
Supplementary Materials

Predicting the Outcome of Radiotherapy in Brain Metastasis by Fusing the

Clinical Attributes and Deep Learning Features of MRI

Seyed Ali Jalalifar(1), Hany Soliman(2,3,5), Arjun Sahgal(2,3,5), and Ali Sadeghi-Naini(1,2,4,5)

(1) Department of Electrical Engineering and Computer Science, Lassonde School of Engineering,

York University, Toronto, ON, Canada

(2) Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences

Centre, Toronto, ON, Canada

(3) Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada

(4) Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

(5) Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences

Centre, Toronto, ON, Canada

Page 2 of 8

Components of the Proposed Deep Network Framework

The main components in the proposed framework consist of a slice-by-slice MRI feature extractor,

a recurrent network or transformer, and a module to integrate clinical features to the deep-learning-

based MRI features. The rationale for using each of these components is due to the nature of input

data and the task at hand. The input data consists of two 3D MRI volumes (T1w and T2-FlLAIR)

each with a size of 128×128×45 voxels (128×128×2×45 voxels in total.) One approach to represent

and analyze this input is to interpret it as a series of 128×128×2 pixel spatially dependent images.

This approach, while logical, also opens the door to utilize the widely used convolutional neural

networks (CNN) as feature extractors. Whereas the 128×128×2 pixel slice pairs consist of 32,768

pixels (potential features), they could be reduced to 256 meaningful and distinctive features for

each slice pair by training a CNN to classify treatment outcome of the tumor associated with that

slice. For this purpose, we adapted an InceptionResNetV2 as the feature extractor, as it is a

powerful model with proven performance on different benchmarks for images classification and

feature extraction. At the end of the feature extraction step, 256 features are derived for each slice

(a total of 256×45 features for each two-channel MRI input volume.) At this point, the 3D spatial

dependency of these features in a volumetric MRI has not been taken into account yet. To do so a

recurrent network or transformer was adapted as the deep learning architectures proposed for

processing series. We also encoded and fused standard clinical features with the MRI deep learning

features to investigate whether they can provide complementary information to the framework for

therapy outcome prediction in brain metastasis. To summarize, the rationale for using

InceptionResNetV2 is based on the fact that our input is two-channel MRI, the reason for including

an LSTM, sequence to sequence, or transformer network is because our images are volumetric and

spatially dependent, and the rationale for integrating clinical features is that they can potentially

provide additional relevant information that is available before starting treatment but may not be

possible to extract from MRI.

1. InceptionResNetV2

Residual connections and inception blocks have been central in many advances in computer vision

in recent years. The InceptionResNetV2 borrowed the idea from both and proposed combining

inception architecture with residual connections. Residual connections were first introduced by He

et. al. to ease the training of very deep networks [1]. A basic residual block is demonstrated in

Page 3 of 8

Figure S1(a). In the deep residual learning regime, instead of stacking non-linear layers to find the

desired underlying mapping ℋ(𝑥), nonlinear layers are stacked to fit a residual mapping Ϝ(𝑥) ≔

 ℋ(𝑥) − 𝑥. Theoretically, it is easier to optimize the residual mapping rather than original

mapping. In the extreme case, if the optimal solution is identity mapping, it would be easier to

push Ϝ(𝑥) to zero rather than learning identity mapping by stacking nonlinear layers [1].

The idea of the inception module is to make networks wider rather than deeper by having filters

of multiple size operating on the same level instead of stacking them [2]. Extra 1 × 1 convolutions

were added in the developed framework to limit the number of output channels by dimensionality

reduction (Figure S1(b)).

Figure S1. (a) A residual building block, and (b) Inception module with dimension reduction.

In InceptionResNetV2, residual connections allow for the network to have more layers while

inception blocks make the networks wider [3]. Figure S2 depicts the compressed view of the

InceptionResnetV2 network adapted in the developed framework. Notice the residual connection

replaced the concatenation filter in the last layer of inception blocks.

Page 4 of 8

Figure S2. A compressed view of InceptionResNetV2. X shows number of times an Inception block with residual

connection is repeated.

2. Recurrent Networks

Recurrent neural networks (RNN) allow information to persist over time through feedback

connections [4]. LSTM is a special kind of recurrent neural network powerful at learning long-

term dependencies. By having an internal mechanism called gate, LSTM can regulate the flow of

information. These gates can learn which data in a sequence is important to keep or discard. By

doing that, it can pass relevant information down the long chain of sequences to make predictions

[4]. Figure S3(a) demonstrates inside of an LSTM cell. The forget gate decides whether the

information should be kept, or it is redundant and should be discarded. In the input gate, the cell

state is updated based on the multiplication of tanh output and sigmoid output. The output gate

decides what the next hidden state should be. These gates together control the flow of information

from one cell state to another and help with maintaining long-range dependencies.

The sequence to sequence (Seq2Seq) models [5] are a special kind of recurrent neural networks

and are usually utilized to solve natural language processing problems such as machine translation,

image captioning, question answering, etc. Most common Seq2Seq architectures consist of an

encoder and a decoder. Both the encoder and decoder are LSTM models. Encoder reads the input

sequence and summarizes the information into a context vector. The context vector is then fed to

the decoder and the decoder tries to make accurate predictions based on the context vector. Figure

S3(b) depicts the system overview of a Seq2Seq model. Instead of relying solely on the hidden

state of the last LSTM cell as the context vector, the linear sum of the hidden states from all LSTM

Page 5 of 8

cells in the encoder could be calculated as a context vector that brings about a seq2seq model with

attention [6].

Figure S3. (a) Inside of an LSTM cell with input gate, output gate, forget gate, and cell state. ℎ𝑡−1, 𝑐𝑡−1, 𝑥𝑡 . ℎ𝑡 , 𝑐𝑡 are

hidden state of the previous layer, cell state of the previous layer, input, hidden state of the current layer, and cell

state of the current layer, respectively, and (b) System overview of a Seq2Seq model with encoder and decoder.

3. Transformers

A transformer is a novel architecture that obviates the need for recurrence in processing series and

relies entirely on an attention mechanism to find global dependencies between input and output.

Initially introduced by Vaswani et al. [7], transformer networks achieved state-of-the-art

performance in sequence-to-sequence tasks compared to recurrent networks while being more

Page 6 of 8

parallelized and requiring significantly less time to train. Similar to the Seq2Seq network, the

transformer architecture employs an encoder-decoder structure, however, eliminating recurrence

and replacing it with attention mechanisms allows for substantially greater parallelization than

RNNs and CNNs. The transformer network was initially introduced as a model for sequence-to-

sequence translation but since then, a large variety of networks have been introduced based solely

on the encoder or decoder part of the transformer architecture. GPT-3 [8] is an example of a

network that is built on the decoder part of the transformer that produces human-like text with very

high quality. The encoder part of a transformer on the other hand has been utilized in architectures

such as BERT [9] for question-answering and text classification tasks.

As described earlier, a transformer has an encoder-decoder architecture and uses a self-attention

mechanism to infer dependencies. Each encoder or decoder consists of modules that contain feed-

forward and attention layers. Figure S4(a) demonstrates a transformer architecture. With (key,

value) vector pairings, the attention layer employs a trainable associative memory. From a series

of N inputs, the Query and Key matrices are generated and packed into the following matrices:

𝑋 ∈ ℝ𝑁×𝐷; 𝑄 = 𝑋𝑊𝑄 ∈ ℝ𝑁×𝐷; 𝐾 = 𝑋𝑊𝐾 ∈ ℝ𝑁×𝐷 (1)

where 𝑋 is the sequence of N inputs with dimension D, Q and K are the Query and Key matrices,

and 𝑊𝑄 and 𝑊𝐾 are linear transformations with trainable parameters The output of the attention is

a weighted sum of the 𝑁-Value matrix 𝑉 ∈ ℝ𝑁×𝐷 and is calculated by the following formula:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
) 𝑉 (2)

Instead of offering a single attention head, Vaswani et al. [7] offered multi-head attention, which

entails applying ℎ self-attention functions to the input.

Page 7 of 8

Figure S4. (a) The architecture of a transformer for sequence-to-sequence tasks. In practice, a stack of multiple

encoders and decoders is used. Each encoder consists of multi-head attention later, residual connections, and feed-

forward layer to prepare the input of next encoder/decoder block. (b) Classification using the encoder component of

a transformer. A classification token [cls] is added to the input series and in the output of the encoder. 𝐸1, 𝐸2, … , 𝐸𝑁

are the input feature vectors with position encoding added to them. The input vectors along with 𝐸[𝑐𝑙𝑠] go through the

encoder layers and output a sequence vector of 𝑅1, 𝑅2, … , 𝑅𝑁 along with 𝑅[𝑐𝑙𝑠]. A feed-forward network attached to

the 𝑅[𝑐𝑙𝑠] is used for final classification.

Experimental Results of Different Hyperparameters and Pre-training Settings

Table 1 – Experimental results of the proposed framework on Validation Set. For the input of LSTM, Seq2Seq, and

Transformer networks, the extracted features from the best InceptionResNet were concatenated with clinical features

and then fed to these networks.

Model
Pre-train

(ImageNet)

Pretrain

 (ImageNet + BraTS)

Learning

Rate

Batch

Size
Epochs

Validation

Accuracy

Validation

Sensitivity

Validation

Specificity

InceptionResNet ✓ ✓ 1e-6 1 500 66.7% 66.7% 66.7%

InceptionResNet ✓  1e-6 1 500 60% 66.7% 56%

InceptionResNet   1e-6 1 500 53.4% 50% 56%

InceptionResNet ✓ ✓ 1e-3 1 500 46.7% 50% 44.4%

InceptionResNet ✓ ✓ 1e-3 32 500 53.4% 50% 56%

InceptionResNet ✓ ✓ 1e-3 64 500 53.4% 50% 56%

InceptionResNet ✓ ✓ 1e-6 32 500 60% 66.7% 56%

InceptionResNet ✓ ✓ 1e-6 1 200 53.4% 50% 56%

LSTM   1e-4 2 500 86.7% 83.3% 88.9%

LSTM   1e-4 16 500 73.3% 66.7% 77.8%

LSTM   1e-2 2 500 73.3% 83.3% 66.7%

LSTM   1e-4 2 100 80% 66.7% 88.9%

Seq2Seq   1e-4 2 500 80% 83.3% 77.8%

Seq2Seq   1e-4 16 500 73.3% 83.3% 66.7%

Seq2Seq   1e-2 2 500 73.3% 66.7% 77.8%

Seq2Seq   1e-4 2 100 53.3% 33.3% 66.7%

Transformer   1e-4 8 200 80% 83.3% 77.8%

Transformer   1e-4 16 200 80% 66.67% 88.9%

Transformer   1e-2 8 200 73.3% 83.3% 66.7%

Transformer   1e-4 8 100 80% 66.67% 88.9%

Page 8 of 8

References

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Dec.

2015, [Online]. Available: http://arxiv.org/abs/1512.03385.

[2] C. Szegedy et al., “Going Deeper with Convolutions,” Sep. 2014, [Online]. Available:

http://arxiv.org/abs/1409.4842.

[3] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet and the

Impact of Residual Connections on Learning,” Feb. 2016, [Online]. Available:

http://arxiv.org/abs/1602.07261.

[4] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no.

8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.

[5] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural

Networks,” Sep. 2014, [Online]. Available: http://arxiv.org/abs/1409.3215.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to

Align and Translate,” Sep. 2014, [Online]. Available: http://arxiv.org/abs/1409.0473.

[7] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information

Processing Systems, 2017, vol. 30, [Online]. Available:

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf.

[8] T. B. Brown et al., “Language Models are Few-Shot Learners,” May 2020, [Online].

Available: http://arxiv.org/abs/2005.14165.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding,” Oct. 2018, [Online]. Available:

http://arxiv.org/abs/1810.04805.

