	144	maximum sample size of 4,000 participants across cohorts but did not reach this limit before the
47 48	145	final day of baseline data collection.
49 50	146	
51 52	147	Symptom and exposure surveys
53 54	148	Participants received daily text messages or emails, depending on their preference
55 56	149	specified in the baseline survey, which linked to short symptom surveys through which they
57 58 59		6

1 2							
3 4 5 6 7 8 9 10	150	reported their daily body temperature and any symptoms of illness. Once per week, the daily					
	151	survey included a longer exposure module, which asked about recent symptoms of illness					
	152	among their household member(s), potential exposure(s) to COVID-19, and activities related to					
	153	potential COVID-19 risk. All surveys were administered via REDCap. ^{16,17}					
11 12	154						
 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 	155	Endline survey and testing					
	156	In early August, participants were sent an endline survey which collected updated					
	157	information on their COVID-19 history to identify any diagnoses outside of the study.					
	158	Participants in the student and essential worker cohorts were also invited to complete endline					
	159	testing appointments by August 18th, including a final qPCR test and blood collection.					
	160						
	161	qPCR testing					
	162	Midturbinate nasal and oral swabs were collected by UHS clinical staff and tested for					
	163	SARS-CoV-2 by qPCR at the Innovative Genomics Institute (IGI).18 qPCR tests were performed					
	164	at baseline for all three cohorts and at endline for the student and essential worker cohorts.					
	165	Between baseline and endline testing, additional qPCR tests were performed for the following					
36 37	166	reasons:					
38 39	167	Symptom- or exposure-based tests triggered based on participants' responses in					
40 41	168	daily surveys: Participants who reported COVID-19-like signs or symptoms ¹ (in					
42 43	169	themselves or household member(s)) or who reported a suspected or confirmed COVID-					
44 45	170	19 case in their household were automatically notified to sign up for a qPCR test.					
46 47							
48 49							
50 51							
52							

¹ Signs or symptoms which triggered a testing notification when reported were: temperature of ≥100.4°F, dry cough (without mucus), coughing up mucus, feeling feverish, unusual pain or pressure in the chest, difficulty breathing, shortness of breath, unexplained trouble thinking or concentrating, loss of sense of taste, or loss of sense of smell.

Page 9 of 31

BMJ Open

1 2						
2 3 4	171	• Random surveillance testing: A subset of participants in the student and faculty/staff				
5	172	cohorts who had not had a qPCR test within a week were randomly selected and				
7 8	173	emailed notifications to come in for surveillance testing in July.				
9 10	174	Address-based surveillance testing: Participants who lived at the same address as				
11 12	175	another participant who tested positive for SARS-CoV-2 were immediately emailed				
13 14	176	surveillance testing notifications. Following an outbreak among group-housed students				
15 16	177	in early July, surveillance testing notifications were also emailed to all participants who				
17 18 19	178	had not been tested within the week and who reported living in fraternities, sororities, or				
20 21	179	co-operative housing.				
22 23	180	Participant-initiated testing: Participants could self-schedule study testing				
24 25	181	appointments on demand, with or without consulting a healthcare provider and				
26 27	182	regardless of exposure history.				
28 29	183	Participants with positive qPCR test results were informed by phone by UHS clinical staff, who				
30 31	184	provided guidance on isolation and performed case investigation to identify potential contacts.				
32 33	185	Participants with negative qPCR test results were informed of their results via the UHS online				
34 35 36	186	patient portal.				
30 37 38	187					
39 40	188	SARS-CoV-2 sequencing and phylogenetic analyses				
41 42	189	Viral whole genome sequencing was performed on a set of positive samples at the IGI,				
43 44	190	using previously described procedures. ¹⁹ Briefly, SARS-CoV-2 RNA extracted from swabs was				
45 46	191	reverse transcribed using SuperScript IV (Invitrogen), and the viral genome was amplified from				
47 48	192	the resulting cDNA in four separate qPCR reactions using distinct primer sets tiling the SARS-				
49 50	193	CoV-2 genome. The four qPCR reactions were pooled 1:1:1:1 and diluted 1:50 in H_2O . A				
51 52	194	second qPCR reaction was set up to add Nextera Unique Dual Indexing (UDI) sequences to				
53 54 55	195	either end of the amplicons. The resulting qPCR reaction was cleaned up using 0.7x AMPureXP				
55 56 57	196	beads (Beckman Coulter) and quantified using a Qubit dsDNA HS Assay Kit (Thermo Fisher).				
58 59		8				
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

The libraries were then pooled to an equimolar ratio and sequenced with a 10% PhiX spike in using a MiSeq v3 kit at 300bp PE reads.

Fastq sequencing files were processed through a custom pipeline using publicly available software. The reads were preprocessed by guality trimming, removing adaptors, and PhiX cleaning with BBTools,²⁰ and then aligned to the Wuhan reference sequence (NC 045512.2) with minimap2 v2.16-r922. ARTICv3 primers were trimmed, and the consensus sequence was built with iVar v1.3.1, where an 'N' is called if the depth is less than 10 reads at any nucleotide. The genomes were then processed through the Nextstrain Auger pipeline with other genomes from GISAID to construct a maximum likelihood tree.^{21,22} Several phylogenies were constructed for this analysis: a tree of 7,091 genomes subsampled from the worldwide genomes in GISAID at the time (approximately 200,000 genomes as of October 2020) was used to place the IGI genomes in the larger tree; a tree with all IGI genomes sequenced at the time of analysis (356 genomes); and a tree containing 500 genomes (from 1 million genomes as of April 2021) was constructed using UShER.23

Antibody testing

Up to 10 mL of blood was collected by phlebotomists via venipuncture at baseline from participants in all three cohorts and again at endline from participants in the student and essential worker cohorts. Blood was centrifuged and serum was stored at -20°C for 2 to 4 months before being tested at Vitalant Research Institute using the VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack, which detects IgA, IgG, and IgM antibodies and has an estimated clinical specificity of 100% and unreported sensitivity.²⁴

Participant compensation

Participants in the student cohort received a \$50 gift card after completing baseline testing and 10 daily surveys; this incentive was conditional on daily survey completion to

Page 11 of 31

BMJ Open

1 2				
3 4 5 6 7 8 9 101 12 13 14 15 16 7 18 9 20 12 22 32 22 22 22 22 33 12 33 34 5 6 7 8 9 10 11 21 34 15 16 7 18 9 20 12 22 32 25 26 7 28 9 30 12 33 34 5 6 7 8 9 40 14 24 34 45 6 7 8 9 5 15 25 35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	223	encourage early habit formation. ²⁵ Student participants received a second \$50 gift card at thei	r	
	224	endline testing appointment. To facilitate travel to and from UHS for testing appointments,		
	225	student participants were also offered pre-paid car rides via a ride-sharing app.		
	226	Participants in the essential worker cohort received a gift card worth \$1 per daily surve	у	
	227	completed (to a maximum of \$70) after the study ended. Participants in the faculty/staff cohort	:	
	228	were not compensated.		
	229			
	230	Statistical analyses		
	231	To identify sociodemographic factors associated with incident infection, we used Poiss	on	
	232	regression to estimate unadjusted incidence rate ratios (IRRs) for SARS-CoV-2 infection by		
	233	study cohort and within strata of sociodemographic variables self-reported in the baseline		
	234	survey (e.g., age, gender, housing type), setting person-months of enrollment as an offset terr	n	
	235	to account for differing lengths of follow-up.		
	236	We also calculated IRRs comparing test positivity by recent signs/symptoms, exposure	€S,	
	237	and activities reported in the daily and weekly surveys. We estimated IRRs for several		
	238	temperature thresholds (i.e., ≥100.4°F, ≥100.0°F, ≥99.0°F) to compare to symptom-specific		
	239	IRRs; however, continuous associations between temperature and positivity have been		
	240	previously explored in this cohort. ²⁶ We accounted for clustered observations due to repeated		
	241	tests per participant using a generalized estimating equation approach with Huber-White		
	242	standard error estimates and an exchangeable working correlation structure.27		
	243	Finally, to assess the extent to which the testing and monitoring system captured		
	244	incident infections, we identified participants who seroconverted from having non-reactive (no		
	245	antibodies detected) to reactive (antibodies detected) blood samples between baseline and		
	246	endline and calculated the proportion of these participants who were also diagnosed with		
	247	incident SARS-CoV-2 infection via positive qPCR test during the study period. Analyses were		
55 56	248	conducted in R version 4.0.4. ²⁸		
57 58 59			10	
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

1							
2 3 4	249						
5 6 7 8	250	Ethical approvals					
	251	All study activities were approved by the University of California, Berkeley Committee for					
9 10	252	the Protection of Human Subjects (#2020-06-13349, #2020-05-13261, #2020-04-13238).					
11 12 13	253						
13 14	254	Patient and public involvement					
15 16 17 18 19 20 21	255	The study's target population comprised university students and employees. While the					
	256	study was conducted by faculty, staff, and graduate students from the UC Berkeley School of					
	257	Public Health, University Health Services, and the Innovative Genomics Institute, the broader					
22 23	258	student body and university workforce were not involved in designing the study or selecting the					
24 25	259	research question, outcome measures, or method of disseminating results.					
26 27	260						
28 29 30 31 32 33	261	Results					
	262	Participant recruitment and retention					
	263	Between June 1 and July 20th, 2020, we enrolled 2,180 students, 268 essential workers,					
34 35	264	and 470 faculty/staff who completed at least one qPCR test or antibody test (Table 1,					
36 37 38	265	Supplementary Figure 1). The student cohort was split between undergraduate (52%) and					
39 40	266	graduate (48%) students. Nearly half (44%) of essential workers worked in health services.					
41 42	267	While 85% of essential workers were working on campus at the time of enrollment, most (81%)					
43 44	268	faculty/staff were working entirely remotely. At the time of enrollment, only 12 (0.4%)					
45 46	269	participants reported a previous COVID-19 diagnosis.					
47 48	270	Participants provided a total of 5,545 person-months of follow-up from enrollment to the					
49 50	271	end of the study (mean person-days per participant: 57, range: 32-78). Participants completed a					
51 52	272	mean of 40 daily symptom surveys and 6 weekly exposure surveys over the study period, for a					
53 54 55	273	total of 117,235 symptom and 17,172 exposure surveys. A subset of participants did not					
56 57	274	complete any daily symptom surveys (1.7%) or weekly exposure surveys (4.2%).					
57 58 59		11					
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

Table 1. Baseline characteristics of participants in the Berkeley COVID-19 Safe Campus

276 Initiative by study cohort, June-August 2020.

	All	Students	Essential Workers	Faculty/Staff
N (row %)	2,918 (100)	2,180 (74.7)	268 (9.2)	470 (16.1)
Age, mean ± SD	29.4 ± 11.6	24.3 ± 5.4	42.5 ± 12.3	45.2 ± 12.3
Gender, n (column %) Man Woman Non-binary/other	1,177 (40.3) 1,653 (56.6) 51 (1.7)	911 (41.8) 1,187 (54.4) 46 (2.1)	103 (38.4) 164 (61.2) 1 (0.4)	163 (34.7) 302 (64.3) 4 (0.9)
Race/ethnicity, n (column %)* American Indian/Alaska Native Asian/Pacific Islander Black/African American Hispanic/Latine/Spanish origin White Other	39 (1.3) 833 (28.5) 103 (3.5) 420 (14.4) 1,814 (62.2) 280 (9.6)	29 (1.3) 703 (32.2) 83 (3.8) 346 (15.9) 1,261 (57.8) 223 (10.2)	2 (0.7) 66 (24.6) 16 (6.0) 39 (14.6) 160 (59.7) 31 (11.6)	8 (1.7) 64 (13.6) 4 (0.9) 35 (7.4) 393 (83.6) 26 (5.5)
Program level, n (column %) Undergraduate Graduate	:	1,114 (51.7) 1,039 (48.2)	-	-
Living at fraternity/sorority, n (column %)	-	125 (5.7%)	-	-
Education, n (column %) High school diploma/GED Some college or trade school Bachelor's degree Graduate/professional degree	- - -		6 (2.2) 59 (22.0) 78 (29.1) 121 (45.1)	0 (0) 13 (2.8) 119 (25.3) 337 (71.7)
Department, n (column %) Health services Facilities/building services Student services/other	- -	- -	129 (48.1) 61 (22.8) 77 (28.7)	- - -
Job title, n (column %) Faculty Staff Postdoctoral scholar/other	-	-	- - -	110 (23.4) 311 (66.2) 49 (10.4)
Currently working outside the home, n (column %)	748 (25.6)	418 (19.2)	228 (85.1)	102 (21.7)
Pre-enrollment COVID-19 diagnosis, n (column %)	12 (0.4)	8 (0.4)	1 (0.4)	3 (0.6)

50 27751 27852

279 SARS-CoV-2 incidence

During the study period, participants underwent 7,638 qPCR tests for active SARS-CoV2 infection, with a mean of 2.6 tests per participant (range: 0-9). Almost all (99.9%) participants
completed at least one qPCR test. Overall, 60 participants (2.0%) tested positive: 57 students, 2
essential workers, and 1 faculty/staff.

Among cohorts, students were at highest risk of incident infection over the study period (IRR students vs. faculty/staff: 5.83; 95% confidence interval [CI]: 1.28, 102.99). Due to the low number of cases outside of the student cohort, we examined additional risk factors for infections among students only (Table 2), finding higher rates of infection among students who were 18-19 years old (IRR vs. students ≥22 years: 8.34; 95% CI: 4.17, 17.48) and undergraduates (IRR vs. graduate students: 4.12; 95% CI: 2.17, 8.66). We also observed a higher incidence among white students (IRR: 2.80 vs. non-white students; 95% CI: 1.53, 5.54). These associations were largely driven by an outbreak among participants living in fraternities or sororities. Nearly one-quarter of participants living in fraternities or sororities were infected with SARS-CoV-2 during the study period (IRR vs. other students: 20.86; 95% CI: 12.27, 35.54), and these participants accounted for 49% of cases observed among student participants.

1
2
3
4
5
6
7
8

Table 2. Bivariate associations between sociodemographic characteristics and SARS-CoV-2 incidence among student participants in the Safe Campus Initiative, June-August 2020.

	5 1 1		, ,	5		
		Cases, N (row %)	Non-Cases, N (row %)	IRR (95% CI)		
	Overall*	57 (2.6)	2,120 (97.4)	-		
	Age 18-19 years 20-21 years ≥22 years	21 (8.0) 24 (3.8) 12 (0.9)	243 (92.0) 607 (96.2) 1,270 (99.1)	8.34 (4.17, 17.48) 4.15 (2.11, 8.58) Reference		
	Gender Woman Man Non-binary/other	37 (3.1) 19 (2.1) 0 (0)	1,147 (96.9) 892 (97.9) 46 (100)	1.45 (0.85, 2.58) Reference -		
	Race/ethnicity** American Indian/Alaska Native Asian/Pacific Islander Black/African American Hispanic/Latine/Spanish origin White Other	0 (0) 11 (1.6) 1 (1.2) 8 (2.3) 45 (3.6) 4 (1.8)	29 (100) 691 (98.4) 82 (98.8) 337 (97.7) 1,216 (96.4) 217 (98.2)	- 0.49 (0.24, 0.91) 0.45 (0.03, 2.03) 0.88 (0.39, 1.76) 2.80 (1.53, 5.54) 0.65 (0.20, 1.58)		
	Program level Undergraduate Graduate	46 (4.1) 10 (1.0)	1,067 (95.9) 1,027 (99.0)	4.12 (2.17, 8.66) Reference		
	Living at fraternity/sorority	28 (22.4)	97 (77.6)	20.86 (12.27, 35.54)		
	Currently working outside the home	6 (1.4)	410 (98.6)	0.51 (0.20, 1.11)		
297 298 299 300 301	IRR: incidence rate ratio, CI: confidence interva *N=2,177 students with at least one qPCR test **Not mutually exclusive; all participants not inc comparison.	for SARS-CoV-2 d				
302	Phylogenetic analysis					
303	We retrieved whole viral genon	ne sequences fo	or 35 of the 60	positive cases from this		
304	study, 29 (83%) of which were found to be part of a campus super-spreader event involving a					
305	total of 57 campus-affiliated individuals with samples sequenced by IGI (Figure 1A). Most (69%)					
306	study participants within this cluster lived at one of two residences, with likely a single					
307	participant originating the super-spreader event. The cluster of genomes was defined by three					
308	mutations (A6360G, C24502A and G110083T), two of which were extremely rare at the time of					
200	the evidence of the evidence is of the time		a a a b <i>i f</i> a i us st i i	.		

the outbreak. The combination of the three variants was only found in four genomes outside of

this cluster (two in the UK and two in Florida) by October 2020, making it a strong phylogenetic signature. Phylogenetic analysis demonstrated that the cluster remained confined to campus, as this signature was not observed in any genomes from samples in the surrounding communities or California state in the months following the super-spreader event. When the trio of mutations was searched in a phylogeny constructed from over 1.2 million genomes worldwide using UShER in April 2021,²³ no descendent leaves were found in the tree under the cluster (Figure 1B), indicating that the lineage died out after the super-spreader event. Factors associated with test positivity At least one symptom survey was completed in the 7 days before sample collection for 90% of tests (n=6,864), including 72% of tests (n=5,469) that had symptom data from the day of sample collection. Of the 54 cases who completed at least one survey during the week before their positive sample was collected (mean: 4 surveys), 23 cases (43%) had reported at least one of the nine COVID-19 symptoms that triggered a notification for them to test. Test positivity was 12.4 times higher among participants who had a recent symptom-triggered notification (95% CI: 7.3, 21.3) (Table 3). Notification-triggering symptoms most strongly associated with test positivity included loss of sense of taste or smell and feeling feverish. Weakness, sweats or chills, and swollen glands were the non-triggering symptoms most strongly associated with test positivity. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	330	Table 3. Bivariate associations between prospectively monitored symptoms and exposures and
4	331	SARS-CoV-2 qPCR test positivity among participants in the Safe Campus Initiative, June-
5	222	August 2020

August 2020.

6	 		
7 8		Test Positivity,	
8 9		% (+ Tests / All Tests)	IRR (95% CI)
10	Overall*	0.8 (60 / 7,629)	-
11	Signs/symptoms within 7 days of test		
12	No	0.4 (21 / 5,704)	Reference
13	Yes (any)	3.2 (31 / 971)	8.6 (5.0, 14.9)
14	- Temperature ≥100.4°F ⁺	0.0 (0 / 8)	0.0 (0.0, 0.0)
15 16	- Temperature ≥100.0°F	11.8 (2 / 17)	15.6 (4.1, 60.4)
17	- Temperature ≥99.0°F	2.6 (9 / 346)	4.1 (1.9, 8.7)
18	 Feeling feverish † 	14.9 (11 / 74)	23.7 (12.7, 44.3)
19	- Dry cough †	5.5 (7 / 128)	7.9 (3.6, 17.2)
20	 Coughing up mucus † 	5.5 (5 / 91)	7.6 (3.1, 18.8)
21	 Unusual chest pain or pressure [†] 	9.7 (6 / 62)	13.8 (6.1, 31.1)
22	 Difficulty breathing †////////////////////////////////////	5.6 (1 / 18)	7.2 (1.1, 48.7)
23	 Shortness of breath † 	8.7 (4 / 46)	11.9 (4.4, 31.9)
24	 Trouble thinking/concentrating [†] 	7.6 (5 / 66)	10.6 (4.3, 25.7)
25	- Loss of sense of taste †	42.9 (3 / 7)	57.6 (23.5, 141)
26	 Loss of sense of smell [†] 	33.3 (4 / 12)	45.8 (19.0, 110)
27	 Any notification-triggering symptom [†] 	5.8 (23 / 397)	12.4 (7.3, 21.3)
28	- Loss of appetite	10.0 (6 / 60)	14.3 (6.3, 32.5)
29	- Fatigue	3.5 (13 / 373)	5.6 (3.0, 10.4)
30	- Trouble sleeping	5.1 (7 / 137)	7.4 (3.4, 16.1)
31 22	- Headache	4.6 (14 / 302)	7.7 (4.2, 14.1)
32 33	 Runny, blocked, or painful sinuses 	5.2 (14 / 268)	8.8 (4.8, 16.0)
33 34	- Sneezing	1.9 (2 / 104)	2.5 (0.6, 10.0)
35	- Swollen, red, or painful eyes	8.6 (5 / 53)	12.1 (4.9, 29.7)
36	- Sore throat	3.1 (8 / 259)	4.5 (2.1, 9.4)
37	- Stomach pain	5.8 (5 / 86)	8.1 (3.3, 19.8)
38	- Diarrhea	4.8 (4 / 83)	6.6 (2.4, 17.8)
39	 Nausea or vomiting 	3.3 (3 / 92)	4.4 (1.4, 13.6)
40	- Body aches or muscle pain	8.1 (12 / 149)	13.0 (7.0, 24.4)
41	- Sweats or chills	11.3 (10 / 89)	17.5 (9.0, 34.0)
42	- Swollen glands	11.9 (5 / 42)	16.6 (7.0, 39.7)
43	- Weakness	13.2 (10 / 76)	20.5 (10.6, 39.4)
44	Exposures within 14 days before test		
45	No	0.3 (14 / 4,179)	Reference
46	Yes (any)	3.4 (17 / 499)	
47	- Suspected or confirmed COVID-19	6.7 (6 / 89)	14.7 (6.0, 35.9)
48	case in household †	0.7 (07 00)	14.7 (0.0, 00.0)
49 50	- Close contact with suspected or	2.9 (4 / 138)	6.3 (2.2, 18.2)
50	confirmed case outside household	2.3 (7/130)	0.0(2.2, 10.2)
51 52	 Household member with new 	4.4 (5 / 114)	7.6 (3.0, 19.6)
52 53	COVID-19-like symptoms †	ד.ד (ט) ד.ד (שוו <i>ו</i> ט) ד.ד	1.0 (0.0, 10.0)
55 54	 Household member with any new 	2.4 (8 / 336)	4.7 (2.1, 10.4)
55	symptoms of illness	2.7 (07 000)	T. ((, , , , , , , , , , , , , , , , ,
56			

2 3 4		- Any notification-triggering exposure † 5.2 (9 / 173) 12.3 (5.6, 26.9)					
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21		Activities within 14 days before test 0.5 (3 / 630) Reference No 0.7 (29 / 4,142) 1.5 (0.5, 4.8) Yes (any) 0.7 (29 / 4,142) 1.5 (0.5, 4.8) Spent time at another residence 1.1 (26 / 2,330) 4.6 (1.9, 11.1) Had visitors at own residence 1.0 (22 / 2,203) 2.5 (1.2, 5.4) Attended gathering >10 people 2.8 (19 / 672) 9.0 (4.4, 18.1) Worked outside of home 0.5 (10 / 2,132) 0.6 (0.3, 1.2) Used public restroom 0.7 (12 / 1,830) 1.0 (0.5, 2.0) Used public transportation 0.6 (5 / 695) 0.8 (0.3, 2.3) Participated in group sports 1.6 (4 / 255) 2.6 (0.9, 7.3)					
	333 334 335 336 337	qPCR: quantitative polymerase chain reaction, IRR: incidence rate ratio, CI: confidence interval. *Excluding resamples and repeated positives; includes N=2,914 participants with at least one qPCR test for SARS- CoV-2 during the study period. † Reporting triggered notification to test.					
21 22	338	Participants completed at least one weekly exposure survey in the 14 days before					
23 24	339	sample collection for 61% of tests (n=4,678). Of the 31 cases who had recently completed an					
25 26	340	exposure survey at the time of sample collection, 9 (29%) reported a potential household					
27 28	341	exposure that triggered a notification for them to test (Table 3). Test positivity was 12.3 times					
29 30 31 32 33 34 35	342	higher among participants who had a recent exposure-triggered notification (95% CI: 5.6, 26.9).					
	343	Test positivity was also significantly higher among participants who reported recent engagement					
	344	in 'higher risk' social activities, most notably attending a gathering of more than 10 people (IRR:					
36 37	345	9.0; 95% CI: 4.4, 18.1).					
38 39	346						
40 41	347	SARS-CoV-2 seroprevalence					
42 43	348	Only 18 (0.6%) of 2,877 participants who provided blood samples at baseline had					
44 45	349	SARS-CoV-2 antibodies (Table 4), all but one of them students. Most participants with					
46 47	350	antibodies at baseline either suspected past infection (28%), had been previously diagnosed					
48 49	351	(22%), or had a positive qPCR test the day blood was drawn (11%). Most (85%) participants in					
50 51 52	352	the student and essential worker cohorts provided blood samples at both baseline and endline					
53 54	353	(mean interval between samples: 48 days). Among 2,076 participants with baseline and endline					
55 56	354	blood samples, 33 (1.6%) seroconverted from non-reactive at baseline to reactive at endline, 30					
57 58		17					
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

1 2								
2 3 4	355	of whom (91%) were also diagnosed via q	PCR test during th	e study. Of the thre	ee participants			
5 6	356	who seroconverted without a positive qPCR test, two self-reported suspected past infection (one						
7 8	357	before baseline, one during the study perio	od), while the third	did not suspect pa	st infection and			
9 10	358	had four negative qPCR tests over 40 days	s of study participa	ition.				
11 12	359	Of the 60 participants with incident	SARS-CoV-2 infe	ction during the stu	ıdy period, 41			
13 14	360	(68%) provided an endline blood sample a	it least one week a	fter the date of the	ir first positive			
15 16	361	qPCR test (mean time between positive qF	PCR test and blood	d sample: 36 days;	range 13-52			
17 18	362	days). Of these, 34 (83%) were reactive (T	able 4).					
19 20	363							
21 22 23 24	364 365	Table 4. Seroprevalence of SARS-CoV-2Initiative, June-August 2020.	antibodies among	participants in the	Safe Campus			
25 26			Baseline, N (%)	Endline, N (%)	Both, N (%)			
27 28 29		Serostatus – Cross-sectional* Reactive	18 (0.6)	48 (2.3)	_			
30 31		Non-reactive	2,859 (99.4)	2,039 (97.7)	-			
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46		Serostatus – Longitudinal** Non-Reactive → Non-Reactive Non-Reactive → Reactive Reactive → Non-Reactive Reactive → Reactive	- - -	- - -	2,029 (97.7) 33 (1.6) 0 (0) 14 (0.7)			
		Serostatus – Previous qPCR Positive [†] Reactive Non-reactive	-	34 (82.9) 7 (17.1)	-			
	366 367 368 369 370 371	<pre>qPCR: quantitative polymerase chain reaction. *N=2,888 participants who provided at least one blood sample. **N=2,076 participants who provided blood samples at baseline and endline. [†]N=41 participants who provided an endline blood sample ≥7 days <i>after</i> infection with SARS-CoV-2 identified via positive qPCR test.</pre>						
47 48	372	Discussion						
49 50	373	This study provides a model of a vo	oluntary, incentiviz	ed system to identi	fy and link at-risk			
51 52 53	374	students to SARS-CoV-2 testing. While the	e incidence and se	roprevalence of SA	ARS-CoV-2 were			
54 55	375	generally low in this cohort of university stu	udents and employ	ees in the summe	r of 2020, we			
56 57 58 59 60		For peer review only - http://bn	njopen.bmj.com/site/	about/guidelines.xhtr	18 nl			
00			*	-				

observed the highest incidence among undergraduate students living in congregate settings,with nearly half of cases found to be associated with a super-spreader event.

Within this cohort, we previously demonstrated the acceptability of our low-barrier SARS-CoV-2 mitigation approach and the limitations of temperature monitoring as a tool for case identification.^{14,26} The present analysis builds upon these contributions by triangulating prospective gPCR testing data with phylogenetic analyses of positive samples and serial antibody testing to evaluate whether case identification and containment were achieved. In doing so, we found evidence that the system successfully identified a high proportion of incident SARS-CoV-2 cases among participants and may have mitigated community transmission after an outbreak. Specifically, 91% of participants with newly-identified antibodies for SARS-CoV-2 at the end of the study had also been diagnosed with incident infection via gPCR test during the study period. While a sizeable cluster of cases among participants was traced to a single super-spreader event, the associated cluster lineage was successfully contained without spreading beyond campus. As the outbreak unfolded, the system also allowed for rapid real-time response (i.e., surveillance testing notifications to students living in congregate housing) and offered a readily accessible, incentivized entry point for testing for students concerned about potential exposure.

Although some universities have adopted punitive measures intended to prevent transmission by controlling student behavior (for example, suspending students for hosting gatherings),^{29–31} this approach has been criticized for its potential to reduce students' trust and cooperation.^{32–34} Instead of punishing or shaming students who fail to adhere to public health guidance, some epidemiologists have called for a harm-reduction approach which supports and engages students as part of the solution.^{32–34} The present study reinforces the potential to integrate voluntary testing and risk monitoring systems to support targeted case identification, as evidenced by the significantly higher positivity rates found among participants whose self-reported symptoms and exposures triggered notifications to test. Our findings also support

Page 21 of 31

BMJ Open

I	
2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
51	
52	
53	
54	
55	
56	
57	
58	

59

60

402 increased outreach to groups of students at highest risk, particularly younger students in403 congregate housing.

404 This study is strengthened by rich longitudinal data, including symptom and exposure 405 tracking, gPCR testing, and seroprevalence data from more than 2,000 participants. The study 406 population comprised of a broad sample of university affiliates, both students and employees, 407 with strong representation of university subpopulations perceived to be at higher risk of infection 408 (e.g., undergraduates, essential healthcare workers). As on-campus activities were severely 409 restricted throughout the study period (all classes were held online, and few students were living 410 in residence halls), this study cannot provide insight into SARS-CoV-2 transmission risks related 411 to on-campus student activities. Nevertheless, as 73% of UC Berkeley undergraduate students 412 lived off campus before the pandemic,³⁵ systems to detect off-campus (i.e., community and 413 household) transmission remain important for SARS-CoV-2 monitoring efforts among students. 414 Additionally, all participants in the essential workers cohort and a subset of participants in the 415 faculty/cohort were working on campus during the study period, further motivating efforts to 416 monitor incidence in this population.

417 There remain several limitations. We observed relatively few SARS-CoV-2 cases during 418 the study period, which took place before the development of highly transmissible variants, such 419 as Delta and Omicron, and before vaccine rollout. Further research is necessary to adapt and 420 evaluate similar systems in the context of both heightened transmissibility and more prevalent 421 natural and vaccine-induced immunity. Observed associations between symptoms and positivity 422 may also differ among those who have been infected by more recent variants and/or 423 vaccinated. Additionally, a high proportion of identified cases were traced to one outbreak, 424 limiting the generalizability of our exploratory assessment of risk factors for incident infection. 425 There was also anecdotal evidence that the outbreak prompted exposed students to enroll as 426 study participants.¹⁴ While this self-referral into the study is likely to increase selection bias, it 427 also illustrates the utility of implementing non-stigmatizing, incentivized testing approaches to

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	

59

60

1

428 increase testing uptake among at-risk students. Finally, our identification of participants who
429 seroconverted between baseline and endline may be incomplete due to loss-to-follow up and
430 imperfect sensitivity of SARS-CoV-2 antibody testing.

431 By integrating symptom and exposure monitoring systems with low-barrier testing, we 432 identified incident SARS-CoV-2 infections to reduce transmission within a university setting. 433 While there have been seismic shifts in the SARS-CoV-2 pandemic since 2020, universities 434 continue to grapple with how best to mitigate on-campus spread in the face of emerging 435 variants, incomplete vaccination coverage, breakthrough infections, and decreased reliance on 436 other mitigation strategies (e.g., masking, remote learning).^{36,37} The lessons learned through this 437 study may inform the design of future adaptive strategies, ideally building beyond 438 symptom/exposure monitoring and gPCR testing to integrate complementary interventions such 439 as rapid antigen self-testing and vaccination promotion.

BMJ Open

2	
3	440
4 5	
6	441
7	442
8 9	443
10	444
11 12	444
12 13	445
14 15	446
16 17	447
18 19	448
20 21	449
22 23	450
24 25 26	451
20 27 28	452
20 29 30	453
31 32	454
33 34	455
35 36	456
37 38	457
39 40	458
41 42	459
43 44 45	460
43 46 47	461
48 49	462
50	
51 52	463
53 54	464
55	465
56 57	-00
57 58	
59	
60	

440 Keywords: COVID-19, SARS-CoV-2, United States, young adults, students, universities, 441 essential workers, seroprevalence

443 Acknowledgements

444 We are grateful for the contributions of an exceptional team of graduate student 445 researchers (Mariah De Zuzuarregui, Darren Frank, Sarah Gomez-Aladino, Ariel Muñoz, Ruben 446 Prado, Lawrence Tello, Emily Wang, and Sabrina Williamson) and our collaborators at UC 447 Berkeley's University Health Services (including but not limited to: Judith Sansone, Melody 448 Heller, Holly Stern, Tyler Crooks, Desi Gallardo, Jeff Kreutzen, Rebecca Stephenson, Lisa 449 Polley, and Melissa Hennings), the Innovative Genomics Institute (including but not limited to: 450 Fyodor Urnov, Shana McDevitt, Ariana Hirsch, Alexander Ehrenberg, and the other members of 451 the IGI SARS-CoV-2 testing consortium: M Amen, Kerrie W Barry, John M Boyle, Cara E Brook, 452 Seunga Choo, L T Cornmesser, David J Dilworth, Jennifer A Doudna, Indro Fedrigo, Skyler E 453 Friedline, Thomas G W Graham, Ralph Green, Jennifer R Hamilton, Megan L Hochstrasser, 454 Dirk Hockemeyer, Netravathi Krishnappa, Azra Lari, Hangin Li, Enrique Lin-Shiao, Tianlin Lu, 455 Elijah F Lyons, Kevin G Mark, Lisa Argento Martell, A Raguel O Martins, Patrick S Mitchell, 456 Erica A Moehle, Christine Naca, Divya Nandakumar, Elizabeth O'Brien, Derek J Pappas, 457 Kathleen Pestal, Diana L Quach, Benjamin E Rubin, Rohan Sachdeva, Elizabeth C Stahl, 458 Abdullah Muhammad Syed, I-Li Tan, Amy L Tollner, Connor A Tsuchida, C Kimberly Tsui, 459 Timothy K Turkalo, M Bryan Warf, Oscar N Whitney, and Lea B Witkowsky), and Vitalant 460 Research Institute (including but not limited to: Mars Stone, Chloe Thorbrogger, Alice Lee, and 461 Heather Tanner). The author would also like to thank Drs. Sandra McCoy, Stefano Bertozzi, and 462 Lauren Ralph for their feedback on this manuscript.

463 Contributors: LH performed statistical analyses and wrote the first draft of the manuscript. SW performed phylogenomic analyses and prepared associated figures and paragraphs. AR and 464 465 MP designed the study and provided input on the manuscript. LP, SF, AH, GN, the IGI SARS-

CoV-2 Testing Consortium, CDG, and MB provided feedback on the study design and
manuscript. YL assisted with data analyses. All authors hold final responsibility for the decision
to submit for publication.

469 Declaration of interests: Vitalant Research Institute, of which Dr. Michael Busch is Director,
470 receives research funding and free assay kits from Ortho Clinical Diagnostics. Dr. Busch does
471 not receive salary support or personal compensation from Ortho Clinical Diagnostics. The
472 remaining authors declare no competing interests.

Funding: The study was funded by private donors who had no role in study design, data

474 collection, data analysis, data interpretation, or writing of the report.

Data sharing: De-identified data sets used in analyses and accompanying R Markdown script

476 files will be publicly available at the time of publication at the following link:

477 https://github.com/lauren-hunter/bcsci

Ethical approvals: All study activities were approved by the University of California, Berkeley 479 Committee for the Protection of Human Subjects (#2020-06-13349, #2020-05-13261, #2020-04-

480 13238).

1			
2 3	481		References
4 5	400		
6	482 483	1.	The New York Times. Tracking the Coronavirus at U.S. Colleges and Universities. <i>The New York Times</i> . https://www.nytimes.com/interactive/2020/us/covid-college-cases-
7	484		tracker.html. Published December 11, 2020. Accessed December 15, 2020.
8	485	2.	Boehmer TK, DeVies J, Caruso E, et al. Changing Age Distribution of the COVID-19
9 10	486		Pandemic - United States, May-August 2020. MMWR Morb Mortal Wkly Rep.
11	487		2020;69(39):1404-1409. doi:10.15585/mmwr.mm6939e1
12	488	3.	Salvatore PP. Recent Increase in COVID-19 Cases Reported Among Adults Aged 18–22
13	489		Years — United States, May 31–September 5, 2020. MMWR Morb Mortal Wkly Rep.
14	490 491	4.	2020;69. doi:10.15585/mmwr.mm6939e4 Rossen LM, Branum AM, Ahmad FB, Sutton P, Anderson RN. Excess Deaths Associated
15 16	491	4.	with COVID-19, by Age and Race and Ethnicity — United States, January 26–October 3,
17	493		2020. MMWR Morb Mortal Wkly Rep. 2020;69(42):1522-1527.
18	494		doi:10.15585/mmwr.mm6942e2
19	495	5.	Moghadas SM, Fitzpatrick MC, Sah P, et al. The implications of silent transmission for the
20	496		control of COVID-19 outbreaks. PNAS. 2020;117(30):17513-17515.
21 22	497	•	doi:10.1073/pnas.2008373117
22	498 499	6.	Ivory D, Gebeloff R, Mervosh S. Young People Have Less Covid-19 Risk, but in College Towns, Deaths Rose Fast. <i>The New York Times</i> .
24	499 500		https://www.nytimes.com/2020/12/12/us/covid-colleges-nursing-homes.html. Published
25	501		December 12, 2020. Accessed December 15, 2020.
26	502	7.	Andersen MS, Bento AI, Basu A, Marsicano C, Simon K. College Openings, Mobility, and
27 28	503		the Incidence of COVID-19 Cases. medRxiv. Published online September 23,
29	504		2020:2020.09.22.20196048. doi:10.1101/2020.09.22.20196048
30	505	8.	Leidner AJ. Opening of Large Institutions of Higher Education and County-Level COVID-19
31	506 507		Incidence — United States, July 6–September 17, 2020. MMWR Morb Mortal Wkly Rep. 2021;70. doi:10.15585/mmwr.mm7001a4
32	507	9.	Ferdinands JM. Waning 2-Dose and 3-Dose Effectiveness of mRNA Vaccines Against
33 34	509	0.	COVID-19–Associated Emergency Department and Urgent Care Encounters and
35	510		Hospitalizations Among Adults During Periods of Delta and Omicron Variant
36	511		Predominance — VISION Network, 10 States, August 2021–January 2022. MMWR Morb
37	512		Mortal Wkly Rep. 2022;71. doi:10.15585/mmwr.mm7107e2
38 39	513	10.	Yasmin F, Najeeb H, Moeed A, et al. COVID-19 Vaccine Hesitancy in the United States: A
39 40	514 515	11.	Systematic Review. <i>Front Public Health</i> . 2021;9:770985. doi:10.3389/fpubh.2021.770985 Booeshaghi AS, Tan FH, Renton B, Berger Z, Pachter L. Markedly heterogeneous COVID-
41	516		19 testing plans among US colleges and universities. <i>medRxiv</i> . Published online August
42	517		11, 2020:2020.08.09.20171223. doi:10.1101/2020.08.09.20171223
43	518	12.	
44 45	519		Testing Students. NPR.org. Published October 6, 2020. Accessed January 7, 2021.
45	520		https://www.npr.org/2020/10/06/919159473/even-in-covid-hot-spots-many-colleges-arent-
47	521	10	aggressively-testing-students
48	522 523	13.	Schultes O, Clarke V, Paltiel AD, Cartter M, Sosa L, Crawford FW. COVID-19 Testing and Case Rates and Social Contact Among Residential College Students in Connecticut
49 50	523 524		During the 2020-2021 Academic Year. JAMA Network Open. 2021;4(12):e2140602.
50 51	525		doi:10.1001/jamanetworkopen.2021.40602
52	526	14.	Packel L, Reingold A, Hunter L, et al. Piloting an integrated SARS-CoV-2 testing and data
53	527		system for outbreak containment among college students: A prospective cohort study.
54	528		PLOS ONE. 2021;16(1):e0245765. doi:10.1371/journal.pone.0245765
55			
56 57			
58			24
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

1 2			
3	529	15	von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational
4	530	15.	Studies in Epidemiology (STROBE) statement: guidelines for reporting observational
5	531		studies. <i>Epidemiology</i> . 2007;18(6):800-804. doi:10.1097/EDE.0b013e3181577654
6	532	16.	
7	533		capture (REDCap)—A metadata-driven methodology and workflow process for providing
8	534		translational research informatics support. Journal of Biomedical Informatics.
9 10	535		2009;42(2):377-381. doi:10.1016/j.jbi.2008.08.010
11	536	17.	Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: Building an international
12	537		community of software platform partners. Journal of Biomedical Informatics.
13	538		2019;95:103208. doi:10.1016/j.jbi.2019.103208
14	539	18.	Amen AM, Barry KW, Boyle JM, et al. Blueprint for a pop-up SARS-CoV-2 testing lab.
15	540		Nature Biotechnology. 2020;38(7):791-797. doi:10.1038/s41587-020-0583-3
16	541	19.	
17	542		sequencing SARS-CoV-2. BMC Genomics. 2020;21(1):863. doi:10.1186/s12864-020-
18	543	20	
19 20	544	20.	
20	545	21.	
22	546 547	22.	<i>Bioinformatics</i> . 2018;34(23):4121-4123. doi:10.1093/bioinformatics/bty407 Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data – from vision to
23	547 548	22.	reality. <i>Euro Surveill</i> . 2017;22(13):30494. doi:10.2807/1560-7917.ES.2017.22.13.30494
24	549	23.	
25	550	20.	(UShER) Empowers Real-Time Phylogenetics for the SARS-CoV-2 Pandemic. Published
26	551		online September 28, 2020:2020.09.26.314971. doi:10.1101/2020.09.26.314971
27	552	24.	· · ·
28	553		Products Anti-SARS-CoV-2 Total Reagant Pack, VITROS Immunodiagnostic Products
29 30	554		Anti-SARS-CoV-2 Total Calibrator. Published 2020. Accessed January 7, 2021.
30	555		https://www.fda.gov/media/136967/download
32	556	25.	Mantzari E, Vogt F, Shemilt I, Wei Y, Higgins JPT, Marteau TM. Personal financial
33	557		incentives for changing habitual health-related behaviors: A systematic review and meta-
34	558		analysis. Prev Med. 2015;75:75-85. doi:10.1016/j.ypmed.2015.03.001
35	559	26.	
36	560		screening to detect COVID-19 in a prospective cohort at a large public university. BMC
37	561	~-	Public Health. 2021;21(1):1693. doi:10.1186/s12889-021-11697-6
38	562	27.	
39 40	563	20	Biometrika. 1986;73(1):13-22. doi:10.2307/2336267
40	564	28.	
42	565 566	29.	Statistical Computing; 2021. https://www.R-project.org/ Gross EL. Ohio State University Suspends 228 Students For Violating Covid-19
43	567	29.	Guidelines. Forbes. https://www.forbes.com/sites/elanagross/2020/08/24/ohio-state-
44	568		university-suspends-228-students-for-violating-covid-19-guidelines/. Published August 24,
45	569		2020. Accessed September 9, 2020.
46	570	30.	
47	571		groups larger than 15. CNN. https://www.cnn.com/2020/07/09/us/tulane-students-group-
48 49	572		gathering-coronavirus-trnd/index.html. Published July 12, 2020. Accessed September 9,
49 50	573		2020.
51	574	31.	Treisman R. More Than 200 Ohio State University Students Suspended For Violating
52	575		Pandemic Rules. NPR.org. Published August 25, 2020. Accessed September 9, 2020.
53	576		https://www.npr.org/sections/coronavirus-live-updates/2020/08/25/906039378/more-than-
54	577		200-ohio-state-university-students-suspended-for-violating-pandemic-ru
55			
56			
57			
58 59			25
59			For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

1			
2 3 4	578 579	32.	Gold JM Jessica. Colleges Are Getting Ready to Blame Their Students. <i>The Atlantic</i> . https://www.theatlantic.com/ideas/archive/2020/07/colleges-are-getting-ready-blame-their-
5 6 7	580 581	33.	students/614410/. Published July 21, 2020. Accessed September 8, 2020. Marcus J. Quarantine Fatigue Is Real. <i>The Atlantic</i> .
7 8 9	582 583		https://www.theatlantic.com/ideas/archive/2020/05/quarantine-fatigue-real-and-shaming- people-wont-help/611482/. Published May 11, 2020. Accessed September 8, 2020.
10 11	584 585	34.	during COVID-19 (opinion) Inside Higher Ed. Inside Higher Ed. Published October 15,
12 13	586 587		2020. Accessed January 8, 2021. https://www.insidehighered.com/views/2020/10/15/university-leaders-should-take-more-
14 15	588 589	35.	
16 17 18	590 591 592	36.	https://admissions.berkeley.edu/housing Colleges Let Students Go Unmasked Even With Covid Bearing Down. <i>Bloomberg.com</i> . https://www.bloomberg.com/news/articles/2021-11-23/colleges-drop-indoor-mask-rules-
19 20	593 594	37.	despite-holiday-covid-threat. Published November 23, 2021. Accessed February 14, 2022.
21 22	595 596	011	New York Times. https://www.nytimes.com/2022/01/16/us/politics/colleges-covid- coronavirus.html. Published January 16, 2022, Accessed February 14, 2022
23 24	597		
25 26 27			
28 29			
30 31			
32 33 34			
34 35 36			
37 38			
39 40			
41 42 43			
43 44 45			
46 47			
48 49			
50 51			
52 53 54			
55 56			
57 58			26
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

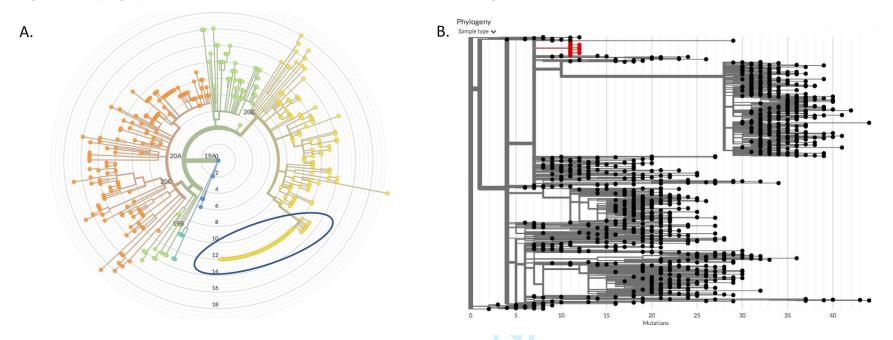
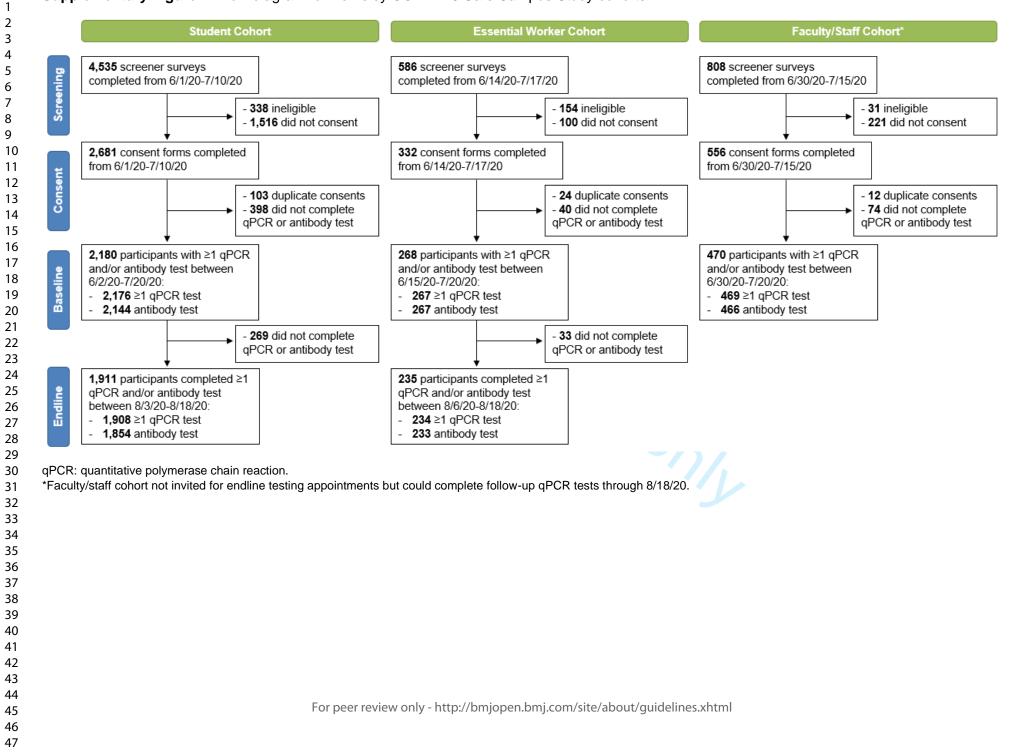


Figure 1. Phylogeny of outbreak-associated strain of SARS-CoV-2 among participants in the Safe Campus Initiative.

 A. A maximum likelihood phylogeny constructed from 357 genomes sequenced by the Innovative Genomics Institute between May and July 2020 constructed using Nextstrain. Branch lengths represent divergence from Wuhan reference genome at center. Blue circle marks cluster of identical genomes from a campus super-spreader event.


B. A 1,057 node subtree of a neighbor-joining tree constructed with all SARS-CoV-2 sequences to date (constructed using UShER with over 1 million genomes in April 2021), showing the most similar genomes to the super-spreader event cluster (in red). There are no descendant branches from the cluster, demonstrating that the outbreak was contained and the lineage died out.

BMJ Open

Supplementary Table 1. Eligibility criteria across Berkeley COVID-19 Safe Campus Study cohorts.

	Student Cohort	Essential Worker Cohort	Faculty/Staff Cohort	
	- At least 18 years of age	- At least 18 years of age	- At least 18 years of age	
/ Criteria	- Currently enrolled as an undergraduate or graduate student at UC Berkeley (i.e., not graduated in Spring 2020 or incoming for Fall 2020)	- Currently employed in one of the following departments at UC Berkeley: health services, police, facility services or other building management, environmental health and safety, laboratory animal care, athletics, dining, childcare, other residential or student services	 Currently employed as a faculty member, staff member, or postdoctoral scholar at UC Berkeley Not already enrolled in the essential workers cohort 	
Eligibility		- Currently working on campus at UC Berkeley <i>or</i> expected to return to work during June 2020		
	- Primarily residing in Alameda County or Contra Costa Country between 6/1/20-8/31/20	N/A	- Primarily residing in Alameda County or Contra Costa Country between 6/1/20-8/31/20	
	- Willing to sign release of information for COVID-19-related medical records	- Willing to sign release of information for COVID-19-related medical records	- Willing to sign release of information for COVID-19-related medical records	

Supplementary Figure 1. Flow diagram for Berkeley COVID-19 Safe Campus Study cohorts.

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-9, Supplementar Figure 1
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5-9, Supplementar Table 1
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-10
Bias	9	Describe any efforts to address potential sources of bias	10
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	10
		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(e) Describe any sensitivity analyses	N/A

Results	13*	(a) Papart numbers of individuals at each store of study, or numbers not entially eligible, examined for eligibility, confirmed	Supplementary
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	Supplementary
		eligible, included in the study, completing follow-up, and analysed	Figure 1
		(b) Give reasons for non-participation at each stage	Supplementary
			Figure 1
		(c) Consider use of a flow diagram	Supplementary
			Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	11, Table 1
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	11-13
		(c) Summarise follow-up time (eg, average and total amount)	11
Outcome data	15*	Report numbers of outcome events or summary measures over time	12
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	12-14, Tables 2-3
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	10, Table 3
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-15
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	14-17
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	16
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	19
-		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

BMJ Open

Monitoring SARS-CoV-2 incidence and seroconversion among university students and employees: a longitudinal cohort study in California, June to August 2020

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063999.R1
Article Type:	Original research
Date Submitted by the Author:	17-Feb-2023
Complete List of Authors:	Hunter, Lauren; University of California Berkeley, School of Public Health Wyman, Stacia; University of California Berkeley, Innovative Genomics Institute Packel, Laura; University of California Berkeley, School of Public Health Facente, Shelley; University of California Berkeley, School of Public Health; Facente Consulting, Li, Yi; University of California Berkeley, School of Public Health Harte, Anna; University of California Berkeley, University Health Services Nicolette, Guy; University of California Berkeley, University Health Services the IGI SARS-CoV-2 Testing Consortium, N/A; University of California Berkeley, Innovative Genomics Institute Di Germanio, Clara; Vitalant Research Institute Busch, Michael; Vitalant Research Institute; University of California San Francisco, Department of Laboratory Medicine Reingold, Art; University of California Berkeley, School of Public Health Petersen, Maya L.; University of California Berkeley, School of Public Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Infectious diseases
Keywords:	COVID-19, EPIDEMIOLOGY, Public health < INFECTIOUS DISEASES, Infection control < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
•
6
/
8
9
10
11
12
13
14
14
15
16
17
18
19
20
21
21 22
23
24
24
25
26 27
27
28
29
30
31
32
33
34
35
36 37
37
38
39
40
41
42
43
44
45
45 46
47
48
49
50
51
52
53
54
55
56
57
58
59

1

3

1 T	itle: Monitoring	SARS-CoV-2 incider	ce and seroconversio	on among universit	ty students and
------------	------------------	--------------------	----------------------	--------------------	-----------------

- 2 employees: a longitudinal cohort study in California, June to August 2020
- 4 Authors: Lauren A. Hunter, MPH¹; Stacia Wyman, PhD, MS²; Laura Packel, PhD¹; Shelley
- 5 Facente, PhD^{1,3-4}; Yi Li, BS¹; Anna Harte, MD⁵; Guy Nicolette, MD⁵; the IGI SARS-CoV-2
- 6 Testing Consortium²; Clara Di Germanio, PhD⁴; Michael P. Busch, MD PhD^{4,6}; Arthur Reingold,
- MD¹; Maya Petersen, MD PhD¹ 7
- 8 ¹ School of Public Health; University of California, Berkeley; Berkeley, CA
- 9 ² Innovative Genomics Institute; University of California, Berkeley; Berkeley, CA
- 10 ³ Facente Consulting; Richmond, CA
- 11 ⁴ Vitalant Research Institute; San Francisco, CA
- 12 ⁵ University Health Services; University of California, Berkeley; Berkeley, CA
- 13 ⁶ Department of Laboratory Medicine; University of California, San Francisco; San Francisco,
- 14

15

16 **Correspondence to:**

CA

- 17 Ms. Lauren Hunter
- 18 **Division of Epidemiology and Biostatistics**
- 19 University of California, Berkeley School of Public Health
- 20 2121 Berkeley Way #5302
- 21 Berkeley, CA 94720
- 22 lahunter@berkeley.edu

60

- 24 **Word count:** 4,213
- 25 Abstract word count: 285
- 26 Number of tables/figures: 5 (3 supplementary)

60

BMJ Open

1 2			
2 3 4	27	Abstract	
5 6	28	Objectives: To identify incident SARS-CoV-2 infections and inform effective mitigation	
7 8	29	strategies in university settings, we piloted an integrated symptom and exposure monitoring and	
9 10	30	testing system among a cohort of university students and employees.	
11 12	31	Design: Prospective cohort study.	
13 14	32	Setting: A public university in California from June to August 2020.	
15 16	33	Participants: 2,180 university students and 738 university employees.	
17 18	34	Primary outcome measures: At baseline and endline, we tested participants for active SARS-	
19 20 21	35	CoV-2 infection via quantitative polymerase chain reaction (qPCR) test and collected blood	
21 22 23	36	samples for antibody testing. Participants received notifications to complete additional qPCR	
24 25	37	tests throughout the study if they reported symptoms or exposures in daily surveys or were	
26 27	38	selected for surveillance testing. Viral whole genome sequencing was performed on positive	
28 29	39	qPCR samples, and phylogenetic trees were constructed with these genomes and external	
³⁰ ₃₁ 40 genomes.			
32 33	41	Results: Over the study period, 57 students (2.6%) and 3 employees (0.4%) were diagnosed	
34 35	42	with SARS-CoV-2 infection via qPCR test. Phylogenetic analyses revealed that a super-	
36 37	43	spreader event among undergraduates in congregate housing accounted for at least 48% of	
38 39 40	44	cases but did not spread beyond campus. Test positivity was higher among participants who	
40 41 42	45	self-reported symptoms (incidence rate ratio [IRR]: 12.7; 95% confidence interval [CI]: 7.4, 21.8)	
43 44	46	or had household exposures (IRR: 10.3; 95% CI: 4.8, 22.0) that triggered notifications to test.	
45 46	47	Most (91%) participants with newly identified antibodies at endline had been diagnosed with	
47 48	48	incident infection via qPCR test during the study.	
49 50	49	Conclusions: Our findings suggest that integrated monitoring systems can successfully identify	
51 52	50	and link at-risk students to SARS-CoV-2 testing. As the study took place before the evolution of	
53 54	51	highly transmissible variants and widespread availability of vaccines and rapid antigen tests,	
55 56	52	further research is necessary to adapt and evaluate similar systems in the present context.	
57 58		2	

1 2		
2 3 4	53	Strengths and limitations of this study
5 6 7 8	54	• The study is strengthened by rich longitudinal data including more than 117,000 daily
	55	symptom surveys; 17,000 weekly exposure surveys; 7,600 qPCR tests to detect active
9 10	56	SARS-CoV-2 infection; and 4,900 antibody tests to detect previous infection collected
11 12	57	from 2,918 university students and employees over three months.
13 14	58	We used seroconversion data from serial antibody tests and phylogenetic analyses
15 16	59	comparing viral genome sequences to a broader database to evaluate the extent to
17 18	60	which the study system identified incident cases and contained an outbreak among
19 20 21	61	university students.
22 23	62	Our identification of participants who seroconverted between baseline and endline may
24 25	63	be incomplete due to loss-to-follow up and imperfect sensitivity of SARS-CoV-2 antibody
26 27	64	testing.
28 29	65	A high proportion of identified cases were traced to one outbreak, limiting the
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53 54 55 56 57	66	generalizability of our exploratory assessment of risk factors for incident infection.
58 59		3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		rorpeerreview only inter, / onlyopen.only.com/site/about/guidelines.xitum

Page 5 of 33

BMJ Open

67 Background

Universities have been identified as hotspots for SARS-CoV-2 transmission in the United States,[1] where SARS-CoV-2 incidence is highest among young adults.[2] Young adults may be less likely to adhere to social distancing guidelines and more likely to experience workplace exposure (for example, at food service or retail jobs).[2] Their risk may be heightened in university settings where many live in congregate housing, interact with wide social networks, or attend large gatherings.[3] Although young adults are at low risk of serious acute illness or death from COVID-19 (the disease caused by SARS-CoV-2),[4] the higher likelihood of asymptomatic or mildly symptomatic infection in this age group makes young adults a key population through which SARS-CoV-2 may spread to other, more vulnerable groups.[2,5] Indeed, there is evidence that transmission among university students may lead to increased COVID-19-related mortality in the surrounding counties.[6-8] Although widespread vaccination has enabled campuses to return to in-person activities, the elimination of SARS-CoV-2 transmission in campus populations may be stymied by vaccine hesitancy among students and employees and breakthrough infection and subsequent transmission by vaccinated persons, particularly in the context of waning immunity and viral variants which reduce vaccine efficacy.[9,10] Therefore, rapid and resource-efficient identification of incident cases in university populations is a critical first step of outbreak investigation and control, followed by isolation, case investigation, and contact tracing, to minimize transmission within campus and to the broader community.

Universities have adopted a wide range of approaches for testing and outbreak
mitigation.[11–13] While a number of well-resourced universities have scaled up testing capacity
in order to frequently test all students and employees accessing campus or living in universityaffiliated housing,[13] many other universities do not have well-defined testing strategies or
restrict testing to those with symptoms or known exposure.[12] Beyond investing in testing
programs, some universities have sought to reduce on-campus transmission by mandating the

completion of self-administered symptom screening tools by students and employees. However, such tools have primarily been used to regulate daily access to campus (i.e., deny entry to those who report COVID-19-like symptoms), rather than to detect emergent outbreaks among university populations. As universities resume normal operations and discontinue mitigation strategies such as masking, non-punitive, resource-efficient strategies which can both identify those who are at highest risk of infection and expediently link them to low-barrier testing services may play a key role in transitioning from a "one-size-fits-all" approach of uniform testing to a sustainable monitoring paradigm.

In 2020, we piloted an integrated symptom and exposure monitoring and testing system designed to identify incident SARS-CoV-2 infections among a cohort of university students and employees.[14] Here we describe the incidence and seroprevalence of SARS-CoV-2 infection within this cohort to evaluate the extent to which incident infections were successfully detected and contained over the study period, identify sociodemographic factors associated with incident infection, and ascertain which self-reported symptoms and exposures tracked by the monitoring system were predictive of test positivity, with the ultimate objective of informing monitoring and testing strategies in university settings.

9 110 Methods

111 Study design and setting

112The study comprised three prospective cohorts of University of California, Berkeley113affiliates followed from June to August 2020: students, essential workers (i.e., employees114working on campus in health, facilities, or student services), and other employees (hereafter,115"faculty/staff"). We report the findings according to the Strengthening the Reporting of116Observational Studies in Epidemiology (STROBE) checklist for cohort studies.[15]117Throughout the study period, public health orders mandated the use of face coverings in118public and upheld many restrictions set forth by earlier shelter-in-place orders, while allowing

Page 7 of 33

1 2			
3 4 5 6	119	phased reopening of certain businesses and activities.[16] UC Berkeley did not offer in-person	
	120	classes, and on-campus work was restricted to essential workers and a small subset of faculty,	
7 8	121	staff, and student researchers. Although few students were living in on-campus residence halls	,
9 10	122	many students continued to live in congregate living settings off campus, such as fraternities,	
11 12	123	sororities, and co-operative housing. From June to August 2020, daily case counts in Alameda	
13 14	124	County ranged from approximately 50 to 350 (0 to 17 within the city of Berkeley).[17]	
15 16	125		
17 18 10	126	Participant recruitment and eligibility	
19 20 21	127	The study was promoted through targeted messages from university officials to campus	
22 23	128	email listservs and social media platforms from early June to mid-July 2020. To increase reach	
24 25	129	to students expected to be at higher risk of COVID-19, we also placed flyers in congregate livin	g
26 27 28 29 30 31	130	settings and conducted in-person recruitment for student athletes who had resumed training on	
	131	campus. Participants were eligible to enroll in the study if they were at least 18 years of age,	
	132	were a current student or employee at UC Berkeley, and planned to live in or near Berkeley	
32 33	133	during the summer of 2020. Specific eligibility criteria and enrollment windows varied by cohort	
34 35	134	(Supplementary Table 1, Supplementary Figure 1).	
36 37	135	Upon enrollment, participants were linked to an online baseline survey that collected	
38 39 40	136	sociodemographic data and information about their COVID-19-related health history.	
40 41 42	137	Participants were then referred to a baseline testing appointment at University Health Services	
43 44	138	(UHS) which included a SARS-CoV-2 quantitative polymerase chain reaction (qPCR) test and	
45 46	139	blood collection for antibody testing (procedures described below). To facilitate daily	
47 48	140	temperature monitoring, study staff also provided participants with free oral thermometers upon	
49 50	141	request at testing appointments. Participants who completed this appointment or a non-study	
51 52	142	qPCR test at UHS by July 20 were eligible to remain in the study. We pre-specified a maximum	
53 54	143	sample size of 4,000 participants across cohorts but did not reach this limit before the final day	
55 56	144	of baseline data collection.	
57 58			6

1						
2 3 4	145					
5 6 7 8	146	Symptom and exposure surveys				
	147	Participants received daily text messages or emails, depending on their preference				
9 10	148	specified in the baseline survey, which linked to short symptom surveys through which they				
11 12	149	reported their body temperature and any symptoms of illness. Once per week, the daily survey				
13 14	150	included a longer exposure module, which asked about recent symptoms of illness among their				
15 16	151	household member(s), potential exposure(s) to COVID-19, and activities related to potential				
17 18	152	COVID-19 risk. All surveys were administered via REDCap.[18,19]				
19 20 21	153					
21 22 23	154	Endline survey and testing				
23 24 25	155	In early August, participants were sent an endline survey which collected updated				
25 26 27 28 29 30 31 32 33	156	information on their COVID-19 history to identify any diagnoses outside of the study.				
	157	Participants in the student and essential worker cohorts were also invited to complete endline				
	158	testing appointments by August 18, including a final qPCR test and blood collection.				
	159					
34 35	160	qPCR testing				
36 37	161	Midturbinate nasal and oral swabs were collected by UHS clinical staff and tested for				
38 39	162	SARS-CoV-2 by qPCR at the Innovative Genomics Institute (IGI).[20] qPCR tests were				
40 41	163	performed at baseline for all three cohorts and at endline for the student and essential worker				
42 43	164	cohorts. Between baseline and endline testing, additional qPCR tests were performed for the				
44 45 46	165	following reasons:				
40 47 48	166	Symptom- or exposure-based tests triggered based on participants' responses in				
49 50	167	daily surveys: Participants who reported COVID-19-like signs or symptoms ¹ (in				
51 52						
53 54						
55 56		¹ Signs or symptoms which triggered a testing notification when reported were: temperature of ≥100.4°F, dry cough (without mucus), coughing up mucus, feeling feverish, unusual pain or pressure in the chest, difficulty breathing, shortness of breath, unexplained trouble thinking or concentrating, loss of sense of taste, or loss of sense of smell.				
57 58						

58 59

Page 9 of 33

1

2		
3 4	168	themselves or household member(s)) or who reported a suspected or confirmed COVID-
5 6	169	19 case in their household were automatically notified to sign up for a qPCR test.
7 8	170	Random surveillance testing: A subset of participants in the student and faculty/staff
9 10	171	cohorts who had not had a qPCR test within a week were randomly selected and
11 12	172	emailed notifications to come in for surveillance testing in July.
13 14	173	Address-based surveillance testing: Participants who lived at the same address as
15 16	174	another participant who tested positive for SARS-CoV-2 were immediately emailed
17 18	175	surveillance testing notifications. Following an outbreak among group-housed students
19 20 21	176	in early July, surveillance testing notifications were also emailed to all participants who
21 22 23	177	had not been tested within the week and who reported living in fraternities, sororities, or
24 25	178	co-operative housing.
26 27	179	Participant-initiated testing: Participants could self-schedule study testing
28 29	180	appointments on demand, with or without consulting a healthcare provider and
30 31 32 33 34 35	181	regardless of exposure history.
	182	Participants with positive qPCR test results were informed by phone by UHS clinical staff, who
	183	provided guidance on isolation and performed case investigation to identify potential contacts.
36 37	184	Participants with negative qPCR test results were informed of their results via the UHS online
38 39 40	185	patient portal.
40 41 42	186	
43 44	187	SARS-CoV-2 sequencing and phylogenetic analyses
45 46	188	Viral whole genome sequencing was performed on a set of positive samples at the IGI,
47 48	189	using previously described procedures.[21] Briefly, SARS-CoV-2 RNA extracted from swabs
49 50	190	was reverse transcribed using SuperScript IV (Invitrogen), and the viral genome was amplified
51 52	191	from the resulting cDNA in four separate qPCR reactions using distinct primer sets tiling the
53 54	192	SARS-CoV-2 genome. The four qPCR reactions were pooled 1:1:1:1 and diluted 1:50 in H_2O . A
55 56	193	second qPCR reaction was set up to add Nextera Unique Dual Indexing (UDI) sequences to
57 58		8
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
1		

Page 10 of 33

BMJ Open

2 3 4	194	either end of the amplicons. The resulting qPCR reaction was cleaned up using 0.7x AMPureXF	Ρ		
5 6	195	beads (Beckman Coulter) and quantified using a Qubit dsDNA HS Assay Kit (Thermo Fisher).			
7 8	196	The libraries were then pooled to an equimolar ratio and sequenced with a 10% PhiX spike in			
9 10	197	using a MiSeq v3 kit at 300bp PE reads.			
11 12	198	Fastq sequencing files were processed through a custom pipeline using publicly			
13 14	199	available software. The reads were preprocessed by quality trimming, removing adaptors, and			
15 16	200	PhiX cleaning with BBTools,[22] and then aligned to the Wuhan reference sequence			
17 18	201	(NC_045512.2) with minimap2 v2.16-r922. ARTICv3 primers were trimmed, and the consensus	;		
19 20 21	202	sequence was built with iVar v1.3.1, where an 'N' is called if the depth is less than 10 reads at			
21 22 23	203	any nucleotide. The genomes were then processed through the Nextstrain Auger pipeline with			
24 25	204	other genomes from GISAID to construct a maximum likelihood tree.[23,24] Several			
26 27	205	phylogenies were constructed for this analysis: a tree of 7,091 genomes subsampled from the			
28 29	206	worldwide genomes in GISAID at the time (approximately 200,000 genomes as of October			
30 31	207	2020) was used to place the IGI genomes in the larger tree; a tree with all IGI genomes			
32 33	208	sequenced at the time of analysis (356 genomes); and a tree containing 500 genomes (from 1			
34 35	209	million genomes as of April 2021) was constructed using UShER.[25]			
36 37	210				
38 39	211	Antibody testing			
40 41 42	212	Up to 10 mL of blood was collected by phlebotomists via venipuncture at baseline from			
42 43 44	213	participants in all three cohorts and again at endline from participants in the student and			
45 46	214	essential worker cohorts. Blood was centrifuged and serum was stored at -20°C for 2 to 4			
47 48	215	months before being tested at Vitalant Research Institute using the VITROS Immunodiagnostic	:		
49 50	216	Products Anti-SARS-CoV-2 Total Reagent Pack, which detects IgA, IgG, and IgM antibodies			
51 52	217	against the SARS-CoV-2 spike protein S1 antigen and has an estimated clinical specificity of			
53 54	218	100% and unreported sensitivity.[26]			
55 56	219				
57 58			9		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

1 2

2					
3 4 5 6 7 8 9 10	220	Participant compensation			
	221	Participants in the student cohort received a \$50 gift card after completing baseline			
	222	testing and 10 daily surveys; this incentive was conditional on daily survey completion to			
	223	encourage early habit formation.[27] Student participants received a second \$50 gift card at			
11 12	224	their endline testing appointment. To facilitate travel to and from UHS for testing appointments,			
13 14	225	student participants were also offered pre-paid car rides via a ride-sharing app.			
15 16	226	Participants in the essential worker cohort received a gift card worth \$1 per daily survey			
17 18 19	227	completed (to a maximum of \$70) after the study ended. Participants in the faculty/staff cohort			
20 21	228	were not compensated.			
22 23	229				
24 25	230	Statistical analyses			
26 27	231	To identify sociodemographic factors associated with incident infection, we used Poisson			
28 29	232	regression to estimate unadjusted incidence rate ratios (IRRs) for SARS-CoV-2 infection by			
30 31	233	study cohort and within strata of sociodemographic variables self-reported in the baseline			
32 33	234	survey (e.g., age, gender, housing type), setting person-months of enrollment as an offset term			
34 35	235	to account for differing lengths of follow-up.			
36 37 38	236	We also calculated IRRs comparing test positivity by recent signs/symptoms, exposures,			
39 40	237	and activities reported in the daily and weekly surveys. We estimated IRRs for several			
40 41 42	238	temperature thresholds (i.e., ≥100.4°F, ≥100.0°F, ≥99.0°F) to compare to symptom-specific			
43 44	239	IRRs; however, continuous associations between temperature and positivity have been			
45 46	240	previously explored in this cohort, finding that temperature screening has low sensitivity to			
47 48	241	SARS-CoV-2 infection and, thus, limited efficacy as a primary means of detection.[28] While it			
49 50	242	was not possible to isolate participants' specific reason(s) for testing over the study period (e.g.,			
51 52	243	participants could receive symptom- and/or exposure-triggered testing notifications over the			
53 54	244	same time window in which they completed baseline or endline testing), we linked qPCR test			
55 56	245	results to recently-completed symptom and exposure surveys to identify testing appointments			
57 58		10			
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

1 2				
- 3 4 5 6 7 8	246	that took place in the days or weeks following symptom- and exposure-triggered testing		
	247	notifications (Supplementary Figure 2). We accounted for clustered observations due to		
	248	repeated tests per participant using a generalized estimating equation approach with Huber-		
9 10	249	White standard error estimates and an exchangeable working correlation structure.[29]		
11 12 13 14	250	Finally, to assess the extent to which the testing and monitoring system captured		
	251	incident infections, we identified participants who seroconverted from having non-reactive (no		
15 16	252	antibodies detected) to reactive (antibodies detected) blood samples between baseline and		
17 18	253	endline and calculated the proportion of these participants who were also diagnosed with		
19 20 21	254	incident SARS-CoV-2 infection via positive qPCR test during the study period. Analyses were		
21 22 23	255	conducted in R version 4.2.1.[30]		
24 25	256			
26 27	257	Ethical approvals		
28 29	258	All study activities were approved by the University of California, Berkeley Committee for		
30 31	259	the Protection of Human Subjects (#2020-06-13349, #2020-05-13261, #2020-04-13238).		
32 33	260			
34 35	261	Patient and public involvement		
36 37	262	The study's target population comprised university students and employees. While the		
38 39 40	263	study was conducted by faculty, staff, and graduate students from the UC Berkeley School of		
40 41 42	264	Public Health, University Health Services, and the Innovative Genomics Institute, the broader		
43 44	265	student body and university workforce were not involved in designing the study or selecting the		
45 46	266	research question, outcome measures, or method of disseminating results.		
47 48	267			
49 50	268	Results		
51 52	269	Participant recruitment and retention		
53 54	270	Between June 1 and July 20, 2020, we enrolled 2,180 students, 268 essential workers,		
55 56	271	and 470 faculty/staff who completed at least one qPCR test or antibody test (Table 1,		
57 58		11		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

2								
3 4	272	Supplementary Figure 1). The stude	ent cohort was s	split between u	ndergraduate ((52%) and		
5 6	273	graduate (48%) students. Nearly ha	lf (44%) of esse	ential workers v	vorked in healt	h services.		
7 8	274	While 85% of essential workers wer	e working on ca	ampus at the tir	me of enrollme	ent, most (81%)		
9 10	275	faculty/staff were working entirely re	motely. At the t	ime of enrollme	ent, only 12 (0.	.4%)		
11 12	276	participants reported a previous CO	VID-19 diagnos	sis.				
13 14	277	Participants provided a total	of 5,545 persor	n-months of fol	low-up from er	rollment to the		
15 16	278	end of the study (mean person-days	s per participant	:: 57, range: 32	-78). Participa	nts completed a		
17 18	279	mean of 40 daily symptom surveys	and 6 weekly e	xposure survey	s over the stud	dy period, for a		
19 20	280	total of 117,239 symptom and 17,16	62 exposure sur	veys. A subset	of participants	s did not		
21 22	281	complete any daily symptom survey	rs (1.7%) or wee	ekly exposure s	surveys (4.2%)).		
23 24 25 26	282 283	Table 1. Baseline characteristics of participants in the Berkeley COVID-19 Safe Campus Initiative by study cohort, June-August 2020.						
27 28 29			All	Students	Essential Workers	Faculty/Staff		
29 30		N (row %)	2,918 (100)	2,180 (74.7)	268 (9.2)	470 (16.1)		
31		Age, mean ± SD	29.4 ± 11.6	24.3 ± 5.4	42.5 ± 12.3	45.2 ± 12.3		
32 33		Gender, n (column %)						
33 34		Man	1,177 (40.3)	911 (41.8)	103 (38.4)	163 (34.7)		
35		Woman	1,653 (56.6)	1,187 (54.4)	164 (61.2)	302 (64.3)		
36		Non-binary/other	51 (1.7)	46 (2.1)	1 (0.4)	4 (0.9)		
37		Race/ethnicity, n (column %)*						
38		American Indian/Alaska Native	39 (1.3)	29 (1.3)	2 (0.7)	8 (1.7)		
39		Asian/Pacific Islander	833 (28.5)	703 (32.2)		64 (13.6)		
40 41		Black/African American	103 (3.5)	83 (3.8)	16 (6.0)	4 (0.9)		
42		Hispanic/Latine/Spanish origin	420 (14.4)	346 (15.9)	39 (14.6)	35 (7.4)		
43		White	1,814 (62.2)	1,261 (57.8)	160 (59.7)	393 (83.6)		
44		Other	280 (9.6)	223 (10.2)	31 (11.6)	26 (5.5)		
45		Program level, n (column %)						
46		Undergraduate	-	1,114 (51.7)	-	-		
47		Graduate	-	1,039 (48.2)	-	-		
48 49		Living at fraternity/sorority, n						
49 50		(column %)	-	125 (5.7%)	-	-		
51		Education, n (column %)						
52		High school diploma/GED	_	_	6 (2.2)	0 (0)		
53		Some college or trade school	_	_	59 (22.0)	13 (2.8)		
54		Bachelor's degree	-	-	78 (29.1)	119 (25.3)		
55		Graduate/professional degree	_	-	121 (45.1)	337 (71.7)		
56					x - 7	× /		
57 58						40		
50						12		

	Department, n (column %) Health services Facilities/building services Student services/other	- -	- - -	129 (48.1) 61 (22.8) 77 (28.7)	- - -
	Job title, n (column %) Faculty Staff Postdoctoral scholar/other	-	-	- - -	110 (23.4) 311 (66.2) 49 (10.4)
	Currently working outside the home, n (column %)	748 (25.6)	418 (19.2)	228 (85.1)	102 (21.7)
	Pre-enrollment COVID-19 diagnosis, n (column %)	12 (0.4)	8 (0.4)	1 (0.4)	3 (0.6)
284	*Categories not mutually exclusive.				

^{*}Categories not mutually exclusive.

SARS-CoV-2 incidence

During the study period, participants underwent 7,638 gPCR tests for active SARS-CoV-2 infection, with a mean of 2.6 tests per participant (range: 0-9). Almost all (99.9%) participants completed at least one qPCR test. Overall, 60 participants (2.0%) tested positive: 57 students, 2 essential workers, and 1 faculty/staff.

Among cohorts, students were at highest risk of incident infection over the study period (IRR students vs. faculty/staff: 5.8; 95% confidence interval [CI]: 1.3, 103.0). Due to the low number of cases outside of the student cohort, we examined additional risk factors for infections among students only (Table 2), finding higher rates of infection among students who were 18-19 years old (IRR vs. students ≥22 years: 8.3; 95% CI: 4.2, 17.5) and undergraduates (IRR vs. graduate students: 4.1; 95% CI: 2.2, 8.7). We also observed a higher incidence among white students (IRR: 2.8 vs. non-white students; 95% CI: 1.5, 5.5). These associations were largely driven by an outbreak among participants living in fraternities or sororities. Nearly one-guarter of participants living in fraternities or sororities were infected with SARS-CoV-2 during the study period (IRR vs. other students: 20.9; 95% CI: 12.3, 35.5), and these participants accounted for 49% of cases observed among student participants.

1
2
3
4
5
6
7
8

Table 2. Bivariate associations between sociodemographic characteristics and SARS-CoV-2
 303 incidence among student participants in the Safe Campus Initiative, June-August 2020.

	Cases, N (row %)	Non-Cases, N (row %)	IRR (95% CI)
Overall*	57 (2.6)	2,120 (97.4)	
Age			
18-19 years	21 (8.0)	243 (92.0)	8.3 (4.2, 17.5
20-21 years	24 (3.8)	607 (96.2)	4.2 (2.1, 8.6
≥22 years	12 (0.9)	1,270 (99.1)	Reference
Gender			
Woman	37 (3.1)	1,147 (96.9)	1.5 (0.9, 2.6
Man	19 (2.1)	892 (97.9)	Reference
Non-binary/other	0 (0)	46 (100)	
Race/ethnicity**			
American Indian/Alaska Native	0 (0)	29 (100)	
Asian/Pacific Islander	11 (1.6)	691 (98.4)	0.5 (0.2, 0.9
Black/African American	1 (1.2)	82 (98.8)	0.5 (0.03, 2.0
Hispanic/Latine/Spanish origin	8 (2.3)	337 (97.7)	0.9 (0.4, 1.8
White	45 (3.6)	1,216 (96.4)	2.8 (1.5, 5.5
Other	4 (1.8)	217 (98.2)	0.7 (0.2, 1.6
Program level			
Undergraduate	46 (4.1)	1,067 (95.9)	4.1 (2.2, 8.7
Graduate	10 (1.0)	1,027 (99.0)	Reference
Living at fraternity/sorority	28 (22.4)	97 (77.6)	20.9 (12.3, 35.5
Currently working outside the home	6 (1.4)	410 (98.6)	0.5 (0.2, 1.1
IRR: incidence rate ratio, CI: confidence interva	al.		
*N=2,177 students with at least one qPCR test			
**Not mutually exclusive; all participants not incomparison	cluded in specified	racial/ethnic categor	y served as reference for
comparison.			

40 309 Phylogenetic analysis
 41

⁴² 310 We retrieved whole viral genome sequences for 35 of the 60 positive cases from this

⁴⁴ 311 study, 29 (83%) of which were found to be part of a campus super-spreader event involving a

⁴⁶ 312 total of 57 campus-affiliated individuals with samples sequenced by IGI (Figure 1A). Most (69%)

- 48
 49 313 study participants within this cluster lived at one of two residences, with likely a single
- 51 314 participant originating the super-spreader event. The cluster of genomes was defined by three
- 53 315 mutations (A6360G, C24502A and G110083T), two of which were extremely rare at the time of
- 55 316 the outbreak. The combination of the three variants was only found in four genomes outside of

this cluster (two in the UK and two in Florida) by October 2020, making it a strong phylogenetic signature. Phylogenetic analysis demonstrated that the cluster remained confined to campus, as this signature was not observed in any genomes from samples in the surrounding communities or California state in the months following the super-spreader event. When the trio of mutations was searched in a phylogeny constructed from over 1.2 million genomes worldwide using UShER in April 2021,[25] no descendent leaves were found in the tree under the cluster (Figure 1B), indicating that the lineage died out after the super-spreader event. Factors associated with test positivity At least one symptom survey was completed in the 7 days before sample collection for 88% of tests (n=6,668), including 72% of tests (n=5,465) that had symptom data from the day of sample collection. Of the 52 cases who completed at least one survey during the week before their positive sample was collected (mean: 4 surveys), 23 cases (44%) had reported at least one of the nine COVID-19 symptoms that triggered a notification for them to test. Test positivity was 12.7 times higher among participants who had a recent symptom-triggered notification (95% CI: 7.4, 21.8) (Table 3). Notification-triggering symptoms most strongly associated with test positivity included loss of sense of taste or smell and feeling feverish. Weakness, sweats or chills, and swollen glands were the non-triggering symptoms most strongly associated with test positivity.

2		
3	337	Table 3. Bivariate associations between prospectively monitored symptoms and exposures and
4	338	SARS-CoV-2 qPCR test positivity among participants in the Safe Campus Initiative, June-
5	220	

August 2020.

0 7			
7 8		Test Positivity,	IRR (95% CI)
9		% (+ Tests / All Tests)	
10	Overall*	0.8 (60 / 7,615)	-
11	Signs/symptoms within 7 days of test		
12	No	0.3 (18 / 5,489)	Reference**
13	Yes (any)	2.9 (34 / 1,179)	8.8 (5.0, 15.5)
14	- Temperature ≥100.4°F†	0.0 (0 / 10)	0.0 (0.0, 0.0)
15	- Temperature ≥100.4 T	10.5 (2 / 19)	
16	-	2.9 (12 / 417)	13.2 (3.4, 50.9)
17	 Temperature ≥99.0°F Eacling fovorigh t 	· · · · · · · · · · · · · · · · · · ·	4.3 (2.2, 8.2)
18	- Feeling feverish †	15.3 (11 / 72)	24.6 (13.2, 45.8)
19	- Dry cough †	5.6 (7 / 126)	8.1 (3.7, 17.7)
20	- Coughing up mucus [†]	5.5 (5 / 91)	7.7 (3.1, 19.0)
21	- Unusual chest pain or pressure †	9.7 (6 / 62)	13.9 (6.1, 31.6)
22	- Difficulty breathing t	5.6 (1 / 18)	7.2 (1.0, 49.8)
23	- Shortness of breath †	8.9 (4 / 45)	12.3 (4.6, 32.9)
24	 Trouble thinking/concentrating [†] 	7.6 (5 / 66)	10.7 (4.4, 26.1)
25	- Loss of sense of taste †	42.9 (3 / 7)	58.3 (23.7, 143)
26	 Loss of sense of smell † 	33.3 (4 / 12)	46.2 (19.2, 111)
27	 Any notification-triggering symptom [†] 	5.9 (23 / 393)	12.7 (7.4, 21.8)
28	 Loss of appetite 	10.3 (6 / 58)	14.8 (6.5, 33.9)
29 30	- Fatigue	3.5 (13 / 371)	5.4 (3.0, 10.6)
30 31	 Trouble sleeping 	5.1 (7 / 136)	7.5 (3.4, 16.4)
32	- Headache	4.7 (14 / 300)	7.8 (4.3, 14.3)
33	 Runny, blocked, or painful sinuses 	5.2 (14 / 267)	8.8 (4.8, 16.2)
34	- Sneezing	1.9 (2 / 106)	2.5 (0.6, 10.1)
35	 Swollen, red, or painful eyes 	8.6 (5 / 58)	12.1 (4.9, 30.0)
36	- Sore throat	3.1 (8 / 258)	4.5 (2.1, 9.5)
37	- Stomach pain	5.8 (5 / 86)	8.1 (3.3, 20.1)
38	- Diarrhea	4.9 (4 / 82)	6.7 (2.5, 18.2)
39	 Nausea or vomiting 	3.3 (3 / 90)	4.5 (1.4, 14.2)
40	- Body aches or muscle pain	8.2 (12 / 146)	13.4 (7.2, 25.2)
41	- Sweats or chills	11.5 (10 / 87)	18.0 (9.2, 35.2)
42	- Swollen glands	12.2 (5 / 41)	17.3 (7.2, 41.2)
43	- Weakness	13.5 (10 / 74)	21.2 (11.0, 40.9)
44			(,,
45	Exposures within 14 days before test		D = f = = = = = + +
46	No	0.3 (15 / 4,319)	Reference**
47	Yes (any)	3.4 (17 / 506)	9.6 (4.8, 19.2)
48	- Suspected or confirmed COVID-19	7.4 (7 / 95)	13.9 (6.1, 31.8)
49	case in household [†]	/- / / / .	
50	- Close contact with suspected or	3.5 (5 / 144)	6.0 (2.3, 15.4)
51	confirmed case outside household		
52	 Household member with new 	4.4 (5 / 114)	7.6 (3.0, 19.6)
53	COVID-19-like symptoms [†]		
54	 Household member with any new 	2.6 (9 / 347)	5.0 (2.3, 10.8)
55	symptoms of illness		
56			

1 2								
3		 Any notification-triggering exposure [†] 	5.1 (9 / 177)	10.3 (4.8, 22.09)				
4 5		Activities within 14 days before test						
6		No	0.4 (3 / 678)	Reference**				
7		Yes (any)	0.7 (29 / 4,145)	1.6 (0.5, 5.1)				
8		 Spent time at another residence Had visitors at own residence 	1.1 (26 / 2,327) 1.0 (22 / 2,205)	4.6 (1.9, 11.3) 2.6 (1.2, 5.5)				
9 10		 Attended gathering >10 people 	2.8 (19 / 672)	9.0 (4.5, 18.1)				
11		- Worked outside of home	0.5 (10 / 2,152)	0.6 (0.3, 1.2)				
12		- Used public restroom	0.7 (12 / 1,821)	1.0 (0.5, 2.0)				
13		- Used public transportation	0.6 (4 / 699)	0.8 (0.3, 2.4)				
14 15		 Participated in group sports 	1.6 (4 / 257)	2.5 (0.9, 7.2)				
15	340	qPCR: quantitative polymerase chain reaction, IRR: incidence						
17	341 342	*Excluding resamples, same-day re-tests, and repeated posit qPCR test for SARS-CoV-2 during the study period.	ives; includes N=2,914 participa	ants with at least one				
18	342 343	**Reference group for "Yes (any)" comparisons; reference group	oups for specific symptoms/exp	osures/activities were				
19 20	344	those who did not report that symptom/exposure/activity.						
20 21	345	[†] Reporting triggered notification to test.						
22	346							
23 24	347	Participants completed at least one weekly	exposure survey in the 1	4 days before				
25 26	348	sample collection for 63% of tests (n=4,825). Of the 32 cases who had recently completed an						
27 28	349	exposure survey at the time of sample collection, 9 (29%) reported a potential household						
29 30 31	350	exposure that triggered a notification for them to test (Table 3). Test positivity was 10.3 times						
32 33	351	higher among participants who had a recent expos	sure-triggered notification	(95% CI: 4.8, 22.0).				
34 35	352	Test positivity was also significantly higher among participants who reported recent engagement						
36 37	353	in 'higher risk' social activities, most notably attending a gathering of more than 10 people (IRR:						
38 39	354	9.0; 95% CI: 4.5, 18.1).						
40 41 42	355							
43	356	SARS-CoV-2 seroprevalence						
44 45	357	Only 18 (0.6%) of 2,877 participants who provided blood samples at baseline had						
46 47 48	358	SARS-CoV-2 antibodies (Table 4), all but one of them students. Most participants with						
48 49 50	359	antibodies at baseline either suspected past infection (28%), had been previously diagnosed						
51 52	360	(22%), or had a positive qPCR test the day blood was drawn (11%). Most (85%) participants in						
53 54	361	the student and essential worker cohorts provided blood samples at both baseline and endline						
55 56	362	(mean interval between samples: 48 days). Among 2,076 participants with baseline and endline						
57 58				47				
59 60		For peer review only - http://bmjopen.br	mj.com/site/about/guidelines.	17 xhtml				

1 2								
2 3 4	363	blood samples, 33 (1.6%) seroconverted from non-reactive at baseline to reactive at endline, 30						
5 6	364	of whom (91%) were also diagnosed via qPCR test during the study. Of the three participants						
7 8	365	who seroconverted without a positive qPCR test, two self-reported suspected past infection (one						
9 10	366	before baseline, one during the study per	riod), while the third	did not suspect pa	st infection and			
10 11 12	367	had four negative qPCR tests over 40 da	ys of study participa	ation.				
13 14	368	Of the 60 participants with incident SARS-CoV-2 infection during the study period, 41						
15 16	369	(68%) provided an endline blood sample at least one week after the date of their first positive						
17 18	370	qPCR test (mean time between positive qPCR test and blood sample: 36 days; range 13-52						
19 20	371	days). Of these, 34 (83%) were reactive (Table 4).						
21 22 23	372							
24 25 26	373 374	Table 4. Seroprevalence of SARS-CoV-2Initiative, June-August 2020.	2 antibodies among	participants in the	Safe Campus			
27 28 20			Baseline, N (%)	Endline, N (%)	Both, N (%)			
29 30 31 32 33 34 35 36 37 38 39 40 41		Serostatus – Cross-sectional* Reactive Non-reactive	18 (0.6) 2,859 (99.4)	48 (2.3) 2,039 (97.7)	-			
		Serostatus – Longitudinal** Non-Reactive → Non-Reactive Non-Reactive → Reactive Reactive → Non-Reactive Reactive → Reactive			2,029 (97.7) 33 (1.6) 0 (0) 14 (0.7)			
		Serostatus – Previous qPCR Positive [†] Reactive Non-reactive	-	34 (82.9) 7 (17.1)				
42 43 44 45 46 47 48 40	2 375 qPCR: quantitative polymerase chain reaction. 3 376 *N=2,888 participants who provided at least one blood sample. 5 377 **N=2,076 participants who provided blood samples at baseline and endline. 5 378 *N=41 participants who provided an endline blood sample ≥7 days after infection with SARS-CoV-2 ider 7 380							
49 50	381	Discussion						
51 52 53	382	This study provides a model of a voluntary, incentivized system to identify and link at-risk						
54 55 56	383	students to SARS-CoV-2 testing. While the incidence and seroprevalence of SARS-CoV-2 were						
57 58					18			
59 60		For peer review only - http://b	omjopen.bmj.com/site/	about/guidelines.xhtr	nl			

Page 20 of 33

2	
3 1	
5	
0 7	
8 9	
10 11	
12 13	
14 15	
16	
18	
20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 324\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\end{array}$	
39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52	
53 54	
55 56	
57 58	
59 60	

60

1

generally low in this cohort of university students and employees in the summer of 2020, we
observed the highest incidence among undergraduate students living in congregate settings,
with nearly half of cases found to be associated with a super-spreader event.

387 At the time of the study, many infection control strategies centered on symptomatic 388 testing, reducing the likelihood of identifying asymptomatic, mildly symptomatic, and pre-389 symptomatic infections. Our approach sought to integrate symptom-based monitoring with 390 exposure monitoring, random surveillance testing, and targeted surveillance testing in the 391 context of an outbreak. Within this cohort, we previously demonstrated the acceptability of our 392 low-barrier SARS-CoV-2 mitigation approach and the limitations of temperature monitoring as a 393 tool for case identification.[14,28] The present analysis builds upon these contributions by 394 triangulating prospective gPCR testing data with phylogenetic analyses of positive samples and 395 serial antibody testing to evaluate whether case identification and containment were achieved. 396 In doing so, we found evidence that the system successfully identified a high proportion of 397 incident SARS-CoV-2 cases among participants and may have mitigated community 398 transmission after an outbreak. Specifically, 91% of participants with newly-identified antibodies 399 for SARS-CoV-2 at the end of the study had also been diagnosed with incident infection via 400 qPCR test during the study period. While a sizeable cluster of cases among participants was 401 traced to a single super-spreader event, the associated cluster lineage was successfully 402 contained without spreading beyond campus. As the outbreak unfolded, the system also 403 allowed for rapid real-time response (i.e., surveillance testing notifications to students living in 404 congregate housing) and offered a readily accessible, incentivized entry point for testing for 405 students concerned about potential exposure.

406 Although some universities have adopted punitive measures intended to prevent
 407 transmission by controlling student behavior (for example, suspending students for hosting
 408 gatherings),[31–33] this approach has been criticized for its potential to reduce students' trust
 409 and cooperation.[34–36] Instead of punishing or shaming students who fail to adhere to public

Page 21 of 33

1

BMJ Open

2	
2 3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22 23	
23	
24	
25	
26 27 28 29	
27	
28	
29	
30	
31	
32	
33 34	
54 35	
35 36	
30 37	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59

60

health guidance, some epidemiologists have called for a harm-reduction approach which
supports and engages students as part of the solution.[34–36] The present study reinforces the
potential to integrate voluntary testing and risk monitoring systems to support targeted case
identification, as evidenced by the significantly higher positivity rates found among participants
whose self-reported symptoms and exposures triggered notifications to test. Our findings also
support increased outreach to groups of students at highest risk, particularly younger students
in congregate housing.

417 This study is strengthened by rich longitudinal data, including symptom and exposure 418 tracking, qPCR testing, and seroprevalence data from more than 2,000 participants. The study 419 population comprised of a broad sample of university affiliates, both students and employees, 420 with strong representation of university subpopulations perceived to be at higher risk of infection 421 (e.g., undergraduates, essential healthcare workers). As on-campus activities were severely 422 restricted throughout the study period (all classes were held online, and few students were living 423 in residence halls), this study cannot provide insight into SARS-CoV-2 transmission risks related 424 to on-campus student activities. Nevertheless, as 73% of UC Berkeley undergraduate students 425 lived off campus before the pandemic, [37] systems to detect off-campus (i.e., community and 426 household) transmission remain important for SARS-CoV-2 monitoring efforts among students. 427 Additionally, all participants in the essential workers cohort and a subset of participants in the 428 faculty/cohort were working on campus during the study period, further motivating efforts to 429 monitor incidence in this population.

430 There remain several limitations. We observed relatively few SARS-CoV-2 cases during
 431 the study period. Accordingly, although many associations are statistically significant, our
 432 estimates are imprecise (i.e., have wide confidence intervals) and must be interpreted with
 433 caution. This study took place before the development of highly transmissible variants, such as
 434 Delta and Omicron, and before vaccine rollout. Observed associations between symptoms and
 435 positivity may also differ among those who have been infected by more recent variants and/or

vaccinated. Further research is necessary to adapt and evaluate similar systems in the context of both heightened transmissibility and more prevalent natural and vaccine-induced immunity. Additionally, a high proportion of identified cases were traced to one outbreak, limiting the generalizability of our exploratory assessment of risk factors for incident infection. There was also anecdotal evidence that the outbreak prompted exposed students to enroll as study participants.[14] While this self-referral into the study is likely to increase selection bias, it also illustrates the utility of implementing non-stigmatizing, incentivized testing approaches to increase testing uptake among at-risk students. Finally, our identification of participants who seroconverted between baseline and endline may be incomplete due to loss-to-follow up and imperfect sensitivity of SARS-CoV-2 antibody testing. By integrating symptom and exposure monitoring systems with low-barrier testing, we identified incident SARS-CoV-2 infections to reduce transmission within a university setting. Our study contributes to a growing body of literature on novel, integrated SARS-CoV-2 surveillance strategies in university settings.[38-44] While there have been seismic shifts in the SARS-CoV-2 pandemic since 2020, universities continue to grapple with how best to mitigate on-campus spread in the face of emerging variants, incomplete vaccination coverage, breakthrough infections, and decreased reliance on other mitigation strategies (e.g., masking, remote learning).[45,46] In light of universities' resource constraints and persistently high case counts, incentivized approaches may not be feasible or sustainable in many settings. Thus, further research is needed to identify and test non-monetary incentives and other behavioral nudge strategies that encourage students and other campus community members to actively participate in public health efforts to combat the pandemic. The lessons learned through this study may inform the design of future adaptive strategies, ideally building beyond symptom/exposure monitoring and qPCR testing to integrate complementary interventions such as rapid antigen self-testing and vaccination promotion.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44	
45 46	
40	
47	
40 49	
49 50	
50 51	
51 52	
52 53	
53 54	
55	
56	
57	
58	
59	
60	

461 Keywords: COVID-19, SARS-CoV-2, United States, young adults, students, universities, 462 essential workers, seroprevalence

464 Acknowledgements

465 We are grateful for the contributions of an exceptional team of graduate student 466 researchers (Mariah De Zuzuarregui, Darren Frank, Sarah Gomez-Aladino, Ariel Muñoz, Ruben 467 Prado, Lawrence Tello, Emily Wang, and Sabrina Williamson) and our collaborators at UC 468 Berkeley's University Health Services (including but not limited to: Judith Sansone, Melody 469 Heller, Holly Stern, Tyler Crooks, Desi Gallardo, Jeff Kreutzen, Rebecca Stephenson, Lisa 470 Polley, and Melissa Hennings), the Innovative Genomics Institute (including but not limited to: 471 Fyodor Urnov, Shana McDevitt, Ariana Hirsch, Alexander Ehrenberg, and the other members of 472 the IGI SARS-CoV-2 testing consortium: M Amen, Kerrie W Barry, John M Boyle, Cara E Brook, 473 Seunga Choo, L T Cornmesser, David J Dilworth, Jennifer A Doudna, Indro Fedrigo, Skyler E 474 Friedline, Thomas G W Graham, Ralph Green, Jennifer R Hamilton, Megan L Hochstrasser, 475 Dirk Hockemeyer, Netravathi Krishnappa, Azra Lari, Hangin Li, Enrique Lin-Shiao, Tianlin Lu, 476 Elijah F Lyons, Kevin G Mark, Lisa Argento Martell, A Raguel O Martins, Patrick S Mitchell, 477 Erica A Moehle, Christine Naca, Divya Nandakumar, Elizabeth O'Brien, Derek J Pappas, 478 Kathleen Pestal, Diana L Quach, Benjamin E Rubin, Rohan Sachdeva, Elizabeth C Stahl, 479 Abdullah Muhammad Syed, I-Li Tan, Amy L Tollner, Connor A Tsuchida, C Kimberly Tsui, 480 Timothy K Turkalo, M Bryan Warf, Oscar N Whitney, and Lea B Witkowsky), and Vitalant 481 Research Institute (including but not limited to: Mars Stone, Chloe Thorbrogger, Alice Lee, and 482 Heather Tanner). The author would also like to thank Drs. Sandra McCoy, Stefano Bertozzi, and 483 Lauren Ralph for their feedback on this manuscript.

484 Contributors: LH performed statistical analyses and wrote the first draft of the manuscript. SW 485 performed phylogenomic analyses and prepared associated figures and paragraphs. AR and 486 MP designed the study and provided input on the manuscript. LP, SF, AH, GN, the IGI SARS-

3 4	4
5	
6	4
7	
8	
9	
10	4
11 12	
12 13	4
14	
15	4
16	
17	4
18	
10 19	4
20 21	
21 22 23	4
23	
24	
25	4
26	
27	-
28 29	4
29 30	
31	
32	4
33	
34	ļ
35	Į
36 37	;
3/	
38 39	
39 40	
41	
42	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56 57	
57 58	
58 59	
60	

487 CoV-2 Testing Consortium, CDG, and MB provided feedback on the study design and
488 manuscript. YL assisted with data analyses. All authors hold final responsibility for the decision
489 to submit for publication.

490 Declaration of interests: Vitalant Research Institute, of which Dr. Michael Busch is Director,
491 receives research funding and free assay kits from Ortho Clinical Diagnostics. Dr. Busch does
492 not receive salary support or personal compensation from Ortho Clinical Diagnostics. The
493 remaining authors declare no competing interests.

494 **Funding:** The study was funded by private donors who had no role in study design, data
495 collection, data analysis, data interpretation, or writing of the report.

496 **Data sharing:** De-identified data sets used in analyses and accompanying R Markdown script

497 files will be publicly available at the time of publication at the following link:

498 https://github.com/lauren-hunter/bcsci

499 Ethical approvals: All study activities were approved by the University of California, Berkeley
 500 Committee for the Protection of Human Subjects (#2020-06-13349, #2020-05-13261, #2020-04 501 13238).

1 2			
2 3 4	502		References
5 6 7 8	503 504 505	1	The New York Times. Tracking the Coronavirus at U.S. Colleges and Universities. The New York Times. 2020.https://www.nytimes.com/interactive/2020/us/covid-college-cases-tracker.html (accessed 15 Dec 2020).
9 10 11 12	506 507 508	2	Boehmer TK, DeVies J, Caruso E, <i>et al.</i> Changing Age Distribution of the COVID-19 Pandemic - United States, May-August 2020. <i>MMWR Morb Mortal Wkly Rep</i> 2020; 69 :1404– 9. doi:10.15585/mmwr.mm6939e1
13 14 15 16	509 510 511	3	Salvatore PP. Recent Increase in COVID-19 Cases Reported Among Adults Aged 18–22 Years — United States, May 31–September 5, 2020. <i>MMWR Morb Mortal Wkly Rep</i> 2020; 69 . doi:10.15585/mmwr.mm6939e4
17 18 19 20	512 513 514	4	Rossen LM, Branum AM, Ahmad FB, <i>et al.</i> Excess Deaths Associated with COVID-19, by Age and Race and Ethnicity — United States, January 26–October 3, 2020. <i>MMWR Morb Mortal Wkly Rep</i> 2020; 69 :1522–7. doi:10.15585/mmwr.mm6942e2
21 22 23	515 516	5	Moghadas SM, Fitzpatrick MC, Sah P, <i>et al.</i> The implications of silent transmission for the control of COVID-19 outbreaks. <i>PNAS</i> 2020; 117 :17513–5. doi:10.1073/pnas.2008373117
24 25 26 27 28 29	517 518 519 520	6	Ivory D, Gebeloff R, Mervosh S. Young People Have Less Covid-19 Risk, but in College Towns, Deaths Rose Fast. The New York Times. 2020.https://www.nytimes.com/2020/12/12/us/covid-colleges-nursing-homes.html (accessed 15 Dec 2020).
30 31 32	521 522	7	Andersen MS, Bento AI, Basu A, <i>et al.</i> College Openings, Mobility, and the Incidence of COVID-19 Cases. <i>medRxiv</i> 2020;:2020.09.22.20196048. doi:10.1101/2020.09.22.20196048
33 34 35 36	523 524 525	8	Leidner AJ. Opening of Large Institutions of Higher Education and County-Level COVID-19 Incidence — United States, July 6–September 17, 2020. <i>MMWR Morb Mortal Wkly Rep</i> 2021; 70 . doi:10.15585/mmwr.mm7001a4
37 38 39 40 41 42	526 527 528 529 530	9	Ferdinands JM. Waning 2-Dose and 3-Dose Effectiveness of mRNA Vaccines Against COVID-19–Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods of Delta and Omicron Variant Predominance — VISION Network, 10 States, August 2021–January 2022. <i>MMWR Morb Mortal Wkly Rep</i> 2022; 71 . doi:10.15585/mmwr.mm7107e2
43 44 45	531 532	10	Yasmin F, Najeeb H, Moeed A, <i>et al.</i> COVID-19 Vaccine Hesitancy in the United States: A Systematic Review. <i>Front Public Health</i> 2021; 9 :770985. doi:10.3389/fpubh.2021.770985
46 47 48 49 50	533 534 535	11	Booeshaghi AS, Tan FH, Renton B, <i>et al.</i> Markedly heterogeneous COVID-19 testing plans among US colleges and universities. <i>medRxiv</i> 2020;:2020.08.09.20171223. doi:10.1101/2020.08.09.20171223
50 51 52 53 54 55 56	536 537 538	12	Nadworny E, McMinn S. Even In COVID-19 Hot Spots, Many Colleges Aren't Aggressively Testing Students. NPR.org. 2020.https://www.npr.org/2020/10/06/919159473/even-in-covid-hot-spots-many-colleges-arent-aggressively-testing-students (accessed 7 Jan 2021).
57 58			24
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
2 3 4 5 6 7	539 540 541 542	13	Schultes O, Clarke V, Paltiel AD, <i>et al.</i> COVID-19 Testing and Case Rates and Social Contact Among Residential College Students in Connecticut During the 2020-2021 Academic Year. <i>JAMA Network Open</i> 2021; 4 :e2140602. doi:10.1001/jamanetworkopen.2021.40602
8 9 10 11	543 544 545	14	Packel L, Reingold A, Hunter L, <i>et al.</i> Piloting an integrated SARS-CoV-2 testing and data system for outbreak containment among college students: A prospective cohort study. <i>PLOS ONE</i> 2021; 16 :e0245765. doi:10.1371/journal.pone.0245765
12 13 14 15	546 547 548	15	von Elm E, Altman DG, Egger M, <i>et al.</i> The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. <i>Epidemiology</i> 2007; 18 :800–4. doi:10.1097/EDE.0b013e3181577654
16 17 18	549 550	16	Health Officer Order Documents. City of Berkeley. 2020.https://berkeleyca.gov/safety- health/covid-19/covid-19-restrictions/health-officer-order-documents (accessed 5 Feb 2023).
19 20 21 22	551 552 553	17	COVID 19 Daily Cases and Deaths. Alco Data Portal. 2023.https://data.acgov.org/datasets/f6cabaab66ea43a585bfd83e0a3bcc63_0/ (accessed 5 Feb 2023).
23 24 25 26 27 28	554 555 556 557	18	Harris PA, Taylor R, Thielke R, <i>et al.</i> Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. <i>Journal of Biomedical Informatics</i> 2009; 42 :377–81. doi:10.1016/j.jbi.2008.08.010
29 30 31 32	558 559 560	19	Harris PA, Taylor R, Minor BL, <i>et al</i> . The REDCap consortium: Building an international community of software platform partners. <i>Journal of Biomedical Informatics</i> 2019; 95 :103208. doi:10.1016/j.jbi.2019.103208
33 34 35	561 562	20	Amen AM, Barry KW, Boyle JM, <i>et al.</i> Blueprint for a pop-up SARS-CoV-2 testing lab. <i>Nature Biotechnology</i> 2020; 38 :791–7. doi:10.1038/s41587-020-0583-3
36 37 38	563 564	21	Gohl DM, Garbe J, Grady P, <i>et al.</i> A rapid, cost-effective tailed amplicon method for sequencing SARS-CoV-2. <i>BMC Genomics</i> 2020; 21 :863. doi:10.1186/s12864-020-07283-6
39 40	565	22	Bushnell B. BBMap. https://sourceforge.net/projects/bbmap
41 42 43	566 567	23	Hadfield J, Megill C, Bell SM, <i>et al.</i> Nextstrain: real-time tracking of pathogen evolution. <i>Bioinformatics</i> 2018; 34 :4121–3. doi:10.1093/bioinformatics/bty407
44 45 46	568 569	24	Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data – from vision to reality. <i>Euro Surveill</i> 2017; 22 :30494. doi:10.2807/1560-7917.ES.2017.22.13.30494
47 48 49 50 51	570 571 572	25	Turakhia Y, Thornlow B, Hinrichs AS, <i>et al.</i> Ultrafast Sample Placement on Existing Trees (UShER) Empowers Real-Time Phylogenetics for the SARS-CoV-2 Pandemic. 2020;:2020.09.26.314971. doi:10.1101/2020.09.26.314971
52 53 54 55 56	573 574 575 576	26	Ortho Clinical Diagnostics. INSTRUCTIONS FOR USE: VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagant Pack, VITROS Immunodiagnostic Products Anti- SARS-CoV-2 Total Calibrator. 2020.https://www.fda.gov/media/136967/download (accessed 7 Jan 2021).
57 58 50			25
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4 5 6	577 578 579	27	Mantzari E, Vogt F, Shemilt I, <i>et al.</i> Personal financial incentives for changing habitual health-related behaviors: A systematic review and meta-analysis. <i>Prev Med</i> 2015; 75 :75–85. doi:10.1016/j.ypmed.2015.03.001
7 8 9 10	580 581 582	28	Facente SN, Hunter LA, Packel LJ, <i>et al.</i> Feasibility and effectiveness of daily temperature screening to detect COVID-19 in a prospective cohort at a large public university. <i>BMC Public Health</i> 2021; 21 :1693. doi:10.1186/s12889-021-11697-6
11 12 13	583 584	29	Liang K-Y, Zeger SL. Longitudinal Data Analysis Using Generalized Linear Models. <i>Biometrika</i> 1986; 73 :13–22. doi:10.2307/2336267
14 15 16	585 586	30	R Core Team. R: A language and environment for statistical computing. 2021.https://www.R-project.org/
17 18 19 20	587 588 589	31	Gross EL. Ohio State University Suspends 228 Students For Violating Covid-19 Guidelines. Forbes. 2020.https://www.forbes.com/sites/elanagross/2020/08/24/ohio-state-university- suspends-228-students-for-violating-covid-19-guidelines/ (accessed 9 Sep 2020).
21 22 23 24	590 591 592	32	Giuliani-Hoffman F. Tulane students warned of suspension or expulsion for partying in groups larger than 15. CNN. 2020.https://www.cnn.com/2020/07/09/us/tulane-students-group-gathering-coronavirus-trnd/index.html (accessed 9 Sep 2020).
25 26 27 28 29 30	593 594 595 596	33	Treisman R. More Than 200 Ohio State University Students Suspended For Violating Pandemic Rules. NPR.org. 2020.https://www.npr.org/sections/coronavirus-live-updates/2020/08/25/906039378/more-than-200-ohio-state-university-students-suspended-for-violating-pandemic-ru (accessed 9 Sep 2020).
31 32 33 34	597 598 599	34	Gold JM Jessica. Colleges Are Getting Ready to Blame Their Students. The Atlantic. 2020.https://www.theatlantic.com/ideas/archive/2020/07/colleges-are-getting-ready-blame-their-students/614410/ (accessed 8 Sep 2020).
35 36 37 38	600 601 602	35	Marcus J. Quarantine Fatigue Is Real. The Atlantic. 2020.https://www.theatlantic.com/ideas/archive/2020/05/quarantine-fatigue-real-and- shaming-people-wont-help/611482/ (accessed 8 Sep 2020).
39 40 41 42 43	603 604 605 606	36	Marcus J, Baral S. University leaders should take a more humane approach to students during COVID-19 (opinion) Inside Higher Ed. Inside Higher Ed. 2020.https://www.insidehighered.com/views/2020/10/15/university-leaders-should-take-more-humane-approach-students-during-covid-19 (accessed 8 Jan 2021).
44 45 46 47 48	607 608 609	37	UC Berkeley Office of Undergraduate Admissions. Housing UC Berkeley University of California, Berkeley. Berkeley.edu. https://admissions.berkeley.edu/housing (accessed 11 Jan 2021).
49 50 51 52	610 611 612	38	Petros BA, Paull JS, Tomkins-Tinch CH, <i>et al.</i> Multimodal surveillance of SARS-CoV-2 at a university enables development of a robust outbreak response framework. <i>Med</i> 2022; 3 :883-900.e13. doi:10.1016/j.medj.2022.09.003
53 54 55 56 57	613 614	39	Karthikeyan S, Nguyen A, McDonald D, <i>et al.</i> Rapid, Large-Scale Wastewater Surveillance and Automated Reporting System Enable Early Detection of Nearly 85% of COVID-19
58 59			26
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 5	615 616		Cases on a University Campus. <i>mSystems</i> 2021; 6 :e0079321. doi:10.1128/mSystems.00793-21
6 7 8 9	617 618 619	40	Currie DW, Moreno GK, Delahoy MJ, <i>et al.</i> Interventions to Disrupt Coronavirus Disease Transmission at a University, Wisconsin, USA, August–October 2020. <i>Emerg Infect Dis</i> 2021; 27 :2776–85. doi:10.3201/eid2711.211306
10 11 12 13	620 621 622	41	Pollock BH, Kilpatrick AM, Eisenman DP, <i>et al.</i> Safe reopening of college campuses during COVID-19: The University of California experience in Fall 2020. <i>PLOS ONE</i> 2021; 16 :e0258738. doi:10.1371/journal.pone.0258738
14 15 16 17	623 624 625	42	Towers SA, Gemechu NB, Nagaraj NC, <i>et al.</i> SARS-CoV-2 surveillance and outbreak response on an urban American college campus. <i>J Am Coll Health</i> 2022;:1–9. doi:10.1080/07448481.2022.2034834
18 19 20 21 22	626 627 628	43	McDonnell KA, Vyas A, Castel A, <i>et al.</i> Keeping it close: The role of a Campus COVID Support Team (CCST) in sustaining a safe and healthy university campus during COVID-19. 2022;:2022.05.01.22274540. doi:10.1101/2022.05.01.22274540
23 24 25 26	629 630 631	44	Meredith GR, Diel DG, Frazier PI, <i>et al.</i> Routine Surveillance and Vaccination on a University Campus During the Spread of the SARS-CoV-2 Omicron Variant. <i>JAMA Network Open</i> 2022; 5 :e2212906. doi:10.1001/jamanetworkopen.2022.12906
27 28 29 30	632 633 634	45	Colleges Let Students Go Unmasked Even With Covid Bearing Down. Bloomberg.com. 2021.https://www.bloomberg.com/news/articles/2021-11-23/colleges-drop-indoor-mask-rules-despite-holiday-covid-threat (accessed 14 Feb 2022).
31 32 33 34	635 636 637	46	Saul S, Hartocollis A. Some Colleges Loosen Rules for a Virus That Won't Go Away. The New York Times. 2022.https://www.nytimes.com/2022/01/16/us/politics/colleges-covid-coronavirus.html (accessed 14 Feb 2022).
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	638 639		
57 58 59			27

BMJ Open

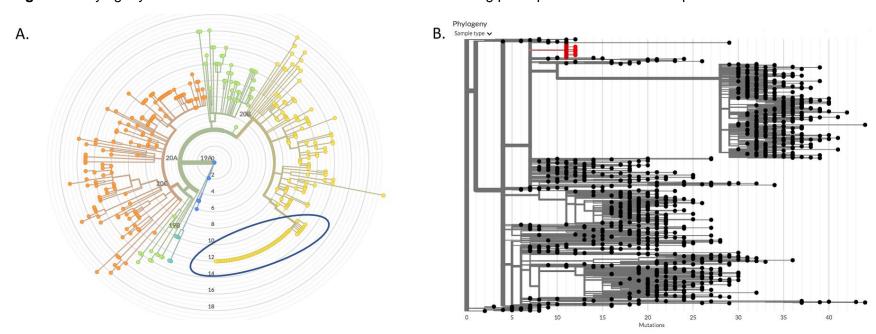
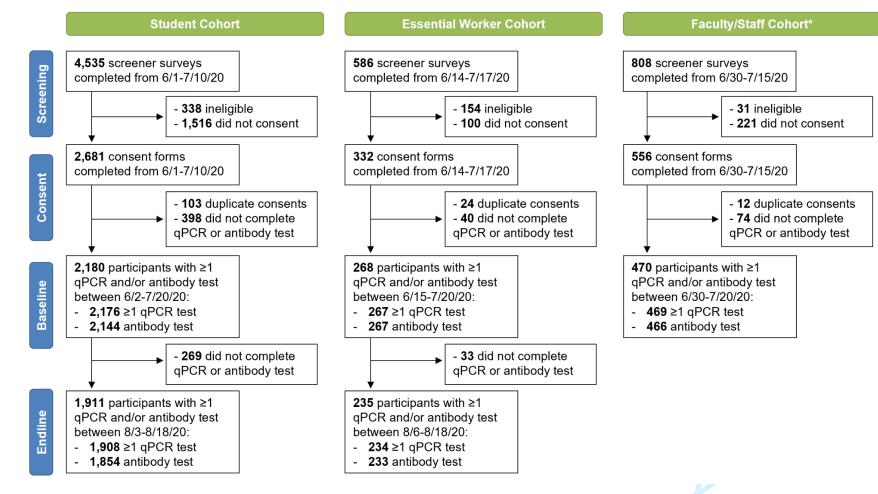


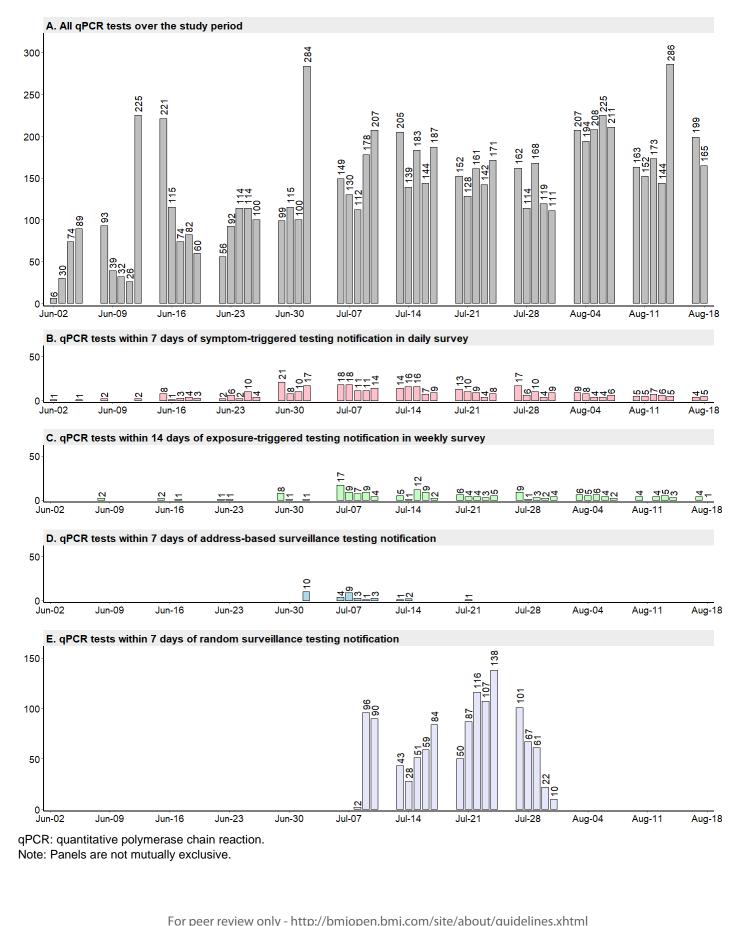
Figure 1. Phylogeny of outbreak-associated strain of SARS-CoV-2 among participants in the Safe Campus Initiative.


A. A maximum likelihood phylogeny constructed from 357 genomes sequenced by the Innovative Genomics Institute between May and July 2020 constructed using Nextstrain. Branch lengths represent divergence from Wuhan reference genome at center. Blue circle marks cluster of identical genomes from a campus super-spreader event.

B. A 1,057 node subtree of a neighbor-joining tree constructed with all SARS-CoV-2 sequences to date (constructed using UShER with over 1 million genomes in April 2021), showing the most similar genomes to the super-spreader event cluster (in red). There are no descendant branches from the cluster, demonstrating that the outbreak was contained and the lineage died out.

Supplementary Table 1. Eligibility criteria across the Berkeley COVID-19 Safe Campus Study cohorts.

	Student Cohort	Essential Worker Cohort	Faculty/Staff Cohort	
	- At least 18 years of age	- At least 18 years of age	- At least 18 years of age	
Eligibility Criteria	- Currently enrolled as an undergraduate or graduate student at UC Berkeley (i.e., not graduated in Spring 2020 or incoming for Fall 2020)	- Currently employed in one of the following departments at UC Berkeley: health services, police, facility services or other building management, environmental health and safety, laboratory animal care, athletics, dining, childcare, other residential or student services	 Currently employed as a faculty member, staff member, or postdoctoral scholar at UC Berkeley Not already enrolled in the essential workers cohort 	
Eligibili		- Currently working on campus at UC Berkeley <i>or</i> expected to return to work during June 2020		
	- Primarily residing in Alameda County or Contra Costa Country between 6/1/20-8/31/20	N/A	 Primarily residing in Alameda County or Contra Costa Country between 6/1/20-8/31/20 	
	- Willing to sign release of information for COVID-19-related medical records	- Willing to sign release of information for COVID-19-related medical records	- Willing to sign release of information for COVID-19-related medical records	
		Ch	0 7 1	


Supplementary Figure 1. Flow diagram for the Berkeley COVID-19 Safe Campus Study cohorts.

qPCR: quantitative polymerase chain reaction.

*Faculty/staff cohort not invited for endline testing appointments but could complete follow-up qPCR tests through 8/18/20.

Supplementary Figure 2. qPCR testing over time across the Berkeley COVID-19 Safe Campus Study cohorts.

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data	5-9, Supplementar
		collection	Figure 1
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5-9, Supplementar Table 1
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-10
Bias	9	Describe any efforts to address potential sources of bias	10
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	10
		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(e) Describe any sensitivity analyses	N/A

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	Supplementary
		eligible, included in the study, completing follow-up, and analysed	Figure 1
		(b) Give reasons for non-participation at each stage	Supplementary
			Figure 1
		(c) Consider use of a flow diagram	Supplementary
			Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	11, Table 1
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	11-13
		(c) Summarise follow-up time (eg, average and total amount)	11
Outcome data	15*	Report numbers of outcome events or summary measures over time	12
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	12-14, Tables 2-3
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	10, Table 3
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-15
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	14-17
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	16
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	19
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.