

Fig. S1 | Validation of hACE2, mNG2₁₋₁₀**-expressing cell line. a,b,** Flow cytometry plots showing (a) untransfected control and gating strategy in this verification experiment, and (b) surface expression of hACE2 in HEK293T landing pad cells. Primary antibody used was S RBD with an Fc tag.

assay. Total cell number in co-culture is indicated, and the ratio of hACE2, mNG2₁₋₁₀- to S, mNG2₁₁-expressing cells is shown above each plot. **d**, Optimization of total cell numbers of hACE2, mNG2₁₋₁₀- and S, mNG2₁₁-expressing cells for fusion assay. Total cell number, in millions, of hACE2, mNG2₁₋₁₀- and S, mNG2₁₁-expressing cells in co-culture is shown above each plot. Equal numbers of hACE2, mNG2₁₋₁₀- and S, mNG2₁₋₁₀- and S, mNG2₁₁-expressing cells were co-cultured for 3 hours. **e**, Optimization of time point for fusion sorting. Equal numbers of hACE2, mNG2₁₋₁₀- and S, mNG2₁₁-expressing cells were mixed and analyzed via flow cytometry at the indicated time point. Fig. S11b shows the gating strategy for optimization experiments.

Fig. S3 | Additional analyses for expression and fusion assays. a,b, Correlation of expression scores (a) and fusion scores (b) between replicates. Pearson correlation coefficient, *r*, is shown for each plot. c,d, Violin plots of expression scores (c) and fusion scores (d) of missense, nonsense, and silent mutations are compared. Box-and-whisker plots are also shown. The center corresponds to the mean, bounds of box represent first and third quartiles, and whiskers extend to the 5th and 95th percentiles. *, *p* < 0.05; **, *p* < 0.001. Exact *p*-values from two-sided *t* tests are shown in Table S6. Expression and fusion scores are averages from *n* = 2 independent biological replicates. Data are plotted from Supplementary Data 1.

lower fusion score suggests fusogenicity is impaired. Abbreviations of amino acid residues are as follows: A, alanine; C, cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine; I, isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; W, tryptophan; Y, tyrosine. Data are plotted from Supplementary Data 1.

Fig. S5 | **Validation of surface expression of mutants of interest. a-c,** Flow cytometry plots showing surface expression of candidate prefusion-stabilizing mutations (a), fusion-enhancing mutations (b), and combinations of candidate prefusion-stabilizing mutations (c). Plots are representative of n = 3 independent replicates. Abbreviations for combinatorial mutations are as follows: 2P, K986P/V987P; 2PQ, K986P/V987P/D994Q; 2PR, K986P/V987P/Q1005R; 2PQR, K986P/V987P/D994Q/Q1005R. Fig. S11a shows the gating strategy for this experiment.

Fig. S6 | Fusion activity of mutants of interest. a,b, Flow cytometry plots (a) and micrographs (b) of S-expressing cells with fusion-incompetent mutations at 3 hours post-mixing with hACE2-expressing cells. c,d, Flow cytometry plots (c) and micrographs (d) of S-expression cells with fusion-enhancing mutations at 3 post-mixing with hACE2-expressing cells. e,f, Flow cytometry plots (e) and micrographs (f) of S-expression cells with combinations of fusion-incompetent mutations at 3 hours post-mixing with hACE2-expressing cells. Plots and micrographs are representative of n = 2 independent replicates. Abbreviations of combinatorial mutations are as follows: 2P, K986P/V987P; 2PQ, K986P/V987P/D994Q; 2PR, K986P/V987P/Q1005R; 2PQR, K986P/V987P/D994Q/Q1005R. Scale bar: 100 μ m. Fig. S11b shows the gating strategy for this experiment.

Fig. S7 | Purification of S ectodomain mutants. a, SDS-PAGE gels of soluble spike proteins after His-tag affinity purification. Molecular weights (in kDa) of protein standards are shown. Arrowheads point to the band corresponding to the size of a glycosylated S monomer (~180 kDa). Gels are representative of *n* = 2 independent biological experiments. **b**, Chromatograms of soluble spike ectodomain mutants for biophysical characterization. Dotted line indicates the peak volume (~74 mL) corresponding to the size of a glycosylated spike trimer (~540 kDa). Fractions from 73 mL to 79 mL were collected and concentrated. **c**, Culture volume and yield for each mutant in **b**. Abbreviations for combinatorial mutations are as follows: QR, D994Q/Q1005R; 2P, K986P/V987P; 2PQ, K986P/V987P/D994Q; 2PR, K986P/V987P/Q1005R; 2PQR, K986P/V987P/D994Q/Q1005R. Source data are provided as a Source Data file.

Fig. S8 | Cryo-EM structure validation and analysis. a, Representative micrograph for cryo-EM experiments. **b**, Exemplary 2D classes of soluble S with 2PQ mutations. **c**, Cryo-EM data processing workflow. Data collection and analysis was performed on cryoSPARC Live. **d**, Goldstandard Fourier shell correlation curve of soluble 2PQ ectodomain. **e**, Cryo-EM density map of soluble S with 2PQ mutations after homogeneous refinement. **f**, Fit of cryo-EM density map of soluble S with 2PQ mutations (in grey) to resolved structure of S with 2P mutations (PDB: 6VXX²). Helices in 2PQ as indicated by the electron density map are closer compared to those in 2P. Contour level of density map was set to 0.2 in UCSF Chimera.

Fig. S9 | Titration of SARS-CoV-2 S antibodies to membrane-bound S 2P and 2PQ. a-d, Flow cytometry plots from titration of membrane-bound S bearing 2P or 2PQ mutations with S2M28³, an N-terminal domain antibody **(a)**, CC12.3⁴, a receptor-binding domain antibody **(b)**, COVA1-07⁵, a heptad repeat 1 antibody **(c)**, and CC40.8¹, a stem helix antibody **(d)**. The concentrations of antibodies are indicated. Fig. S11a shows the gating strategy for this experiment.

Fig. S10 | Sequence conservation analysis of S2 HR1 and CH mutations. a,b, Plots of mean expression score (a) and mean fusion score (b) against natural frequency in HR1 and CH of major SARS-CoV-2 variants (**Table S1**). c,d, Plots of mean expression score (c) and mean fusion score (d) against sequence conservation of the S2 HR1 and CH regions of related betacoronaviruses listed in **Table S7**. Spearman correlation coefficients, ρ , are shown in a-d. Source data are provided as a Source Data file.

Fig. S11 | Gating strategies for flow cytometry and fluorescence activated cell sorting (FACS). a, Gating strategy used for flow cytometry to assess surface expression of S via PE fluorescence. **b**, Gating strategy used for flow cytometry to determine fusion of hACE2- and S-expressing cells via mNG2 fluorescence. **c**, Gating strategy used for FACS to sort the DMS library of S-expressing cells based on levels of PE fluorescence. **d**, Gating strategy used for FACS to sort the co-culture of the DMS library of S-expressing cells and hACE2-expressing cells at 3 hours post-mixing, based on presence or absence of mNG2 fluorescence.

SUPPLEMENTARY TABLES

Table S1. Mutations that are included in our DMS library (residues 883 to 1034) and also found in SARS-CoV-2 variants of concern and variants of interest.

Variants of concern			
PANGO Lineage	Mutations	GenBank Reference	
Alpha	59824	M7344997 1	
(B.1.1.7)	5302A	MZ344997.1	
Beta	_	MW598419 1	
(B.1.351)			
Gamma	T1027I	MZ169911.1	
(P.1)			
Delta	D950N	MZ359841.1	
(B.1.617.2)			
Omicron	Q954H, N969K, L981F	OL672836.1	
(B.1.1.529: BA.1)			
Omicron		OM685375.1 (BA.2)	
(B.1.1.529: BA.2, BA.4, BA.5)	Q954H, N969K	ON373214.1 (BA.4)	
		ON249995.1 (BA.5)	
Variants of interest			
PANGO Lineage	Mutations	GenBank Reference	
Epsilon	-	MW453103.1	
(B.1.427, B.1.429)			
	-	MW523796.1	
Zeta (P.2)	-	MW523796.1	
Zeta (P.2) Eta	- F888L	MW523796.1 MW560924.1	
Zeta (P.2) Eta (B.1.525)	- F888L	MW523796.1 MW560924.1	
Zeta (P.2) Eta (B.1.525) Iota	- F888L -	MW523796.1 MW560924.1 MW643362.1	
Zeta (P.2) Eta (B.1.525) Iota (B.1.526)	- F888L -	MW523796.1 MW560924.1 MW643362.1	
Zeta (P.2) Eta (B.1.525) lota (B.1.526) Kappa	- F888L -	MW523796.1 MW560924.1 MW643362.1 MW966601.1	
Zeta (P.2) Eta (B.1.525) Iota (B.1.526) Kappa (B.1.617.1)	- F888L - -	MW523796.1 MW560924.1 MW643362.1 MW966601.1	
Zeta (P.2) Eta (B.1.525) lota (B.1.526) Kappa (B.1.617.1) Lambda	- F888L - -	MW523796.1 MW560924.1 MW643362.1 MW966601.1 MW850639.1	
Zeta (P.2) Eta (B.1.525) Iota (B.1.526) Kappa (B.1.617.1) Lambda (C.37)	- F888L - -	MW523796.1 MW560924.1 MW643362.1 MW966601.1 MW850639.1	
Zeta (P.2) Eta (B.1.525) lota (B.1.526) Kappa (B.1.617.1) Lambda (C.37) Mu	- F888L - - - D950N	MW523796.1 MW560924.1 MW643362.1 MW966601.1 MW850639.1 EPI_ISL_1220045 (CISAID)	

Table S2. Primers used for PCR-based site directed mutagenesis (QuikChange) to generatemutations. The plasmid backbone used was attB-S-mNG2-11.

Primer	Sequence (5' to 3')
T961F-F	GCACTGAACTTCCTGGTCAAGCAGCTGTCC
T961F-R	CAGCTGCTTGACCAGGAAGTTCAGTGCCTGGGC
K986P-F	CTGAGCAGACTGGACCCGGTGGAAGCCGAGGTGCAG
K986P-R	CTGCACCTCGGCTTCCACCGGGTCCAGTCTGCTCAG
V987P-F	CTGAGCAGACTGGACAAGCCGGAAGCCGAGGTGCAG
V987P-R	CTGCACCTCGGCTTCCGGCTTGTCCAGTCTGCTCAG
D994E-F	CGAGGTGCAGATCGAGAGACTGATCACCGGAAG
D994E-R	CTTCCGGTGATCAGTCTCCGATCTGCACCTCGGCT
D994Q-F	GCCGAGGTGCAGATCCAGAGACTGATCACCGGAAG
D994Q-R	CTTCCGGTGATCAGTCTCTGGATCTGCACCTCGGCT
Q1005R-F	GGCTGCAGTCCCTGCGGACCTACGTTACCCAG
Q1005R-R	CTGGGTAACGTAGGTCCGCAGGGACTGCAGCC
K986P/V987P-F	CTGAGCAGACTGGACCCGCCGGAAGCCGAGGTGCAG
K986P/V987P-R	CTGCACCTCGGCTTCCGGCGGGTCCAGTCTGCTCAG

Table S3. Cassette primers to generate the DMS library.

Primer	Sequence (5' to 3')
Cassette1_1	GCCCTGCTGGCCGGCACAATCNNKAGTGGTTGGACATTTGGAGCTGG
	CGCCGCTCTGCAG
Cassette1_2	GCCCTGCTGGCCGGCACAATCACCNNKGGCTGGACCTTTGGAGCTG
	GCGCCGCTCTGCAG
Cassette1_3	GCCCTGCTGGCCGGCACAATCACCAGCNNKTGGACATTCGGAGCTG
	GCGCCGCTCTGCAG
Cassette1_4	GCCCTGCTGGCCGGCACAATCACAAGCGGTNNKACCTTTGGAGCTGG
	CGCCGCTCTGCAG
Cassette1_5	GCCCTGCTGGCCGGCACAATCACAAGTGGCTGGNNKTTCGGAGCTG
	GCGCCGCTCTGCAG
Cassette1_6	GCCCTGCTGGCCGGCACAATCACCAGCGGTTGGACCNNKGGTGCTG
	GCGCCGCTCTGCAG
Cassette1_7	GCCCTGCTGGCCGGCACAATCACCAGCGGTTGGACATTTNNKGCAGG
	CGCCGCTCTGCAG
Cassette1_8	GCCCTGCTGGCCGGCACAATCACCAGTGGTTGGACCTTCGGANNKG
	GCGCCGCTCTGCAG
Cassette2_1	AGCGGCTGGACATTTGGAGCTNNKGCAGCACTGCAGATCCCCTTTGC
	TATGCAGATGGCC
Cassette2_2	AGCGGCTGGACATTTGGAGCTGGTNNKGCTCTCCAGATCCCCTTTGC
	TATGCAGATGGCC
Cassette2_3	AGCGGCTGGACATTTGGAGCTGGTGCCNNKCTGCAAATCCCCTTTGC
	TATGCAGATGGCC
Cassette2_4	AGCGGCTGGACATTTGGAGCTGGCGCAGCTNNKCAAATCCCCTTTGC
	TATGCAGATGGCC
Cassette2_5	AGCGGCTGGACATTTGGAGCTGGCGCCGCACTCNNKATCCCCTTTGC
	TATGCAGATGGCC
Cassette2_6	AGCGGCTGGACATTTGGAGCTGGTGCAGCACTCCAANNKCCCTTTGC
	TATGCAGATGGCC
Cassette2_7	AGCGGCTGGACATTTGGAGCTGGTGCAGCTCTGCAAATANNKTTTGC
	TATGCAGATGGCC
Cassette2_8	AGCGGCTGGACATTTGGAGCTGGTGCCGCACTCCAGATACCCNNKGC
	TATGCAGATGGCC
Cassette3_1	GCCGCTCTGCAGATCCCCTTTNNKATGCAAATGGCATACCGGTTCAAC
	GGCATCGGAGTG
Cassette3_2	GCCGCTCTGCAGATCCCCTTTGCANNKCAAATGGCCTATCGGTTCAAC
	GGCATCGGAGTG
Cassette3_3	GCCGCTCTGCAGATCCCCTTTGCAATGNNKATGGCATATCGATTCAAC
	GGCATCGGAGTG
Cassette3_4	GCCGCTCTGCAGATCCCCTTTGCTATGCAGNNKGCATATCGGTTCAAC
	GGCATCGGAGTG
Cassette3_5	GCCGCTCTGCAGATCCCCTTTGCAATGCAAATGNNKTACCGATTTAAC
	GGCATCGGAGTG

Cassette3_6	GCCGCTCTGCAGATCCCCTTTGCTATGCAAATGGCCNNKCGATTCAAC
Cassette3_7	GCCGCTCTGCAGATCCCCTTTGCAATGCAGATGGCCTATNNKTTTAAC
Cassette3_8	GCCATCGGAGTG GCCGCTCTGCAGATCCCCTTTGCTATGCAGATGGCATACCGANNKAA
	CGGCATCGGAGTG
Cassette4_1	ATGCAGATGGCCTACCGGTTCNNKGGTATAGGAGTGACCCAGAATGT GCTGTACGAGAAC
Cassette4_2	ATGCAGATGGCCTACCGGTTCAATNNKATCGGTGTGACCCAGAATGT GCTGTACGAGAAC
Cassette4_3	ATGCAGATGGCCTACCGGTTCAACGGTNNKGGTGTAACCCAGAATGT
Cassette4_4	ATGCAGATGGCCTACCGGTTCAATGGCATANNKGTAACCCAGAATGT
Cassette4_5	ATGCAGATGGCCTACCGGTTCAACGGTATCGGANNKACACAGAATGT
Cassette4_6	GCTGTACGAGAAC ATGCAGATGGCCTACCGGTTCAACGGCATAGGTGTGNNKCAGAATGT
	GCTGTACGAGAAC
Cassette4_7	ATGCAGATGGCCTACCGGTTCAATGGTATCGGAGTAACCNNKAATGT GCTGTACGAGAAC
Cassette4_8	ATGCAGATGGCCTACCGGTTCAACGGCATCGGTGTAACACAGNNKGT GCTGTACGAGAAC
Cassette5_1	GGCATCGGAGTGACCCAGAATNNKCTCTATGAGAACCAGAAGCTGAT CGCCAACCAGTTC
Cassette5_2	GGCATCGGAGTGACCCAGAATGTANNKTACGAAAACCAGAAGCTGAT
Cassette5_3	GGCATCGGAGTGACCCAGAATGTACTGNNKGAGAATCAGAAGCTGAT
Cassette5_4	GGCATCGGAGTGACCCAGAATGTGCTCTACNNKAATCAGAAGCTGAT
Cassette5_5	GGCATCGGAGTGACCCAGAATGTGCTGTATGAANNKCAGAAGCTGAT
Cassette5_6	GGCATCGGAGTGACCCAGAATGTACTCTATGAAAATNNKAAGCTGATC
Cassette5_7	GCCACCAGITC GGCATCGGAGTGACCCAGAATGTACTCTACGAGAACCAANNKCTGAT
Cassette5_8	GGCATCGGAGTGACCCAGAATGTACTGTATGAGAACCAAAAGNNKAT
Cassette6_1	CTGTACCAGTTC
Cassette6_2	CTGTACGAGAACCAGAAGCTGATANNKAACCAATTCAACAGCGCCATC
Cassette6_3	GGCAAGATCCAG CTGTACGAGAACCAGAAGCTGATCGCANNKCAATTTAACAGCGCCATC GGCAAGATCCAG

Cassette6_4	CTGTACGAGAACCAGAAGCTGATAGCCAATNNKTTTAACAGCGCCATC GGCAAGATCCAG
Cassette6_5	CTGTACGAGAACCAGAAGCTGATCGCAAACCAGNNKAATAGCGCCAT
Cassette6_6	
Cassette6_7	CTGTACGAGAACCAGAAGCTGATAGCAAACCAGTTTAACNNKGCCATC GGCAAGATCCAG
Cassette6_8	CTGTACGAGAACCAGAAGCTGATCGCCAACCAATTTAATAGCNNKATC GGCAAGATCCAG
Cassette7_1	GCCAACCAGTTCAACAGCGCCNNKGGTAAAATCCAGGACAGCCTGAG CAGCACAGCAAGC
Cassette7_2	GCCAACCAGTTCAACAGCGCCATANNKAAGATACAGGACAGCCTGAG CAGCACAGCAAGC
Cassette7_3	GCCAACCAGTTCAACAGCGCCATCGGTNNKATACAAGACAGCCTGAG CAGCACAGCAAGC
Cassette7_4	GCCAACCAGTTCAACAGCGCCATAGGCAAANNKCAAGACAGCCTGAG
Cassette7_5	GCCAACCAGTTCAACAGCGCCATCGGTAAGATCNNKGATAGCCTGAG
Cassette7_6	GCCAACCAGTTCAACAGCGCCATCGGCAAAATACAGNNKAGCCTGAG
Cassette7_7	GCCAACCAGTTCAACAGCGCCATAGGTAAGATCCAAGACNNKCTGAG
Cassette7_8	GCCAACCAGTTCAACAGCGCCATCGGCAAGATACAAGATAGCNNKAG
Cassette8_1	GGCAAGATCCAGGACAGCCTGNNKAGTACCGCAAGCGCCCTGGGAA
Cassette8_2	GGCAAGATCCAGGACAGCCTGAGTNNKACAGCCAGCGCCCTGGGAA
Cassette8_3	GGCAAGATCCAGGACAGCCTGAGCAGCNNKGCCAGTGCCCTGGGAA
Cassette8_4	GGCAAGATCCAGGACAGCCTGAGCAGCACCNNKAGCGCACTGGGAA
Cassette8_5	GGCAAGATCCAGGACAGCCTGAGCAGTACAGCANNKGCACTGGGAAA
Cassette8_6	GGCAAGATCCAGGACAGCCTGAGTAGCACCGCAAGTNNKCTGGGAAA
Cassette8_7	GCTGCAGGACGTG GGCAAGATCCAGGACAGCCTGAGTAGTACCGCCAGTGCCNNKGGAAA
Cassette8_8	GCTGCAGGACGTG GGCAAGATCCAGGACAGCCTGAGTAGTACAGCAAGTGCCCTGNNKAA
Cassette9_1	AGCACAGCAAGCGCCCTGGGANNKCTCCAAGACGTGGTCAACCAGAA TGCCCAGGCACTG

Cassette9_2	AGCACAGCAAGCGCCCTGGGAAAANNKCAGGATGTGGTCAACCAGAA
Cassette9_3	AGCACAGCAAGCGCCCTGGGAAAGCTCNNKGATGTAGTCAACCAGAA
Cassette9_4	AGCACAGGCACTG
Cassette9_5	AGCACAGCAAGCGCCCTGGGAAAGCTCCAGGACNNKGTAAACCAGAA TGCCCAGGCACTG
Cassette9_6	AGCACAGCAAGCGCCCTGGGAAAGCTGCAAGATGTGNNKAACCAGAA TGCCCAGGCACTG
Cassette9_7	AGCACAGCAAGCGCCCTGGGAAAACTCCAGGACGTAGTCNNKCAGAA TGCCCAGGCACTG
Cassette9_8	AGCACAGCAAGCGCCCTGGGAAAGCTGCAAGACGTAGTAAACNNKAA TGCCCAGGCACTG
Cassette10_1	CTGCAGGACGTGGTCAACCAGNNKGCACAAGCACTGAACACCCTGGT CAAGCAGCTGTCC
Cassette10_2	CTGCAGGACGTGGTCAACCAGAACNNKCAGGCCCTGAACACCCTGGT CAAGCAGCTGTCC
Cassette10_3	CTGCAGGACGTGGTCAACCAGAACGCCNNKGCACTCAACACCCTGGT CAAGCAGCTGTCC
Cassette10_4	CTGCAGGACGTGGTCAACCAGAATGCACAGNNKCTCAACACCCTGGT CAAGCAGCTGTCC
Cassette10_5	CTGCAGGACGTGGTCAACCAGAATGCCCAAGCCNNKAACACCCTGGT CAAGCAGCTGTCC
Cassette10_6	CTGCAGGACGTGGTCAACCAGAACGCACAAGCCCTCNNKACCCTGGT CAAGCAGCTGTCC
Cassette10_7	CTGCAGGACGTGGTCAACCAGAACGCACAGGCACTCAATNNKCTGGT CAAGCAGCTGTCC
Cassette10_8	CTGCAGGACGTGGTCAACCAGAACGCCCAAGCACTGAATACCNNKGT CAAGCAGCTGTCC
Cassette11_1	GCCCAGGCACTGAACACCCTGNNKAAACAACTGTCCTCCAACTTCGG
Cassette11_2	GCCCAGGCACTGAACACCCTGGTANNKCAGCTCTCCTCCAACTTCGG CGCCATCAGCTCT
Cassette11_3	GCCCAGGCACTGAACACCCTGGTAAAGNNKCTGTCTTCCAACTTCGG CGCCATCAGCTCT
Cassette11_4	GCCCAGGCACTGAACACCCTGGTCAAACAGNNKTCTTCCAACTTCGG
Cassette11_5	GCCCAGGCACTGAACACCCTGGTCAAGCAACTCNNKTCCAACTTCGG
Cassette11_6	GCCCAGGCACTGAACACCCTGGTAAAACAACTCTCTNNKAACTTCGG
Cassette11_7	GCCCAGGCACTGAACACCCTGGTAAAGCAACTCTCCTCTNNKTTCGG CGCCATCAGCTCT

GCCCAGGCACTGAACACCCTGGTAAAGCAGCTCTCTTCTAACNNKGG CGCCATCAGCTCT
AAGCAGCTGTCCTCCAACTTCNNKGCAATAAGCTCTGTGCTGAACGAT
AAGCAGCTGTCCTCCAACTTCGGTNNKATCAGTTCTGTGCTGAACGAT
AAGCAGCTGTCCTCCAACTTCGGTGCCNNKAGCTCGGTGCTGAACGA
AAGCAGCTGTCCTCCAACTTCGGCGCAATCNNKTCGGTGCTGAACGA TATCCTGAGCAGA
AAGCAGCTGTCCTCCAACTTCGGCGCCATAAGTNNKGTGCTGAACGA TATCCTGAGCAGA
AAGCAGCTGTCCTCCAACTTCGGTGCAATAAGTTCGNNKCTGAACGAT ATCCTGAGCAGA
AAGCAGCTGTCCTCCAACTTCGGTGCAATCAGCTCTGTANNKAACGAT ATCCTGAGCAGA
AAGCAGCTGTCCTCCAACTTCGGTGCCATCAGTTCGGTACTGNNKGAT ATCCTGAGCAGA
GCCATCAGCTCTGTGCTGAACNNKATACTCAGCAGACTGGACAAGGT GGAAGCCGAGGTG
GCCATCAGCTCTGTGCTGAACGACNNKCTGAGTAGACTGGACAAGGT GGAAGCCGAGGTG
GCCATCAGCTCTGTGCTGAACGATATCNNKAGTAGGCTGGACAAGGT GGAAGCCGAGGTG
GCCATCAGCTCTGTGCTGAACGATATCCTCNNKAGACTCGACAAGGT GGAAGCCGAGGTG
GCCATCAGCTCTGTGCTGAACGATATACTGAGCNNKCTCGACAAGGT GGAAGCCGAGGTG
GCATCAGCTCTGTGCTGAACGACATCCTCAGCAGGNNKGACAAGGT
GCATCAGCTCTGTGCTGAACGACATACTCAGTAGGCTGNNKAAGGT
GCCATCAGCTCTGTGCTGAACGACATACTGAGCAGGCTGGACNNKGT GGAAGCCGAGGTG
ATCCTGAGCAGACTGGACAAGNNKGAGGCAGAGGTGCAGATCGACA GACTGATCACCGGA
ATCCTGAGCAGACTGGACAAGGTANNKGCCGAAGTGCAGATCGACAG
ATCCTGAGCAGACTGGACAAGGTAGAANNKGAGGTACAGATCGACAG
ATCCTGAGCAGACTGGACAAGGTGGAGGCCNNKGTACAGATCGACAG
ATCCTGAGCAGACTGGACAAGGTGGAAGCAGAANNKCAGATCGACAG ACTGATCACCGGA

Cassette14_6	ATCCTGAGCAGACTGGACAAGGTAGAGGCAGAAGTANNKATCGACAG
Cassette14_7	ATCCTGAGCAGACTGGACAAGGTAGAGGCCGAGGTACAANNKGACAG
Cassette14_8	ACTGATCACCGGA ATCCTGAGCAGACTGGACAAGGTAGAAGCAGAGGTGCAAATCNNKAG
Cassette15_1	GAAGCCGAGGTGCAGATCGACNNKCTCATAACCGGAAGGCTGCAGTC
Cassette15_2	GAAGCCGAGGTGCAGATCGACAGGNNKATCACAGGAAGGCTGCAGT
Cassette15_3	GAAGCCGAGGTGCAGATCGACAGGCTGNNKACCGGTAGGCTGCAGT
Cassette15_4	GAAGCCGAGGTGCAGATCGACAGACTCATCNNKGGTAGGCTGCAGTC CCTGCAGACCTAC
Cassette15_5	GAAGCCGAGGTGCAGATCGACAGACTGATAACANNKAGGCTGCAGTC
Cassette15_6	GAAGCCGAGGTGCAGATCGACAGGCTCATAACAGGTNNKCTGCAGTC CCTGCAGACCTAC
Cassette15_7	GAAGCCGAGGTGCAGATCGACAGGCTCATCACCGGTAGANNKCAGTC
Cassette15_8	GAAGCCGAGGTGCAGATCGACAGGCTGATCACCGGAAGACTGNNKTC
Cassette16_1	CTGATCACCGGAAGGCTGCAGNNKCTCCAAACCTACGTTACCCAGCA
Cassette16_2	CTGATCACCGGAAGGCTGCAGTCTNNKCAGACATACGTTACCCAGCA
Cassette16_3	CTGATCACCGGAAGGCTGCAGTCTCTGNNKACCTATGTTACCCAGCA
Cassette16_4	CTGATCACCGGAAGGCTGCAGTCCCTCCAGNNKTATGTTACCCAGCA
Cassette16_5	CTGATCACCGGAAGGCTGCAGTCCCTGCAAACANNKGTTACCCAGCA
Cassette16_6	CTGATCACCGGAAGGCTGCAGTCTCTCCAAACATATNNKACCCAGCA
Cassette16_7	CTGATCACCGGAAGGCTGCAGTCTCTCCAGACCTATGTANNKCAGCA
Cassette16_8	CTGATCACCGGAAGGCTGCAGTCTCTGCAAACCTACGTAACCNNKCA
Cassette17_1	CTGCAGACCTACGTTACCCAGNNKCTCATAAGAGCCGCCGAGATTAG
Cassette17_2	CTGCAGACCTACGTTACCCAGCAANNKATCAGGGCCGCCGAGATTAG
Cassette17_3	CTGCAGACCTACGTTACCCAGCAACTGNNKAGAGCAGCCGAGATTAG AGCCTCTGCCAAT

Cassette17_4	CTGCAGACCTACGTTACCCAGCAGCTCATCNNKGCAGCCGAGATTAG AGCCTCTGCCAAT
Cassette17_5	CTGCAGACCTACGTTACCCAGCAGCTGATAAGGNNKGCCGAGATTAG AGCCTCTGCCAAT
Cassette17_6	CTGCAGACCTACGTTACCCAGCAACTCATAAGGGCANNKGAGATTAG AGCCTCTGCCAAT
Cassette17_7	CTGCAGACCTACGTTACCCAGCAACTCATCAGAGCAGCANNKATTAGA GCCTCTGCCAAT
Cassette17_8	CTGCAGACCTACGTTACCCAGCAACTGATCAGGGCAGCAGAGNNKAG AGCCTCTGCCAAT
Cassette18_1	CTGATCAGAGCCGCCGAGATTNNKGCATCGGCCAATCTGGCCGCCAC CAAGATGTCTGAG
Cassette18_2	CTGATCAGAGCCGCCGAGATTAGGNNKTCTGCAAATCTGGCCGCCAC CAAGATGTCTGAG
Cassette18_3	CTGATCAGAGCCGCCGAGATTAGGGCCNNKGCCAACCTGGCCGCCA CCAAGATGTCTGAG
Cassette18_4	CTGATCAGAGCCGCCGAGATTAGAGCATCTNNKAACCTGGCCGCCAC CAAGATGTCTGAG
Cassette18_5	CTGATCAGAGCCGCCGAGATTAGAGCCTCGGCANNKCTGGCCGCCA CCAAGATGTCTGAG
Cassette18_6	CTGATCAGAGCCGCCGAGATTAGGGCATCGGCAAACNNKGCCGCCA CCAAGATGTCTGAG
Cassette18_7	CTGATCAGAGCCGCCGAGATTAGGGCATCTGCCAACCTCNNKGCCAC CAAGATGTCTGAG
Cassette18_8	CTGATCAGAGCCGCCGAGATTAGGGCCTCTGCAAACCTCGCCNNKAC CAAGATGTCTGAG
Cassette19_1	GCCTCTGCCAATCTGGCCGCCNNKAAAATGTCGGAGTGTGTGCTGGG CCAGAGCAAGAGA
Cassette19_2	GCCTCTGCCAATCTGGCCGCCACANNKATGTCTGAATGTGTGCTGGG CCAGAGCAAGAGA
Cassette19_3	GCCTCTGCCAATCTGGCCGCCACCAAGNNKTCGGAATGTGTGCTGGG CCAGAGCAAGAGA
Cassette19_4	GCCTCTGCCAATCTGGCCGCCACCAAAATGNNKGAATGCGTGCTGGG CCAGAGCAAGAGA
Cassette19_5	GCCTCTGCCAATCTGGCCGCCACAAAGATGTCGNNKTGCGTGCTGGG CCAGAGCAAGAGA
Cassette19_6	GCCTCTGCCAATCTGGCCGCCACCAAGATGTCTGAANNKGTACTGGG CCAGAGCAAGAGA
Cassette19_7	GCCTCTGCCAATCTGGCCGCCACAAAAATGTCTGAGTGCNNKCTGGG CCAGAGCAAGAGA
Cassette19_8	GCCTCTGCCAATCTGGCCGCCACCAAGATGTCGGAGTGTGTANNKGG CCAGAGCAAGAGA

Cassette1_Rpri	GATTGTGCCGGCCAGCAGGGC
Cassette2_Rpri mer	AGCTCCAAATGTCCAGCCGCT
Cassette3_Rpri mer	AAAGGGGATCTGCAGAGCGGC
Cassette4_Rpri mer	GAACCGGTAGGCCATCTGCAT
Cassette5_Rpri mer	ATTCTGGGTCACTCCGATGCC
Cassette6_Rpri mer	CAGCTTCTGGTTCTCGTACAG
Cassette7_Rpri mer	GGCGCTGTTGAACTGGTTGGC
Cassette8_Rpri mer	CAGGCTGTCCTGGATCTTGCC
Cassette9_Rpri mer	TCCCAGGGCGCTTGCTGTGCT
Cassette10_Rp rimer	CTGGTTGACCACGTCCTGCAG
Cassette11_Rp rimer	CAGGGTGTTCAGTGCCTGGGC
Cassette12_Rp rimer	GAAGTTGGAGGACAGCTGCTT
Cassette13_Rp	GTTCAGCACAGAGCTGATGGC
Cassette14_Rp	CTTGTCCAGTCTGCTCAGGAT
Cassette15_Rp	GTCGATCTGCACCTCGGCTTC
Cassette16_Rp	CTGCAGCCTTCCGGTGATCAG
Cassette17_Rp	CTGGGTAACGTAGGTCTGCAG
Cassette18_Rp	AATCTCGGCGGCTCTGATCAG
Cassette19_Rp rimer	GGCGGCCAGATTGGCAGAGGC

Bin	Replicate 1	Replicate 2	Replicate 3
Bin 0	$8.03 imes 10^5$	1.30×10^{6}	$1.70 imes 10^{6}$
Bin 1	7.51×10^{5}	1.30×10^{6}	1.70 × 10 ⁶
Bin 2	$7.70 imes 10^5$	1.30×10^{6}	$1.70 imes 10^{6}$
Bin 3	8.20×10^5	1.30 × 10 ⁶	$1.70 imes 10^{6}$

Table S4. Numbers of cells collected per bin in expression sorting.

Table S5. Numbers of cells collected per bin in fusion sorting.

Bin	Replicate 1	Replicate 2
mNG2⁻	$3.53 imes 10^{6}$	5.51×10^{6}
mNG2⁺	1.84×10^{5}	4.87×10^{5}

Table S6. *p*-values from Student's *t* test of expression and fusion scores between mutation types.

Expression						
	Missense Nonsense		Silent			
Missense	6.46 × 10 ⁻⁶⁰ 2.93 × ⁻		2.93 × 10 ⁻²			
Nonsense	6.46 × 10 ⁻⁶⁰	6.46 × 10 ⁻⁶⁰				
Silent	2.93 × 10 ⁻²	3.80×10^{-44}				
Fusion						
	Missense	Nonsense	Silent			
Missense		3.10 × 10 ⁻³⁴	7.08 × 10 ⁻⁴			
Nonsense	3.10×10^{-34}		1.44 × 10 ⁻³¹			
Silent	$7.08 imes 10^{-4}$	1.44 × 10 ⁻³¹				

Accession ID	Database	Name
gb_MN908947.3_	GenBank	Severe acute respiratory syndrome coronavirus 2 isolate
		Wuhan-Hu-1, complete genome
gb_MN996532.2_	GenBank	Bat coronavirus RaTG13, complete genome
gb_MZ937000.1_	ConBonk	Bat coronavirus isolate BANAL-20-52/Laos/2020,
	GenBank	complete genome
EPI_ISL_410543	GISAID	hCoV-19/pangolin/Guangxi/P3B/2017
EPI_ISL_471465	GISAID	hCoV-19/pangolin/Guangdong/cDNA20-S/2019
gb_MZ937003.1_	GenBank	Bat coronavirus isolate BANAL-20-236/Laos/2020,
		complete genome
gb_MZ937001.1_	GenBank	Bat coronavirus isolate BANAL-20-103/Laos/2020,
		complete genome
ab MC772022.1	GenBank	Bat SARS-like coronavirus isolate bat-SL-CoVZC45,
gb_wG772955.1_		complete genome
ab MC770024.4	ConBonk	Bat SARS-like coronavirus isolate bat-SL-CoVZXC21,
gb_WG772934.1_	Genbank	complete genome
gb_KT444582.1_	GenBank	SARS-like coronavirus WIV16, complete genome
gb_DQ497008.1_	GenBank	SARS coronavirus strain MA-15, complete genome
	GenBank	Bat SARS-like coronavirus WIV1 spike protein (S) gene,
gb_KC001007.1_		complete cds
ab 1/1/171111	GenBank	Bat SARS-like coronavirus isolate Rs4084, complete
gD_K1417144.1_		genome
gb_DQ412042.1_	GenBank	Bat SARS coronavirus Rf1, complete genome
gb_KJ473813.1_	GenBank	BtRf-BetaCoV/SX2013, complete genome
gb_KJ473815.1_	GenBank	BtRs-BetaCoV/GX2013, complete genome
	GenBank	Bat SARS-like coronavirus isolate Longquan-140 orf1ab
ab KE201157 1		polyprotein, spike glycoprotein, envelope protein,
90_NF294457.1_		membrane protein, and nucleocapsid protein genes,
		complete cds
gb_DQ022305.2_	GenBank	Bat SARS coronavirus HKU3-1, complete genome
gb_DQ071615.1_	GenBank	Bat SARS coronavirus Rp3, complete genome
gb_FJ588686.1_	GenBank	Bat SARS CoV Rs672/2006, complete genome
gb_KJ473814.1_	GenBank	BtRs-BetaCoV/HuB2013, complete genome
	GenBank	Rhinolophus affinis coronavirus isolate LYRa11, complete
gb_KF509990.1_		genome
gb_KY352407.1_	GenBank	Severe acute respiratory syndrome-related coronavirus
		strain BtKY72, complete genome
ref_NC_014470.1_	GenBank	Bat coronavirus BM48-31/BGR/2008, complete genome
gb_MZ937004.1_	GenBank	Bat coronavirus isolate BANAL-20-247/Laos/2020,
		complete genome
gb_MZ937002.1_	GenBank	Bat coronavirus isolate BANAL-20-116/Laos/2020,
		complete genome

 Table S7. Betacoronaviruses used for sequence conservation analysis.

EPI ISL 412977	GISAID	hCoV-19/bat/Yunnan/RmYN02/2019

 Table S8. Cryo-EM data collection statistics.

	2PQ spike
	(EMDB-29374)
Data collection and	
processing	
Magnification	130,000
Voltage (kV)	300
Electron exposure (e ⁻ /Å ²)	50
Defocus range (µm)	-0.8 to -1.5
Pixel size (Å)	0.66
Symmetry imposed	C1
Initial particle images (no.)	238,524
Final particle images (no.)	140,183
Map resolution (Å)	3.66
FSC threshold	0.143
Map resolution range (Å)	N/A

SUPPLEMENTARY REFERENCES

- 1. Zhou, P. *et al.* A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. *Sci. Transl. Med.* **14**, eabi9215 (2022).
- 2. Walls, A. C. *et al.* Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. *Cell* **181**, 281-292. e6 (2020).
- 3. McCallum, M. *et al.* N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. *Cell* **184**, 2332-2347.e16 (2021).
- 4. Yuan, M. *et al.* Structural basis of a shared antibody response to SARS-CoV-2. *Science* **369**, 1119-1123 (2020).
- 5. Claireaux, M. *et al.* A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. *Nat. Commun.* **13**, 4539 (2022).