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Supporting Information on Materials and methods

Gene expression, Primers

Gene Forward Reverse

Arntl TAGGATGTGACCGAGGGAAG TCAAACAAGCTCTGGCCAAT
Clock CCCTTCCTCCACACCGACA GGACGACCTCCGCTGTGT
Cryl CCATCCGCTGCGTCTATATC AAGCAAAAATCGCCACCTGT
Cry2 CCATCGTCAATCATGCAGAG CCACACAGGAAGGGACAGAT
Drpl ACCGGGATCAGCGCCTCCAT CAAGCGGGCTGTGGGTCGAG
Nampt TGCCGTGAAAAGAAGACAGA ACTTCTTTGGCCTCCTGGAT
Npas2 AAGGATAGAGCAAAGAGAGCCT CATTTTCCGAGTGTTACCAGGG
Nridil GTCTCTCCGTTGGCATGTCT CCAAGTTCATGGCGCTCT
Per2 CCAGCTGCTAATGTCCAGTG ACAGCAAACATATCCGCGTT
Ucp2 GCGCCTTCTACAAGGGGTTC CTCCCGAGATTGGTAGGCAG
Ucp3 TGACCTGCGCCCAGC CCCAGGCGTATCATGGCT

Western blot analysis

Protein was extracted from mouse adipose tissues and skeletal muscle by steel bead
homogenization (Tissue Lyser II, Qiagen) in an ice-cold lysis buffer for adipose tissue (RIPA lysis
buffer (20-188, Millipore), 0.1% SDS) and skeletal muscle (pH 7.4, 10% glycerol, 1% IGEPAL, 50
mM Hepes, 150 mM NaCl, 10 mM NaF, 1 mM EDTA, 1 mM EGTA, 20 mM sodium pyrophosphate,
2 mM sodium orthovanadate, 5 mM nicotinamide, 4 uM Thiamet G, and protease inhibitors
(SigmaFast)). Homogenates were incubated on ice for 30 min (adipose tissue) or run end-over-end
for 45 min at 4°C (skeletal muscle), followed by centrifugation at 16,000 g at 4°C for 15 min. The
supernatant was stored in aliquots at 80°C until further analysis. Protein concentration was
measured by BCA (23223 and 23224, Thermo Scientific). Western blot analyses were performed
as described (1). Protein abundance was detected by immunoblotting using antibody for NAMPT
(A300-372A, Bethyl).

RNA sequencing

Read summation onto genes was performed by featureCounts v. 1.5.3 (2). Differential expression
testing was performed with edgeR (3). The model used for differential expression testing was of
the form ~ 0 + group + group:(ZT_sin + ZT_cos), where group encoded both tissue and genotype,
and the parameters ZT_sin and ZT_cos are sine and cosine terms describing time, as generated
by LimoRhyde (4). Circadianicity was found by testing for significance of the sine and cosine
components. Differential rhythmicity was found by testing for differences in the sine and cosine
components. All tests used the quasi-likelihood tests in edgeR. Gene ontology enrichment tests
were performed using the topGO package (5).

Heatmaps were generated using the pheatmap package (6), amplitudes were Z-score transformed
prior to plotting. Overlaps between groups was visualized using upset plots from the UpSetR
package (7) and visualization of gene ontologies was performed by the dotplot function from the
enrichplot package (8). The remaining figures were generated by the ggplot2 package of R (9).
Predicted expression patterns, time of peak and amplitudes were calculated based on the
parameters fitted by edgeR.

Metabolomics

Metabolites from BAT and eWAT were extracted in methanol:acetonitrile:water (5:3:2, 250 yL per
25 mg of tissue). Samples were sonicated, thoroughly vortexed, and centrifuged (16,000 g, 20 min,
4°C). From this, 100 pL supernatant was transferred to new tubes before lyophilization. BAT and
eWAT samples were resuspended in 20 yL and 35 pL of 1% formic acid, respectively, spun down
to remove debris, and transferred to HPLC vails. An aliquot (5 pL) of each BAT and eWAT sample
was transferred to a tissue-specific pool and used for quality control (QC).

Profiling of BAT and eWAT samples was conducted as described (10), with LC-MS and RP
separation on an Agilent 1290 Infinity HPLC system (Agilent Technologies, Santa Clara, CA)



equipped with an Agilent Zorbax Eclipse Plus C18 column (2.1 x 150 mm, 1.8 mm) with a 50 mm
guard-column.

Raw data was converted to mzML format using ProteoWizard (11) before imported into Mzmine
(12) for data processing using ADAP chromatogram builder, Wavelets (ADAP) deconvolution,
Deisotoping and Join alignment modules.

Features with < x5 average abundance in QC samples/blanks, not found in at least 80% of QC
samples or in 50% of all samples were excluded. Remaining missing values were k-Nearest
Neighbor imputed and QC signal normalized in MetaboAnalyst (13).

2-way and 3-way ANOVA was performed on raw metabolic features without further annotation.
Features were annotated to Metabolomics Standard Initative level 3 (82) using MS/MS spectra
databases from National Institute of Standards and Technology 17 (NIST17) and MassBank of
North America (MoNA). Metabolic pathway analysis was performed in MetaboAnalyst (83) on
annotated BAT metabolites from the features displaying a significant interaction between genotype
and time-of day. A joint pathway analysis was performed in MetaboAnalyst on the same metabolites
and transcripts from the RNA sequencing analysis showing a significant difference in rhythmicity in
response to Nampt deletion in BAT.
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Fig. S1. NAMPT-dependent NAD* levels regulate the molecular clock in a tissue-specific
manner

Supplemental data to Fig. 1. (A) Protein levels of NAMPT in BAT and eWAT of WT and FANKO
mice, and in gastrocnemius muscle of WT and iSMNKO mice. (B) Bodyweight and composition in
WT and iISMNKO mice. Food intake in (C) FANKO and (D) iSMNKO mice. (E) Basal physical
activity in WT and FANKO mice. Circadian expression of Arntl and Nrldl in (F, G) soleus, (H, I)
liver and (J, K) hypothalamus of WT and FANKO mice from Fig. 1. Data from RNA sequencing
performed on BAT and eWAT at ZT 6, 10, 18 and 22 from Fig. 1. (n = 4). (L) Heatmap of peak time
of core clock genes, with (M) graphical examples of Arntl, Clock, Per2, Cryl, Cry2, Nrid1l, and
Npas2 expression. £ denotes significant difference between night and day.
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Fig. S2. Nampt controls adipose transcriptional rhythmicity through changes in circadian
amplitude

Supplemental data to Fig. 1 and 2. Circadian expression of (A) Per2, (B) Drp1, and (C) Clock in
gastrocnemius muscle of WT and iSMNKO mice from Fig. 1. (D) Expression of Arntl, Nr1d1, Clock,
Per2, Cryl, and Dbp at ZT 4 in gastrocnemius muscle of WT and SMNKO mice. (E) Nrldl
expression in BAT after NR infusions in WT and FANKO mice (n = 5-6). (F) Cry2 expression in
eWAT after NR infusions (n = 5-6). Arntl expression in (G) BAT and (H) eWAT after NR infusions
(n = 5-6). Npas2 expression in (I) BAT and (J) eWAT after NR infusions (n = 5-6). Significant
differences were found by 2-way ANOVA. * denotes significant difference between WT and
FANKO. # denotes significant difference with treatment. Heatmap of all rhythmic transcripts in (K)
BAT and (L) eWAT of WT and FANKO mice. (M) Fate of common rhythmic genes in BAT and
eWAT in response to Nampt-depletion.
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Fig. S3. Nampt ablation affects metabolite rhythmicity in brown adipose tissue
Supplemental data to Fig. 3. (A) Principal component analysis (PCA) of metabolomics data from
BAT of WT and FANKO mice harvested at ZT 6 and ZT 18 (n = 4-6). Schematic overview of (B)
aspartate metabolism, (C) de novo pyrimidine biosynthesis, and (D) starch and sucrose
metabolism, and plots displaying the level of enzymatic transcripts (green) and metabolites (red)
with significantly changed diurnal rhythm in BAT in response to Nampt deletion. Day and night
levels of (E) NAD*, and (F) nicotinamide in BAT of WT and FANKO mice from the metabolomic
analysis. $ denotes significant difference with time-of-day in WT. & denotes significant difference
between WT and FANKO at the same time-of-day. £ denotes a main effect of time-of-day.
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Fig. S4. The effect of Nampt ablation on metabolite rhythmicity is tissue- and diet-dependent
Supplemental data to Fig. 4. (A) PCA of metabolomics data from eWAT of WT and FANKO mice
harvested at ZT 6 and ZT 18 (n = 4-6). (B) PCA of metabolomics data from BAT of chow- and HFD-
fed WT and FANKO mice harvested at ZT 6 and ZT 18 (n = 2-4). (C) Basal body temperature
rhythmicity in WT and FANKO mice. (D) Food intake and (E) basal activity during the two acute
cold tolerance tests. (F) Expression of Ucp2 and Ucp3 at ZT 6 in gastrochemius muscle of WT and
FANKO mice. (G) Overview of changes in expression level of genes related to heat production in
FANKO BAT and eWAT.
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Dataset S1: Circadian transcripts in BAT and eWAT of WT and FANKO mice.

Dataset S2: Gene ontology enrichment analysis of the 590 common rhythmic genes in BAT and
eWAT in Supplemental Fig. 2M. The genes are divided dependent on their response to Nampt
deletion. Gene ontology terms mentioned in the Result section are highlighted with yellow.

Dataset S3: Gene ontology enrichment analysis of the rhythmic genes in BAT and eWAT of WT

and FANKO mice. The four groups correspond to the two circles in Fig. 2B and the two circles in
Fig. 2C. Gene ontology terms mentioned in the Result section are highlighted with yellow.
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