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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): expert in convolution neural networks and machine
learning

Major Concerns:

1. Not sure it should be called Integrative modeling, since it is only calculating the average score
from independent genome model and epigenome model.

2. How the DELFI used samples were processed is not mentioned anywhere in the manuscript.
3. The high sensitivity and specificity are impressive. But here are some model evaluation-related
concerns:

In last paragraph of Page.20, author mentioned that the best performance from 30 times running
was selected as the validation performance, but it will be important for the readers to know the
variance of the 30 models’ performance to determine the robustness of the model.

4. It is not clear how results shown in Supplementary figure 4 was derived. How the evaluation
was done on DELFI dataset is not mentioned in methods part. e.g., with so high a sensitivity and
specificity, is it cross-validation results (meaning model trained on DELFI samples again) or just
test results predicted using MGI/Illumina-trained model? If the latter, which platform-trained
models were used to predict DELFI samples? It is critical results determining the model
performance, and should be described to help readers understanding the whole evaluation
process.

5. It would be a more comprehensive evaluation if the MGI-trained model can be applied in
Illumina samples.

6. In model interpretation, the consistence between MGI-trained and Illumina-trained model
feature importance could to be evaluated. This is helpful in determining whether models are
overfitting their own datasets, or discovered real early cancer genome and epigenome changes.

Reviewer #3 (Remarks to the Author): expert in cfDNA genomics

In this paper, the authors proposed a work that tried to diagnose cancer through cfDNA WGS data
by integrating both genome and epigenome features. The data size and performance of this work
is impressive, but there are some key issues that the authors didn’t address well. I have some
concerns about the significance and methods of this work.

(1) The key significance of the work seems to be the algorithm that integrate both genome and
epigenome features. However, there are few details about the algorithm. For example, no figure
about the algorithm was shown in the article, which put obstacles to the readers to understand the
algorithm. A pipeline should be provided to assess the whole algorithm process, e.g. the detail of
CNN and the usage of different data.

Actually, it is intuitional to merge mutation and fragment information of cfDNA to enhance the
accuracy of diagnosis, and there are many works to deal with the issues. How and why the authors
develop their algorithm? What's the difference between their algorithm and other works that deal
with genomes, epigenomes as well as integration of them? What can other researchers learn from
this work to deal with their own problems? I think the authors should explain these issues carefully
in both introduction and discussion, which could benefit more to the scientific community.

(2) Understanding the mechanism of deep learning models is essential to trust the models and
take advantage from the work for promoting related research. One possible approach is to use
some interpretive methods for neural networks; another is to do some extended simulations. For
example, what features in V-plot matter more in the diagnosis of cancer? Does all LMDs / NDRs
contribute to the diagnosis, or important signals can be enriched into some specific gene sets? I
suggest the authors to do more analysis to help the readers understand the significance of the
algorithm.

(3) The work used both MGI and Illumina platforms to sequence cfDNA. Can models trained on one
platform be used to test data derived from another platform?



(4) The cost of sequencing is an important issue of cfDNA cancer diagnosis. The data derived from
the MGI platform are around 5X, which seems to be a costly depth. I suggest the authors to do
some downsampling to investigate the relationship between sequencing depth and precision.

(5) The usage of K562 and GM12878 cell line data seems to be unclear. What’s the relationship
between the data and the downstream analysis?

(6) The authors used five-fold cross-validation to train and test the model. Though the approach
seems to be reasonable, I am still curious about why the authors don’t used a more
straightforward approach to train, validate and test the model with such a large dataset. The
authors seem to train a lot parallel models in the whole approach, but which model was used to
test the external DELFI dataset? Does the choice of hyper-parameters matter a lot to the final
results? If I were a user of the algorithm, how should I merge these parallel models? I suggest the
authors to explain the training and testing approach more systematically to help the readers
understand the work better and guarantee that there is no information leakage in the approach.

Reviewer #4 (Remarks to the Author): expertise in multi-omics integration

In this study, the authors performed cell-free DNA (cfDNA) whole genome sequencing to generate
two test datasets including 2543 patient samples from nine different cancer types and 1241
normal control samples, and a reference dataset for background variant filtering based on 20529
samples from low-depth healthy subjects. An external cfDNA data set consisting of 208 cancer
samples and 214 normal controls was also used for additional evaluation. The algorithm
incorporates as model criteria the distribution of mutations in tumor tissue and cancer type-
specific profiles of chromatin tissue, achieving very high accuracy in cancer detection and tissue
origin localization. This integrated model was able to detect early-stage cancers, including
pancreatic cancer, with high sensitivity comparable to late-stage cancers. In addition,
interpretation of the model revealed the contribution of genomic and epigenomic features to
different types of cancer. This methodology could lay the groundwork for accurate cfDNA-based
cancer diagnosis, especially at early stages.

The authors are working on an important research topic and have obtained some interesting
results. On the other hand, there are several problems, and I recommend a major revision of the
manuscripts, paying attention to the following points.

1. Despite the complexity of the research, the number of main figures is small and the text in each
figure is small, making it difficult to grasp the overall picture of the research. It would be better to
increase the number of main figures and make the letters in the figures larger.

2. Deep neural networks were used in this study, but it is difficult to understand the details in the
current version. The details should be shown in Fig. 1 or elsewhere, including the structure of the
algorithm.

3. The most serious problem with this article is that, despite the fact that it is a medical and
clinical-oriented study, it provides no information about the research institution or the institution
from which the clinical specimens were taken. The authors are not even sure if they are cancer
experts to begin with, although they have done some clinical-leaning research on cancer in
particular. Given the above, it is also impossible to determine whether the results of the study
have been properly interpreted. To be honest, the limited information on the research group in this
paper makes it difficult to evaluate the article's content. When publishing such clinically oriented
papers, it should be possible to determine the type of professional (clinician, medical researcher,
informatics researcher) from the peer review stage.

4. Related to 3, the current manuscript is unclear in which region (country) the study was
conducted. From the MATERIALS AND METHODS, I have determined that it is probably a Chinese
research group, but in that case, the genetic background by ethnic group should also be noted. A
number of studies have reported results indicating that genetic backgrounds in Western countries
differ significantly from those in Asian regions to begin with. A method of analysis that mixes up
genetic backgrounds, as in this case, may lead to misinterpretation of the results.

5. To be honest, my first impression from reading the article is that the AUC values in Figure 2 are
too high, which may have caused over fitting. It is difficult to determine accuracy from
retrospective studies alone, and it would be impossible to properly determine usefulness without



conducting prospective studies.

6. In the judgment of cancer experts, the molecular mechanisms of cancer development differ
greatly in different organs. It is difficult to determine whether the method of training all nine types
of cancer in a jumble as in this case is really useful. In particular, in Figures 2E and F, the colon,
biliary tract, and head and neck data are almost statistically meaningless because the number of
samples is small and the error bars are too large. I do not understand the significance of
presenting such data. Similarly, the data in NA in Figure 2E have too few samples and very large
error bars. I find the data to be completely meaningless from a scientific standpoint.



RESPONSE TO REVIEWERS' COMMENTS

Reviewer #1

Reviewer #1 — Major comments:

1. Not sure it should be called integrative modeling, since it is only calculating the average score from

independent genome model and epigenome model.

Our apologies for the confusion. By integrative modeling, we referred to our approach
that combines various public data and our own datasets (normal cfDNA reference
panel consisting of 20,529 samples, PCAWG, TCGA, ENCODE, GEO, dbSNP, 1000
Genomes, HapMap, ExAC, and gnomAD). Especially, modeling of the tumor tissue
mutation and chromatin profiles from PCAWG and TCGA played a critical role in
developing our prediction models. Our normal reference panel also played an
essential role in filtering artifactual variants in developing the genome model. For
clarification, we have modified the Figure 1 as follows.

cfDNA dataset

(1) MGI platform (5x depth, 9 cancer types)
‘Training cohort : 1813 samples (1396 cancer vs 417 healthy)
Validation cohort : 155 samples (59 cancer vs 96 healthy)
(2) umina platform (2.5 depth, 7 cancer types)
‘Training cohort : 1243 samples (573 cancer vs 670 healthy)
Validation cohort : 155 samples (97 cancer vs 58 healthy)
(3) External data
DELFI : 422 samples (208 cancer vs 214 healthy)

l Integrative modeling with reference datasets l
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2. How the DELFI used samples were processed is not mentioned anywhere in the manuscript.

We apologize for the lack of detailed information. We have now added the description
of DELFI cohort processing procedures in the method section as follows (page 34, line
11):

Processing of the DELFI cohort data

We used the DELFI dataset with 1-2x cfDNA WGS of 214 healthy samples and 208 cancer
patients to validate our algorithm. Cancer patient samples include breast (n=54), pancreatic
(n=34), ovarian (n=28), colorectal (n=27), gastric (n=27), lung (n=12), and bile duct cancer
(n=26). Following the approval of their Data Access Committee (DAC), duplicate marked bam
files of the DELFI dataset were obtained from European Genome-Phenome Archive (EGA).
Genome, epigenome, cnv, fragpattern, and fragsize input features were processed using
duplicate marked bam as described in the sections "Genome model input processing and
training”, “Epigenome model input processing and training” and "Cnv, fragpattern, and
fragsize model input processing and training".

3. The high sensitivity and specificity are impressive. But here are some model evaluation-related

concerns: In last paragraph of Page.20, author mentioned that the best performance from 30 times

running was selected as the validation performance, but it will be important for the readers to know the
variance of the 30 models’ performance to determine the robustness of the model.

We thank the reviewer for this constructive comment giving us an opportunity to
prove the robustness of our models. To address this comment, we examined the
variance of the 30 models’ performance in terms of the loss and AUC for the genome
and epigenome model in cancer detection and tissue-of-origin localization as follows.
These results are provided in Supplementary Figures 4 and 5 (for cancer detection and
localization, respectively). Although the initial seed was changed during the 30
repetitions, no significant difference in performance was observed.
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[Performance variation in tissue-of-origin localization]
A: Genome model on MGI training cohort
B: Epigenome model on MGI training cohort
C: Genome model on Illumina training cohort
D: Epigenome model on Illumina training cohort

4. It is not clear how results shown in Supplementary figure 4 was derived. How the evaluation was
done on DELFI dataset is not mentioned in methods part. e.g., with so high a sensitivity and specificit
is it cross-validation results (meaning model trained on DELFI samples again) or just test results
predicted using MGI/Illumina-trained model? If the latter, which platform-trained models were used to
predict DELFI samples? It is critical results determining the model performance, and should be
described to help readers understanding the whole evaluation process.

Our apologies for the confusion. In the original Supplementary Figure 4 (currently
Supplementary Figure 6), the DELFI cohort data was used for model training. By going
through the same training and cross-validation processes, we were able to fairly
compare the performance of our models with the DELFI algorithm itself. The details
of these processes involving the DELFI data are provided in Supplementary Figure 3A
of the revised manuscript as follows (page 34, line 24):

Model training using the training cohort
Each training cohort (MGI, Illumina, and DELFI cohort) for the MGI and Illumina sequencing



platforms was partitioned into five groups for the application of the stratified five-fold cross-
validation. At each iteration, four groups in the training set were further divided into three
training sets and one validation set. Using this method, all samples were given a test prediction
score from each model. Using the test prediction score of all training cohort samples, we
calculated the ROC-AUC score for cancer detection and the accuracy score for tissue-of-origin
localization. The confidence interval for sensitivity was calculated from 1,000 bootstrap
samplings with replicates at 95%, 98%, and 99% specificity. The cancer localization model
was developed by using either all cancer samples in the training cohorts or the cancer samples
correctly identified by the combined cancer detection model with 98% specificity. The number
of correctly predicted samples was 1,188 out of 1,359 for the MGI cohort and 644 out of 940
samples for the [llumina cohort.

During the revision, we also used the DELFI data as the test dataset for our
MGI/Illumina-trained models. The results are described in our response to comment
#5 below.

5. It would be a more comprehensive evaluation if the MGI-trained model can be applied in Illumina
samples.

We appreciate this critical comment. To address this point comprehensively, we
performed external validation by applying the combined model trained on one cohort
to the training and validation dataset of the other cohorts. When the MGI-trained
model was evaluated using the Illumina training cohort, [llumina validation cohort,
and DELFI cohort, the performance was an ROC-AUC of 0.90, 0.88, and 0.83,
respectively (Supplementary Figure 10C; attached below). When the Illumina-trained
model was evaluated using the MGI training cohort, MGI validation cohort, and DELFI
cohort, the performance was 0.84, 0.82, and 0.90, respectively (Supplementary Figure
10C; attached below). Additionally, the normal and tumor samples of the MGI cohort
were clearly segregated by the prediction scores trained with the Illumina cohort, and
vice versa (Supplementary Figure 10D; attached below).
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[Performance of external validation]



6. In model interpretation, the consistence between MGI-trained and Illumina-trained model feature
importance could to be evaluated. This is helpful in determining whether models are overfitting their

own datasets, or discovered real early cancer genome and epigenome changes.

We appreciate this constructive comment. To address this point systematically, we
performed hierarchical clustering of samples (columns) and features (rows) on the
basis of feature attribution values. For both the MGI-trained and Illumina-trained
model, we observe that the samples are separated not by the cohort (Illumina, MGI,
or DELFI) but by the sample type (tumor or normal) (Figure 5D and Figure 6F). The
same analysis was performed also by including the DELFI data, the results of which
are attached below. The results including the DELFI data were not included in the
manuscript because we were left with only two common tumor types by including the
DELFI cohort.
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Reviewer #3

Reviewer #3 — General comments:

In this paper, the authors proposed a work that tried to diagnose cancer through cfDNA WGS data by
integrating both genome and epigenome features. The data size and performance of this work is
impressive, but there are some key issues that the authors didn’t address well. I have some concerns

about the significance and methods of this work.

We thank the reviewer for the detailed comments and for acknowledging the
importance of the subject matter. We have made efforts to address the points raised
by the reviewer, especially by describing model interpretation more comprehensively,
and now feel that our paper has been improved considerably thanks to the
constructive comments.

Reviewer #3 — Major comments:

1. The key significance of the work seems to be the algorithm that integrate both genome and epigenome
features. However, there are few details about the algorithm. For example, no figure about the algorithm

was shown in the article, which put obstacles to the readers to understand the algorithm. A pipeline
should be provided to assess the whole algorithm process, e.g. the detail of CNN and the usage of
different data. Actually, it is intuitional to merge mutation and fragment information of cfDNA to
enhance the accuracy of diagnosis, and there are many works to deal with the issues. How and why the
authors develop their algorithm? What’s the difference between their algorithm and other works that
deal with genomes, epigenomes as well as integration of them? What can other researchers learn from

this work to deal with their own problems? I think the authors should explain these issues carefully in
both introduction and discussion, which could benefit more to the scientific community.

We apologize for the lack of detailed information. We now have provided further
clarifications on model building procedures, model structures, and learning
hyperparameters in the form of schematic illustrations (Figure 1 and Supplementary
Figure 3A; attached below).



cfDNA dataset

(1) MGI platform (5x depth, 9 cancer types)
Training conort : 1813 samples (139 cancer vs 417 healthy)
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Valida ort : 155 samples (59 cancer vs 96 healthy)
(2) Numina platform (2.5x depth, 7 cancer types)
Training cohort : 1243 samples (573 cancer vs 670 healthy)
Validation cohort : 155 samples (97 cancer vs 58 healthy)
(3) External data
DELFI : 422 samples (208 cancer vs 214 heaithy)

l ive modeling with dataset: l

- = — Chromatin profiling by ATAC-seq (431 samples)

Local Variant Density ¢ Variant calling 1) TCGA : 410 samples of 23 cancer types
wo) 2) ENCODE : 2 normal tissue (pancreas, ovary)
= —- — _ % 3) GEO : 5 immune cell types (CD4/CDB T cal, B cell,
NK cel, monocyte)
Variant filtering steps ¢ NDR calling
1) CH/ gremiin / artifact flering BROA-spociic. LHC-spoctic  PEMG-specifc
- MGI, llumina specfic ofDNA reference panel R non R
(20529 samples) BRCA ~lrme U i il

2) Additional gremiin filtering

UHC e il Ui o
- dbSNP, 1000Genomes, HapMap, EXAC, gnomAD 3

tumor / PBMC

NDR from

9) Additional artifact fitering E PBMC il =t et ol
- max VAFs, disconcordant reads, MNVs, read ends
— ' o
breast cancers N INBRCA = oo
g BRCA el
E E uHC
3¢ : / =
3 | o _ e i H
= Genomic posiion 58
4 ]
00000 ---000 Eg’
2990989982 ¢ s g

A
wo Variant type Distance from NDR center xeié’;@"'
(2726 teatures) (150 features) (+ 1000bp, 4bp bin) K

Combined model

8-

Model training
( Cancer detection and localization )

[Schematic of model building procedures (Figure 1)]

Genome model Epigenome model
structure and hyperparameter structure and hyperparameter
LVD Variant type
(2726 features) (150 features)
. . ' . - ‘ . - [ ] 1. First convolutional layer
1. Number of dense layers Kernel size : [min=1, max=50, step=1]
[min=1, max=10, step=1] Node number : [min=10, max=100, step=5]

Dropout rate : [min=0, max=0.5, step=0.05]
2. Number of dense nodes

000 - 00 [min=5, max=512, step=1] II 2. Second convolutional layer
Kernel size : [min=1, max=50, step=1]

3. Dropout rate Node number : [min=10, max=100, step=5]
. . . - . . [min=0.3, max=0.7] —] Dropout rate : [min=0, max=0.5, step=0.05]
4. Weight decay I 3. Fully connected layer
[min=1e-6, max=1e-2]. Node number : [10, 100, step=5]

000 - 00
5. Activation function . . e . .
[relu, tanh, sigmoid, mish]

4.Learning rate : [1e-5, 1e-2]

[Schematic of training processes and structures (Supplementary Figure 3A)]

Although some previous studies also used mutation and fragmentation features, our
study significantly improved the performance of cancer diagnosis by modeling of
large-scale tumor tissue data. As for the genome model using variant features, most
previous studies focused on driver mutations of oncogenes and tumor suppressor
genes such as TP53 and KRAS. In contrast, we were able to also include passenger
mutations in our analysis thanks to our cfDNA normal reference panel. The utility of



passenger mutations has been demonstrated in classifying tumor types based on
tissue genomic data (https://doi.org/10.1038/s41467-022-31666-w, attached below).
However, our study is the first attempt to leverage information embedded in
passenger mutations for cancer diagnosis by cfDNA analysis.

[Important features for classifying tumor types based on tumor tissue WGS]

Regarding the epigenome model, most of previous studies focused on promoter
regions and transcription factor binding sites. Here, we extended the scope to include
distal regulatory regions in 25 different tissue types. It remained challenging to
accurately identify nucleosome depleted regions (NDRs) by using conventional peak
calling methods. As described in Supplementary Figure 2, we tested a different
method and validated the biological relevance of this approach by using cell line data.
In addition, the combinatorial projection of the density and length of read fragments
onto the identified NDRs by means of the V-plot enabled us to make use of the
convolutional neural network for three-dimensional image processing. We now have
provided an in-detail description of these improvements made to our models in the
introduction and discussion sections.

2. Understanding the mechanism of deep learning models is essential to trust the models and take
advantage from the work for promoting related research. One possible approach is to use some

interpretive methods for neural networks: another is to do some extended simulations. For example,

what features in V-plot matter more in the diagnosis of cancer? Does all LMDs / NDRs contribute to
the diagnosis, or important signals can be enriched into some specific gene sets? I suggest the authors

to do more analysis to help the readers understand the significance of the algorithm.




We thank the reviewer for this constructive comment giving us an opportunity to
provide a better interpretation of our models. A comprehensive characterization of
model features was performed using attribution values derived by the integrative
gradients method (https://doi.org/10.48550/arXiv.1703.01365). With regard to the
genome model, we first show that somatic mutations from PCAWG tissue samples are
enriched at regions with positive attribution scores compared to those with negative
attribution scores for the cancer detection model (Figure 5A). We also show that
tissue-specific high and low LMD regions tend to have positive and negative
attribution scores, respectively (Figure 5B). In addition, high LMD regions of a
particular cancer type had high attribution scores for the cfDNA samples of the
matching cancer type, but not for the samples of other types (Figure 5C, upper). On
the contrary, low LMD regions of a particular cancer type had low attribution scores
only for the matched samples (Figure 5C, lower). These results indicate LMD regions
derived from reference tumor tissue data play an important role in developing our
prediction models for cancer detection and tissue-of-origin localization.
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[Genome model interpretation results]

As for the epigenome model, we analyzed the attribution scores by means of the two-
dimensional V-plot. In the cancer detection model, we found that fragment size
distribution is important in distinguishing between normal and tumor samples
(Figure 6A and B). In the cancer localization model, in contrast, fragment density
across the NDRs (i.e., fragment distribution) plays an important role in classifying
tumor site locations (Figure 6C). While depletion of cfDNA reads at the NDRs of a
particular cancer type should increase the likelihood of assigning the given sample to
the corresponding cancer type, enrichment of cfDNA reads at the NDRs of a particular
cancer type is supposed to decrease the prediction probability for the given cancer
type. As expected, negative attribution scores were assigned to reads mapping to the
NDRs of a matching cancer type (Figure 6D-E).
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[Epigenome model interpretation results]

3. The work used both MGI and Illumina platforms to sequence ¢cfDNA. Can models trained on one
platform be used to test data derived from another platform?

We thank the reviewer for this important comment. To perform external validation as
suggested and comprehensively, we applied the combined model trained on one
cohort to the training and validation dataset of the other cohorts. When the MGI-
trained model was evaluated using the [llumina training cohort, Illumina validation
cohort, and DELFI cohort, the performance was an ROC-AUC of 0.90, 0.88, and 0.83,
respectively (Supplementary Figure 10C; attached below). When the Illumina-trained
model was evaluated using the MGI training cohort, MGI validation cohort, and DELFI
cohort, the performance was 0.84, 0.82, and 0.90, respectively (Supplementary Figure
10C; attached below). Additionally, the normal and tumor samples of the MGI cohort
were clearly segregated by the prediction scores trained with the Illumina cohort, and
vice versa (Supplementary Figure 10D; attached below).
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[Performance of external validation]

To further confirm that there is no cohort/platform-specific feature bias, we
performed hierarchical clustering of samples (columns) and features (rows) on the
basis of feature attribution values. For both the MGI-trained and Illumina-trained
model, we observe that the samples are separated not by the cohort (Illumina, MGI,
or DELFI) but by the sample type (tumor or normal) (Figure 5D and Figure 6F). The
same analysis was performed also by including the DELFI data, the results of which
are attached below. The results including the DELFI data were not included in the
manuscript because we were left with only two common tumor types by including the
DELFI cohort.
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[Clustering by feature attribution from cancer detection by the genome model (left)
and epigenome model (right)]
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[Clustering by feature attribution from cancer localization by the genome model
(left) and epigenome model (right)]

4. The cost of sequencing is an important issue of cfDNA cancer diagnosis. The data derived from the
MGI platform are around 5X, which seems to be a costly depth. I suggest the authors to do some
downsampling to investigate the relationship between sequencing depth and precision.

To address this interesting point, we examined how model performance can be
affected by downsampling. For the MGI cohort data, we carried out 3x and 1x
downsampling. Although higher sequencing depth tended to guarantee higher model
performance, 3x downsampling did not considerably undermine the performance of
the model developed with the original data. Thanks to this helpful comment, we have
learned that 3x sequencing depth can be a practical option.
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[Downsampling performance]

5. The usage of K562 and GM 12878 cell line data seems to be unclear. What’s the relationship between
the data and the downstream analysis?

As described in our response to comment #1, one of the advantages of our epigenome



model is that it uses biologically meaningful NDRs identified across the whole
genome beyond gene promoters. Using the GM12878 and K562 cell lines, we tested
the performance of the ATAC-seq peak calling method of HMMRATAC by examining
cell type specificity and interrogating various histone modification data. All detailed
analysis results including these are provided in Supplementary Figure 2 as attached.
Based on these pilot test results, we applied our NDR calling pipeline to 431 tissue
ATAC-seq data resulting in 25 tissue-specific NDRs selected by EdgeR.
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[Pilot tests for NDR identification using cell line data]



6. The authors used five-fold cross-validation to train and test the model. Though the approach seems
to be reasonable, I am still curious about why the authors don’t used a more straightforward approach
to train, validate and test the model with such a large dataset. The authors seem to train a lot parallel
models in the whole approach, but which model was used to test the external DELFI dataset? Does the
choice of hyper-parameters matter a lot to the final results? If I were a user of the algorithm, how should
I merge these parallel models? I suggest the authors to explain the training and testing approach more
systematically to help the readers understand the work better and guarantee that there is no information
leakage in the approach.

We agree with the reviewer that our dataset is large enough for a simple split. However,
there are two reasons why we use 5-fold cross-validation. The first reason is to avoid
the curse of dimensionality. Data of more than 1,000 samples is large enough in the
biological field, but the number of features we use to train our model is much higher.
We proceeded with 5-fold cross-validation to obtain the robustness of our models
while avoiding the possibility of overfitting that can occur when the number of
features is greater than the number of training samples. The second reason is to
directly compare our models with the DELFI algorithm on their dataset. In the DELFI
paper (https://doi.org/10.1038/s41586-019-1272-6), they trained the model using
cross-validation. In order to make a fair comparison using the prediction probabilities
of the samples provided in the DELFI paper, we followed the DELFI model training
procedure as much as possible (Supplementary Figure 5).

[DELFI model training procedure]

We apologize for missing the details of our model training and validation processes.
As mentioned above, we conducted model training in a similar way to the DELFI paper.
Briefly, in the training step, we separated our samples into 5-fold cross-validation (CV)
with stratification. Each CV underwent 200 hyperparameter searches to determine the
best hyperparameter, and the model was trained by repeating 30 times using the
selected best hyperparameters, and among them, the model with the lowest
validation loss was selected as the final model. For each CV, the test set was predicted
using the final model of that CV, and the performance was evaluated using the test
prediction score of all samples. In the validation step, we evaluated the performance



by calculating the average of prediction scores obtained from the 5 models. The model
training and validation processes are now described in detail in the text and
Supplementary Figure 3B-C.

Model training process
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[Our model training and validation processes]



Reviewer #4

Reviewer #4 — General comments:

In this study, the authors performed cell-free DNA (cfDNA) whole genome sequencing to generate two
test datasets including 2543 patient samples from nine different cancer types and 1241 normal control

samples, and a reference dataset for background variant filtering based on 20529 samples from low-
depth healthy subjects. An external cfDNA data set consisting of 208 cancer samples and 214 normal
controls was also used for additional evaluation. The algorithm incorporates as model criteria the

distribution of mutations in tumor tissue and cancer type-specific profiles of chromatin tissue, achieving

very high accuracy in cancer detection and tissue origin localization. This integrated model was able to
detect early-stage cancers, including pancreatic cancer, with high sensitivity comparable to late-stage

cancers. In addition, interpretation of the model revealed the contribution of genomic and epigenomic
features to different types of cancer. This methodology could lay the groundwork for accurate cfDNA-
based cancer diagnosis, especially at early stages. The authors are working on an important research
topic and have obtained some interesting results. On the other hand, there are several problems, and |
recommend a major revision of the manuscripts, paying attention to the following points.

We thank the reviewer for acknowledging the importance of the subject matter and
the implications of this work. We have made efforts to address the points raised by
the reviewer, especially by providing clinical information, and now feel that our paper
has been improved considerably thanks to the constructive comments.

Reviewer #4 — Major comments:

1. Despite the complexity of the research, the number of main figures is small and the text in each figure

is small, making it difficult to grasp the overall picture of the research. It would be better to increase
the number of main figures and make the letters in the figures larger.

We apologize for the lack of clarity. According to the reviewer’s comment, we now
have added main and supplementary figures, in particular regarding the illustration
of model concepts and the results of model interpretation. We have also increased the
font size of the figures for better readability.

2. Deep neural networks were used in this study, but it is difficult to understand the details in the current
version. The details should be shown in Fig. 1 or elsewhere, including the structure of the algorithm.

We appreciate this constructive comment. We have modified Figure 1 to better
describe the concept and overall process of the genome and epigenome models, and
also generated Supplementary Figure 3 to describe the model training process,
structure, and hyperparameters in detail. Briefly, the genome model consisted of



features related to local mutation density and variant type for passenger mutations
and conducted training with deep neural networks. The epigenome model consisted
of three-dimensional V-plot images representing fragment density and fragment size
across 25 tissue-specific NDRs and conducted training with convolutional neural
networks.

cfDNA dataset

(1) MG platform (5 depth, 9 cancer types)
Training cohort : 1813 samples (1396 cancer vs 417 healthy)
Validation cohort : 155 samples (59 cancer vs 96 healthy)
(2) llumina platform (2.5x depth, 7 cancer types)
Training cohort : 1243 samples (573 cancer vs 670 healthy)
Validation cohort : 155 samples (97 cancer vs 58 healthy)
(3) External data
DELFI : 422 samples (208 cancer vs 214 healthy)

l Integrative modeling with reference datasets l

- == — e Chromatin profiling by ATAG-seq (431 samples)

* Variant calling 1) TCGA : 410 samples of 23 cancer types
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[Schematic diagram of the genome, epigenome, and combined model]
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[Model structure and hyperparameter list]



3. The most serious problem with this article is that, despite the fact that it is a medical and clinical-
oriented study, it provides no information about the research institution or the institution from which
the clinical specimens were taken. The authors are not even sure if they are cancer experts to begin with,
although they have done some clinical-leaning research on cancer in particular. Given the above, it is
also impossible to determine whether the results of the study have been properly interpreted. To be
honest, the limited information on the research group in this paper makes it difficult to evaluate the

article's content. When publishing such clinically oriented papers, it should be possible to determine the
type of professional (clinician, medical researcher, informatics researcher) from the peer review stage.

4. Related to 3, the current manuscript is unclear in which region (country) the study was conducted.
From the MATERIALS AND METHODS, I have determined that it is probably a Chinese research
group, but in that case, the genetic background by ethnic group should also be noted. A number of
studies have reported results indicating that genetic backgrounds in Western countries differ

significantly from those in Asian regions to begin with. A method of analysis that mixes up genetic
backgrounds, as in this case, may lead to misinterpretation of the results.

We apologize for missing the critical information. On the basis of blind review, we
masked the author information during our initial submission. For clarification, this
research was conducted in South Korea. To demonstrate the credibility of our research,
we now have disclosed author information and the identities of institutions from
which the clinical specimens were taken in the method section (page 25, line 4). For
multi-cancer detection, patient samples of 9 cancer types were recruited from 6
institutions of South Korea, and their clinical information was obtained and processed
by the professional clinicians of these institutions. The samples were sent in streck
tubes to GC Genome Corporation (https:/www.gc-genome.com/), where whole-

genome sequencing of cfDNA was performed using the MGI and Illumina platform.
The sequencing data was analyzed at a computational biology laboratory of KAIST
(http://omics.kaist.ac.kr). We provide detail clinical information in Supplementary
Table 7.

We understand the reviewer’s concern regarding genetic background. To minimize
potential bias, we leverage our own germline variant filtering data based on 20,529
low-depth healthy samples of the same ethnicity (processed at GC Genome). We
believe that unlike germline variants, somatic mutations are not heavily dependent
on ethnicity. According to the results of external validation, applying our models
trained on the Korean samples to the DEFLI data does not particularly undermine
prediction performance (see below).
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[Application of the MGI/Illumina models to the DELFI cohort]

While putting together clinical information in Supplementary Table 7, it was brought
to our attention that the Illumina breast cancer samples, unlike other fresh data
directly provided by the hospitals, were commercially purchased. Our inspection of
these samples revealed that the distribution of fragment size from these samples was
quite different from that from the other samples. Therefore, we decided to exclude
these potentially problematic samples from further analyses. Thanks to the reviewer’s
comment, we were able to conduct further quality control.

5. To be honest, my first impression from reading the article is that the AUC values in Figure 2 are too
high, which may have caused over fitting. It is difficult to determine accuracy from retrospective studies
alone, and it would be impossible to properly determine usefulness without conducting prospective
studies.

We agree with the reviewer that prospective studies can be useful in verifying model
performance. Unfortunately, a prospective study requires enormous amount of
planning, clinical arrangement, and resources and is way beyond the scope of this
work. Instead, we put a lot of effort into proving that our model performance is not
merely the result of overfitting.

First, in the process of sample collection, we set aside samples acquired before a
certain time point as the training set and assigned the subsequent samples as the
validation set, practically mimicking a prospective approach. Prediction performance
evaluated on the validation set indicates no sign of overfitting to the training data
(Figure 2A-D).

Second, to demonstrate that our model is not overfitted but trained with biological
relevance, we conducted model interpretation using the integrated gradients method
(https://doi.org/10.48550/arXiv.1703.01365). With regard to the genome model, we



first show that somatic mutations from PCAWG tissue samples are enriched at regions
with positive attribution scores compared to those with negative attribution scores
for the cancer detection model (Figure 5A). We also show that tissue-specific high and
low LMD regions tend to have positive and negative attribution scores, respectively
(Figure 5B). In addition, high LMD regions of a particular cancer type had high
attribution scores for the cfDNA samples of the matching cancer type, but not for the
samples of other types (Figure 5C, upper). On the contrary, low LMD regions of a
particular cancer type had low attribution scores specifically for the matched samples
(Figure 5C, lower). These results indicate LMD regions derived from reference tumor
tissue data play an important role in developing our prediction models for cancer
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[Genome model interpretation results]

As for the epigenome model, we analyzed the attribution scores by means of the two-
dimensional V-plot. In the cancer detection model, we found that fragment size
distribution is important in distinguishing between normal and tumor samples
(Figure 6A and B). In the cancer localization model, in contrast, fragment density
across the NDRs (i.e., fragment distribution) plays an important role in classifying
tumor site locations (Figure 6C). While depletion of cfDNA reads at the NDRs of a
particular cancer type should increase the likelihood of assigning the given sample to
the corresponding cancer type, enrichment of cfDNA reads at the NDRs of a particular
cancer type is supposed to decrease the prediction probability for the given cancer
type. As expected, negative attribution scores were assigned to reads mapping to the
NDRs of a matching cancer type (Figure 6D-E).
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[Epigenome model interpretation results]

Finally, we checked the correlation of the feature importance values measured with
the MGI, Illumina, and DELFI cohorts because overfitting would have resulted in
specific patterns of feature importance tailored to each training cohort. Thus, we
performed hierarchical clustering of samples (columns) and features (rows) on the
basis of feature attribution values. For both the MGI-trained and Illumina-trained
model, we observe that the samples are separated not by the cohort (Illumina, MGI,
or DELFI) but by the sample type (tumor or normal) (Figure 5D and Figure 6F). The
same analysis was performed also by including the DELFI data, the results of which
are attached below. The results including the DELFI data were not included in the
manuscript because we were left with only two common tumor types by including the

DELFI cohort.
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[Clustering by feature attribution from cancer localization by the genome model
(left) and epigenome model (right)]

6. In the judgment of cancer experts, the molecular mechanisms of cancer development differ greatly
in different organs. It is difficult to determine whether the method of training all nine types of cancer in
a jumble as in this case is really useful. In particular, in Figures 2E and F, the colon, biliary tract, and
head and neck data are almost statistically meaningless because the number of samples is small and the
error bars are too large. I do not understand the significance of presenting such data. Similarly, the data
in NA in Figure 2E have too few samples and very large error bars. I find the data to be completely
meaningless from a scientific standpoint.

We agree with the reviewer that each type of cancer has different characteristics.
However, multi-cancer early detection is a primary goal of cancer screening (New



genomic technologies for multi-cancer early detection: Rethinking the scope of
cancer screening. Cancer Cell 40:109-113), and previous models as well as ours use
common features that appear regardless of cancer types such as variant and fragment
properties. As our cancer detection models were developed on the basis of such pan-
cancer features albeit centered on the nine cancer types, we believe that the
prediction results for cancer types with a small number of samples (e.g., colon, biliary
tract, and head and neck) still hold biological meaning. In contrast, predicting tumor
origin localization may be problematic with these cancer types having a small number
of cases in terms of statistical confidence as the reviewer pointed out. Therefore, we
excluded cancer types with fewer than 40 samples from our tissue-of-origin
prediction.



REVIEWERS' COMMENTS
Reviewer #1 (Remarks to the Author):

All concerns are addressed.

Reviewer #3 (Remarks to the Author):

The authors have well addressed all my concerns. I have no more questions about this work.
Besides, I found a typo in Figure 1: "gremlin".

Reviewer #4 (Remarks to the Author):

Basically, I feel that the authors have effectively addressed the criticisms raised in the initial
review. I recommend publication.



Reviewer #1

Reviewer #1 — Major comments:

1. Not sure it should be called integrative modeling, since it is only calculating the average score from

independent genome model and epigenome model.

Our apologies for the confusion. By integrative modeling, we referred to our approach
that combines various public data and our own datasets (normal cfDNA reference
panel consisting of 20,529 samples, PCAWG, TCGA, ENCODE, GEO, dbSNP, 1000
Genomes, HapMap, ExAC, and gnomAD). Especially, modeling of the tumor tissue
mutation and chromatin profiles from PCAWG and TCGA played a critical role in
developing our prediction models. Our normal reference panel also played an
essential role in filtering artifactual variants in developing the genome model. For
clarification, we have modified the Figure 1 as follows.

cfDNA dataset

(1) MG platform (5 depth, 9 cancer types)
Training cohort : 1813 samples (1396 cancer vs 417 healthy)
Validation cohort : 155 samples (59 cancer vs 96 healthy)
(2) llumina platform (2.5x depth, 7 cancer types)
Training cohort : 1243 samples (573 cancer vs 670 healthy)
Validation cohort : 155 samples (97 cancer vs 58 healthy)

(3) External data
DELFI : 422 samples (208 cancer vs 214 healthy)

Integrative modeling with reference datasets l

PP

= == = = Chromatin profiling by ATAC-seq (431 samples)

Local Variant Density ¢ Variant calling 1) TCGA : 410 samples of 23 cancer types
(o) 2) ENCODE : 2 normal tissue (pancreas, ovary)
- == —= —— 3) GEO : 5 immune cell types (CD4/CD8 T cell, B cell,
NK cell, monocyte)
Variant filtering steps ¢ NDR calling
1) CH/gremlin / artifact filtering BRCA-speciiic LIHC-specfic  PBMC-specific
-MGl, lllumina specific cfDNA reference panel @ NOR NDR NDR
(20529 samples) 2 | BRCA -ttt = il Uil
EQ
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[Pipeline of integrative modeling with reference datasets]



2. How the DELFI used samples were processed is not mentioned anywhere in the manuscript.

We apologize for the lack of detailed information. We have now added the description
of DELFI cohort processing procedures in the method section as follows (page 34, line
11):

Processing of the DELFI cohort data

We used the DELFI dataset with 1-2x cfDNA WGS of 214 healthy samples and 208 cancer
patients to validate our algorithm. Cancer patient samples include breast (n=54), pancreatic
(n=34), ovarian (n=28), colorectal (n=27), gastric (n=27), lung (n=12), and bile duct cancer
(n=26). Following the approval of their Data Access Committee (DAC), duplicate marked bam
files of the DELFI dataset were obtained from European Genome-Phenome Archive (EGA).
Genome, epigenome, cnv, fragpattern, and fragsize input features were processed using
duplicate marked bam as described in the sections "Genome model input processing and
training”, “Epigenome model input processing and training” and "Cnv, fragpattern, and
fragsize model input processing and training".

3. The high sensitivity and specificity are impressive. But here are some model evaluation-related
concerns: In last paragraph of Page.20, author mentioned that the best performance from 30 times

running was selected as the validation performance, but it will be important for the readers to know the
variance of the 30 models’ performance to determine the robustness of the model.

We thank the reviewer for this constructive comment giving us an opportunity to
prove the robustness of our models. To address this comment, we examined the
variance of the 30 models’ performance in terms of the loss and AUC for the genome
and epigenome model in cancer detection and tissue-of-origin localization as follows.
These results are provided in Supplementary Figures 4 and 5 (for cancer detection and
localization, respectively). Although the initial seed was changed during the 30
repetitions, no significant difference in performance was observed.
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[Performance variation in tissue-of-origin localization]
A: Genome model on MGI training cohort
B: Epigenome model on MGI training cohort
C: Genome model on Illumina training cohort
D: Epigenome model on Illumina training cohort

4. It is not clear how results shown in Supplementary figure 4 was derived. How the evaluation was
done on DELFI dataset is not mentioned in methods part. ¢.g., with so high a sensitivity and specificit
is it cross-validation results (meaning model trained on DELFI samples again) or just test results
predicted using MGI/Illumina-trained model? If the latter, which platform-trained models were used to
predict DELFI samples? It is critical results determining the model performance, and should be
described to help readers understanding the whole evaluation process.

Our apologies for the confusion. In the original Supplementary Figure 4 (currently
Supplementary Figure 6), the DELFI cohort data was used for model training. By going
through the same training and cross-validation processes, we were able to fairly
compare the performance of our models with the DELFI algorithm itself. The details
of these processes involving the DELFI data are provided in Supplementary Figure 3A
of the revised manuscript as follows (page 34, line 24):

Model training using the training cohort
Each training cohort (MGI, Illumina, and DELFTI cohort) for the MGI and Illumina sequencing



platforms was partitioned into five groups for the application of the stratified five-fold cross-
validation. At each iteration, four groups in the training set were further divided into three
training sets and one validation set. Using this method, all samples were given a test prediction
score from each model. Using the test prediction score of all training cohort samples, we
calculated the ROC-AUC score for cancer detection and the accuracy score for tissue-of-origin
localization. The confidence interval for sensitivity was calculated from 1,000 bootstrap
samplings with replicates at 95%, 98%, and 99% specificity. The cancer localization model
was developed by using either all cancer samples in the training cohorts or the cancer samples
correctly identified by the combined cancer detection model with 98% specificity. The number
of correctly predicted samples was 1,188 out of 1,359 for the MGI cohort and 644 out of 940
samples for the I[llumina cohort.

During the revision, we also used the DELFI data as the test dataset for our
MGI/Illumina-trained models. The results are described in our response to comment
#5 below.

5. It would be a more comprehensive evaluation if the MGI-trained model can be applied in Illumina
samples.

We appreciate this critical comment. To address this point comprehensively, we
performed external validation by applying the combined model trained on one cohort
to the training and validation dataset of the other cohorts. When the MGI-trained
model was evaluated using the Illumina training cohort, [llumina validation cohort,
and DELFI cohort, the performance was an ROC-AUC of 0.90, 0.88, and 0.83,
respectively (Supplementary Figure 10C; attached below). When the Illumina-trained
model was evaluated using the MGI training cohort, MGI validation cohort, and DELFI
cohort, the performance was 0.84, 0.82, and 0.90, respectively (Supplementary Figure
10C; attached below). Additionally, the normal and tumor samples of the MGI cohort
were clearly segregated by the prediction scores trained with the Illumina cohort, and
vice versa (Supplementary Figure 10D; attached below).

C MGI-trained model lllumina~trained model ) MGl training cohort lllumina training cohort
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[Performance of external validation]



6. In model interpretation, the consistence between MGlI-trained and Illumina-trained model feature
importance could to be evaluated. This is helpful in determining whether models are overfitting their

own datasets, or discovered real early cancer genome and epigenome changes.

We appreciate this constructive comment. To address this point systematically, we
performed hierarchical clustering of samples (columns) and features (rows) on the
basis of feature attribution values. For both the MGI-trained and Illumina-trained
model, we observe that the samples are separated not by the cohort (Illumina, MGI,
or DELFI) but by the sample type (tumor or normal) (Figure 5D and Figure 6F). The
same analysis was performed also by including the DELFI data, the results of which
are attached below. The results including the DELFI data were not included in the
manuscript because we were left with only two common tumor types by including the
DELFI cohort.
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[Clustering by feature attribution from cancer detection by the genome model (left)
and epigenome model (right)]
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Reviewer #3

Reviewer #3 — General comments:

In this paper, the authors proposed a work that tried to diagnose cancer through ¢cfDNA WGS data by
integrating both genome and epigenome features. The data size and performance of this work is

impressive, but there are some key issues that the authors didn’t address well. I have some concerns
about the significance and methods of this work.

We thank the reviewer for the detailed comments and for acknowledging the
importance of the subject matter. We have made efforts to address the points raised
by the reviewer, especially by describing model interpretation more comprehensively,
and now feel that our paper has been improved considerably thanks to the
constructive comments.

Reviewer #3 — Major comments:

1. The key significance of the work seems to be the algorithm that integrate both genome and epigenome
features. However, there are few details about the algorithm. For example, no figure about the algorithm

was shown in the article, which put obstacles to the readers to understand the algorithm. A pipeline
should be provided to assess the whole algorithm process, e.g. the detail of CNN and the usage of
different data. Actually, it is intuitional to merge mutation and fragment information of cfDNA to
enhance the accuracy of diagnosis, and there are many works to deal with the issues. How and why the
authors develop their algorithm? What’s the difference between their algorithm and other works that
deal with genomes, epigenomes as well as integration of them? What can other researchers learn from

this work to deal with their own problems? I think the authors should explain these issues carefully in
both introduction and discussion, which could benefit more to the scientific community.

We apologize for the lack of detailed information. We now have provided further
clarifications on model building procedures, model structures, and learning
hyperparameters in the form of schematic illustrations (Figure 1 and Supplementary
Figure 3A; attached below).



cfDNA dataset

(1) MGI platform (5x depth, 9 cancer types)
“Training conort : 1813 samples (1396 cancer vs 417 heathy)
Validation cohort : 155 samples (59 cancer vs 96 healthy)
(2) lumina platform (2.5x depth, 7 cancer types)
‘Training conort : 1243 samples (573 cancer vs 670 healthy)
Validation cohort : 155 samples (97 cancer vs 58 healthy)
(3) External data
DELF! ; 422 samples (208 cancer vs 214 healthy)

l Integrative modeling with reference datasets l
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1) TCGA : 410 samples of 23 cancer types
2) ENCODE : 2 normal tissue (pancreas, ovary)
e = 3) GEO: 5 immune cel types (CD4/CDB T cell, B cell,
NK cell, monocyte)

Iyr—

Variant filtering steps ¢ NDR calling
1) CH/ gremiin / artifact filtering BRCA-specific LIHC-spocific  PBMC-spodiic
- MGI, liumina specific GfDNA reference panel o NOR NOR NoR
{20529 samples) 2 | BRCA ottt 1t
3
2) Additional gremiin filtering 23 | Unc CoRe-o-aro-0-0-0 R -
- dbSNP, 1000Genomes, HapMap, EXAC, gnomAD 5 5 :
g 2

3) Additional artifact filtering E PBMC it et
- M VAFs, disconcordant reads, MNVS, read encis
—— v il BN B B
breast cancers = = inBRCA = B e
F9 v
§ 50 e, .
5; . e -
e -
3 g : ’
LnD_ e H
g " gg
T 28
td
5
8
00000 ---000 u.é
090099990 778 g )
wo Variant type Distance from NDR center %@“‘
(2726 features) (150 features) (2 1000bp, 4bp bin) +f

Combined model

s

Model training
( Cancer detection and localization )

[Schematic of model building procedures (Figure 1)]

Genome model Epigenome model
structure and hyperparameter structure and hyperparameter
LVD Variant type
(2726 features) (150 features)
. . . . - . . - [ ] 1. First convolutional layer
Kernel size : [min=1, max=50, step=1]

1. Number of dense layers

[min=1, max=10, step=1] Node number : [min=10, max=100, step=5]

Dropout rate : [min=0, max=0.5, step=0.05]

2. Number of dense nodes :
000 --- 00 [min=5, max=512, step=1] lI 2. Second convolutional layer
Kernel size : [min=1, max=50, step=1]

3. Dropout rate Node number : [min=10, max=100, step=5]
Dropout rate : [min=0, max=0.5, step=0.05]

. . . - . . [min=0.3, max=0.7] ﬁ
4. Weight decay l 3. Fully connected layer

[min=1e-6, max=1e-2]. Node number : [10, 100, step=5]

. . . . . . . "t . . 4.Learning rate : [1e-5, 1e-2]

5. Activation function
[relu, tanh, sigmoid, mish]

[Schematic of training processes and structures (Supplementary Figure 3A)]

Although some previous studies also used mutation and fragmentation features, our
study significantly improved the performance of cancer diagnosis by modeling of
large-scale tumor tissue data. As for the genome model using variant features, most
previous studies focused on driver mutations of oncogenes and tumor suppressor
genes such as TP53 and KRAS. In contrast, we were able to also include passenger
mutations in our analysis thanks to our cfDNA normal reference panel. The utility of



passenger mutations has been demonstrated in classifying tumor types based on
tissue genomic data (https://doi.org/10.1038/s41467-022-31666-w, attached below).
However, our study is the first attempt to leverage information embedded in
passenger mutations for cancer diagnosis by cfDNA analysis.

[Important features for classifying tumor types based on tumor tissue WGS]

Regarding the epigenome model, most of previous studies focused on promoter
regions and transcription factor binding sites. Here, we extended the scope to include
distal regulatory regions in 25 different tissue types. It remained challenging to
accurately identify nucleosome depleted regions (NDRs) by using conventional peak
calling methods. As described in Supplementary Figure 2, we tested a different
method and validated the biological relevance of this approach by using cell line data.
In addition, the combinatorial projection of the density and length of read fragments
onto the identified NDRs by means of the V-plot enabled us to make use of the
convolutional neural network for three-dimensional image processing. We now have
provided an in-detail description of these improvements made to our models in the
introduction and discussion sections.

2. Understanding the mechanism of deep learning models is essential to trust the models and take

advantage from the work for promoting related research. One possible approach is to use some

interpretive methods for neural networks; another is to do some extended simulations. For example,
what features in V-plot matter more in the diagnosis of cancer? Does all LMDs / NDRs contribute to
the diagnosis, or important signals can be enriched into some specific gene sets? I suggest the authors

to do more analysis to help the readers understand the significance of the algorithm.




We thank the reviewer for this constructive comment giving us an opportunity to
provide a better interpretation of our models. A comprehensive characterization of
model features was performed using attribution values derived by the integrative
gradients method (https://doi.org/10.48550/arXiv.1703.01365). With regard to the
genome model, we first show that somatic mutations from PCAWG tissue samples are
enriched at regions with positive attribution scores compared to those with negative
attribution scores for the cancer detection model (Figure 5A). We also show that
tissue-specific high and low LMD regions tend to have positive and negative
attribution scores, respectively (Figure 5B). In addition, high LMD regions of a
particular cancer type had high attribution scores for the cfDNA samples of the
matching cancer type, but not for the samples of other types (Figure 5C, upper). On
the contrary, low LMD regions of a particular cancer type had low attribution scores
only for the matched samples (Figure 5C, lower). These results indicate LMD regions
derived from reference tumor tissue data play an important role in developing our
prediction models for cancer detection and tissue-of-origin localization.
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[Genome model interpretation results]

As for the epigenome model, we analyzed the attribution scores by means of the two-
dimensional V-plot. In the cancer detection model, we found that fragment size
distribution is important in distinguishing between normal and tumor samples
(Figure 6A and B). In the cancer localization model, in contrast, fragment density
across the NDRs (i.e., fragment distribution) plays an important role in classifying
tumor site locations (Figure 6C). While depletion of cfDNA reads at the NDRs of a
particular cancer type should increase the likelihood of assigning the given sample to
the corresponding cancer type, enrichment of cfDNA reads at the NDRs of a particular
cancer type is supposed to decrease the prediction probability for the given cancer
type. As expected, negative attribution scores were assigned to reads mapping to the
NDRs of a matching cancer type (Figure 6D-E).
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[Epigenome model interpretation results]

3. The work used both MGI and Illumina platforms to sequence cfDNA. Can models trained on one
platform be used to test data derived from another platform?

We thank the reviewer for this important comment. To perform external validation as
suggested and comprehensively, we applied the combined model trained on one
cohort to the training and validation dataset of the other cohorts. When the MGI-
trained model was evaluated using the Illumina training cohort, Illumina validation
cohort, and DELFI cohort, the performance was an ROC-AUC of 0.90, 0.88, and 0.83,
respectively (Supplementary Figure 10C; attached below). When the Illumina-trained
model was evaluated using the MGI training cohort, MGI validation cohort, and DELFI
cohort, the performance was 0.84, 0.82, and 0.90, respectively (Supplementary Figure
10C; attached below). Additionally, the normal and tumor samples of the MGI cohort
were clearly segregated by the prediction scores trained with the Illumina cohort, and
vice versa (Supplementary Figure 10D; attached below).



C MGi-trained model lllumina-trained model D MG training cohort lllumina training cohort

1.00 — 1.00 1.00
£ o ! 2 o 2 - 08
© . © . Qo
o o g o075 g -l
1) o © £
153
= = 2 7 06
= 050 050 3 2
o 1 b o L 050 ©
o Predictionto o Prediction to @ i
S o | - mtain:090 3 (s MGiltain:0.84 £ g os
= livaii:0.88 — MGl vali : 0.82 Z .5
DELFI:0.83 DELFI : 0.90
0.00 0.00 02
0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False Positive Rate False Positive Rate MGi-trained model fllumina-trained mode

[Performance of external validation]

To further confirm that there is no cohort/platform-specific feature bias, we
performed hierarchical clustering of samples (columns) and features (rows) on the
basis of feature attribution values. For both the MGI-trained and Illumina-trained
model, we observe that the samples are separated not by the cohort (Illumina, MGI,
or DELFI) but by the sample type (tumor or normal) (Figure 5D and Figure 6F). The
same analysis was performed also by including the DELFI data, the results of which
are attached below. The results including the DELFI data were not included in the
manuscript because we were left with only two common tumor types by including the
DELFI cohort.
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[Clustering by feature attribution from cancer detection by the genome model (left)
and epigenome model (right)]
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[Clustering by feature attribution from cancer localization by the genome model
(left) and epigenome model (right)]

4. The cost of sequencing is an important issue of cfDNA cancer diagnosis. The data derived from the
MGI platform are around 5X, which seems to be a costly depth. I suggest the authors to do some
downsampling to investigate the relationship between sequencing depth and precision.

To address this interesting point, we examined how model performance can be
affected by downsampling. For the MGI cohort data, we carried out 3x and 1x
downsampling. Although higher sequencing depth tended to guarantee higher model
performance, 3x downsampling did not considerably undermine the performance of
the model developed with the original data. Thanks to this helpful comment, we have
learned that 3x sequencing depth can be a practical option.
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[Downsampling performance]

5. The usage of K562 and GM 12878 cell line data seems to be unclear. What’s the relationship between
the data and the downstream analysis?

As described in our response to comment #1, one of the advantages of our epigenome



model is that it uses biologically meaningful NDRs identified across the whole
genome beyond gene promoters. Using the GM12878 and K562 cell lines, we tested
the performance of the ATAC-seq peak calling method of HMMRATAC by examining
cell type specificity and interrogating various histone modification data. All detailed
analysis results including these are provided in Supplementary Figure 2 as attached.
Based on these pilot test results, we applied our NDR calling pipeline to 431 tissue
ATAC-seq data resulting in 25 tissue-specific NDRs selected by EdgeR.
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[Pilot tests for NDR identification using cell line data]



6. The authors used five-fold cross-validation to train and test the model. Though the approach seems

to be reasonable, I am still curious about why the authors don’t used a more straightforward approach
to train, validate and test the model with such a large dataset. The authors seem to train a lot parallel
models in the whole approach, but which model was used to test the external DELFI dataset? Does the

choice of hyper-parameters matter a lot to the final results? If [ were a user of the algorithm, how should

I merge these parallel models? I suggest the authors to explain the training and testing approach more
systematically to help the readers understand the work better and guarantee that there is no information

leakage in the approach.

We agree with the reviewer that our dataset is large enough for a simple split. However,
there are two reasons why we use 5-fold cross-validation. The first reason is to avoid
the curse of dimensionality. Data of more than 1,000 samples is large enough in the
biological field, but the number of features we use to train our model is much higher.
We proceeded with 5-fold cross-validation to obtain the robustness of our models
while avoiding the possibility of overfitting that can occur when the number of
features is greater than the number of training samples. The second reason is to
directly compare our models with the DELFI algorithm on their dataset. In the DELFI
paper (https://doi.org/10.1038/s41586-019-1272-6), they trained the model using
cross-validation. In order to make a fair comparison using the prediction probabilities
of the samples provided in the DELFI paper, we followed the DELFI model training
procedure as much as possible (Supplementary Figure 5).

[DELFI model training procedure]

We apologize for missing the details of our model training and validation processes.
As mentioned above, we conducted model training in a similar way to the DELFI paper.
Briefly, in the training step, we separated our samples into 5-fold cross-validation (CV)
with stratification. Each CV underwent 200 hyperparameter searches to determine the
best hyperparameter, and the model was trained by repeating 30 times using the
selected best hyperparameters, and among them, the model with the lowest
validation loss was selected as the final model. For each CV, the test set was predicted
using the final model of that CV, and the performance was evaluated using the test
prediction score of all samples. In the validation step, we evaluated the performance



by calculating the average of prediction scores obtained from the 5 models. The model
training and validation processes are now described in detail in the text and
Supplementary Figure 3B-C.

Model training process

@B g set ([l : vaicaton set : Test set Prediction scores Calculate
of each test set
1) ROC AUC

1) MGl Training Cohort
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5 fold split

2) lllumina Training Cohort ~ “ith stratif

(1610 samples) 2) Accuracy

3) DELFI Cohort

(422 samples)
1) Hyperparameter search 3) Test set prediction

Model training steps :

Model prediction process

1) MGl Validation Cohort
—

2) lllumina Validation Cohort

MGI models
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[Our model training and validation processes]



Reviewer #4

Reviewer #4 — General comments:

In this study, the authors performed cell-free DNA (¢cfDNA) whole genome sequencing to generate two
test datasets including 2543 patient samples from nine different cancer types and 1241 normal control

samples, and a reference dataset for background variant filtering based on 20529 samples from low-

depth healthy subjects. An external cfDNA data set consisting of 208 cancer samples and 214 normal
controls was also used for additional evaluation. The algorithm incorporates as model criteria the

distribution of mutations in tumor tissue and cancer type-specific profiles of chromatin tissue, achieving

very high accuracy in cancer detection and tissue origin localization. This integrated model was able to
detect early-stage cancers, including pancreatic cancer, with high sensitivity comparable to late-stage

cancers. In addition, interpretation of the model revealed the contribution of genomic and epigenomic
features to different types of cancer. This methodology could lay the groundwork for accurate cfDNA-
based cancer diagnosis, especially at early stages. The authors are working on an important research
topic and have obtained some interesting results. On the other hand, there are several problems, and I
recommend a major revision of the manuscripts, paying attention to the following points.

We thank the reviewer for acknowledging the importance of the subject matter and
the implications of this work. We have made efforts to address the points raised by
the reviewer, especially by providing clinical information, and now feel that our paper
has been improved considerably thanks to the constructive comments.

Reviewer #4 — Major comments:

1. Despite the complexity of the research, the number of main figures is small and the text in each figure

is small, making it difficult to grasp the overall picture of the research. It would be better to increase
the number of main figures and make the letters in the figures larger.

We apologize for the lack of clarity. According to the reviewer’s comment, we now
have added main and supplementary figures, in particular regarding the illustration
of model concepts and the results of model interpretation. We have also increased the
font size of the figures for better readability.

2. Deep neural networks were used in this study, but it is difficult to understand the details in the current
version. The details should be shown in Fig. 1 or elsewhere, including the structure of the algorithm.

We appreciate this constructive comment. We have modified Figure 1 to better
describe the concept and overall process of the genome and epigenome models, and
also generated Supplementary Figure 3 to describe the model training process,
structure, and hyperparameters in detail. Briefly, the genome model consisted of



features related to local mutation density and variant type for passenger mutations
and conducted training with deep neural networks. The epigenome model consisted
of three-dimensional V-plot images representing fragment density and fragment size
across 25 tissue-specific NDRs and conducted training with convolutional neural

networks.

cfDNA dataset

(1) MGl platform (5x depth, 9 cancer types)
‘Training cohort : 1813 samples (1396 cancer vs 417 healthy)
Validation cohort : 155 samples (59 cancer vs 96 healthy)
(2) Nlumina platform (2.5x depth, 7 cancer types)
Training cohort : 1243 samples (573 cancer vs 670 healthy)
Validation cohort : 155 samples (97 cancer vs 58 healthy)
(3) External data
DELFI : 422 samples (208 cancer vs 214 healthy)

l Integrative modeling with reference datasets l

Local Variant Densty ¢ Veriant caling
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Variant filtering steps

1) CH/ gremlin / artifact filtering
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[Schematic diagram of the genome, epigenome, and combined model]

Genome model
structure and hyperparameter

LVD Variant type
(2726 features) (150 features)
o000 o0 1. Number of dense layers
[min=1, max=10, step=1]

2. Number of dense nodes
[min=5, max=512, step=1]

3. Dropout rate
[Min=0.3, max=0.7]

4. Weight decay
000 P [min=1e-6, max=1e-2].
5. Activation function

[relu, tanh, sigmoid, mish]

Epigenome model
structure and hyperparameter

1. First convolutional layer

Kernel size : [min=1, max=50, step=1]
Node number : [min=10, max=100, step=5]
Dropout rate : [min=0, max=0.5, step=0.05]

2. Second convolutional layer

Kernel size : [min=1, max=50, step=1]
Node number : [min=10, max=100, step=5]
Dropout rate : [min=0, max=0.5, step=0.05]

3. Fully connected layer
Node number : [10, 100, step=5]

4.Learning rate : [1e-5, 1e-2]

[Model structure and hyperparameter list]



3. The most serious problem with this article is that, despite the fact that it is a medical and clinical-
oriented study, it provides no information about the research institution or the institution from which
the clinical specimens were taken. The authors are not even sure if they are cancer experts to begin with,
although they have done some clinical-leaning research on cancer in particular. Given the above, it is
also impossible to determine whether the results of the study have been properly interpreted. To be
honest, the limited information on the research group in this paper makes it difficult to evaluate the

article's content. When publishing such clinically oriented papers, it should be possible to determine the
type of professional (clinician, medical researcher, informatics researcher) from the peer review stage.

4. Related to 3, the current manuscript is unclear in which region (country) the study was conducted.
From the MATERIALS AND METHODS, I have determined that it is probably a Chinese research
group, but in that case, the genetic background by ethnic group should also be noted. A number of
studies have reported results indicating that genetic backgrounds in Western countries differ

significantly from those in Asian regions to begin with. A method of analysis that mixes up genetic
backgrounds, as in this case, may lead to misinterpretation of the results.

We apologize for missing the critical information. On the basis of blind review, we
masked the author information during our initial submission. For clarification, this
research was conducted in South Korea. To demonstrate the credibility of our research,
we now have disclosed author information and the identities of institutions from
which the clinical specimens were taken in the method section (page 25, line 4). For
multi-cancer detection, patient samples of 9 cancer types were recruited from 6
institutions of South Korea, and their clinical information was obtained and processed
by the professional clinicians of these institutions. The samples were sent in streck
tubes to GC Genome Corporation (https:/www.gc-genome.com/), where whole-

genome sequencing of cfDNA was performed using the MGI and Illumina platform.
The sequencing data was analyzed at a computational biology laboratory of KAIST
(http://omics.kaist.ac.kr). We provide detail clinical information in Supplementary
Table 7.

We understand the reviewer’s concern regarding genetic background. To minimize
potential bias, we leverage our own germline variant filtering data based on 20,529
low-depth healthy samples of the same ethnicity (processed at GC Genome). We
believe that unlike germline variants, somatic mutations are not heavily dependent
on ethnicity. According to the results of external validation, applying our models
trained on the Korean samples to the DEFLI data does not particularly undermine
prediction performance (see below).
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[Application of the MGI/Illumina models to the DELFI cohort]

While putting together clinical information in Supplementary Table 7, it was brought
to our attention that the Illumina breast cancer samples, unlike other fresh data
directly provided by the hospitals, were commercially purchased. Our inspection of
these samples revealed that the distribution of fragment size from these samples was
quite different from that from the other samples. Therefore, we decided to exclude
these potentially problematic samples from further analyses. Thanks to the reviewer’s
comment, we were able to conduct further quality control.

5. To be honest, my first impression from reading the article is that the AUC values in Figure 2 are too
high, which may have caused over fitting. It is difficult to determine accuracy from retrospective studies
alone, and it would be impossible to properly determine usefulness without conducting prospective
studies.

We agree with the reviewer that prospective studies can be useful in verifying model
performance. Unfortunately, a prospective study requires enormous amount of
planning, clinical arrangement, and resources and is way beyond the scope of this
work. Instead, we put a lot of effort into proving that our model performance is not
merely the result of overfitting.

First, in the process of sample collection, we set aside samples acquired before a
certain time point as the training set and assigned the subsequent samples as the
validation set, practically mimicking a prospective approach. Prediction performance
evaluated on the validation set indicates no sign of overfitting to the training data
(Figure 2A-D).

Second, to demonstrate that our model is not overfitted but trained with biological
relevance, we conducted model interpretation using the integrated gradients method
(https://doi.org/10.48550/arXiv.1703.01365). With regard to the genome model, we



first show that somatic mutations from PCAWG tissue samples are enriched at regions
with positive attribution scores compared to those with negative attribution scores
for the cancer detection model (Figure 5A). We also show that tissue-specific high and
low LMD regions tend to have positive and negative attribution scores, respectively
(Figure 5B). In addition, high LMD regions of a particular cancer type had high
attribution scores for the cfDNA samples of the matching cancer type, but not for the
samples of other types (Figure 5C, upper). On the contrary, low LMD regions of a
particular cancer type had low attribution scores specifically for the matched samples
(Figure 5C, lower). These results indicate LMD regions derived from reference tumor
tissue data play an important role in developing our prediction models for cancer

detection and tissue-of-origin localization.
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[Genome model interpretation results]

As for the epigenome model, we analyzed the attribution scores by means of the two-
dimensional V-plot. In the cancer detection model, we found that fragment size
distribution is important in distinguishing between normal and tumor samples
(Figure 6A and B). In the cancer localization model, in contrast, fragment density
across the NDRs (i.e., fragment distribution) plays an important role in classifying
tumor site locations (Figure 6C). While depletion of cfDNA reads at the NDRs of a
particular cancer type should increase the likelihood of assigning the given sample to
the corresponding cancer type, enrichment of cfDNA reads at the NDRs of a particular
cancer type is supposed to decrease the prediction probability for the given cancer
type. As expected, negative attribution scores were assigned to reads mapping to the
NDRs of a matching cancer type (Figure 6D-E).
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[Epigenome model interpretation results]

Finally, we checked the correlation of the feature importance values measured with
the MGI, Illumina, and DELFI cohorts because overfitting would have resulted in
specific patterns of feature importance tailored to each training cohort. Thus, we
performed hierarchical clustering of samples (columns) and features (rows) on the
basis of feature attribution values. For both the MGI-trained and Illumina-trained
model, we observe that the samples are separated not by the cohort (Illumina, MGI,
or DELFI) but by the sample type (tumor or normal) (Figure 5D and Figure 6F). The
same analysis was performed also by including the DELFI data, the results of which
are attached below. The results including the DELFI data were not included in the
manuscript because we were left with only two common tumor types by including the
DELFI cohort.
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6. In the judgment of cancer experts, the molecular mechanisms of cancer development differ greatly

in different organs. It is difficult to determine whether the method of training all nine types of cancer in
a jumble as in this case is really useful. In particular, in Figures 2E and F, the colon, biliary tract, and
head and neck data are almost statistically meaningless because the number of samples is small and the
error bars are too large. I do not understand the significance of presenting such data. Similarly, the data
in NA in Figure 2E have too few samples and very large error bars. I find the data to be completely

meaningless from a scientific standpoint.

We agree with the reviewer that each type of cancer has different characteristics.
However, multi-cancer early detection is a primary goal of cancer screening (New



genomic technologies for multi-cancer early detection: Rethinking the scope of
cancer screening. Cancer Cell 40:109-113), and previous models as well as ours use
common features that appear regardless of cancer types such as variant and fragment
properties. As our cancer detection models were developed on the basis of such pan-
cancer features albeit centered on the nine cancer types, we believe that the
prediction results for cancer types with a small number of samples (e.g., colon, biliary
tract, and head and neck) still hold biological meaning. In contrast, predicting tumor
origin localization may be problematic with these cancer types having a small number
of cases in terms of statistical confidence as the reviewer pointed out. Therefore, we
excluded cancer types with fewer than 40 samples from our tissue-of-origin
prediction.



Reviewer #1

All concerns are addressed.

We thank the reviewer for the positive feedback.

Reviewer #2

The authors have well addressed all my concerns. I have no more questions about this work. Besides, I
found a typo in Figure 1: “gremlin”.

We appreciate the reviewer for the positive feedback. Additionally, we edited a type
in Figure 1.

Reviewer #4

Basically, I fell that the authors have effectively addressed the criticisms raised in the initial review. I
recommend publication.

We appreciate the reviewer.



