Supporting Information

Synthesis of Methoxy-, Methylenedioxy-, Hydroxy-, and Halo-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors and Their Biological Activity for Drug-

Resistant Cancer

De-Xuan Hu[†], *Wen-Lin Tang*[†], *Yu Zhang*[†], *Hao Yang*[†], *Wenjie Wang*[‡], *Keli Agama*[‡], *Yves Pommier*^{$\sharp,*$} and Lin-Kun An^{$\dagger,$ ¶*}

[†]School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
[‡]Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States

[®]Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China

To whom correspondence should be addressed: pommier@nih.gov; lssalk@mail.sysu.edu.cn

Content

Figure S1. The structures of natural benzo[c]phenanthridine alkaloids.	S3
Figure S2. The structure of LMP744.	S4
Figure S3. The TOP2 relaxing assay gel of C12.	S5
Figure S4. Hypothetical binding mode of C26 with TOP1cc.	S6
Figure S5. The HPLC profile of compound C12.	S7
Characterization Data of the Intermediates.	S8
Characterization Data of the Target Products.	S23
¹ H NMR and ¹³ C NMR spectra of the Target Products	S47
References	S98

Figure S1. The structures of natural benzo[c]phenanthridine alkaloids.

Figure S2. The structure of LMP744.

Figure S3. The TOP2 relaxing assay gel of **C12**. Lane 1, supercoiled pBR322 DNA alone; lane 2, DNA and TOP2; lane 2, DNA, TOP2 and DMSO; lanes 4, DNA, TOP2 and the positive control etoposide (ETP) at 25 μ M concentration; lanes 5-6, DNA, TOP2 and **C12** at 5 and 25 μ M concentration, respectively. R, relaxed DNA; Sc, supercoiled DNA.

Figure S4. Hypothetical binding mode of C26 with TOP1cc (PDB: 1K4T).

<Chromatogram>

	PeakTable								
PDA Ch2 220nm 4nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %			
	1	5.821	43635	3784	0.495	1.212			
	2	7.388	67339	1825	0.764	0.585			
	3	9.866	86747	3305	0.984	1.059			
	4	13.888	8579055	301854	97.358	96.701			
	5	24.440	35094	1382	0.398	0.443			
	Total		8811871	312151	100.000	100.000			

Figure S5. The HPLC profile of compound C12.

Characterization Data of the Intermediates.

N-(2-N,N-Dimethylethyl)-2-bromobenzaldimine (**2a**). Light yellow liquid, yield 100%. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 7.93 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.47 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.25–7.20 (m, 1H), 7.19–7.13 (m, 1H), 3.71 (t, *J* = 6.8 Hz, 2H), 2.58 (t, *J* = 6.8 Hz, 2H), 2.24 (s, 6H).

N-(2-N,N-Dimethylethyl)-2-bromo-4-methoxylbenzaldimine (2b). Yellow liquid, yield 100%. ¹H NMR (400 MHz, CDCl₃) δ 7.58(s, 1H), δ 7.96 (d, *J* = 8.8 Hz, 1H), 7.08 (d, *J* = 2.8 Hz, 1H), 6.86 (dd, *J* = 8.8, 2.8 Hz, 1H), 3.82 (s, 3H), 3.75 (t, *J* = 6.8 Hz, 2H), 2.64 (t, *J* = 6.8 Hz, 2H), 2.32 (s, 6H).

N-(2-N,N-Dimethylethyl)-2-bromo-5-methoxylbenzaldimine (2c). Light yellow liquid, yield 100%. ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 7.54 (d, *J* = 3.2 Hz, 1H), 7.42 (d, *J* = 8.8 Hz, 1H), 6.84 (dd, *J* = 8.8, 3.2 Hz, 1H), 3.83 (s, 3H), 3.80 (t, *J* = 6.8 Hz, 2H), 2.65 (t, *J* = 6.8 Hz, 2H), 2.32 (s, 6H).

(E)-2-(((6-Bromobenzo[d][1,3]dioxol-5-yl)methylene)amino)-N,N-dimethylethan-1-amine
(2d). Yellow liquid, yield 100%. The ¹H NMR spectrum is similar to that reported.¹

N-(2-N,N-Dimethylethyl)-2-bromo-4,5-dimethoxylbenzaldimine (2e). White solid, yield 100%. The ¹H NMR spectrum is similar to that reported.²

N-(2-N,N-Dimethylethyl)-2-bromo-4-benzyloxy-5-methoxylbenzaldimine (2f). White solid, yield 100%. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.59 (s, 1H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.40 (dd, *J* = 7.6, 7.2 Hz, 2H), 7.35 (d, *J* = 7.2 Hz, 1H), 7.06 (s, 1H), 5.16 (s, 2H), 3.94 (s, 3H), 3.78 (t, *J* = 6.8 Hz, 2H), 2.67 (t, *J* = 6.8 Hz, 2H), 2.34 (s, 6H).

N-(2-N,N-Dimethylethyl)-2-bromo-4-methoxy-5-benzyloxyllbenzaldimine (2g). White solid, yield 100%. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.66 (s, 1H), 7.47 (d, *J* = 7.4 Hz, 2H), 7.38 (dd, *J* = 7.4, 6.8 Hz, 2H), 7.32 (d, *J* = 6.8 Hz, 1H), 7.03 (s, 1H), 5.16 (s, 2H), 3.90 (s, 3H), 3.77 (t, *J* = 6.8 Hz, 2H), 2.66 (t, *J* = 6.8 Hz, 2H), 2.33 (s, 6H).

N-(2-N,N-Dimethylethyl)-2-bromo-4,5-dibenzyloxylbenzaldimine (**2h**). White solid, yield 100%. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.67 (s, 1H), 7.46–7.41 (m, 4H), 7.39–7.34 (m, 4H), 7.34–7.29 (m, 2H), 7.08 (s, 1H), 5.16 (s, 2H), 5.14 (s, 2H), 3.69 (t, *J* = 6.8 Hz, 2H), 2.61 (t, *J* = 6.8 Hz, 2H), 2.30 (s, 6H).

2-(2-(Dimethylamino)ethyl)-4-(2-hydroxyethyl)-3-phenylisoquinolin-1(2H)-one (4aa'). Yellow solid, yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, J = 8.0, 0.8 Hz, 1H), 7.79–7.74

(m, 1H), 7.72–7.66 (m, 1H), 7.53–7.43 (m, 4H), 7.33–7.31 (m, 2H), 4.80 (s, 1H), 3.92–3.79 (m, 2H), 3.64 (t, *J* = 7.2 Hz, 2H), 2.67 (t, *J* = 7.2 Hz, 2H), 2.46–2.44 (m, 2H), 2.00 (s, 6H).

2-(2-(Dimethylamino)ethyl)-4-(2-hydroxyethyl)-3-(3-methoxyphenyl)isoquinolin-1(2H)-one (**4ab'**). Yellow solid, yield 61%. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.68–7.62 (m, 1H), 7.49–7.44 (m, 1H), 7.39–7.34 (m, 1H), 6.98–6.94 (m, 1H), 6.89–6.83 (m, 2H), 3.87–3.82 (m, 2H), 3.79 (s, 3H), 3.63 (t, *J* = 7.2 Hz, 2H), 2.68 (t, *J* = 7.2 Hz, 2H), 2.48–2.41 (m, 2H), 2.02 (s, 6H).

3-(4-Bromophenyl)-2-(2-(dimethylamino)ethyl)-4-(2-hydroxyethyl)isoquinolin-1(2H)-one (**4ac').** White solid, yield 64%. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.71 (dd, *J* = 8.0, 7.6 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.53 (dd, *J* = 8.0, 7.6 Hz, 1H), 7.29–7.22 (m, 3H), 3.89–3.79 (m, 2H), 3.67 (t, *J* = 7.2 Hz, 2H), 2.68 (t, *J* = 7.2 Hz, 2H), 2.57–2.54 (m, 2H), 2.07 (s, 6H).

3-(Benzo[d][1,3]dioxol-5-yl)-2-(2-(dimethylamino)ethyl)-4-(2-hydroxyethyl)isoquinolin-1(2H)-one (4ad'). Yellow solid, yield 90%. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, J = 8.0, 1.2 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.73–7.67 (m, 1H), 7.54–7.48 (m, 1H), 6.96–6.89 (m, 1H), 6.80–6.76 (m, 2H), 6.06 (s, 2H), 4.06–3.88 (m, 2H), 3.69 (t, *J* = 7.2 Hz, 2H), 2.78 (t, *J* = 7.2 Hz, 2H), 2.64–2.49 (m, 2H), 2.21 (s, 6H).

3-(3,4-Dimethoxyphenyl)-2-(2-(dimethylamino)ethyl)-4-(2-hydroxyethyl)isoquinolin-1(2H)one (4ae'). White solid, yield 24%. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.63 (dd, *J* = 8.0, 7.6 Hz, 1H), 7.44 (dd, *J* = 8.0, 7.6 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.82 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.76 (d, *J* = 1.6 Hz, 1H), 3.98–3.84 (m, 2H), 3.82 (s, 3H), 3.75 (s, 3H), 3.64 (t, *J* = 7.2 Hz, 2H), 2.67 (t, *J* = 7.2 Hz, 2H), 2.48–2.45 (m, 2H), 2.02 (s, 6H).

4ba'

2-(2-(Dimethylamino)ethyl)-4-(2-hydroxyethyl)-6-methoxy-3-phenylisoquinolin-1(2H)-one (**4ba').** Yellow solid, yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.8 Hz, 1H), 7.56– 7.45 (m, 3H), 7.34–7.31 (m, 2H), 7.12 (d, *J* = 2.4 Hz, 1H), 7.11 (dd, *J* = 8.8, 2.4 Hz, 1H), 3.93 (s, 3H), 3.88–3.81 (m, 2H), 3.67 (t, *J* = 7.2 Hz, 2H), 2.65 (t, *J* = 7.2 Hz, 2H), 2.46–2.41 (m, 2H), 2.03 (s, 6H).

2-(2-(Dimethylamino)ethyl)-4-(2-hydroxyethyl)-7-methoxy-3-phenylisoquinolin-1(2H)-one (**4ca').** White solid, yield 78%. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 2.8 Hz, 1H), 7.63 (d, *J* = 8.8 Hz, 1H), 7.43–7.40 (m, 3H), 7.27–7.22 (m, 3H), 3.87 (s, 3H), 3.84–3.80 (m, 2H), 3.58 (t, *J* = 7.2 Hz, 2H), 2.61 (t, *J* = 7.2 Hz, 2H), 2.41–2.37 (m, 2H), 1.98 (s, 6H).

6-(2-(Dimethylamino)ethyl)-8-(2-hydroxyethyl)-7-phenyl-[1,3]dioxolo[4,5-g]isoquinolin-5(6H)-one (4da'). White solid, yield 57%. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.52–7.47 (m, 3H), 7.39–7.31 (m, 2H), 7.15 (s, 1H), 6.10 (s, 2H), 3.87–3.82 (m, 2H), 3.65 (t, *J* = 7.6 Hz, 2H), 2.62 (t, *J* = 7.6 Hz, 2H), 2.47–2.43 (m, 2H), 2.04 (s, 6H).

7-(Benzo[d][1,3]dioxol-5-yl)-6-(2-(dimethylamino)ethyl)-8-(2-hydroxyethyl)-[1,3]dioxolo [**4,5-g]isoquinolin-5(6H)-one (4dd').** Yellow solid, yield 57%. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.07 (s, 1H), 6.84 (d, *J* = 8.4 Hz, 1H), 6.73–6.65 (m, 2H), 6.01 (s, 2H), 5.98 (s, 2H), 3.96–3.73 (m, 2H), 3.57 (t, *J* = 7.6 Hz, 2H), 2.56 (t, *J* =7.6 Hz, 2H), 2.42–2.38 (m, 2H), 2.03 (s, 6H).

7-(3,4-Dimethoxyphenyl)-6-(2-(dimethylamino)ethyl)-8-(2-hydroxyethyl)-[1,3]dioxolo[4,5-g]isoquinolin-5(6H)-one (4de'). Yellow solid, yield 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s,

1H), 7.05 (s, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.75 (s, 1H), 6.02 (s, 2H), 3.87 (s, 3H), 3.82 (s, 3H), 3.79–3.70 (m, 2H), 3.60 (t, *J* = 7.2 Hz, 2H), 2.59 (t, *J* = 7.2 Hz, 2H), 2.44–2.40 (m, 2H), 2.03 (s, 6H).

2-(2-(Dimethylamino)ethyl)-4-(2-hydroxyethyl)-6,7-dimethoxy-3-phenylisoquinolin-1(2H)one (4ea'). White solid, yield 23%. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.48–7.42 (m, 3H), 7.32–7.26 (m, 2H), 7.05 (s, 1H), 3.99 (s, 3H), 3.96 (s, 3H), 3.85–3.79 (m, 2H), 3.61 (t, *J* = 7.2 Hz, 2H), 2.60 (t, *J* = 7.2 Hz, 2H), 2.47–2.43 (m, 2H), 1.99 (s, 6H).

3-(3,4-Dimethoxyphenyl)-2-(2-(dimethylamino)ethyl)-4-(2-hydroxyethyl)-6,7-dimethoxy isoquinolin-1(2H)-one (4ee'). Yellow solid, yield 84%. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.04 (s, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.81 (d, *J* = 8.0, 2.0 Hz, 1H), 6.76 (d, *J* = 2.0 Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 3.92–3.85 (m, 5H), 3.82 (s, 3H), 3.64 (t, *J* = 7.2 Hz, 2H), 2.63 (t, *J* = 7.2 Hz, 2H), 2.50–2.46 (m, 2H), 2.03 (s, 6H).

3-(3-(Benzyloxy)-4-methoxyphenyl)-2-(2-(dimethylamino)ethyl)-4-(2-hydroxyethyl)-6,7dimethoxyisoquinolin-1(2H)-one (4ef'). Yellow solid, yield 65%. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.35 (d, *J* = 7.2 Hz, 2H), 7.31–7.28 (m, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.00 (s, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.79 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.72 (d, *J* = 1.2 Hz, 1H), 5.14 (s, 2H), 3.93 (s, 3H), 3.92 (s, 3H), 3.89 (s, 3H), 3.86–3.80 (m, 2H), 3.68 (t, *J* = 7.2 Hz, 2H), 2.55 (t, *J* = 7.2 Hz, 2H), 2.42–2.38 (m, 2H), 2.00 (s, 6H).

3-(4-(Benzyloxy)-3-methoxyphenyl)-2-(2-(dimethylamino)ethyl)-4-(2-hydroxyethyl)-6,7dimethoxyisoquinolin-1(2H)-one (4eg'). White solid, yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.38–7.34 (m, 2H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.10 (s, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.83–6.70 (m, 2H), 5.17 (s, 2H), 4.02 (s, 3H), 3.94 (s, 3H), 3.91–3.86 (m, 5H), 3.65 (t, *J* = 7.2 Hz, 2H), 2.66 (t, *J* = 7.2 Hz, 2H), 2.51–2.37 (m, 2H), 2.01 (s, 6H).

3-(3,4-Bis(benzyloxy)phenyl)-2-(2-(dimethylamino)ethyl)-4-(2-hydroxyethyl)-6,7-dimethoxy isoquinolin-1(2H)-one (4eh'). Yellow liquid, yield 65%. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.45–7.39 (m, 2H), 7.38–7.32 (m, 4H), 7.31–7.22 (m, 4H), 7.00 (s, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.79–6.69 (m, 2H), 5.17 (s, 2H), 5.14 (s, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 3.88–3.79 (m, 2H), 3.65 (t, *J* = 7.2 Hz, 2H), 2.53 (t, *J* = 7.2 Hz, 2H), 2.40–2.36 (m, 2H), 1.95 (s, 6H).

3-(Benzo[d][1,3]dioxol-5-yl)-6-(benzyloxy)-2-(2-(dimethylamino)ethyl)-4-(2-hydroxyethyl)-7-methoxyisoquinolin-1(2H)-one (4fd'). Yellow solid, yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.40–7.36 (m, 2H), 7.25 (d, *J* = 7.2 Hz, 1H), 7.05 (s, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.72–6.70 (m, 2H), 5.99 (s, 2H), 5.21 (s, 2H), 3.92 (s, 3H), 3.85–3.73 (m, 2H), 3.63 (t, *J* = 7.2 Hz, 2H), 2.65 (t, *J* = 7.2 Hz, 2H), 2.49–2.35 (m, 2H), 2.07 (s, 6H).

3-(Benzo[d][1,3]dioxol-5-yl)-7-(benzyloxy)-2-(2-(dimethylamino)ethyl)-4-(2-hydroxyethyl)-6-methoxyisoquinolin-1(2H)-one (4gd'). Yellow solid, yield 65%. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.39 (d, *J* = 7.2 Hz, 2H), 7.32–7.28 (m, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.00 (s, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.67–6.65 (m, 2H), 5.97 (s, 2H), 5.24 (s, 2H), 3.95 (s, 3H), 3.93–3.84 (m, 2H), 3.68 (t, *J* = 7.2 Hz, 2H), 2.53 (t, *J* = 7.2 Hz, 2H), 2.44–2.36 (m, 2H), 2.05 (s, 6H).

3-(Benzo[d][1,3]dioxol-5-yl)-6,7-bis(benzyloxy)-2-(2-(dimethylamino)ethyl)-4-(2-hydroxy ethyl)isoquinolin-1(2H)-one (4hd'). Yellow gel, yield 65%. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.52 (d, *J* = 7.2 Hz, 2H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.42–7.36 (m, 4H), 7.34–7.30 (m, 2H), 7.10 (s, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.74–6.68 (m, 2H), 6.08 (s, 2H), 5.31 (s, 2H), 5.30 (s, 2H), 4.06–3.87 (m, 2H), 3.79 (t, *J* = 7.2 Hz, 2H), 2.61 (t, *J* = 7.2 Hz, 2H), 2.53–2.38 (m, 2H), 2.11 (s, 6H).

2-Bromo-N-(3-methoxynaphthalen-1-yl)benzamide (7ab'). White solid, yield 85%. ¹H NMR (400 MHz, CDCl₃) δ 8.00–7.94 (m, 2H), 7.89–7.82 (m, 2H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.66–7.61 (m, 1H), 7.50–7.44 (m, 2H), 7.41–7.37 (m, 1H), 7.21–7.17 (m, 1H), 7.07 (s, 1H), 3.95 (s, 3H).

2-Bromo-N-(4-methoxynaphthalen-1-yl)benzamide (7ac'). White solid, yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 9.2 Hz, 1H), 7.58–7.46 (m, 4H), 7.23–7.17 (m, 2H), 6.88 (d, *J* = 8.4 Hz, 1H), 4.04 (s, 3H).

2-Bromo-N-(8-methoxynaphthalen-1-yl)benzamide (7ad'). White solid, yield 85%. ¹H NMR (400 MHz, CDCl₃) δ 11.11 (s, 1H), 8.89 (d, *J* = 7.6 Hz, 1H), 7.70–7.66 (m, 2H), 7.58 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.49–7.41 (m, 2H), 7.38–7.31 (m, 2H), 6.86 (d, *J* = 7.6 Hz, 1H), 3.92 (s, 3H).

2-Bromo-3-methoxy-N-(naphthalen-1-yl)benzamide (7ba'). Pale yellow solid, yield 81%. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.6 Hz, 1H), 7.93 (dd, *J* = 6.8, 2.0 Hz, 1H), 7.83 (dd, *J* = 6.8, 2.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.51–7.43 (m, 3H), 7.36 (dd, *J* = 8.0, 7.6 Hz, 1H), 7.24 (d, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 3.90 (s, 3H).

2-Bromo-6-methoxy-N-(naphthalen-1-yl)benzamide (7ca'). White solid, yield 85%. The ¹H NMR spectrum is similar to that reported.³

5-Bromo-N-(naphthalen-1-yl)benzo[d][1,3]dioxole-4-carboxamide (7da'). White solid, yield 84%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.2 Hz, 1H), 8.07 (s, 1H), 8.01 (d, *J* = 7.2 Hz, 1H), 7.89 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.58–7.48 (m, 3H), 7.17 (d, *J* = 8.4 Hz, 1H), 6.80 (d, *J* = 8.4 Hz, 1H), 6.14 (s, 2H).

5-Bromo-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzo[d][1,3]dioxole-4-carboxamide (7de'). White solid, yield 90%. The ¹H NMR spectrum is similar to that reported.⁴

5-Bromo-N-(6,7-dimethoxynaphthalen-1-yl)benzo[d][1,3]dioxole-4-carboxamide (7df'). White solid, yield 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.69 (d, J = 7.2 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.37 (dd, J = 8.4, 8.0 Hz, 1H), 7.34 (s, 1H), 7.17–7.12 (m, 2H), 6.78 (d, J = 8.4 Hz, 1H), 6.11 (s, 2H), 4.01 (s, 3H), 3.98 (s, 3H).

6-Bromo-2,3-dimethoxy-N-(naphthalen-1-yl)benzamide (7ea'). White solid, yield 80%. ¹H NMR (400 MHz, CDCl₃) δ 8.04–8.00 (m, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.85–7.79 (m, 1H), 7.74– 7.68 (m, 2H), 7.52–7.40 (m, 3H), 7.28 (d, *J* = 8.8 Hz, 1H), 6.82 (d, *J* = 8.8 Hz, 1H), 3.88 (s, 3H), 3.85 (s, 3H).

6-Bromo-2,3-dimethoxy-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7ee'). White solid, yield 90%. The ¹H NMR spectrum is similar to that reported.⁴

6-Bromo-N-(6,7-dimethoxynaphthalen-1-yl)-2,3-dimethoxybenzamide (7ef'). White solid, yield 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.59 (m, 2H), 7.54 (s, 1H), 7.48 (s, 1H), 7.42–7.38 (m, 1H), 7.40–7.35 (d, J = 8.8 Hz, 1H), 7.19 (s, 1H), 6.92 (d, J = 8.8 Hz, 1H), 4.05 (s, 3H), 4.03 (s, 3H), 3.99 (s, 3H), 3.94 (s, 3H).

2-Bromo-4,5-difluoro-N-(naphthalen-1-yl)benzamide (7fa'). White solid, yield 65%. The ¹H NMR spectrum is similar to that reported.³

2-Bromo-4,5-difluoro-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7fe'). White solid, yield 77%. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.75–7.66 (m, 2H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.56–7.51 (m, 1H), 7.40–7.35 (m, 2H), 7.17 (s, 1H), 6.06 (s, 2H).

2-Bromo-3,4-dimethoxy-N-(naphthalen-1-yl)benzamide (7ga'). White solid, yield 85%. ¹H NMR (400 MHz, CDCl₃) δ 8.24–8.10 (m, 2H), 8.01 (d, *J* = 7.2 Hz, 1H), 7.90 (dd, *J* = 7.2, 2.4 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.58–7.50 (m, 3H), 7.00 (d, *J* = 8.4 Hz, 1H), 3.95 (s, 3H), 3.92 (s, 3H).

2-Bromo-3,4-dimethoxy-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7ge'). White solid, yield 85%. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.65–7.56 (m, 2H), 7.39–7.35 (m, 1H), 7.32 (s, 1H), 7.16 (s, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.06 (s, 2H), 3.95 (s, 3H), 3.91 (s, 3H).

2-Bromo-N-(6,7-dimethoxynaphthalen-1-yl)-3,4-dimethoxybenzamide (7gf'). White solid, yield 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.59 (m, 2H), 7.54 (s, 1H), 7.48 (s, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.40–7.35 (m, 1H), 7.19 (s, 1H), 6.92 (d, *J* = 8.4 Hz, 1H), 4.05 (s, 3H), 4.03 (s, 3H), 3.99 (s, 3H), 3.94 (s, 3H).

2-Bromo-6-methoxy-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7he'). White solid, yield 93%. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.47 (s, 1H), 7.44 (s, 1H), 7.40–7.36 (m, 1H), 7.29–7.27 (m, 1H), 7.27–7.26 (m, 1H), 7.16 (s, 1H), 6.99–6.95 (m, 1H), 6.06 (s, 2H), 3.96 (s, 3H).

2-Bromo-5-fluoro-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7ie'). White solid, yield 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.76 (d, *J* = 7.2 Hz, 1H), 7.65–7.59 (m, 2H), 7.55–7.48 (m, 2H), 7.41–7.35 (m, 1H), 7.30 (s, 1H), 7.17 (s, 1H), 6.06 (s, 2H).

2,5-Dibromo-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7je'). White solid, yield 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 2.4 Hz, 1H), 7.78–7.72 (m, 2H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.57–7.54 (m, 1H), 7.49 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.41–7.36 (m, 1H), 7.30 (s, 1H), 7.17 (s, 1H), 6.07 (s, 2H).

2-Bromo-N-(naphtho[2,3-d][1,3]dioxol-5-yl)-5-nitrobenzamide (7ke'). White solid, yield 32%. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 2.4 Hz, 1H), 8.21 (dd, J = 8.8, 2.4 Hz, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.81 (s, 1H), 7.75 (d, J = 7.2 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.42–7.37 (m, 1H), 7.28 (s, 1H), 7.18 (s, 1H), 6.07 (s, 2H).

2-Bromo-5-methoxy-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7le'). White solid, yield 67%. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (s, 1H), 7.79 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 7.5 Hz, 1H), 7.56 (d, J = 8.5 Hz, 1H), 7.40–7.36 (m, 1H), 7.34 (s, 2H), 7.17 (s, 1H), 6.93 (d, J = 8.5 Hz, 1H), 6.06 (s, 2H), 3.87 (s, 3H).

2-Bromo-4-fluoro-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7me'). White solid, yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.68–7.60 (m, 2H), 7.53 (dd, *J* = 8.4, 3.2 Hz, 1H), 7.41–7.36 (m, 2H), 7.30 (s, 1H), 7.17 (s, 1H), 6.06 (s, 2H).

2-Bromo-4-chloro-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7ne'). Pale red solid, yield 89%. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.77–7.71 (m, 2H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.40–7.35 (m, 2H), 7.29 (s, 1H), 7.17 (s, 1H), 6.06 (s, 2H).

2-Bromo-4-methoxy-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (70e'). White solid, yield 84%. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.86–7.75 (m, 2H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.40–7.35 (m, 1H), 7.33 (s, 1H), 7.23–7.19 (m, 1H), 7.16 (s, 1H), 7.02–6.95 (m, 1H), 6.06 (s, 2H), 3.86 (s, 3H).

2-Bromo-N-(naphtho[2,3-d][1,3]dioxol-5-yl)-4-(trifluoromethyl)benzamide (**7pe'**). White solid, yield 48%. ¹H NMR (400 MHz, DMSO) δ 10.48 (s, 1H), 8.14 (d, *J* = 1.8 Hz, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.81 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.52 (s, 1H), 7.40–7.35 (m, 2H), 6.15 (s, 2H).

3-(Benzyloxy)-6-bromo-2-methoxy-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7qe'). White solid, yield 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.2 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.56–7.38 (m, 8H), 7.32 (d, J = 8.8 Hz, 1H), 7.18 (s, 1H), 6.95 (d, J = 8.8 Hz, 1H), 6.07 (s, 2H), 5.19 (s, 2H), 4.05 (s, 3H).

2-(Benzyloxy)-6-bromo-3-methoxy-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7re'). White solid, yield 85%. ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.56 (m, 2H), 7.46–7.43 (m, 2H), 7.39–7.30 (m, 5H), 7.26–7.24 (m, 2H), 7.13 (s, 1H), 6.91 (d, *J* = 8.8 Hz, 1H), 6.01 (s, 2H), 5.13 (s, 2H), 3.93 (s, 3H).

2-Bromo-4-isopropoxy-5-methoxy-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7se'). White solid, yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.79 (d, *J* = 7.2 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.44 (s, 1H), 7.39–7.33 (m, 2H), 7.16 (s, 1H), 7.12 (s, 1H), 6.04 (s, 2H), 4.65–4.59 (m, 1H), 3.92 (s, 3H), 1.42 (d, *J* = 6.0 Hz, 6H).

2-Bromo-5-isopropoxy-4-methoxy-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7te'). White solid, yield 30%. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.79 (d, *J* = 7.2 Hz, 1H), 7.62–7.58 (m, 1H), 7.46 (s, 1H), 7.39–7.35 (m, 2H), 7.16 (s, 1H), 7.10 (s, 1H), 6.05 (s, 2H), 4.66–4.60 (m, 1H), 3.91 (s, 3H), 1.40 (d, *J* = 6.0 Hz, 6H).

3-(Benzyloxy)-2-bromo-4-methoxy-N-(naphtho[2,3-d][1,3]dioxol-5-yl)benzamide (7ue'). White solid, yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.82 (d, *J* = 7.2 Hz, 1H), 7.63– 7.58 (m, 4H), 7.50–7.34 (m, 5H), 7.18 (s, 1H), 7.03 (d, *J* = 8.8 Hz, 1H), 6.08 (s, 2H), 5.11 (s, 2H), 3.97 (s, 3H). Characterization Data of the Target Products.

5-(2-(Dimethylamino)ethyl)benzo[c]phenanthridin-6(5H)-one (A1).⁵ The compound A1 was prepared from 4aa'. White solid, yield 48%, mp = 79.5–80.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.56–8.51 (m, 1H), 8.34–8.30 (m, 1H), 8.26 (d, *J* = 8.0 Hz, 1H), 8.21 (d, *J* = 8.8 Hz, 1H), 7.91–7.86 (m, 1H), 7.81–7.75 (m, 1H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.62–7.56 (m, 1H), 7.55–7.50 (m, 2H), 4.74 (t, *J* = 6.8 Hz, 2H), 2.78 (t, *J* = 6.8 Hz, 2H), 2.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 136.2, 134.9, 134.1, 132.9, 128.8, 128.7, 128.1, 126.6, 126.0, 125.5, 125.4, 124.8, 124.3, 122.2, 120.1, 118.1, 57.7, 50.4, 45.7. HRMS (ESI) *m/z*: 317.1643 [M + H]⁺, calcd for C₂₁H₂₁N₂O 317.1648.

Using intermediate **4ab'** as material, the reaction gave two target products A2 (48%) and A5 (10%) at the same time.

5-(2-(Dimethylamino)ethyl)-1-methoxybenzo[c]phenanthridin-6(5H)-one (A2).⁵ White solid, mp = 139.4–140.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 8.0 Hz, 1H), 8.27 (d, *J* = 8.0 Hz, 1H), 8.09 (d, *J* = 8.8 Hz, 1H), 7.83–7.75 (m, 2H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.62–7.56 (m, 2H), 7.21 (d, *J* = 8.8 Hz, 1H), 4.74 (t, *J* = 6.8 Hz, 2H), 4.00 (s, 3H), 2.75 (t, *J* = 6.8 Hz, 2H), 2.13 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 157.4, 135.2, 134.2, 132.9, 130.3, 130.2, 128.8, 128.1, 126.0, 125.9, 124.2, 122.3, 119.0, 118.7, 117.8, 105.2, 57.8, 55.7, 50.1, 45.7. HRMS (ESI) *m/z*: 347.1745 [M + H]⁺, calcd for C₂₂H₂₃N₂O₂ 347.1754.

5-(2-(Dimethylamino)ethyl)-2-bromobenzo[c]phenanthridin-6(5H)-one (A3).⁵ The compound **A3** was prepared from **4ac'**. White solid, yield 10%, mp = 115.4–119.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 7.6 Hz, 1H), 8.27–8.21 (m, 3H), 8.04 (d, *J* = 1.6 Hz, 1H), 7.83–7.76 (m, 1H), 7.64–7.58 (m, 3H), 4.66 (t, *J* = 6.8 Hz, 2H), 2.79 (t, *J* = 6.8 Hz, 2H), 2.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 136.3, 136.0, 133.8, 133.1, 130.6, 128.8, 128.6, 128.4, 127.2, 125.9, 123.3, 122.2, 121.4, 120.8, 118.3, 57.8, 50.5, 45.8. HRMS (ESI) *m/z*: 395.0764 [M + H]⁺, calcd for C₂₁H₂₀N₂OBr 395.0754.

5-(2-(Dimethylamino)ethyl)-2-methoxybenzo[c]phenanthridin-6(5H)-one (A4).⁵ The compound A4 was synthesized from the nucleophilic substitution reaction of A3. White solid, yield 47%, mp = 85.5–86.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 8.0 Hz, 1H), 8.29–8.21 (m, 2H), 8.18 (d, *J* = 8.4 Hz, 1H), 7.79–7.72 (m, 1H), 7.63 (d, *J* = 8.8 Hz, 1H), 7.60–7.52 (m, 1H), 7.23–7.16 (m, 2H), 4.71 (t, *J* = 6.8 Hz, 2H), 3.97 (s, 3H), 2.82 (t, *J* = 6.8 Hz, 2H), 2.19 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 158.1, 136.7, 136.6, 134.4, 132.8, 128.8, 127.7, 127.1, 125.6, 123.4, 121.9, 120.8, 119.8, 117.4, 116.5, 107.3, 57.7, 55.6, 50.4, 45.7. HRMS (ESI) *m/z*: 347.1745 [M + H]⁺, calcd for C₂₂H₂₃N₂O₂ 347.1754.

5-(2-(Dimethylamino)ethyl)-3-methoxybenzo[c]phenanthridin-6(5H)-one (A5).⁵ White solid, yield 10%, mp = 83.2–85.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.28

(d, J = 8.0 Hz, 1H), 8.21 (s, 2H), 7.83 (d, J = 8.8 Hz, 1H), 7.81–7.76 (m, 1H), 7.62–7.57 (m, 1H), 7.47–7.42 (m, 1H), 6.90 (d, J = 8.0 Hz, 1H), 4.76 (t, J = 7.2 Hz, 2H), 4.05 (s, 3H), 2.74 (t, J = 7.2 Hz, 2H), 2.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 155.8, 135.8, 134.0, 132.9, 128.8, 128.2, 126.8, 126.0, 125.8, 125.6, 122.3, 119.3, 118.8, 118.2, 117.6, 104.9, 57.4, 55.9, 50.1, 45.6. HRMS (ESI) *m/z*: 347.1756 [M + H]⁺, calcd for C₂₂H₂₃N₂O₂ 347.1754.

5-(2-(Dimethylamino)ethyl)-4-methoxybenzo[c]phenanthridin-6(5H)-one (A6).⁶ The compound A6 was prepared from 7ad'. White solid, yield 45%, mp = 78.2–78.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (dd, *J* = 8.0, 0.8 Hz, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 7.79–7.73 (m, 1H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.60–7.55 (m, 1H), 7.48–7.42 (m, 2H), 6.91 (dd, *J* = 6.0, 2.4 Hz, 1H), 5.04–4.96 (m, 1H), 4.10–4.00 (m, 1H), 3.97 (s, 3H), 2.45–2.36 (m, 1H), 2.06–1.97 (m, 1H), 1.91 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 155.7, 136.5, 134.7, 133.8, 132.6, 128.7, 127.8, 127.4, 126.1, 123.4, 122.0, 120.4, 120.2, 118.2, 116.6, 106.4, 57.2, 55.7, 50.2, 45.4. HRMS (ESI) *m/z*: 347.1733 [M + H]⁺, calcd for C₂₂H₂₃N₂O₂ 347.1754.

5-(2-(Dimethylamino)ethyl)-7-methoxybenzo[c]phenanthridin-6(5H)-one (A7).⁶ The compound A7 was prepared from 7ca' as a hydrochloric acid salt. Yellow solid, yield 35%, mp = 125.6–129.3 °C. ¹H NMR (400 MHz, D₂O) δ 7.60 (d, *J* = 8.0 Hz, 1H), 7.49 (dd, *J* = 8.0, 7.6 Hz, 1H), 7.45–7.36 (m, 2H), 7.11 (d, *J* = 8.8 Hz, 1H), 7.05–6.99 (m, 2H), 6.99–6.93 (m, 2H), 3.94 (s, 3H), 3.77 (t, *J* = 5.6 Hz, 2H), 3.31 (t, *J* = 5.6 Hz, 2H), 2.89 (s, 6H). ¹³C NMR (100 MHz, D₂O) δ 163.9, 159.6, 135.4, 134.6, 133.8, 133.1, 128.7, 126.8, 125.7, 124.4, 123.2, 122.2, 119.5, 117.1, 114.22, 112.0, 110.5, 57.2, 55.8, 46.7, 43.4. HRMS (ESI) *m/z*: 347.1742 [M + H]⁺, calcd for C₂₂H₂₃N₂O₂ 347.1754.

Using intermediate **4ca'** as material, the reaction gave two target products, **A8** (24%) and the demethylated product **A9** (36%) at the same time.

5-(2-(Dimethylamino)ethyl)-8-methoxybenzo[c]phenanthridin-6(5H)-one (A8).⁵ White solid, mp = 102.3–103.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.0 Hz, 1H), 8.19 (d, *J* = 8.8 Hz, 1H), 8.15 (d, *J* = 8.8 Hz, 1H), 7.95 (d, *J* = 2.4 Hz, 1H), 7.91–7.86 (m, 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.55–7.48 (m, 2H), 7.37 (dd, *J* = 8.8, 2.4 Hz, 1H), 4.74 (t, *J* = 6.8 Hz, 2H), 3.98 (s, 3H), 2.82 (t, *J* = 6.8 Hz, 2H), 2.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 159.7, 134.5, 134.4, 128.8, 127.7, 127.2, 126.2, 125.4, 125.2, 124.8, 124.4, 124.0, 122.9, 120.0, 118.2, 109.0, 57.7, 55.8, 50.4, 45.8. HRMS (ESI) *m/z*: 347.1749 [M + H]⁺, calcd for C₂₂H₂₃N₂O₂ 347.1754.

5-(2-(Dimethylamino)ethyl)-8-hydroxybenzo[c]phenanthridin-6(5H)-one (A9).⁵ White solid, mp = 244.2–244.8 °C. ¹H NMR (400 MHz, DMSO) δ 10.24 (s, 1H), 8.39 (d, *J* = 8.8 Hz, 1H), 8.36 (d, *J* = 8.8 Hz, 1H), 8.34–8.30 (m, 1H), 8.03–7.97 (m, 1H), 7.81 (d, *J* = 8.8 Hz, 1H), 7.69 (d, *J* = 2.4 Hz, 1H), 7.58–7.53 (m, 2H), 7.31 (dd, *J* = 8.8, 2.4 Hz, 1H), 4.63 (t, *J* = 6.8 Hz, 2H), 2.56 (t, *J* = 6.8 Hz, 2H), 1.93 (s, 6H). ¹³C NMR (100 MHz, DMSO) δ 163.5, 157.6, 133.6, 133.4, 128.5, 126.7, 125.9, 125.6, 125.2, 124.8, 124.7, 124.1, 124.0, 122.1, 120.2, 117.8, 111.9, 56.9, 49.2, 45.1. HRMS (ESI) *m/z*: 333.1598 [M + H]⁺, calcd for C₂₁H₂₁N₂O₂. 333.1525.

5-(2-(Dimethylamino)ethyl)-9-methoxybenzo[c]phenanthridin-6(5H)-one (A10).⁵ The compound A10 was prepared from 4ba'. Pale yellow solid, yield 24%, mp = 82.4–85.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 8.8 Hz, 1H), 8.34–8.29 (m, 1H), 8.14 (d, *J* = 8.8 Hz, 1H), 7.92–7.88 (m, 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.63 (d, *J* = 2.4 Hz, 1H), 7.55–7.50 (m, 2H), 7.15 (dd, *J* = 8.8, 2.4 Hz, 1H), 4.71 (t, *J* = 6.8 Hz, 2H), 4.00 (s, 3H), 2.76 (t, *J* = 6.8 Hz, 2H), 2.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 163.4, 136.8, 136.1, 135.0, 131.0, 128.7, 126.7, 125.5, 125.4, 124.8, 124.1, 120.1, 119.7, 117.9, 116.0, 105.1, 57.7, 55.7, 50.2, 45.7. HRMS (ESI) *m/z*: 347.1762 [M + H]⁺, calcd for C₂₂H₂₃N₂O₂ 347.1754.

5-(2-(Dimethylamino)ethyl)-10-methoxybenzo[c]phenanthridin-6(5H)-one (A11).⁶ The compound A11 was prepared from 7ba'. White solid, yield 40%, mp = 85.6–87.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.21 (d, *J* = 8.8 Hz, 1H), 8.23–8.17 (m, 2H), 7.91–7.87 (m, 1H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.55–7.49 (m, 3H), 7.31 (d, *J* = 8.0 Hz, 1H), 4.79 (t, *J* = 6.8 Hz, 2H), 4.09 (s, 3H), 2.68 (t, *J* = 6.8 Hz, 2H), 2.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 157.4, 135.4, 134.0, 128.5, 128.1, 126.4, 125.4, 125.0, 124.9, 124.35, 123.8, 123.4, 121.1, 118.9, 115.1, 111.6, 57.2, 56.2, 50.4, 45.5. HRMS (ESI) *m/z*: 347.1736 [M + H]⁺, calcd for C₂₂H₂₃N₂O₂ 347.1754.

5-(2-(Dimethylamino)ethyl)-11-methoxybenzo[c]phenanthridin-6(5H)-one (A12). The compound A12 was prepared from 7ab'. Yellow gel, yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ 9.18 (d, *J* = 8.4 Hz, 1H), 8.56 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.78–7.70 (m, 2H), 7.60–7.55 (m, 1H), 7.50–7.45 (m, 1H), 7.38–7.33 (m, 1H), 7.10 (s, 1H), 4.74 (t, *J* = 6.8 Hz, 2H), 4.15 (s, 3H), 2.57 (t, *J* = 6.8 Hz, 2H), 2.07 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 156.1, 138.4, 134.2, 133.6, 132.6, 128.3, 127.8, 127.6, 127.2, 127.0, 126.1, 125.6, 123.0, 120.6,

112.6, 102.6, 57.5, 55.9, 51.0, 45.6. HRMS (ESI) m/z: 347.1750 [M + H]⁺, calcd for C₂₂H₂₃N₂O₂ 347.1754.

5-(2-(Dimethylamino)ethyl)-12-methoxybenzo[c]phenanthridin-6(5H)-one (A13). The compound A13 was prepared from 7ac'. White solid, yield 45%, mp = 129.9–130.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.18 (d, *J* = 8.4 Hz, 1H), 8.56 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.78–7.70 (m, 2H), 7.61–7.55 (m, 1H), 7.50–7.44 (m, 1H), 7.38–7.33 (m, 1H), 7.10 (s, 1H), 4.78–4.72 (t, *J* = 6.8 Hz, 2H), 4.15 (s, 3H), 2.60–2.54 (t, *J* = 6.8 Hz, 2H), 2.07 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 152.1, 134.0, 132.6, 130.3, 128.9, 128.0, 127.1, 126.3, 126.1, 126.0, 125.8, 125.1, 122.7, 122.0, 118.1, 97.3, 57.6, 55.8, 50.2, 45.7. HRMS (ESI) *m/z*: 347.1765 [M + H]⁺, calcd for C₂₂H₂₃N₂O₂ 347.1754.

12-(2-(Dimethylamino)ethyl)-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (**B1).**⁵ The compound **B1** was prepared from **4ad'**. White solid, yield 80%, mp = 129.1–131.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.78–7.74 (m, 1H), 7.59–7.53 (m, 3H), 7.17 (s, 1H), 6.11 (s, 2H), 4.75 (t, *J* = 6.0 Hz, 2H), 2.87 (t, *J* = 6.0 Hz, 2H), 2.29 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 148.0, 147.7, 135.9, 134.3, 132.9, 132.4, 128.8, 127.9, 125.7, 123.8, 122.0, 121.2, 118.6, 117.9, 105.0, 102.5, 101.8, 57.3, 49.7, 45.3. HRMS (ESI) *m/z*: 361.1550 [M + H]⁺, calcd for C₂₂H₂₁N₂O₃ 361.1547.

5-(2-(Dimethylamino)ethyl)-2, 3-dimethoxybenzo[c]phenanthridin-6(5H)-one (B2).⁵ The compound **B2** was prepared from **4ae'** as a hydrochloric acid salt. White solid, yield 80%, mp = 172.8–174.9 °C. ¹H NMR (400 MHz, D₂O) δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.58–7.52 (m, 2H), 7.45–7.38 (m, 1H), 7.19 (d, *J* = 8.8 Hz, 1H), 6.79 (d, *J* = 8.8 Hz, 1H), 6.51 (s, 1H), 5.76 (s, 1H), 3.84 (t, *J* = 4.8 Hz, 2H), 3.67 (s, 3H), 3.66 (s, 3H), 3.20 (t, *J* = 4.8 Hz, 2H), 2.80 (s, 6H). ¹³C NMR (100 MHz, D₂O) δ 165.6, 147.8, 147.1, 133.8, 133.2, 131.3, 130.0, 128.1, 127.1, 123.4, 122.1, 121.7, 117.6, 116.8, 116.1, 107.2, 102.5, 57.5, 55.5, 55.2, 46.7, 43.4. HRMS (ESI) *m/z*: 377.1859 [M + H]⁺, calcd for C₂₃H₂₅N₂O₃ 377.1860.

12-(2-(Dimethylamino)ethyl)benzo[c][1,3]dioxolo[4,5-i]phenanthridin-13(12H)-one (B3).⁵ The compound B3 was prepared from 7da'. White solid, yield 30%, mp = 152.3-153.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27–8.21 (m, 1H), 8.09 (d, *J* = 8.8 Hz, 1H), 7.90–7.86 (m, 1H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.54–7.49 (m, 2H), 7.26 (d, *J* = 8.8 Hz, 1H), 6.30 (s, 2H), 4.64 (t, *J* = 7.2 Hz, 2H), 2.84 (t, *J* = 7.2 Hz, 2H), 2.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 148.2, 147.9, 135.1, 134.4, 128.8, 128.6, 126.3, 125.5, 125.1, 124.9, 124.5, 120.2, 118.5, 115.9, 113.4, 111.5, 103.1, 57.5, 49.9, 45.7. HRMS (ESI) *m*/*z*: 361.1548 [M + H]⁺, calcd for C₂₂H₂₁N₂O₃ 361.1547.

5-(2-(Dimethylamino)ethyl)-7,8-dimethoxybenzo[c]phenanthridin-6(5H)-one (**B4**).⁶ The compound **B4** was prepared from **7ea'**. White solid, yield 35%, mp = 72.8–73.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, *J* = 8.8 Hz, 1.2 Hz, 1H), 8.09 (d, *J* = 8.8 Hz, 1H), 7.98 (d, *J* = 8.8 Hz, 1H), 7.88–7.83 (m, 1H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.53–7.49 (m, 2H), 7.39 (d, 1H), 4.65 (t, *J* = 7.2 Hz, 2H), 4.07 (s, 3H), 3.98 (s, 3H), 2.80 (t, *J* = 7.2 Hz, 2H), 2.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 153.0, 150.5, 135.1, 134.3, 128.9, 128.6, 126.3, 125.52, 125.2, 124.8, 124.3, 120.4, 112.0, 118.5, 118.1, 118.0, 61.9, 57.5, 56.8, 49.7, 45.7. HRMS (ESI) *m/z*: 377.1863 [M + H]⁺, calcd for C₂₃H₂₅N₂O₃ 377.1860.

5-(2-(Dimethylamino)ethyl)-8,9-difluorobenzo[c]phenanthridin-6(5H)-one (**B5**). The compound **B5** was prepared from **7fa'**. White solid, yield 80%, mp = 122.3–123.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35–8.27 (m, 2H), 8.04–7.97 (m, 2H), 7.93–7.89 (m, 1H), 7.75 (d, *J* = 8.8 Hz, 1H), 7.59–7.54 (m, 2H), 4.73 (t, *J* = 6.8 Hz, 2H), 2.74 (t, *J* = 6.8 Hz, 2H), 2.12 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 163.6, 154.2 (dd, *J* = 255.4, 14.3 Hz), 150.5 (dd, *J* = 252.3, 14.1 Hz), 136.5, 135.0, 132.1 (dd, *J* = 7.7, 2.9 Hz), 128.8, 127.0, 125.8, 125.4, 124.8, 124.7, 123.2 (dd, *J* = 5.9, 2.3 Hz), 119.9, 117.1 (dd, *J* = 18.6, 1.9 Hz), 110.9, 110.7, 57.6, 50.6, 45.7. HRMS (ESI) *m/z*: 353.1418 [M + H]⁺, calcd for C₂₁H₁₉N₂OF₂ 353.1460.

5-(2-(Dimethylamino)ethyl)benzo[c][1,3]dioxolo[4,5-j]phenanthridin-6(5H)-one (**B6**).⁵ The compound **B6** was prepared from **4da'**. White solid, yield 25%, mp = 111.2-113.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35–8.29 (m, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.92–7.85 (m, 2H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.63 (s, 1H), 7.56–7.48 (m, 2H), 6.12 (s, 2H), 4.72 (t, *J* = 6.8 Hz, 2H), 2.80 (t, *J* = 6.8 Hz, 2H), 2.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 152.6, 148.5, 135.4, 134.5, 131.1,

128.7, 126.4, 125.4, 125.3, 124.7, 124.2, 121.6, 120.0, 117.9, 106.8, 102.1, 100.9, 57.8, 50.4, 45.8. HRMS (ESI) *m/z*: 361.1540 [M + H]⁺, calcd for C₂₂H₂₁N₂O₃ 361.1547.

5-(2-(Dimethylamino)ethyl)-8,9-dimethoxybenzo[c]phenanthridin-6(5H)-one (**B7).**⁵ The compound **B7** was prepared from **4ea'**. White solid, yield 20%, mp = 129.3–131.9 °C . ¹H NMR (400 MHz, CDCl₃) δ 8.36–8.31 (m, 1H), 8.12 (d, *J* = 8.8 Hz, 1H), 7.94 (s, 1H), 7.92–7.89 (m, 1H), 7.73 (d, J = 8.8 Hz, 1H), 7.62 (s, 1H), 7.56–7.51 (m, 2H), 4.74 (t, *J* = 7.2 Hz, 2H), 4.12 (s, 3H), 4.07 (s, 3H), 2.85 (t, *J* = 7.2 Hz, 2H), 2.23 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 153.8, 150.1, 135.4, 134.5, 129.0, 128.7, 126.4, 125.5, 125.3, 124.8, 124.2, 120.0, 119.9, 117.9, 108.9, 103.2, 57.6, 56.4, 56.3, 50.0, 45.6. HRMS (ESI) *m/z*: 377.1850 [M + H]⁺, calcd for C₂₃H₂₅N₂O₃ 377.1860.

5-(2-(Dimethylamino)ethyl)-9,10-dimethoxybenzo[c]phenanthridin-6(5H)-one (**B8**).⁶ The compound **B8** was prepared from **7ga'**. White solid, yield 30%, mp = 86.4°C–87.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.18 (d, *J* = 8.8 Hz, 1H), 8.38 (d, *J* = 8.8 Hz, 1H), 8.21 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.8 Hz, 1H), 7.56–7.46 (m, 2H), 7.22 (d, *J* = 8.8 Hz, 1H), 4.71 (t, *J* = 6.8 Hz, 2H), 4.03 (s, 3H), 3.90 (s, 3H), 2.63 (t, *J* = 6.8 Hz, 2H), 2.10 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 164.9, 157.0, 145.8, 136.4, 134.5, 128.2, 128.0, 126.6, 126.0, 125.6, 124.9, 124.6, 124.2, 123.8, 120.9, 118.4, 112.6, 60.4, 57.5, 56.4, 50.5, 45.6. HRMS (ESI) *m/z*: 377.1848 [M + H]⁺, calcd for C₂₃H₂₅N₂O₃ 377.1860.

12-(2-(Dimethylamino)ethyl)-1-methoxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridine-13(12H)-one (C1). The compound **C1** was prepared from **7he'**. White solid, yield 50%, mp = $133.6-134.2 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 8.8 Hz, 1H), 7.67–7.61 (m, 1H), 7.60 (s, 1H), 7.50 (d, *J* = 8.8 Hz, 1H), 7.14 (s, 1H), 7.01 (d, *J* = 8.8 Hz, 1H), 6.08 (s, 2H), 4.52 (t, *J* = 6.8 Hz, 2H), 4.04 (s, 3H), 2.80 (t, *J* = 6.8 Hz, 2H), 2.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 161.4, 148.0, 147.5, 137.1, 136.8, 133.4, 132.3, 123.3, 121.0, 119.1, 117.8, 115.2, 114.1, 110.1, 104.7, 102.8, 101.7, 57.8, 56.5, 50.0, 45.8. HRMS (ESI) *m/z*: 391.1621 [M + H]⁺, calcd for C₂₃H₂₃N₂O₄ 391.1652.

12-(2-(Dimethylamino)ethyl)-2-fluor-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-

13(12H)-one (C2). The compound **C2** was prepared from **7ie'**. White solid, yield 46%, mp = 152.8–153.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23–8.18 (m, 1H), 8.14 (dd, *J* = 8.8, 2.8 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.63 (s, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.49–7.44 (m, 1H), 7.17 (s, 1H), 6.10 (s, 2H), 4.64 (t, *J* = 6.8 Hz, 2H), 2.69 (t, *J* = 6.8 Hz, 2H), 2.14 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5 (d, *J* = 3.2 Hz), 162.2 (d, *J* = 249.0 Hz), 148.0, 147.7, 135.5, 132.20, 130.8 (d, *J* = 2.5 Hz), 127.6 (d, *J* = 7.8 Hz), 124.6 (d, *J* = 7.8 Hz), 123.9, 121.2 (d, *J* = 23.3 Hz), 121.1, 118.5, 117.3, 114.1 (d, *J* = 22.8 Hz), 105.0, 102.6, 101.8, 57.6, 50.5, 45.7. HRMS (ESI) *m/z*: 379.1432 [M + H]⁺, calcd for C₂₂H₂₀N₂O₃F 379.1452.

12-(2-(Dimethylamino)ethyl)-2-bromo-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-

13(12H)-one (C3). The compound **C3** was prepared from **7je'**. White solid, yield 19%, mp = 172.6–174.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 8.07 (d, *J* = 8.8 Hz, 1H), 7.78–7.73 (m, 1H), 7.60 (s, 1H), 7.56–7.53 (m, 1H), 7.17 (s, 1H), 6.10 (s, 2H), 4.67 (t, *J* = 6.8 Hz, 2H), 2.75 (t, *J* = 6.8 Hz, 2H), 2.19 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 147.9, 147.6, 135.9, 134.2, 132.8, 132.3, 128.7, 127.8, 125.7, 123.7, 122.0, 121.2, 118.6, 117.8, 104.9, 102.6, 101.7, 57.5, 50.1, 45.6. HRMS (ESI) *m/z*: 439.0675 [M + H]⁺, calcd for C₂₂H₂₀N₂O₃Br 439.0652.

12-(2-(Dimethylamino)ethyl)-2-nitro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-

13(12H)-one (C4). The compound **C4** was prepared from **7ke'**. Pale red solid, yield 29%, mp = 167.7–168.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.34 (d, *J* = 2.4 Hz, 1H), 8.53 (dd, *J* = 8.8, 2.4 Hz, 1H), 8.35 (d, *J* = 8.8 Hz, 1H), 8.05 (d, *J* = 8.8 Hz, 1H), 7.66 (s, 1H), 7.61 (d, *J* = 8.8 Hz, 1H), 7.20 (s, 1H), 6.14 (s, 2H), 4.68 (t, *J* = 6.8 Hz, 2H), 2.68 (t, *J* = 6.8 Hz, 2H), 2.09 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 148.9, 148.0, 146.7, 139.1, 138.0, 133.6, 126.7, 126.0, 124.9, 124.3, 123.5, 121.0, 118.8, 116.3, 105.0, 102.8, 102.0, 57.4, 50.7, 45.6. HRMS (ESI) *m/z*: 406.1339 [M + H]⁺, calcd for C₂₂H₂₀N₃O₅ 406.1397.

12-(2-(Dimethylamino)ethyl)-2-methoxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridine-13(12H)-one (C5). The compound **C5** was prepared from **7le'**. White solid, yield 53%, mp = $141.5-142.1 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.8 Hz, 1H), 7.99 (d, *J* = 8.8 Hz, 1H), 7.92 (d, *J* = 2.8 Hz, 1H), 7.62 (s, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.34 (dd, *J* = 8.8, 2.8 Hz, 1H), 7.15 (s, 1H), 6.08 (s, 2H), 4.64 (t, *J* = 6.8 Hz, 2H), 3.96 (s, 3H), 2.75 (t, *J* = 6.8 Hz, 2H), 2.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 159.5, 147.5, 134.6, 131.7, 127.9, 126.9, 123.8, 123.7 122.7, 121.1, 118.4, 117.8, 109.0, 104.9, 102.5, 101.6, 57.7, 55.8, 50.3, 45.7. HRMS (ESI) *m/z*: 391.1647 [M + H]⁺, calcd for C₂₃H₂₃N₂O₄ 391.1652.

12-(2-(Dimethylamino)ethyl)-3-fluoro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-

13(12H)-one (C6). The compound **C6** was prepared from **7me'**. White solid, yield 48%, mp = 141.7–142.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (dd, *J* = 8.8, 6.0 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.81 (dd, *J* = 10.4, 2.4 Hz, 1H), 7.64 (s, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.17 (s, 1H), 6.11 (s, 2H), 4.63 (t, *J* = 6.8 Hz, 2H), 2.71 (t, *J* = 6.8 Hz, 2H), 2.14 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0 (d, *J* = 253.1 Hz), 164.7, 148.2, 147.7, 136.9 (d, *J* = 9.5 Hz), 136.8, 132.8, 131.9 (d, *J* = 10.0 Hz), 123.8, 122.3, 121.2, 118.6, 117.1 (d, *J* = 2.8 Hz), 116.0 (d, *J* = 23.1 Hz), 107.9 (d, *J* = 23.5 Hz), 105.0, 102.8, 101.8, 57.7, 50.4, 45.7. HRMS (ESI) *m/z*: 379.1417 [M + H]⁺, calcd for C₂₂H₂₀N₂O₃F 379.1452.

12-(2-(Dimethylamino)ethyl)-3-chloro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-

13(12H)-one (C7). The compound **C7** was prepared from **7ne'**. White solid, yield 51%, mp = 127.6–129.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 8.8 Hz, 1H), 8.17 (d, *J* = 2.0 Hz, 1H), 7.96 (d, *J* = 8.8 Hz, 1H), 7.63 (s, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.49 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.17 (s, 1H), 6.10 (s, 2H), 4.62 (t, *J* = 6.8 Hz, 2H), 2.69 (t, *J* = 6.8 Hz, 2H), 2.13 (s, 6H). ¹³C NMR (100
MHz, CDCl₃) δ 164.7, 148.2, 147.7, 139.5, 136.8, 135.7, 132.7, 130.5, 128.1, 124.1, 123.8, 121.9, 121.1, 118.5, 116.7, 104.9, 102.7, 101.8, 57.6, 50.5, 45.7. HRMS (ESI) *m*/*z*: 395.1128 [M + H]⁺, calcd for C₂₂H₂₀N₂O₃Cl 395.1157.

12-(2-(Dimethylamino)ethyl)-3-methoxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridine-13(12H)-one (C8). The compound **C8** was prepared from **7oe'**. White solid, yield 57%, mp = 133.2-134.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 8.8 Hz, 1H), 7.97 (d, *J* = 8.8 Hz, 1H), 7.62 (s, 1H), 7.57 (d, *J* = 2.4 Hz, 1H), 7.52 (d, *J* = 8.8 Hz, 1H), 7.15 (s, 1H), 7.11 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.09 (s, 2H), 4.61 (t, *J* = 6.8 Hz, 2H), 3.99 (s, 3H), 2.69 (t, *J* = 6.8 Hz, 2H), 2.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 163.3, 147.9, 147.5, 136.7, 136.2, 132.4, 130.9, 123.4, 121.2, 119.6, 118.6, 117.6, 115.6, 104.9, 104.8, 102.8, 101.7, 57.8, 55.7, 50.3, 45.7. HRMS (ESI) *m/z*: 391.1621 [M + H]⁺, calcd for C₂₃H₂₃N₂O₄ 391.1652.

12-(2-(Dimethylamino)ethyl)-3-(trifluoromethyl)-[1,3]dioxolo[4',5':4,5]benzo[1,2-c] phenanthridin-13(12H)-one (C9). The compound **C9** was prepared from **7pe'**. White solid, yield 42%, mp = 157.4–158.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.78 (s, 1H), 8.31 (d, *J* = 8.5 Hz, 1H), 8.04 (d, *J* = 8.5 Hz, 1H), 7.94 (d, *J* = 8.5 Hz, 1H), 7.62 (s, 1H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.17 (s, 1H), 6.12 (s, 2H), 4.66 (t, *J* = 6.0 Hz, 2H), 2.71 (t, *J* = 6.0 Hz, 2H), 2.14 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 164.4, 148.4, 147.8, 137.0, 136.9, 133.0, 129.7, 129.4, 128.9 (q, *J* = 3.3 Hz), 126.3 (q, *J* = 4.2 Hz), 125.6, 124.0, 122.9, 121.0, 118.6, 116.7, 105.0, 102.7, 101.9, 57.4, 50.4, 45.5. HRMS (ESI) *m/z*: 429.1379 [M + H]⁺, calcd for C₂₃H₂₀N₂O₃F₃ 429.1421.

13-(2-(Dimethylamino)ethyl)-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-

i]phenanthridin-14(13H)-one (C10).⁵ The compound C10 was prepared from 7de'. White solid, yield 45%, mp = 180.3–181.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.8 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.57 (s, 1H), 7.51 (d, *J* = 8.8 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 1H), 7.14 (s, 1H), 6.26 (s, 2H), 6.09 (s, 2H), 4.56 (t, *J* = 7.2 Hz, 2H), 2.76 (t, *J* = 7.2 Hz, 2H), 2.17 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 163.3, 148.0, 147.9, 147.7, 147.6, 135.1, 131.8, 129.0, 123.8, 121.4, 118.8, 118.3, 115.6, 113.4, 111.4, 104.9, 103.0, 102.5, 101.7, 57.5, 49.9, 45.7. HRMS (ESI) *m/z*: 405.1454 [M + H]⁺, calcd for C₂₃H₂₁N₂O₅ 405.1445.

12-(2-(Dimethylamino)ethyl)-1,2-dimethoxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]

phenanthridin-13(12H)-one (C11).⁶ The compound **C11** was prepared from **7ee'**. White solid, yield 35%, mp = 143.5–146.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.8 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.57 (s, 1H), 7.51 (d, *J* = 8.8 Hz, 1H), 7.36 (d, *J* = 8.8 Hz, 1H), 7.14 (s, 1H), 6.08 (s, 2H), 4.55 (t, *J* = 6.8 Hz, 2H), 4.06 (s, 3H), 3.97 (s, 3H), 2.70 (t, *J* = 6.8 Hz, 2H), 2.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 152.7, 150.5, 147.7, 147.5, 135.1, 131.6, 129.1, 123.5, 121.3, 120.2, 118.5, 118.3, 118.01, 117.8, 104.8, 102.5, 101.6, 61.9, 57.7, 56.8, 49.9, 45.8. HRMS (ESI) *m/z*: 421.1777 [M + H]⁺, calcd for C₂₄H₂₅N₂O₅ 421.1758.

C12

12-(2-(Dimethylamino)ethyl)-1,2-dihydroxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]

phenanthridine-13(12H)-one (C12).⁵ The compound C12 was prepared from 7qe'. Yellow solid, yield 50%, mp = 225.8–226.9 °C. ¹H NMR (400 MHz, DMSO) δ 13.17 (s, 1H), 9.55 (s, 1H), 8.15 (d, *J* = 8.8 Hz, 1H), 7.75 (d, *J* = 8.8 Hz, 1H), 7.70 (s, 1H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.42 (s, 1H), 7.30 (d, *J* = 8.8 Hz, 1H), 6.19 (s, 2H), 4.58 (t, *J* = 6.8 Hz, 2H), 2.59 (t, *J* = 6.8 Hz, 2H), 1.95 (s, 6H). ¹³C NMR (100 MHz, DMSO) δ 168.9, 148.5, 147.4, 147.2, 144.3, 132.7, 131.1, 125.9, 124.3, 122.4, 120.4, 118.8, 118.3, 112.6, 110.3, 104.7, 101.8, 56.7, 49.0, 45.0. HRMS (ESI) *m/z*: 393.1456 [M + H]⁺, calcd for C₂₂H₂₁N₂O₅ 393.1445.

12-(2-(Dimethylamino)ethyl)-1-hydroxy-2-methoxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c] phenanthridin-13(12H)-one (C13).⁵ The compound **C13** was prepared from **7re'**. White solid, yield 21%, mp = 142.4–143.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 13.41 (s, 1H), 7.97 (d, *J* = 8.8 Hz, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.57 (s, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.32 (d, *J* = 8.8 Hz, 1H), 7.16 (s, 1H), 6.09 (s, 2H), 4.63 (t, *J* = 6.8 Hz, 2H), 4.00 (s, 3H), 2.67 (t, *J* = 6.8 Hz, 2H), 2.12 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 151.4, 147.7, 147.6, 146.8, 133.8, 131.7, 127.6, 124.4, 121.2, 118.7, 118.6, 117.9, 111.7, 111.1, 105.0, 102.3, 101.7, 57.6, 56.6, 50.0, 45.7. HRMS (ESI) *m/z*: 407.1604 [M + H]⁺, calcd for C₂₃H₂₃N₂O₅ 407.1601.

12-(2-(Dimethylamino)ethyl)-2,3-difluoro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-13(12H)-one (C14). The compound C14 was prepared from 7fe'. White solid, yield 25%, mp = 159.1-161.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, J = 10.8, 8.4 Hz, 1H), 7.95 (dd, J = 11.6, 7.2 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.64 (s, 1H), 7.57 (d, J = 8.8 Hz, 1H), 7.18 (s, 1H), 6.12 (s, 2H), 4.63 (t, J = 6.8 Hz 2H), 2.68 (t, J = 6.8 Hz, 2H), 2.12 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 154.2 (dd, J = 255.2, 14.3 Hz), 150.3 (dd, J = 251.7, 13.8 Hz), 148.2, 147.8, 136.4, 132.6, 132.3 (dd, J = 7.9, 2.7 Hz), 124.0, 123.0 (dd, J = 5.5, 1.7 Hz), 121.2, 118.5, 117.1 (dd, J = 18.7, 1.7 Hz), 110.7, 110.5, 105.0, 102.6, 101.9, 57.6, 50.6, 45.7. HRMS (ESI) m/z: 397.1331 [M + H]⁺, calcd for C₂₂H₁₉N₂O₃F₂ 397.1358.

5-(2-(Dimethylamino)ethyl)-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-j]

phenanthridine-6(5H)-one (C15).⁵ The compound **C15** was prepared from **4d**e'. White solid, yield 71%, mp = 183.5–184.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.77 (m, 2H), 7.60 (s, 1H), 7.53 (s, 1H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.12 (s, 1H), 6.10 (s, 2H), 6.08 (s, 2H), 4.59 (t, *J* = 6.8 Hz, 2H), 2.72 (t, *J* = 6.8 Hz, 2H), 2.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 152.5, 148.2, 147.7, 147.5, 135.4, 131.9, 131.2, 123.5, 121.3, 121.0, 118.6, 117.6, 106.8, 104.9, 102.7, 102.1, 101.7, 100.8, 57.8, 50.4, 45.8. HRMS (ESI) *m/z*: 405.1442 [M + H]⁺, calcd for C₂₃H₂₁N₂O₅ 405.1445.

12-(2-(Dimethylamino)ethyl)-2-methoxy-3-isopropoxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c] phenanthridin-13(12H)-one (C16). The compound **C16** was prepared from **7te'**. White solid, yield 45%, mp = 137.1–137.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 1H), 7.90 (s, 1H), 7.65 (s, 1H), 7.60 (s, 1H), 7.54 (d, *J* = 8.8 Hz, 1H), 7.17 (s, 1H), 6.09 (s, 2H), 4.87–4.81 (m, 1H), 4.64 (t, *J* = 6.8 Hz, 2H), 4.02 (s, 3H), 2.75 (t, *J* = 6.8 Hz, 2H), 2.20 (s, 6H), 1.50 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 152.2, 150.9, 147.6, 147.5, 135.4, 131.8, 128.9, 123.5, 121.3, 119.6, 118.5, 117.7, 109.4, 106.4, 104.9, 102.7, 101.7, 71.7, 57.9, 56.3, 50.3, 45.8, 22.1. HRMS (ESI) *m/z*: 449.2050 [M + H]⁺, calcd for C₂₆H₂₉N₂O₅ 449.2071.

12-(2-(Dimethylamino)ethyl)-2-isopropoxy-3-methoxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c] phenanthridin-13(12H)-one (C17). The compound **C17** was prepared from **7ue**'. White solid, yield 60%, mp = 154.7–155.2 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.5 Hz, 1H), 7.91 (s, 1H), 7.66 (s, 1H), 7.58–7.52 (m, 2H), 7.16 (s, 1H), 6.09 (s, 2H), 4.86–4.78 (m, 1H), 4.62 (t, *J* = 6.8 Hz, 2H), 4.05 (s, 3H), 2.78 (t, *J* = 6.8 Hz, 2H), 2.18 (s, 6H), 1.46 (d, *J* = 5.0 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 164.9, 154.6, 148.1, 147.6, 147.5, 135.4, 131.7, 128.7, 123.4, 121.2, 119.6, 118.5, 117.6, 111.5, 104.9, 103.4, 102.7, 101.7, 71.3, 57.9, 56.3, 50.4, 45.8, 22.1. HRMS (ESI) *m/z*: 449.2028 [M + H]⁺, calcd for C₂₆H₂₉N₂O₅ 449.2071.

12-(2-(Dimethylamino)ethyl)-2-hydroxy-3-methoxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]

phenanthridin-13(12H)-one (C18).⁵ The compound C18 was prepared from 4gd'. White solid, yield 69%, mp = 243.9–246.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.8 Hz, 1H), 7.87 (s, 1H), 7.65 (s, 1H), 7.58 (s, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.15 (s, 1H), 6.07 (s, 2H), 4.70 (t, *J* = 6.8 Hz, 2H), 4.03 (s, 3H), 2.80 (t, *J* = 6.8 Hz, 2H), 2.24 (s, 6H). ¹³C NMR (100 MHz, DMSO) δ 163.5, 151.9, 148.6, 147.1, 147.0, 134.7, 131.3, 128.8, 123.2, 120.3, 118.6, 117.7, 116.7, 108.8, 107.4, 104.6, 101.9, 101.7, 57.2, 55.6, 49.1, 45.1. HRMS (ESI) *m/z*: 407.1591 [M + H]⁺, calcd for C₂₃H₂₃N₂O₅ 407.1601.

12-(2-(Dimethylamino)ethyl)-2-methoxy-3-hydroxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c] phenanthridin-13(12H)-one (C19).⁵ The compound **C19** was prepared from **4fd'**. White solid, yield 70%, mp = $210.2-213.5 \,^{\circ}$ C. ¹H NMR (400 MHz, DMSO) δ 9.82 (s, 1H), 8.26 (d, *J* = 8.8 Hz, 1H), 7.80 (s, 1H), 7.69 (s, 1H), 7.67–7.61 (m, 2H), 7.40 (s, 1H), 6.18 (s, 2H), 4.50 (t, *J* = 6.8 Hz, 2H), 4.02 (s, 3H), 2.57 (t, *J* = 6.8 Hz, 2H), 1.97 (s, 6H). ¹³C NMR (100 MHz, DMSO) δ 163.4, 152.9, 147.4, 147.0, 146.9, 134.3, 131.1, 127.4, 123.0, 120.3, 119.1, 119.0, 117.2, 112.2, 104.6, 104.3, 101.9, 101.6, 57.1, 56.0, 49.1, 45.1. HRMS (ESI) *m/z*: 407.1591 [M + H]⁺, calcd for C₂₃H₂₃N₂O₅ 407.1601.

12-(2-(Dimethylamino)ethyl)-2,3-dihydroxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]

phenanthridin-13(12H)-one (C20).⁵ The compound **C20** was prepared from **4hd'**. White solid, yield 15%, mp = 173.6–175.9 °C. ¹H NMR (400 MHz, DMSO) δ 7.97 (d, *J* = 8.8 Hz, 1H), 7.70 (s, 1H), 7.64 (s, 2H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.39 (s, 1H), 6.18 (s, 2H), 4.48 (t, *J* = 6.8 Hz, 2H), 2.55 (t, *J* = 6.8 Hz, 2H), 1.97 (s, 6H). ¹³C NMR (100 MHz, DMSO) δ 163.5, 151.4, 147.1, 147.0, 146.7, 134.3, 131.1, 127.6, 123.2, 120.4, 118.6, 118.0, 117.1, 112.7, 107.6, 104.6, 101.9, 101.6, 57.3, 49.1, 45.2. HRMS (ESI) *m/z*: 393.1464 [M + H]⁺, calcd for C₂₂H₂₁N₂O₅ 393.1445.

12-(2-(Dimethylamino)ethyl)-3,4-dimethoxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]

phenanthridin-13(12H)-one (C21).⁶ The compound C21 was prepared from 7ge'. White solid, yield 25%, mp = 120.8 °C-121.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (d, *J* = 8.8 Hz, 1H), 8.34 (d, *J* = 8.8 Hz, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.50 (s, 1H), 7.18 (d, *J* = 8.8 Hz, 1H), 7.16 (s, 1H), 6.08 (s, 2H), 4.62 (t, *J* = 6.8 Hz, 2H), 4.02 (s, 3H), 3.90 (s, 3H), 2.54 (t, *J* = 6.8 Hz, 2H), 2.08 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 157.0, 148.0, 147.2, 145.6, 136.2, 132.0, 128.1, 126.0,

123.3, 122.7, 121.1, 120.8, 118.2, 112.2, 104.4, 102.8, 101.6, 60.4, 57.5, 56.3, 50.6, 45.7. HRMS (ESI) *m/z*: 421.1759 [M + H]⁺, calcd for C₂₄H₂₅N₂O₅ 421.1758.

12-(2-(Dimethylamino)ethyl)-3-methoxy-4-hydroxy-[1,3]dioxolo[4',5':4,5]benzo[1,2-c] phenanthridin-13(12H)-one (C22).⁶ The compound **C22** was prepared from **7ve'**. White solid, yield 40%, mp = 187.3–189.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.11 (d, *J* = 8.8 Hz, 1H), 8.14 (d, *J* = 8.8 Hz, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.48 (s, 1H), 7.15 (s, 1H), 7.12 (d, *J* = 8.8 Hz, 1H), 6.86 (s, 1H), 6.07 (s, 2H), 4.65 (t, *J* = 6.8 Hz, 2H), 4.04 (s, 3H), 2.56 (t, *J* = 6.8 Hz, 2H), 2.10 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 149.6, 147.8, 147.1, 142.4, 135.5, 131.6, 123.5, 123.0, 121.4, 121.1, 121.0, 120.9, 118.8, 110.2, 104.4, 102.5, 101.5, 57.3, 56.7, 50.4, 45.6. HRMS (ESI) *m/z*: 405.1607 [M + H]⁺, calcd for C₂₃H₂₃N₂O₅ 407.1601.

C23

12-(2-(Dimethylamino)ethyl)-9,10-dimethoxybenzo[c][1,3]dioxolo[4,5-i]phenanthridin-

13(12H)-one (C23).⁵ The compound **C23** was prepared from **7df**². White solid, yield 45%, mp = 183.3–181.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.8 Hz, 1H), 7.73 (d, *J* = 8.8 Hz, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.51 (s, 1H), 7.23 (d, *J* = 8.8 Hz, 1H), 7.15 (s, 1H), 6.26 (s, 2H), 4.62 (t, *J* = 6.8 Hz, 2H), 4.08 (s, 3H), 4.03 (s, 3H), 2.79 (t, *J* = 6.8 Hz, 2H), 2.14 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 149.6, 148.8, 147.9, 147.8, 134.4, 130.6, 129.2, 123.2, 120.1, 118.7, 117.8, 115.5, 113.4, 111.3, 107.3, 105.1, 103.0, 57.8, 56.2, 56.1, 49.9, 45.8. HRMS (ESI) *m/z*: 421.1776 [M + H]⁺, calcd for C₂₄H₂₅N₂O₅ 421.1758.

5-(2-(Dimethylamino)ethyl)-2,3,7,8-tetramethoxybenzo[c]phenanthridin-6(5H)-one (C24).⁶ The compound C24 was prepared from 7ef'. White solid, yield 40%, mp = 173.5–175.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.8 Hz, 1H), 7.94 (d, *J* = 8.8 Hz, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.51 (s, 1H), 7.37 (d, *J* = 8.8 Hz, 1H), 7.15 (s, 1H), 4.61 (t, *J* = 6.8 Hz, 2H), 4.09 (s, 3H), 4.07 (s, 3H), 4.03 (s, 3H), 3.98 (s, 3H), 2.76 (t, *J* = 6.8 Hz, 2H), 2.12 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 152.7, 150.6, 149.6, 148.9, 134.4, 130.5, 129.4, 123.0, 120.1, 120.0, 118.4, 118.2, 117.8, 117.8, 107.3, 105.2, 61.9, 57.8, 56.8, 56.3, 56.0, 49.7, 45.6. HRMS (ESI) *m/z*: 437.2096 [M + H]⁺, calcd for C₂₅H₂₉N₂O₅ 437.2071.

5-(2-(Dimethylamino)ethyl)-2,3-dimethoxybenzo[c][1,3]dioxolo[4,5-j]phenanthridin-6(5H)one (C25).⁵ The compound **C25** was prepared from **4de**'. White solid, yield 80%, mp = 195.6– 197.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.8 Hz, 1H), 7.86 (s, 1H), 7.60–7.53 (m, 3H), 7.17 (s, 1H), 6.12 (s, 2H), 4.70 (t, *J* = 6.8 Hz, 2H), 4.10 (s, 3H), 4.04 (s, 3H), 2.81 (t, *J* = 6.8 Hz, 2H), 2.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 152.6, 149.6, 148.7, 148.2, 134.7, 131.5, 130.7, 123.0, 121.1, 119.8, 118.5, 117.2, 107.34, 106.8, 105.2, 102.1, 100.8, 57.9, 56.3, 56.1, 50.1, 45.7. HRMS (ESI) *m/z*: 421.1745 [M + H]⁺, calcd for C₂₄H₂₅N₂O₅ 421.1758.

5-(2-(Dimethylamino)ethyl)-2,3,8,9-tetramethoxybenzo[c]phenanthridin-6(5H)-one (C26).⁵ The compound C26 was prepared from 4ee' as a hydrochloric acid salt. White solid, yield 80%, mp = 195.5–197.8 °C. ¹H NMR (400 MHz, D₂O) δ 6.91 (d, *J* = 8.8 Hz, 1H), 6.78 (s, 1H), 6.74 (d, *J* = 8.8 Hz, 1H), 6.41 (s, 1H), 6.34 (s, 1H), 5.75 (s, 1H), 3.86 (t, *J* = 6.8 Hz, 2H), 3.70 (s, 3H), 3.67 (s, 3H), 3.66 (s, 3H), 3.61 (s, 3H), 3.32 (t, *J* = 6.8 Hz, 2H), 2.88 (s, 6H). ¹³C NMR (100 MHz, D₂O) δ 164.5, 152.7, 148.2, 147.6, 147.1, 130.5, 129.4, 128.6, 123.1, 117.2, 116.4, 115.5, 115.2, 106.9, 105.9, 102.4, 101.8, 57.9, 55.6, 55.5, 55.1, 55.1, 47.0, 43.5. HRMS (ESI) *m/z*: 437.2064 [M + H]⁺, calcd for C₂₅H₂₉N₂O₅ 437.2071.

5-(2-(Dimethylamino)ethyl)-2,3,9,10-tetramethoxybenzo[c]phenanthridin-6(5H)-one (C27).⁶ The compound **C27** was prepared from **7gf'**. White solid, yield 15%, mp = 126.6–127.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.05 (d, *J* = 8.8 Hz, 1H), 8.34 (d, *J* = 8.8 Hz, 1H), 7.57 (d, *J* = 8.8 Hz, 1H), 7.42 (s, 1H), 7.19 (d, *J* = 8.8 Hz, 1H), 7.16 (s, 1H), 4.72 (t, *J* = 6.8 Hz, 2H), 4.06 (s, 3H), 4.04 (s, 3H), 4.02 (s, 3H), 3.91 (s, 3H), 2.59 (t, *J* = 6.8 Hz, 2H), 2.09 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 157.0, 145.0, 148.5 145.6, 135.3, 130.8, 128.3, 126.0, 122.7, 122.6, 120.7, 119.9, 117.8, 112.1, 106.8, 105.3, 60.4, 57.4, 56.3, 56.2, 56.1, 50.0, 45.4. HRMS (ESI) *m/z*: 437.2087 [M + H]⁺, calcd for C₂₅H₂₉N₂O₅ 437.2071.

5-(2-(Dimethylamino)ethyl)-3-hydroxy-2,8,9-trimethoxybenzo[c]phenanthridin-6(5H)-one (**C28**).⁵ The compound **C28** was prepared from **4ef'**. White solid, yield 85%, mp = 220.0–223.1 °C. ¹H NMR (400 MHz, DMSO) δ 9.69 (s, 1H), 8.22 (d, *J* = 8.8 Hz, 1H), 7.82 (s, 1H), 7.71 (s, 1H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.59 (s, 1H), 7.41 (s, 1H), 4.62 (t, *J* = 6.8 Hz, 2H), 4.02 (s, 3H), 3.94 (s, 3H), 3.91 (s, 3H), 2.47 (t, *J* = 6.8 Hz, 2H), 1.93 (s, 6H). ¹³C NMR (100 MHz, DMSO) δ 163.5, 153.5, 149.1, 148.8, 146.2, 133.4, 129.6, 128.9, 122.8, 119.6, 118.5, 118.1, 116.3, 108.2, 108.1, 107.7, 103.9, 56.8, 56.1, 55.6, 55.5, 48.4, 45.1. HRMS (ESI) *m/z*: 423.1916 [M + H]⁺, calcd for C₂₄H₂₇N₂O₅ 423.1914.

5-(2-(Dimethylamino)ethyl)-2-hydroxy-3,8,9-trimethoxybenzo[c]phenanthridin-6(5H)-one (**C29).**⁵ The compound **C29** was prepared from **4eg'**. White solid, yield 80%, mp = 222.6–224.5 °C. ¹H NMR (400 MHz, DMSO) δ 9.79 (s, 1H), 8.23 (d, *J* = 8.8 Hz, 1H), 7.82 (s, 1H), 7.71 (s, 1H), 7.58 (d, *J* = 8.8 Hz, 1H), 7.56 (s, 1H), 7.24 (s, 1H), 4.59 (t, *J* = 6.8 Hz, 2H), 4.02 (s, 3H), 4.01 (s, 3H), 3.91 (s, 3H), 2.69 (t, *J* = 6.8 Hz, 2H), 1.99 (s, 6H). ¹³C NMR (100 MHz, DMSO) δ 163.4, 153.5, 149.1, 148.0, 147.2, 134.2, 130.6, 129.0, 122.1, 118.8, 118.5, 118.2, 115.6, 110.8, 108.1, 105.3, 103.8, 57.3, 56.1, 55.7, 55.6, 49.3, 45.2. HRMS (ESI) *m/z*: 423.1918 [M + H]⁺, calcd for C_{24H27}N₂O₅ 423.1914.

5-(2-(Dimethylamino)ethyl)-2,3-dihydroxy-8,9-dimethoxybenzo[c]phenanthridin-6(5H)-one (C30).⁵ The compound C30 was prepared from 4eh'. White solid, yield 50%, mp = 159.6–162.8 $^{\circ}$ C. ¹H NMR (400 MHz, DMSO) δ 9.79 (s, 2H), 8.15 (d, *J* = 8.8 Hz, 1H), 7.80 (s, 1H), 7.71 (s, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.53 (s, 1H), 7.21 (s, 1H), 4.63 (t, *J* = 6.8 Hz, 2H), 4.02 (s, 3H), 3.91 (s, 3H), 2.55 (t, *J* = 6.8 Hz, 2H), 1.99 (s, 6H). ¹³C NMR (100 MHz, DMSO) δ 163.5, 153.5, 149.0, 146.9, 146.0, 133.5, 129.9, 129.1, 122.3, 119.1, 118.3, 117.8, 115.7, 110.8, 108.3, 108.2, 103.8, 56.7, 56.1, 55.6, 48.4, 45.0. HRMS (ESI) *m/z*: 409.1738 [M + H]⁺, calcd for C₂₃H₂₅N₂O₅ 409.1758.

 ^1H NMR and ^{13}C NMR spectra of compound A2

 ^1H NMR and ^{13}C NMR spectra of compound A3

 ^1H NMR and ^{13}C NMR spectra of compound A4

 ^1H NMR and ^{13}C NMR spectra of compound A5

 1 H NMR and 13 C NMR spectra of compound A6

 ^1H NMR and ^{13}C NMR spectra of compound A7

 ^1H NMR and ^{13}C NMR spectra of compound A8

 1 H NMR and 13 C NMR spectra of compound A9

 ^1H NMR and ^{13}C NMR spectra of compound A10

¹H NMR and ¹³C NMR spectra of compound A11

 ^1H NMR and ^{13}C NMR spectra of compound A12

¹H NMR and ¹³C NMR spectra of compound A13

 ^1H NMR and ^{13}C NMR spectra of compound **B1**

¹H NMR and ¹³C NMR spectra of compound **B2**

¹H NMR and ¹³C NMR spectra of compound **B5**

¹H NMR and ¹³C NMR spectra of compound **B6**

 ^1H NMR and ^{13}C NMR spectra of compound B8

 ^1H NMR and ^{13}C NMR spectra of compound C1

 ^1H NMR and ^{13}C NMR spectra of compound C2

¹H NMR and ¹³C NMR spectra of compound C10

¹H NMR and ¹³C NMR spectra of compound C12

 ^1H NMR and ^{13}C NMR spectra of compound C13

¹H NMR and ¹³C NMR spectra of compound C14

 ^1H NMR and ^{13}C NMR spectra of compound C15

 ^1H NMR and ^{13}C NMR spectra of compound C16

 ^1H NMR and ^{13}C NMR spectra of compound C17

¹H NMR and ¹³C NMR spectra of compound C18

¹H NMR and ¹³C NMR spectra of compound C19

¹H NMR and ¹³C NMR spectra of compound C20

¹H NMR and ¹³C NMR spectra of compound C21

 ^1H NMR and ^{13}C NMR spectra of compound C22

¹H NMR and ¹³C NMR spectra of compound C23

 ^1H NMR and ^{13}C NMR spectra of compound C24

¹H NMR and ¹³C NMR spectra of compound C26

¹H NMR and ¹³C NMR spectra of compound C27

¹H NMR and ¹³C NMR spectra of compound C28

¹H NMR and ¹³C NMR spectra of compound C29

¹H NMR and ¹³C NMR spectra of compound C30

References

(1) Naya, L.; Vazquez-Garcia, D.; Lopez-Torres, M.; Fernandez, A.; Rodriguez, A.; Gomez-(1) Naya, L.; Vazquez-Garcia, D.; Lopez-Torres, M.; Fernandez, A.; Rodriguez, A.; Gomez-Blanco, N.; Vila, J. M.; Fernandez, J. J. Mononuclear and tetranuclear palladacycles with terdentate [C,N,N] and [C,N,O] Schiff base ligands. C-H versus C-Br activation reactions. *Inorg. Chim. Acta* 2011, *370*, 89-97.

(2) Vila, J. M.; Pereira, T.; Ortigueira, J. M.; Amoedo, A.; Grana, M.; Alberdi, G.; Lopez-Torres, M.; Fernandez, A. C-Br versus C-H bond activation in palladium(II) cyclopalladated compounds. Crystal and molecular structure of [Pd{C6H4C(H)= NCy}(MeCOCHCOMe)]. *J. Organomet. Chem.* 2002, *663*, 239-248.

(3) Chang, J. H.; Du, Y. M.; Guo, J. T. Benzamide derivatives as cGAS-STING pathway agonists and their preparation. U.S. Patent WO2020072492A1, Apr 9, 2020.

(4) Calder, E. D.; McGonagle, F. I.; Harkiss, A. H.; McGonagle, G. A.; Sutherland, A.
Preparation of amino-substituted indenes and 1,4-dihydronaphthalenes using a one-pot multireaction approach: total synthesis of oxybenzo[c]phenanthridine alkaloids. *J. Org. Chem.*2014, *79*, 7633-7648.

(5) An, L. K.; Zhang, X. R.; Wang, H. W.; Pommier, Y.; Kiselev, E.; Ravji, A.; Agama, K.
Preparation of oxynitidine derivatives useful as dual inhibitors of DNA topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1). U.S. Patent WO2020023700A2, Jan 30, 2020.
(6) An, L. K.; Zhang, X. R.; Wang, H. W.; Tang, W. L.; Hu, D. X.; Zhang, Y. Preparation of fused ring compounds as antitumor agents. China Patent CN110759963A, Feb 7, 2020.