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MOTIVATION Identifying and quantifying animal behaviors are important for biological research. Current
automatic tools for this purpose are either specialized in one aspect, such as tracking, or using simplified
high-level properties (e.g., body poses) to identify a behavior, which constrains the information available for
a holistic assessment. In addition, many current computational tools require users to have computer pro-
gramming skills to use, limiting their accessibility. A user-friendly tool is needed for both identifying behav-
iors by holistic assessments and quantifying diverse aspects of the behaviors. Therefore, we developed
LabGym to fill this gap.
SUMMARY
Quantifying animal behavior is important for biological research. Identifying behaviors is the prerequisite of
quantifying them. Current computational tools for behavioral quantification typically use high-level properties
such as body poses to identify the behaviors, which constrains the information available for a holistic assess-
ment. Here we report LabGym, an open-source computational tool for quantifying animal behaviors without
this constraint. In LabGym, we introduce ‘‘pattern image’’ to represent the animal’s motion pattern, in addi-
tion to ‘‘animation’’ that shows all spatiotemporal details of a behavior. These two pieces of information are
assessed holistically by customizable deep neural networks for accurate behavior identifications. The quan-
titative measurements of each behavior are then calculated. LabGym is applicable for experiments involving
multiple animals, requires little programming knowledge to use, and provides visualizations of behavioral
datasets. We demonstrate its efficacy in capturing subtle behavioral changes in diverse animal species.
INTRODUCTION

Quantitative measurements of animal behavior are important for

many branches of biology and biomedical research.1–4 Identi-

fying a behavior is a prerequisite to quantifying it. In most current

computational tools for behavioral quantification, identifying a

given behavior relies largely on tracking a few ‘‘high-level’’ prop-

erties such as the position of body parts in space (poses) and

their speed of motion. Thus, data-rich videos and complex

movements are simplified to skeletons and relative positions in

space of body parts.5–19 For example, JAABA uses instanta-

neous speed, positions, and areas that are derived from the out-

lines of the animals’ bodies to identify a set of behaviors in mice

and flies.6 Similarly, B-SOiD uses body part positions computed

by DeepLabCut20 to generate speed, angles, and body lengths;

behavioral information is then extracted from these data.17
Cell Re
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MotionMapper uses postural properties to identify behaviors in

adult Drosophila,7 and SALAM/LARA evaluates several specific

contour properties for behavior detection in Drosophila larvae.5

While tracking these high-level properties is useful for summa-

rizing the quantitative changes of a behavior, relying on them to

identify a given behavior has limitations. First, these properties

need to be defined a priori for identifying certain behaviors,

which may fail to generalize to other behavior types. For

example, movement speed can be used to identify locomotion

but is useless for distinguishing facial grooming from body

grooming during which the animal is immobile. Second, the

limited number of high-level properties typically underrepresent

the information needed to capture the complexity of animal

behavior; and defining a large set of properties that encompass

every aspect of a behavior a priori is not only computationally

inefficient but also might be impossible. Finally, significant
ports Methods 3, 100415, March 27, 2023 ª 2023 The Author(s). 1
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information loss likely occurs when using high-level properties,

which makes the behavior identification less accurate. For

example, a tool that only relies on postures would miss the infor-

mation on the body color and textures, which can also be impor-

tant for behavioral identifications.

Recent advancements in deep learning offer new approaches

for behavior analysis. For example, DeepLabCut uses deep con-

volutional neural networks21,22 to enable accurate tracking of the

positional changes of the animal body over time,20 but on its own

does not identify or quantify any behavior. As a result, additional

post hoc tools, such as B-SOiD,17 are required to identify and

quantify a behavior based on the outputs of the tracking tools.

Other deep-learning-based tools, including DeepEthogram,23

focus on behavior classification but do not provide quantitative

measurements of the body kinematics during a behavior (e.g.,

motion speed). SIPEC classifies the behaviors and also tracks

body key points.24 However, it requires manual labeling for

the tracking, and the tracking is still a step away from the calcu-

lated measurements on the behavior. Moreover, these tools are

computationally expensive and require powerful graphics pro-

cessing units (GPUs) to run.

Here, we report a computational tool, LabGym, for quanti-

fying user-defined animal behaviors without these limitations.

When people manually analyze behaviors in a video, they typi-

cally ignore irrelevant information (such as static background)

and make holistic observations of the behaving animal by

considering both spatiotemporal changes and the overall

movement pattern to categorize the behavior. Inspired by this

human cognitive process, we designed LabGym to ignore static

backgrounds, track multiple animals, accurately categorize

behavior by holistic assessment, and then calculate quantita-

tive measurements of each behavior. The technical innovations

in LabGym include an approach for efficiently evaluating the an-

imal’s movement patterns and a method of effective back-

ground subtraction. Moreover, LabGym provides users a way

to generate stand-alone, visualizable behavior examples that

can be shared across the research community as ground truth

(i.e., the examples with assigned true labels)25–27 or for bench-

marking different algorithms. Finally, LabGym has several fea-

tures that improve user-friendliness and accessibility, which

include a graphical user interface (GUI) requiring no program-

ming knowledge to use, the deep neural networks that can

be customized through the GUI, and no requirement of GPUs

to run.

We show that LabGym precisely captures subtle changes in

user-defined behaviors in animals ranging from soft-bodied in-

vertebrates to rodents. We further demonstrate its strength by

comparing it with the existing standards.

RESULTS

The LabGym pipeline
LabGym was designed to efficiently and accurately identify

user-defined behavioral types for each animal in an experi-

mental session, and then provide quantitative measurements

of each behavioral type. The open-source code and a full

manual of LabGym are in its GitHub page (https://github.com/

umyelab/LabGym).
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LabGym first uses an effective method to remove background

in each video frame and tracks each animal within the video (Fig-

ure 1A). At each frame of the video, a module termed the ‘‘Cate-

gorizer’’ determines which behavior an animal performs during a

time window that spans from the current frame back to a user-

defined number of frames prior (‘‘time window’’). To achieve

this, two types of data are extracted at each video frame for

each animal (Figure 1B and Data S1, video 1): (1) an animation

(‘‘animation’’) that spans the specified time window, and (2) the

imprint of the positional changes of the animal’s body (including

body parts) over time in the animation, which we term ‘‘pattern

image.’’ These two pieces of data are then analyzed by the

Categorizer that comprises three submodules: the ‘‘Animation

Analyzer,’’ the ‘‘Pattern Recognizer,’’ and the ‘‘Decision Maker’’

(Figure 1C). The Animation Analyzer analyzes all spatiotemporal

details in each animation, whereas the Pattern Recognizer eval-

uates the animal’s overall motion pattern in the paired pattern im-

age (see details in ‘‘The categorizer assesses holistic behavioral

information’’). The Decision Maker integrates the outputs from

the Animation Analyzer and Pattern Recognizer to determine

the behavior type.

The Categorizer needs to be trained on behavior examples of

ground truth (i.e., user-labeled behavior examples). A behavior

example consists of an animation and its paired pattern image,

both of which are generated by LabGym (Figure 1B). Users

then label the behavior examples by sorting them into folders

according to their behavior types and naming the folder to indi-

cate the behavior types. This way, users establish a ground

truth behavior dataset that can be used to train a Categorizer

(Figure 1D).

After behavior categorizations, the quantification module

called the ‘‘Quantifier’’ (Figure 1E) uses information from the

animal foregrounds to compute various quantitative measure-

ments for each behavior (e.g., duration, speed), which are

stored in individual spreadsheets (Figure 1F). The output also in-

cludes temporal raster plots of behavioral events (and their

probabilities) and annotated videos for visualization of behav-

ioral categorization.

Effective background subtraction ensures efficient
analyses
Behavioral experiments often involve behavior-irrelevant back-

grounds—such as the enclosures for holding the animals or

changes in illumination during optogenetic manipulation—that

render analyses inaccurate and inefficient. To address these is-

sues, we designed a module in LabGym that removes back-

grounds but retains all the pixels representing the animals in

each frame (i.e., foreground; see also below in ‘‘The categorizer

assesses holistic behavioral information’’ for options that incor-

porate background information).

We reasoned that backgrounds in experimental conditions are

often static and that the pixel value in each background location

would be stable over time (Figure S1A). Therefore, we developed

a method to find the stable value of each pixel and use these

values to reconstruct the static background (Figure 2A and

STAR Methods). The static background is then subtracted from

each frame to obtain the foreground, which represents the animal

(Figure 2B). Compared with two state-of-the-art background

https://github.com/umyelab/LabGym
https://github.com/umyelab/LabGym


Figure 1. The pipeline of LabGym

(A) Static backgrounds are removed in each video

frame and individual animals are tracked.

(B) At each frame of the video, LabGym generates

a pair of data for each animal, which comprises

a short animation spanning a user-defined time

window and its paired pattern image representing

the movement pattern of the animal within the

animation.

(C) The Categorizer uses both the animations and

pattern images to categorize behaviors during the

user-defined time window (i.e., the duration of the

animation). The Categorizer comprises three sub-

modules, the ‘‘Animation Analyzer,’’ the ‘‘Pattern

Recognizer,’’ and the ‘‘Decision Maker.’’ The Ani-

mation Analyzer analyzes all spatiotemporal de-

tails in the animation for each animal whereas the

Pattern Recognizer evaluates the overall move-

ment patterns in the paired pattern image. The

Decision Maker integrates the outputs from both

the Animation Analyzer and the Pattern Recognizer

to determine which user-defined behavioral cate-

gory is present in the animation for each animal.

(D) The animations and pattern images can be

exported to build visualizable, sharable behavior

examples for training the Categorizer.

(E and F) After the behavioral categorizations, the

quantification module (‘‘Quantifier’’) uses informa-

tion from the behavioral categories and the animal

foregrounds to compute specific quantitative mea-

surements for different aspects of each behavior.

See also Data S1.
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subtraction methods, Local SVD Binary Pattern (LSBP)28 and

GSoC29 (implemented in Google Summer of Code 2017), our

stable-value detection method reconstructed much cleaner

backgrounds (with fewer traces of the animals) on behavioral

videos of multiple animals and in diverse experimental settings

(Figures 2B and S1B). Notably, animals are reliably tracked by

LabGym even in videos with unstable or shifting illuminations

(Data S1, video 2) because the background during illumination

changes (e.g., during optogenetic stimulation) can be recon-

structed separately.

The tracking of each animal over time is performed based on

the assumption that the Euclidean distance between the centers

of the same animal in consecutive frames are always the smallest

among all Euclidean distances between each possible pair of an-

imal centers. Each tracked animal is assigned by a unique iden-

tity (ID) that links to a matrix for storing all information about that

animal over time.

Multiple animals in the same enclosure sometimes collide

with each other, which can cause tracking errors. To make

the analysis fully automatic, LabGym excludes animals from

tracking if users choose not to allow animal body entanglements
Cell Rep
(Figure 2C, Data S1, video 3, and STAR

Methods). This ensures that the analysis

is only performed on reliably tracked indi-

vidual animals. If body entanglements are

allowed, LabGym is also useful to identify

social behaviors in which animals have
body contact (Figure 2C, Data S1, video 4, and STAR Methods).

In this scenario, merged animals are analyzed as one.

The Categorizer assesses holistic behavioral
information
We built the Categorizer with three submodules: Animation

Analyzer, Pattern Recognizer, and Decision Maker (Figure S2

and STAR Methods), each of which consists of neural networks

that suit the design goals. Importantly, the two subnetworks—

the Animation Analyzer and the Pattern Recognizer—were de-

signed to analyze two types of behavioral representations that

complement each other: one is an animation and the other is

an image that contains the imprints of the contours of the ani-

mal’s whole body and body parts (e.g., limbs) at different time

points. This ensures accurate categorizations of behavior

through holistic assessment.

Animal behavior contains changes in both spatial and tempo-

ral dimensions. The Animation Analyzer first uses time-distrib-

uted convolutional layers to analyze raw pixel values that

represent the animal in each frame of an animation to learn

the frame-wise spatial details. It then uses recurrent layers to
orts Methods 3, 100415, March 27, 2023 3



Figure 2. LabGym removes backgrounds

and tracks multiple animals

(A) The stable value of each pixel is used to

reconstruct the static background for a video.

(B) Examples of video frames showing that animal

foregrounds are clearly presented after removing

the static backgrounds that are constructed by our

method of stable-value detection.

(C) Examples of video frames showing that Lab-

Gym tracks multiple animals performing either

non-interactive or social behavior. Left: non-inter-

active behavior, in which animal (larva) contact is

not allowed; right: social interaction in which ani-

mal (adult fly) contact is allowed.

See also Figure S1 and Data S1.
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compute temporal connectivity among these frame-wise spatial

details, in order to learn about how they are organized along the

temporal axis (Figure S2A).

During a behavior, the positional changes of the animal body

over time can form a pattern that is unique to the behavior.

However, Animation Analyzer might not be sensitive enough to

capture this motion pattern. Therefore, we introduced ‘‘pattern

image’’ to present the overallmotion pattern of a behavior andde-

signed Pattern Recognizer that comprises convolutional layers to

analyze the pattern image (Figure S2B). In each pattern image,

the contours of the animal body (including body parts) in each

frame of the animation were superimposed with gradually chang-

ing colors to indicate their temporal sequences. This shows the

animal’s overall movement pattern during the animation in a sin-

gle 2-dimensional image to allow for efficient analyses.

The Decision Maker uses a concatenating layer to integrate

the outputs from both the Animation Analyzer and the Pattern

Recognizer and passes the integrated information to fully con-

nected (dense) layers for discriminating behavioral categories

(Figure S2C).

The background of the behavior videos sometimes can be

useful for identifying the behaviors. For example, bedding in a

mouse’s mouth can indicate nest building and, thus, including

the bedding in the animations can facilitate the categorization

of nest building behavior (Figure S3A). Therefore, in LabGym

we provide users with an option of whether to include the back-

ground in the animations. Note that we did not include back-

ground in any animation used in this study since the background

is irrelevant to the behaviors in this study.
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The motion patterns of whole-body

contours are useful for distinguishing

behaviors like curling versus uncoiling

in Drosophila larvae, wing extension

versus abdomen bending in adult flies,

or walking versus rearing in rats (Fig-

ure S3B). However, they are not useful

for distinguishing behaviors like facial

grooming versus sniffing, or ear groom-

ing versus sitting still in mice (Fig-

ure S3C). In these behaviors, the motion

patterns of specific body parts (e.g.,

limbs or noses) are the key to behavior
categorizations. Therefore, we provide users an option in Lab-

Gym of whether to show the movement of body parts in the

pattern images. It is noteworthy that LabGym automatically

identifies the contours of all the body parts without the

need of manual labeling or model training, which differs

conceptually from the approaches that tracks body parts with

deep learning.

To test whether combining the Animation Analyzer with the

Pattern Recognizer achieves better performance than using

either alone, we performed the ‘‘ablation’’ experiment. In this

experiment, we compared the behavior categorization accu-

racy of three Categorizers, one with Pattern Recognizer

removed, one with Animation Analyzer removed, and one

containing both. The three Categorizers were trained and

tested on the same training (1,596 pairs of examples) and

testing datasets (3,120 pairs of examples). As all the other

experiments in this study, the training examples and testing

examples for the ablation experiments were generated by

LabGym from different videos and animals and are publicly

available (STAR Methods). Specifically, the training exam-

ples were from over 100 different video recordings of

�300 different larvae, 10 different rats, and three different

mice; the testing examples were from videos of �200 different

larvae, eight different rats, and two different mice. We

chose three larval behaviors and four mouse behaviors to test

the three Categorizers because these behaviors are

visually similar and thus challenging for the Categorizers

to distinguish (Data S1, video 5). We assessed the preci-

sions, recalls (sensitivity), and F1 score (weighted precision



Figure 3. The inclusion of Pattern Recog-

nizer for analyzing the Pattern images en-

hances the accuracy of the Categorizer

(A and B) Bars showing the test metrics (pre-

cisions, recalls, and F1 scores) for three Catego-

rizers: one without Pattern Recognizer, one

without Animation Analyzer, and one with both.

Test results of datasets from Drosophila larvae (A)

and mice (B) are shown. In all three Categorizers,

the input shapes and the complexity levels are the

same for Pattern Recognizer (83 83 3, level 1 for

larva dataset; 32 3 32 3 3, level 3 for mouse da-

taset), and Animation Analyzer (8 3 8 3 1 3 15,

level 1 for larva; 32 3 32 3 1 3 14, level 3 for

mouse). Seven videos for larvae (10 larvae per

video) and two videos for mice (one mouse per

video) that were not used for generating the

training datasets were used to generate the testing

data (animations and their paired pattern images).

The data with visibly missing body parts (e.g.,

missing limbs/heads) were excluded (56 pairs,

which is 1.76% of the total data generated),

because they were caused by occasional, false

tracking (often due to changes in the background)

and might negatively affect the performance of the

Categorizer. Such performance decline is not

because of any issues of the Categorizer andmight

bias the testing of Categorizers. A total of 795 pairs

(for larvae) and 2,325 pairs (mice) of data were

randomly selected and then were sorted by ex-

perimenters into different folders under user-

defined behavioral names (building ground truth

testing datasets). The ground truth testing data-

sets were then used to test the categorization

metrics of the three Categorizers.

See also Figure S2 and Data S1.
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and sensitivity, STAR Methods) of the three Categorizers

for behavioral categorizations. The Categorizer containing

both the Animation Analyzer and Pattern Recognizer signifi-

cantly outperformed the Animation Analyzer alone across

most behaviors (Figure 3), demonstrating the necessity

of including the Pattern Recognizer in the Categorizer to

achieve higher accuracy in behavioral categorizations.

Notably, the Categorizer with Pattern Recognizer alone per-

formed better than that with the Animation Analyzer, indicating

the efficacy of using Pattern Recognizer to analyze the pattern

images.

The Categorizer accurately categorizes user-defined
behaviors across species
Since the behavior types for the Categorizer to recognize are

defined by users, rather than pre-defined in the program, the

Categorizer can identify various behaviors across diverse an-

imal species. To demonstrate this, we used LabGym to study

relatively simple behaviors in Drosophila larvae and behaviors
Cell Rep
of increasing complexity in rodents. We

first used LabGym to generate and sort

separate behavioral datasets for

Drosophila larvae, rats, and mice (Data

S1, videos 6–8). The larva dataset

(5,251 pairs of examples) contains the
fewest categories with sufficient examples to cover almost

all the variations of each behavior; the rat dataset (3,864 pairs

of examples) contains a larger number of categories and more

complex behaviors that encompass subtle distinctions be-

tween categories; the mouse dataset (4,869 pairs of exam-

ples) contains additional categories of even more complex

behaviors.

The Categorizer is customizable with different input shapes

(input frame/image width/height, colored/gray channel, and

timestep) and different levels of complexity (the network

structure and the number of layers) to address behaviors of

various complexity. To provide a reference for customizing

the Categorizer, which is a trial-and-error process, we trained

several Categorizers with different complexity for each species

and determined themost suitable ones based on their overall ac-

curacy of behavioral categorizations (Table S1 and STAR

Methods). The selected Categorizer for each dataset was named

as LarvaNociceptor_Topview_30fps (LarvaN), RatAddiction_

Topview_30fps (RatA), and MouseHomecage_Sideview_30fps
orts Methods 3, 100415, March 27, 2023 5



Figure 4. Accurate frame-wise categorizations of various user-defined behaviors by different Categorizers

(A–C) Bars showing the test metrics (overall accuracy, precisions, recalls, and F1 scores) for LarvaN (A), RatA (B), andMouseH (C) in video analysis. Seven videos

for larvae (10 larvae per video), 10 videos for rats (one rat per video), and two videos for mice (one mouse per video) that were not used for generating the training

datasets were used to generate the testing data (animations and their paired pattern images). A total of 2,162 pairs (for larvae), 4,828 pairs (rats), and 12,653 pairs

(mice) of data were randomly selected and then were sorted by experimenters into different folders under user-defined behavioral names (building ground truth

testing datasets).

See also Figure S3, Data S1 and Table S1.
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(MouseH). These three Categorizers were then tested on 19,643

pairs of testing examples in total.

Larval behaviors are relatively simple. The LarvaN with simple

complexity achieved 97%accuracy in frame-wise categorizations
6 Cell Reports Methods 3, 100415, March 27, 2023
of six different behaviors elicited by noxious stimuli (Figure 4A and

Data S1, video 9).

Rats show complex behaviors and the differences among

them can be extremely subtle due to the recording or
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experimental conditions. Despite these challenges, the RatA

achieves 90% accuracy in frame-wise categorizations of eight

types of visually similar behaviors such as body grooming versus

face grooming, or head swaying versus in place (Figure 4B and

Data S1, video 10).

We next examined 20 types of user-defined behaviors of mice

in their home cage. The MouseH achieved 96% accuracy in

frame-wise categorizations on these behaviors with as few as

79 training examples for some categories (Figure 4C and Data

S1, video 11). Although both were used for categorizing rodent

behaviors, MouseH trained on pattern images including the

body parts performed better than RatA trained on those

excluding body parts (Figures 4B and 4C). This indicates that

including the body parts in pattern images can boost the learning

efficiency of the Categorizer.

Due to the data-driven nature of deep learning, the accuracy

of the Categorizer largely depends on the amount, diversity,

and labeling accuracy of the training examples. Therefore, the

performance of the Categorizers can be continuously improved

over time with the accumulation of well-selected training

examples.

TheQuantifier provides quantitativemeasurements that
are sufficient for capturing subtle changes in diverse
aspects of each behavior
To quantitatively measure the behavior intensity and the body ki-

nematics during a behavior, we designed a quantification mod-

ule in LabGym called ‘‘Quantifier.’’ The Quantifier calculates 14

parameters to quantify a given behavior: count, latency, dura-

tion, angle, speed (total traveling distance divided by time),

velocity (the shortest distance from the beginning to the end

divided by time), acceleration/velocity reduction, distance, in-

tensity (area), intensity (length), magnitude (area), magnitude

(length), vigor (area), and vigor (length) (Figure S4 and STAR

Methods). Additional parameters can be added in future versions

of LabGym. The definitions of these parameters are as follows:

d The count is the summary of the behavioral frequencies,

which is the occurrence number of a behavior within

the entire duration of analysis. Consecutive single occur-

rences (at a single frame) of the same behavior are consid-

ered as one count.

d The latency is the summary of how soon a behavior starts,

which is the time starting from the beginning of the analysis

to the time point that the behavior occurs for the first time.

d The duration is the summary of how persistent a behavior

is, which is the total time of a behavior within the entire

duration of analysis.

d The angle is the movement direction (against to the animal

body axis) of the animal during a behavior episode, which

is the mean of all the included angle (q) between animal

body axis and the movement direction during the time win-

dow (tw) for categorizing the behavior.

d The speed is the summary of how fast the animal moves

when performing a behavior, which is the total distance

traveled (can be back and forth) (d) (between the two cen-

ters of mass of the animal) during the time window (tw) for

categorizing the behavior divided by tw.
d The velocity is the summary of how efficient the animal’s

movement is when performing a behavior, which is the

shortest distance between the start and the end positions

(dt) (between the two centers of mass of the animal)

divided by the time (t) that such displacement takes place.

d The acceleration/velocity reduction is the summary of

how fast the animal’s velocity changes while performing

a behavior, which is the difference between maximum

velocity (vmax) and minimum velocity (vmin) divided by the

time (tv) that such velocity change takes place.

d The distance is the total distance traveled of the animal by

performing a behavior within the entire duration of analysis.

d The intensity (area)/intensity (length) is the summary of

how intense a behavior is, which is the accumulated

proportional changes of the animal body area (a)/length

(L) between frames divided by the time window for catego-

rizing the behaviors (tw) when performing a behavior.

d The magnitude (area)/magnitude (length) is the sum-

mary of the motion magnitude, which is the maximum pro-

portional change in animal body area (a) or length (L) when

performing a behavior.

d The vigor (area)/vigor (length) is the summary of how

vigorous a behavior is, which is the magnitude (area)/

magnitude (length) divided by the time (ta or tl) that such

a change takes place.

To test how well the Quantifier performs in quantifying behav-

iors in diverse animal species, we applied LabGym to experi-

ments in larvae, rats, and mice.

Drosophila larva behavior

Previous studies show that optogenetic inhibition of larval leuco-

kinin (LK) neurons slightly impaired larval behaviors elicited by

nociceptor activation.30 In these experiments, both the subtle

changes in behaviors and the shifting illumination caused by

optogenetic manipulations posed challenges for automatic

behavioral analysis. We thus tested whether LabGym was able

to capture the behavioral changes in these experiments (Data

S1, video 12). Compared with the control group, larvae in the

LK inhibition group showed amodest reduction in the probability

of body rolling behavior, which is a characteristic nociceptive

response31,32 (Figures 5A and 5B). No change was observed in

the latency of the response onset after optogenetic stimulation

of nociceptors (Figure 5C). Moreover, LK inhibition caused a

slight yet significant reduction in rolling velocity (Figure 5D) and

duration (Figure 5E). We also compared several quantitative

measurements of different behaviors and found that the results

indeed reflect the ethological meaning of these behaviors. For

example, rolling achieves higher speed than crawling (Figure 5F),

supporting the notion that rolling was a more efficient way than

crawling to escape from harm.31,32 Similarly, despite their spatial

similarity, curling was more vigorous than turning (Figure 5G),

echoing the fact that larvae typically perform curling under

noxious stimuli but tend to turn in in response to milder situation

like gentle touch or exploration.31–34 Thus, LabGym is sufficiently

sensitive to detectmodest effects of in vivo neuronal inhibition on

behavior, and it does so on videos with shifting illumination.

When Drosophila larvae are exposed to sound, they display

a startle response that is characterized by the cessation of
Cell Reports Methods 3, 100415, March 27, 2023 7
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crawling (‘‘freezing’’), retraction of their heads (‘‘hunching’’), and

excessive turning movements.35 To test whether LabGym could

identify the subtle differences in behaviors elicited by different

intensities of sound, we trained another Categorizer (Larva

Mechanosensor_TopView_30fps) with examples of sound-eli-

cited behaviors in Drosophila larvae and used it for analysis

(Data S1, video 13). This Categorizer has the same complexity

as LarvaN. Compared with larvae exposed to 80 dB white noise,

those exposed to 94 dB showed a similar hunching probability

(Figures 5H and 5I), but the magnitude of head retraction during

hunching was enhanced (Figure 5J). Furthermore, larvae

exposed to 94 dB showed more frequent turning (Figure 5K)

and prolonged freezing (i.e., immobility; Figure 5L), which re-

sulted in significant reductions in crawling distance (Figure 5M).

However, when larvae froze, the reduction in the velocity of their

movement was similar between the two groups (Figure 5N).

Thus, LabGym was able to capture quantitative differences in

the behaviors induced by auditory stimuli of different intensities.

Rodent behavior

It is well-established that drugs like amphetamine, produce dose-

dependent increases in psychomotor activity, and that the inten-

sity of these behaviors increases (i.e., sensitizes) with repeated

drug exposure.36,37 Psychomotor activity in rats encompasses a

wide range of behaviors that include rearing, hyper-locomotion,

andstereotyped, repetitiveheadmovements (i.e., stereotypy).36,37

LabGym automatically captured dose-dependent changes in

the intensity and kinematics of the psychomotor activity (Figure 6A

and Data S1, video 14). These include the intensity of rearing (Fig-

ure 6B), the counts and the traveling distance of locomotion

(Figures 6C and 6G), and the duration of headmovements (persis-

tent head movements indicating stereotypy; Figure 6D), following

systemic amphetamine administration. Impressively, LabGym

even captured stereotypy interspersed with small bursts of loco-

motion—an indication of a strong psychomotor response at high

dose of amphetamine (e.g., Figures 6A and 6C, 5.6 mg/kg dose

group in amphetamine baseline group). LabGym also captured

quantitative changes in these behaviors across the development

of sensitization, in which repeated injection of amphetamine re-

sulted in more intense behavioral responses to the same dose of

drug (Figures 6E–6H). In contrast, the intensity of spontaneously

occurring behaviors such as body/face grooming were stable

across time in rats treated with repeated saline (Figures 6I–6K).

When an animal ages, its ethogram might not change, yet the

quantitative measurements of its behaviors (e.g., running speed)

may decline. LabGym not only categorized all the behaviors of

interest for both younger (32-week) and older mice (80-week)

in a cage with a running wheel (Figure 6L and Data S1, video

15), but also captured the decline in running vigor of the older

versus the young mice by a parameter (vigor_area) that summa-

rizes the areal changes per unit time of the animal’s body (Fig-

ure 6M and STAR Methods).

Taken together, these results demonstrate that the Quantifier

reliably and precisely captures quantitative changes in behaviors

across species.

GUI with optional settings for user-friendly usage
To make LabGym adaptable to various experimental settings

and accessible to users without requiring a computer program-
8 Cell Reports Methods 3, 100415, March 27, 2023
ming background, we implemented a GUI (Figure S5A). This in-

cludes four functional units: Generate Behavior Examples, Train

Categorizers, Test Categorizers, and Analyze Behaviors.

The ‘‘Generate Behavior Examples’’ unit is for batch processing

of videos to generate visualizable behavior examples (animations

and paired pattern images). Users can select and sort these ex-

amples into different folders according to their behavior types.

Users can then name these folders with the behavior names and

use them to train the Categorizers in ‘‘Train Categorizers’’ unit,

or to test a trained Categorizer in ‘‘Test Categorizers’’ unit. The

‘‘Analyze Behaviors’’ unit is for batch processing of videos for

behavioral analysis. It produces an annotated video (Data S1,

videos 9–15), a raster plot of behavioral events (displayed in

user-defined colors), and their occurring probabilities (by color in-

tensities) for each animal in one batch of analysis (Figures 5A, 5H,

6A, and 6L), and spreadsheets in Excel or CSV format containing

individual behavioral parameters for each behavior of each

animal.

Notably, the flexible options in the GUI of LabGym, especially

the customizable input shapes and the complexity of Categoriz-

ers, allow it to achieve fast processing speed in network training

and in analyzing behaviors of various complexity on commonly

used laptops that do not have GPUs (STAR Methods).
Benchmark comparison with the existing standards
We compared the performance of LabGym against that of

the combination of DeepLabCut20 and B-SOiD17 (‘‘DLC +

B-SOiD’’), an exciting approach within the field of behavioral

neuroscience. We compare LabGym to ‘‘DLC + B-SOiD’’

because both tools track animals, classify user-defined behav-

iors, provide quantitative measurements of kinematics in a

behavior, and have a GUI for accessibility to users without

requiring computer programming knowledge.

Both ‘‘DLC + B-SOiD’’ and LabGym can be iteratively opti-

mized by adding more training data and refining the data label-

ing. Therefore, the goal of comparisons here is not to explore

how to modify the training datasets to achieve their best perfor-

mance, but to compare their performance given the same

training resources. To achieve this, for each tool we used the

same computer, used the same videos to generate training data-

sets, and set the time for manual labeling and sorting to a fixed

30-min. We then compared the performance of each approach

on the same testing dataset, which was distinct from the training

data (Figure 7A).

Specifically, the training dataset was composed of four videos

(2-min duration at 30 fps) containing a range of rat behavior from

the psychomotor activity experiments described above. The la-

bor for ‘‘DLC + B-SOiD’’ was spent on labeling animal body parts

in extracted frames for tracking (�25 min) and assigning

behavior names for behavior classification (�5 min), while that

in LabGymwas spent on sorting behavior examples for behavior

classification (�30 min). The labelers are experienced users

for each approach. The testing dataset contained three videos

(1-min duration at 30 fps per video).

(1) A video that was randomly selected and trimmed from

‘‘Amphetamine (baseline)’’ in Figure 6A, in which the rats

were exposed to 5.6 mg/kg amphetamine for the first



Figure 5. The Quantifier captures subtle changes in the behavior of Drosophila larvae

(A and H) Raster plots showing the frame-wise categorizations by: (A) LarvaN on control (w; LK-GAL4/+; TrpA1-QF, QUAS-ChR2T159C, UAS-jRCaMP1b/+) and LK

neuron inhibition (w; LK-GAL4/+; TrpA1-QF, QUAS-ChR2T159C, UAS-GtACR1/+) groups after nociceptors were optogenetically activated (blue dashed line

indicates the stimulation onset); (H) LarvaMechanosensor_Topview_30fps on larvae (Canton S) under different intensities of sound stimuli (black dashed line

indicates the stimulation onset). Color bars: behavioral categories (color intensities indicate the behavioral probabilities). The x axis represents the time and y axis

represents the larval IDs.

(B–G) Parameters calculated by the Quantifier for different behaviors elicited by optogenetic activation of nociceptors. The colors match those for behaviors

shown in (A). Data in (F) and (G) are from the control group in (A).

(I–N) Parameters calculated by the Quantifier for different behaviors elicited by sound stimulation. The colors match those in (H). Probability in (B) and (I) is the

fraction of responders (behavioral count > 0) in total animals. n.s., p > 0.05; *p < 0.05; ***p < 0.001 (Fisher exact test for B and I; unpaired t test for C–G and J–N).

Error bars represent standard error of the mean.

See also Figure S4 and Data S1.
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Figure 6. The Quantifier captures quantitative changes in rodent behaviors

(A) Raster plots showing the frame-wise categorizations by RatA of behavior after saline or amphetamine injection. Plots at the left (baseline) show responses to

the first exposure to amphetamine across increasing doses (baseline; 0.32, 1.0, 3.2, and 5.6 mg/kg, i.p.); Plots at the right show responses to increasing doses of

amphetamine after repeated amphetamine treatment (post treatment; 21 days). Animals in the saline group received repeated saline throughout. Color bars:

behavioral categories (intensities indicate the behavioral probabilities). x axis: time (each tick is 10-s); y axis: each row represents an individual rat. These same

colors are used to indicate behavioral categories in (B)–(K).

(legend continued on next page)
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time. The rat in this video showed psychomotor activities

such as frequent rearing and locomotion.

(2) A video that was randomly selected and trimmed from

‘‘Amphetamine (post treatment)’’ in Figure 6A, in which

the rats were exposed to 5.6 mg/kg amphetamine after

experiencing repeated amphetamine exposure (i.e., a

sensitizing regimen). The rat in this video showed intensi-

fied psychomotor activity such as frequent stereotypy

(repeated head moving).

(3) A video from Ferrario et al.36 in which testing occurred in a

different enclosure than that used in the training videos.

This video was used to test how well each approach

can be applied to experiment settings (such as enclosure,

camera, and lighting conditions) that are completely

different from those used for training.

Comparisons were performed on two key aspects: the total

time cost and the end accuracy of identifying behaviors of inter-

est. We first input the four training videos into DLC to extract

frames and labeled six body parts in each frame. We then used

these labeled frames to train a DLC model. This resulted in only

2.83 pixels of error in evaluation, indicating a successful training

(Figure S5B). Next, we ran the trained DLC model on the four

training videos to get the frame-wise positions of the six body

parts. These outputs were then fed into B-SOiD to train a

B-SOiD model for behavior classification. B-SOiD uses an unsu-

pervised approach to form behavior groups and outputs video

examples for each group, which is a convenient way for users

to determine behavior type for each group and supervise the

behavior classification. We tested different numbers of behavior

groups and inspected the video examples for each group. We

found that a 5-group model showed well-separated behavioral

clusters (Figure S5C) and provided meaningful and consistent

behavior type for each group. Using more groups resulted in

toomanydifferent groups that turnedout to be the samebehavior

thatwas expressed in differentways, or a single group containing

video examples of different behaviors. We then labeled each

group as a single behavior type based on the most frequently

observed behavior among the videos in that group (Figure S5D).

Finally, we ran the trained DLCmodel on the three testing videos

to produce the frame-wise body part position output and fed that

into the trained B-SOiD model for behavior classification.

While ‘‘DLC + B-SOiD’’ requires manual labeling and network

training for tracking the animal body parts, LabGym saves this
(B–D) The dose-response curves of rearing intensity (B), locomotion counts (C), a

saline (baseline). *p < 0.05; **p < 0.01; ***p < 0.001 (unpaired t test between salin

(E) Dose-response curves for head movement duration at baseline and after re

**p < 0.01; ***p < 0.001 (unpaired t test between baseline and post treatment gro

(F–H) Within subject comparison of rearing intensity (F), locomotion distance (

amphetamine at baseline and after repeated amphetamine treatment. *p < 0.05;

(I–K) Dose-response curves of the intensity and counts of body grooming (I and J

(L) Raster plots showing the frame-wise categorizations by MouseH for a young

(intensities indicate the behavioral probabilities). x axis: time (in seconds); y axis:

randomly selected from a 4-h recording for eachmouse, and those containing wh

windows for each mouse were randomly selected for analysis.

(M) The running vigor of the two mice in (L). **p < 0.01 (unpaired t test).

All error bars represent standard error of the mean.

See also Figure S4 and Data S1.
step; users only need to specify a time window in a video for

background extraction to enable the tracking. We inputted the

four training videos into LabGym to generate behavior examples

and then sorted these examples into different folders according

to their behavior types. Next, we input these folders into LabGym

to train a Categorizer and ran LabGym on the three testing videos

for behavior classification.

The total time to set up and run ‘‘DLC + B-SOiD’’ on all training

and testing videos was about 9 h, while that for LabGymwas less

than 1 h (Figure 7B). To compare the end accuracy of behavioral

categorizations with each tool, we first manually annotated

the behavior types in each frame of each testing video

(1,800 frames per video). We then compared the frame-wise

behavior classification outputs of B-SOiD and LabGym with

the hand-annotated data. We found that both ‘‘DLC + B-SOiD’’

and LabGym accurately identified rearing and locomotion in

the amphetamine baseline video (Figure 7C and Data S2, video

16); however, ‘‘DLC + B-SOiD’’ failed to identify head move-

ments post amphetamine treatment video, whereas LabGym

achieved good accuracy in identifying this behavior (Figure 7D

and Data S2, video 17).

When the testing was applied to a video made in a different

enclosure with different camera and lighting conditions, LabGym

was still able to correctly identify the behaviors of psychomotor

activity with only a modest drop in accuracy (Figure 7E and

Data S2, video 18). In contrast, ‘‘DLC + B-SOiD’’ was not able

to identify these behaviors at all (Figure 7E).

It is possible that ‘‘DLC + B-SOiD’’ is able to accurately identify

the ‘‘head movement’’ behavior in the testing videos if additional

training data were provided. Alternatively, it is possible that the

high-level properties (body length, angle, and speed) used by

B-SOiD to form behavioral groups might not be useful for distin-

guishing head movements from other behaviors. Nevertheless,

the purpose here was to directly compare approaches using

the same training resource. Both approaches were able to accu-

rately identify rearing, but only LabGymwas able to generalize to

another experimental setting, and capture behaviors specific to

psychostimulant drug effects.

DISCUSSION

LabGym opens opportunities for automatic, high-throughput,

targeted, and customizable analyses of behaviors without the

cost of commercial products, which will greatly facilitate the
nd head movement duration (D) following the first exposure to amphetamine or

e and amphetamine groups).

peated amphetamine exposure (post treatment, i.e., sensitization). *p < 0.05;

ups).

G) and the head movement duration (H) in response to the first 0.32 mg/kg

**p < 0.01 (paired t test).

) and the duration of face grooming (K) in in rats repeatedly treated with saline.

er (32-week) or an older (80-week) mouse. Color bars: behavioral categories

different random 2-min time window. Multiple (>100) 2-min time windows were

eel-running behavior (targeted time window) were sorted out. Ten targeted time
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Figure 7. Benchmark comparison between the existing standards and LabGym

(A) The workflow of the benchmark comparison between the combination of DeepLabCut and B-SOiD (DLC +B-SOiD) and LabGym, which was performed on the

same computer that has a 3.6 GHz Intel Core i9-9900K CPU, a 64 GB memory, and an NVIDIA GeForce RTX 2080 GPU. The setting of Categorizer in LabGym:

Animation Analyzer: level 1 with input shape 8 3 8 3 1 3 20; Pattern Recognizer: level 2 with input shape 16 3 16 3 3.

(B) The total time spent for DLC + B-SOiD and LabGym to finish the workflow in (A).

(C and D) Comparisons of frame-wise behavior classifications between the computer software and the ground truth (expert human annotation) in two testing

videos: baseline (C) and post treatment (D). The raster plots show frame-wise behavior events with the x axis indicating the time (1 min). Different colors indicate

different behavior types.

(E) Comparison of frame-wise behavior classifications between the computer software and the ground truth (expert human annotation) in generalization to a different

testing enclosure. The raster plots show frame-wise behavior events with the x axis indicating the time (1 min). The colors match those for behaviors shown in (C).

See also Figure S5 and Data S2.
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process of mechanistic discoveries in biological research. The

flexibility and trainability of this tool allows it to be applied to a

very broad variety of species, behaviors, and questions, and to

be iteratively refined toward a particular set of conditions over

time. The visualizable behavioral datasets generated by LabGym

will also benefit research in neuroscience, behavioral science,

and computer science by helping to standardize procedures

within and across research groups, and by providing long-term

references for future studies to build on.

Innovations in LabGym

First, to the input of the deep neural network we added the

‘‘pattern image’’ to represent the animal’s motion pattern of

both the whole body and body parts efficiently and precisely.

We then designed the Pattern Recognizer in Categorizer to

analyze the pattern image. The results from the ablation experi-

ments demonstrate that the inclusion of ‘‘pattern image’’ greatly

enhances the categorization accuracy of the Categorizer.

Second, we developed a method for effective subtraction of

image background that outperforms state-of-the-art back-

ground subtraction approaches. This method enables accurate

tracking of animal bodies without the need for manual labeling

and model training, which significantly saves the human labor

and accelerates the analysis.

Third, unlike other tools using fixed and complex neural

network structures, such as ResNet50, the users of LabGym

can customize the input shapes and the complexity of the neural

network (the Categorizer) through the GUI for behavioral catego-

rization. This allows LabGym to suit behavior data with different

complexity and enables fast running speed in even common lap-

tops without GPUs.

Last, LabGym provides a GUI and does not require users to

have programming knowledge to achieve the goal of quantifying

the behaviors of their interest. All that users need to do is to

recognize and sort the animations and their paired pattern im-

ages that are generated by LabGym as examples of a given

behavior to ‘‘teach’’ LabGym to identify the behavior. The

behavior is then automatically quantified.

LabGym provides a way for users to generate
visualizable behavioral datasets
In the computer vision field, high-quality datasets, such as

ImageNet,38 have been established to facilitate the training of

deep neural networks and to benchmark different algorithms.

In neuroscience, however, such benchmark datasets for be-

haviors in model organisms are largely absent. A source of

this problem is the lack of tools that can help researchers to

generate standardized, visualizable behavioral datasets that

are easy to label and to share. Although transfer learning that

applies acquired network weights to new categorization prob-

lems can potentially be used to compensate for the lack of spe-

cies-specific behavioral datasets, its efficiency relies on the

similarity between existing datasets used for pretraining the

networks and the new data.39 Current tools using transfer

learning for behavioral categorizations23 used network weights

that were acquired from human behavioral datasets such as

Kinetics-700.40 However, human behaviors are intrinsically

different from the behaviors of model organisms, especially
the soft-bodied ones. Therefore, species-specific behavioral

datasets are still in critical demand for accurate behavioral cat-

egorizations in model organisms.

LabGym addresses this issue by providing a way for users to

generate visualizable behavioral datasets. Importantly, the

well-selected behavioral datasets, if shared in the research com-

munity, not only ensure the accurate and reproducible execu-

tions of categorization criteria across different experimenters

or trials, but also provide benchmarks for comparing different

algorithms, and references for future studies to build on.

Limitations of the study
First, although we tried our best to make the training resource for

each tool as close as possible in benchmarking LabGymwith the

existing standard, the training data for each tool was different.

This is because the data formats in these tools are different.

DLC uses images and B-SOiD uses the time-series (x, y) posi-

tions of body parts derived from DLC, while LabGym uses pairs

of animations and pattern images. It is empirically difficult to use

the same training data for each approach. Moreover, the labor

spent in annotating the training data in each approach was

also intrinsically different. Considering this, we used the same

labeling time for each approach in the comparison.

Second, although LabGym does not have restriction on the

kind of background, enclosure, or camera angle needed, these

aspects need to be static during the period for behavior analysis.

Moreover, the level of illumination needs to be stable during anal-

ysis. Furthermore, animals need tomove around in relation to the

background for LabGym to differentiate them from the back-

ground. Thus, a time window during which animals are moving

is needed for background extraction in LabGym. These limita-

tions can potentially be addressed by implementing mask re-

gion-based convolutional neural networks (mask R-CNN), which

is useful for segmenting animals from backgrounds that contin-

uously change over time.41

Third, the current version of LabGym does not track the posi-

tions of the limbs, although the motion sequences of limb move-

ment can be shown in the pattern image for accurate behavior

identification.

Last, the current version of LabGym is not optimized for

analyzing social behaviors. In social behaviors, animals have

body contacts. The animal identity reassignment after animal

re-separation might not be accurate. The issue might also be

addressed by implementing mask R-CNN in future versions of

LabGym.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

D-Amphetamine hemisulfate salt Sigma Aldrich Cat# 51-63-8

All-trans-Retinal AG Scientific Cat#116-31-4

Experimental models: Organisms/strains

Rat: Sprague Dawley Envigo; Indianapolis IN N/A

Mouse: C57BL/6J The Jackson Laboratory RRID:IMSR_JAX:000664

Drosophila: TrpA1-QF Bloomington Drosophila Stock Center 36345

Drosophila: QUAS-ChR2T159C-HA Bloomington Drosophila Stock Center 52260

Drosophila: LK-GAL4 Bloomington Drosophila Stock Center 51993

Drosophila: UAS-GtACR1-YFP Bloomington Drosophila Stock Center 92983

Drosophila: UAS-jRCaMP1b Bloomington Drosophila Stock Center 63793

Drosophila: Canton S Bloomington Drosophila Stock Center 64349

Software and algorithms

LabGym This study https://github.com/umyelab/LabGym;

https://doi.org/10.5281/zenodo.7579381

Python 3.9 The Python Software Foundation https://www.python.org/; RRID:SCR_008394

Prism 9 GraphPad RRID:SCR_002798

NumPy The NumPy community https://numpy.org/; RRID:SCR_008633

OpenCV The OpenCV community https://opencv.org/; RRID:SCR_015526

SciPy The SciPy community https://scipy.org/; RRID:SCR_008058

Matplotlib The Matplotlib community https://matplotlib.org/; RRID:SCR_008624

scikit-learn The scikit-learn community https://scikit-learn.org/; RRID:SCR_002577

scikit-image The scikit-image community https://scikit-image.org/; RRID:SCR_021142

MoviePy The MoviePy Developers https://zulko.github.io/moviepy/

Pandas The Pandas community https://pandas.pydata.org; RRID:SCR_018214

Seaborn The Seaborn community https://seaborn.pydata.org/; RRID:SCR_018132

Tensorflow The Tensorflow community https://www.tensorflow.org/; RRID:SCR_016345

wxPython The wxPython Developers https://docs.wxpython.org/wx.grid.Grid.html
RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to and will be fulfilled by the lead contact, Bing Ye (bingye@umich.edu).

Materials availability
This study did not generate new reagents.

Data and code availability
d All the data reported in this paper will be shared by the lead contact upon request. The behavioral datasets generated and

analyzed in the current study is deposited for free access (https://drive.google.com/drive/folders/1OISUkm8An4isLFzBtj

7BilI2Jp-J6jEU?usp=sharing).

d All original code has been deposited at Zenodo and GitHub and is publicly available. The DOI and GitHub website are listed in

the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila

Both male and female foraging third-instar larvae were used. All experiments were done on age- and size-matched larvae. The fly

strains are in Key resources table.

Rodents
All rodent procedures were approved by University of Michigan Institutional Animal Care and Use Committee and are consistent with

NIH guidelines.

Adult male Sprague-Dawley rats (�55 days old at the start of the experiment) were pair-housed on reverse 12/12 h light/dark cycle

throughout, food and water were available ad libitum and rats were tested in red light conditions during the dark phase of the cycle

(Envigo; Indianapolis, IN).

Adult male C57BL/6J mice (one animal aged�80 weeks old at the start of the video recordings, one animal aged�32 weeks old at

the start of the video recordings) were single housed in cages within a humidity and temperature-controlled vivarium and kept on a

12/12 h light/dark cycle (lights on 6 a.m.) with ad libitum access to food and water. At the time of video recording, both mice were

single-housed in a cage with bedding, 1/4 Nestlet (Ancare, Bellmore, NY) for nest building, and a Mouse Igloo and Fast Trac running

wheel (Bio-Serv, Flemington, NJ), located within a custom-made white PVC foam sheet (American Plastics Solutions, Saline, MI)

enclosure, located within a humidity and temperature-controlled room. Animals had ad libitum access to food and water during

the video recordings and were kept on a 12/12 h light/dark cycle (lights on 6 a.m.).

METHODS DETAILS

Overall implementation
LabGymwaswritten in Python programming language (version 3.9).42 Python libraries used in LabGym are: Numpy,43 Scipy,44 scikit-

learn,45 scikit-image,46 MoviePy, Matplotlib,47 OpenCV,29 Pandas,48 Seaborn,49 Tensorflow,50 wxPython.51

Computation hardware
The computational procedures in this study were performed on the following 4 computers. (1) a MacBook Pro 13 inch (early 2015

model) with Mac OS Big Sur (or later), 3.1 GHz Dual-Core Intel Core i7 processor, 16 GB 1867 MHz DDR3 memory, and Intel Iris

Graphics 6100 1536 MB graphics. (2) HP Z4 Workstation with Windows 10 Enterprise for Workstations, 3.2 GHz Intel Xeon

W-2104 processor, 32GB 2666 MHz DDR4, and NVIDIA GeForce GTX 1080 Ti. (3) HP Z4 G4 Workstation with Windows 10 Pro

for Workstations, 3.6 GHz Intel Xeon W-2133 processor, 32GB 2666 MHz DDR4, and NVIDIA Quadro P2000. (4) DESKTOP-

G2HRLHT with Windows 10 Pro for Workstations, 3.6 GHz Intel Core i9-9900K CPU, 64 GB 2666 MHz DDR4, and NVIDIA GeForce

RTX 2080.

Remove backgrounds and track multiple animals
Reconstruct the static backgrounds for a video

To reconstruct the static background of a video, the stable intensity value over time for each pixel, denoted as Pstable, was iden-

tified by looking for a sliding time window tstable of 100 frames (about 3 s if the fps is 30) during which the value of this pixel was

stable. Pstable is the mean intensity during tstable, which is obtained by searching through the entire duration of the video. Spe-

cifically, for a video in which the animals were generally lighter than the background, it was identified when the sum of the mean

and SD of pixel values in the time window was the smallest (Equation 1). For a video in which the animals were generally darker

than the background, tstable was the time window in which the sum of the mean and SD of the inverted pixel values was the

smallest (Equation 1).

Pstable = PðtstableÞ;
tstable =

8<
:

argmin
t

ðPðtÞ+ stdðtÞ Þ if body part lighter than background

argmin
t

ðð255 � PðtÞ Þ+ stdðtÞ Þ if body part darker than background
(Equation 1)

where t represents 100-frame time windows sliding over the video, std(t) is the SD of the pixel values during the time window t.

In the less likely case that the animals were partially lighter or darker than the background, Pstablewas themean of this pixel over the

entire duration of the video. In addition, if the illumination was generally stable in the entire video, then we simply used the extremum

value (the minimum for animals lighter than the background, and the maximum for animals darker than the background) to achieve

similar results as using Pstable while keeping the computational cost low. Therefore, we provide users with the option to specify

whether the illumination in the video is stable.
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The Pstable for the time when the illumination changes (for example, the optogenetic manipulation period) was identified separately

when the mean value of all the pixels in the current frame was 1.2-fold greater than that in the first frame.

Track the animals

The foreground (all the pixels of an animal) was obtained by subtracting background in each frame. The approximate area of single

animal was estimated by averaging the total area of all the animals over the animal number. Each animal is a matrix of [identity, [con-

tours], [centers], [behavioral information], .]. We assumed that the Euclidean distance between the centers of the same animal in

consecutive frames is always the smallest among the distances between all the center pairs. In this way, all the animals in current

frames are linked to the same animals in previous frames and the new information of the same animals is added into the animal

matrices. Since the animals might be undetectable in some frames, the algorithm examined the entire frames from the beginning

to the end of the analysis, rather than only examined the consecutive frames, to minimize the probability of not being tracked.

Multiple animals in the same enclosure sometimes collide with each other, which might cause false tracking. To make the analysis

fully automatic, LabGym excludes animals from tracking if they do not meet the user-defined criteria for the number of entangled

animals to be allowed for analysis. For example, if entanglement is not allowed, the merged foreground of two or more entangled

animal would be temporarily excluded from tracking until they separate again. The animal that is lost track for over 1 s will be reas-

signed by a new ID/matrix and the previous ID/matrix for this animal will be deactivated. Any ID/matrix that is deactivated for longer

than 20%of the entire analysis duration is considered as disappeared and is automatically excluded from the analysis, which ensures

that the analysis is only performed on the reliably tracked animals. When the entanglement is allowed, merged foreground will always

be tracked and animal IDs/matrices can be preserved when they separate again.

Generation of animations and pattern images
Generate animations

The animation of an animal is a set of blobs over a user-defined time window. Each blob is a cropped video frame containing a single

animal. The animal foreground in a blob is masked by the animal contour and the area inside the contour in the original frame and the

background is set to pixel value of 0. Users also have the option to include backgrounds in the animations since the environmental

factors sometimes are key to behavioral categorization.

Generate pattern images

The pattern image for each animation was generated by drawing all animal contours (the whole body and the body parts) within the

animation onto a black backgroundwith gradual changing colors to indicate the temporal sequences of the contours. The contours of

inner body parts were identified using the ‘Canny edge detection’ and ‘find contours’ functions in OpenCV library after preprocessing

of each frame. The SD of each pixel value in the detected edges over the user-defined time window (the duration of its paired ani-

mation) was calculated and thresholded to determine whether this pixel belongs to the edges of a body part that has movement dur-

ing the time window. The threshold of the SD is user definable. The sizes of pattern images are the same as the frame in their paired

animations. Users can also choose whether to show animals’ body parts in the pattern images, depending on their needs.

The design and implementation of Categorizer
Animation Analyzer

Animation Analyzer consists of convolutional blocks warped with time distributed layers and followed by recurrent layers (long short-

term memory, LSTM).21,50,52 It takes 4-dimentional tensors (timestep, width, height, color channel) as inputs, in which the timestep,

width/height and color channel are all user definable. The timestep of the input tensors is the number of frames in an animation (the

length of an animation). Ideally the length should precisely match the variable durations of different behaviors so that each animation

only contains a single behavior. However, since deep neural networks require their input shape to be consistent during the analysis,

the durations for all the animations need to be the same. We did not use zero paddings to arbitrarily make the input shape consistent

because we wanted the Animation Analyzer to learn to ignore those frames mixed with behaviors of nontargeted categories, which is

a practical scenario in behavioral analyses. To achieve the best efficiency in training the Categorizer, the duration of the animations

should be the shortest time for experimenters to distinguish all the behavioral categories. Animation Analyzer implements two

different architectures: VGG-like53 and ResNet-like.54 There are 7 different complexity levels of Animation Analyzer for user to choose

to fit different datasets. Levels 1, 2, 3 or 4 is VGG-like architecture with 2, 5, 9, or 13 convolutional layers (Conv2D), respectively. Each

convolutional layer is followed by a batch normalization layer (BN).Max pooling layers (MaxPooling2D) are added after the second BN

in level 1, after the second and fifth BN in level 2, after the second, fifth and ninth BN in level 3, or after the second, fifth, 9th and 13th BN

in level 4. Levels 5, 6, or 7 is ResNet18, ResNet34 or ResNet50 architecture. After the convolutional operations, the outputs are flat-

tened into 1-dimentional (1D) vectors at each time step and then are passed to LSTM. The outputs of LSTM are passed to the

Decision Maker submodule.

Tomake LabGym applicable to behavioral datasets of various complexities, the frame sizes and color channels of the input tensors

are user definable. Therefore, the network architectures in Animation Analyzer are provided with various options, from simple 2-layer

VGG-like to complex 50-layer ResNet50 architectures. The number of filters in the first convolution layer is determined by the height

or width dimension of input tensors (the height and width of the input tensor is the same), and then doubled after each max pooling

layer. The number of filters in the LSTM is the same as that of the last convolution layer.
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Pattern Recognizer

Pattern Recognizer consists of convolutional blocks and takes 3-dimentional tensors (width, height, color channel) as inputs, in which

both the width and height are user definable. The color channel is fixed to 3 (Red, Green, and Blue; RGB) since the colors in the

pattern images indicate the temporal sequences of animal motions. There are also 7 different complex levels of Pattern Recognizer

for the user to choose from to suit different datasets. The architecture for each level in Pattern Recognizer is the same as that for each

level in Animation Analyzer, except that there is no time-distributed wrapper in Pattern Recognizer.

Decision Maker

DecisionMaker consists of a concatenation layer and two fully connected (dense) layers. The concatenation layermerges the outputs

from both Animation Analyzer and Pattern Recognizer into a single 1D vector and outputs to the first dense layer. The first dense layer

then outputs to the second dense layer in which a SoftMax function is used for computing the probabilities of all the behavioral cat-

egories. The number of nodes in the first dense layer of Decision Maker is determined by the complexity levels of Animation Analyzer

or Pattern Recognizer, whichever is higher. This association allows the Decision Maker to adapt based on the structure of the other

two modules. A Batch Normalization layer and a Dropout layer (dropout rate is set to 0.5) are added before the second dense layer.

The number of nodes in the second dense layer is set to the number of behavioral categories. At each frame during the analysis, the

output of DecisionMaker for an animal is amatrix of probabilities for all the behavioral categories and the behavioral category with the

highest probability is determined to be the behavior that the animal performs. The probabilities for all the behaviors at each frame are

exported to Microsoft Excel files for the usage as users see fit.

Train Categorizers
The loss function used to train Categorizers is either binary crossentropy if the number of behavioral categories is two, or categorical

crossentropy if the number of behavioral categories is three or more. Stochastic gradient descent (SGD)55 with an initial learning rate

of 1 3 10�4 is used for optimizer in training. The learning rate decreases by a factor of 0.2 if the validation loss stops decreasing

(decreasing by < 0.001 is considered as ‘stop decreasing’) for 2 training epochs, and the training stops if the validation loss stops

decreasing for 4 training epochs. The model is automatically updated after a training epoch reaches a minimal validation loss.

The batch size in training is 8, 16, or 32 if the number of validation data is less than 5,000, between 5,000 and 50,000, or over

50,000, respectively. The ratio of training and validation data split is 0.8:0.2.

To enhance the training efficacy and the generalizability of the trained models, we developed 9 different data augmentation

methods that apply the same random alterations to both an animation and its paired pattern image. Notably, during data augmen-

tation, all the alterations of frames/images are performed only on animal foregrounds and their contours. The absolute dimensions of

frames/images and the black backgrounds are unchanged. Thesemethods are performed in combination and users have the options

to choose which method to perform. If all the data augmentation methods are applied, the amount of data can be expanded to

47 times of its original amount.

1. Random rotation: both the animations and their paired pattern images are rotated with a random angle in ranges between

10�–50�, 50�–90�, 90�–130�, 130�–170�, 30�–80� and 100�–150� (the latter two ranges are used to be combined with random

brightness changes).

2. Horizontal flipping: both the animations and their paired pattern images are flipped horizontally.

3. Vertical flipping: both the animations and their paired pattern images are flipped vertically.

4. Random brightening: the animations have brightness increase in ranges between 30 and 80.

5. Random dimming: the animations have brightness decrease in ranges between 30 and 80.

6. Random shearing: both the animations and their paired pattern images are sheared with a random factor in ranges between

�0.21 and -0.15 and 0.15–0.21.

7. Radom rescaling: both the animations and their paired pattern images are rescaled in either their widths or heights with a

random ratio in a range between 0.6–0.9.

8. Random deletion: one or two frames in the animations will be randomly deleted and replaced with black images of the same

dimensions.

Select suitable categorizers for different behavioral datasets
The Categorizer can be customized into different complexity to address behavioral datasets with different complexity. The

complexity of Categorizer is determined by two factors: the level of Animation Analyzer/Pattern Recognizer and the size of input

frame/image. The former determines how deep whereas the latter determines how wide the Categorizer is (see the design and im-

plementation of categorizer). There are 7 levels of Animation Analyzer/Pattern Recognizer for user to choose and the input frame size

is completely defined by users. The general principle to guide the selection of suitable Categorizer for each behavioral dataset is

Occam’s razor, which means that if the performances of two Categorizers are comparable, the simpler one is better. Therefore,

we started from Categorizers with the simple complexity and gradually increased the complexity until their performance are satis-

fying, for all 3 behavioral datasets.

The behaviors in the larva dataset are distinguishable from the sequential changes of their body shapes during the behaviors. Be-

sides, the resolution in the animations is insufficient to show details of the larva body. Therefore, we chose to downsize the frame in
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animations into 83 8 (gray scale) for Animation Analyzer so that it can focus on only the body shapes without learning too many irrel-

evant details. The pattern images for larva behaviors contain more details such as the lines of different colors indicating the temporal

sequences of the behaviors. Therefore, we chose 323 32 (RGB scale) as the input image size of Pattern Recognizer. We started from

the level 1 of Animation Analyzer and level 2 of Pattern Recognizer, which already achieved excellent overall accuracy on the larva

nociceptive behavior subset. When we increased the complexity of the Categorizer to level 1 Animation Analyzer and level 3 Pattern

Recognizer, the accuracy decreased, indicating the potential overfitting of the Categorizer. Therefore, we stopped at level 1 Anima-

tion Analyzer and level 2 Pattern Recognizer as the suitable Categorizer for the larva dataset (LarvaN).

To select the suitable Categorizer for the rat dataset, we chose 163 16 or 323 32 (gray scale) for the input frame size of Animation

Analyzer and 323 32 or 643 64 (RGB scale) for the input image size of Pattern Recognizer. This was because the differences among

different behaviors in the rat dataset are more subtle than those in the larva dataset and we wanted the Categorizer to learn more

details. The overall validation accuracy stopped increasing at level 4/4 for Animation Analyzer/Pattern Recognizer but was still not

ideal (0.8), indicating that the unsatisfying accuracy was not because of low complexity of the Categorizer. Note that due to the

data-driven nature of deep-learning based tools, the accuracy of Categorizer also largely relies on the quality of the training dataset

such as the amount and diversity of the data, and the labeling accuracy. Therefore, we refined the rat dataset by discarding some

examples that were ambiguous for categorization by the labeler. We then trained the Categorizer of level 4/4 for Animation Analyzer

(323 323 1)/Pattern Recognizer (643 643 3) on the refined rat dataset, which achieved significantly improved overall accuracy and

was determined as the suitable Categorizer for the rat dataset (RatA).

To select the suitable Categorizer for themouse dataset, we included all the categories in which the number of examples (the num-

ber of animations and pattern images in pair) is greater than 50. Since the animations in themouse dataset contain details that are key

to categorizations of the behaviors, such as the movement of paws/noses, we chose 32 3 32 or 64 3 64 (gray scale) for Animation

Analyzer and 32 3 32 or 64 3 64 (RGB scale) for Pattern Recognizer. We found that level 4/4 for Analyzer (64 3 64 3 1)/Pattern

Recognizer (64 3 64 3 3) achieved satisfying overall accuracy and determined it as the suitable Categorizer for the mouse dataset

(MouseH).

Criteria for labeling the behavioral categories
Drosophila larva

Crawling: A larva performs one of the following actions: 1) peristalsis 2)movingwith bodymostly straight 3) moving along the direction

mostly aligned with the body axis. The crawling results in positional changes of larval body that can be clearly seen in the pattern

image.

Curling: A larva performs ‘C’-shape bending and both the head and tail bend approximately at the same time from a straight,

resting body shape.

Hunching: A larva retracts only the head.

Rolling: A larva moves with a curling body shape along the anterior-posterior body axis, which causes lateral positional changes in

the larval body that can be seen in the pattern image.

Turning: A larva performs a body bending that is not in ‘C’-shape (body bending that is not curling).

Uncoiling: A larva performs the actions in temporal sequences that are opposite to curling or turning (from a coiling body shape to a

straight one).

Immobile: A larva does not move or only has subtle movements.

Mouse

Behind the wheel: A mouse is positioned behind the running wheel.

Body grooming: A mouse licks its body, below the neck.

Chewing: A mouse chews on food pellets.

Coming down: A mouse lowers from a standing pose on its hindpaws to a sitting pose on both forepaws and hindpaws.

Crawling: A mouse crawls under the running wheel.

Face grooming: A mouse uses its paws to groom the face, head, mouth and/or ear.

Foraging: A mouse walks with its snout on the cage bedding, digs through the cage bedding with its forepaws, or investigates the

cage bedding with its forepaws while stationary.

Hind paw grooming: A mouse uses its hindpaws to groom its face or body.

Jumping onto the wheel: A mouse jumps onto the running wheel.

Nest building: A mouse uses its mouth to build a nest or reposition nestlet material in the homecage.

Rearing up: Amouse rises from a sitting position with both forepaws and hindpaws on the cage bedding, to a standing position with

only the hindpaws on the cage bedding.

Resting on the wheel: A mouse remains stationary on the running wheel.

Running on the wheel: A mouse runs on the running wheel.

Sleeping: A mouse sleeps in the homecage.

Sniffing: Amouse repeatedly sniffs the air, with the snout repeating superior and inferior movements while pointed at the cagewalls

or the lid of the homecage.

Standing: A mouse remains in a standing posture on both hindpaws.
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Turning: A mouse turns to show a frontal view, a side profile view, or a back view.

Unknown bv: A mouse is performing some behavior while only its back is visible to the camera. The behavior is unidentifiable, un-

less the mouse is rearing up, coming down, or standing.

Walking: A mouse walks on the bedding (not on the running wheel).

Rat

Body grooming: A rat grooms its body.

Face grooming: A rat grooms its face.

Head swaying (moving): A rat sways its head side to side for more than one repeats.

Locomotion: A rat proceeds forward.

Orientating: A rat turns or repositions.

Rearing: A rat rears up.

In place: A rat rests in place with some small movements.

Still: A rat is completely motionless.

Behavioral experiments
Drosophila larval behaviors responding to nociceptor stimulation

Nociceptors of late third instar larvae were activated optogenetically TrpA1-QF > QUAS-ChR2T159C transgenes. To stimulate TrpA1-

QF >QUAS-ChR2T159C, 50 mW/mm2 blue light was applied for 2.5 s. GtACR1was expressed in LK neurons to inhibit these neurons.30

GtACR1-mediated optogenetic inhibition was done with 2.5 s of amber light (590 nm). All LEDs used were from LUXEON StarLED.

Embryos were collected on standard cornmeal containing 500 mM all-trans-retinal (ATR) (A.G. Scientific).

For each trial in larval behaviors, we placed 10–15 larvae on a B 35-mm or 90-mm plate covered with a thin layer of water. The

larvae behaviors were recorded by using a webcam (Logitech) at a resolution of 1280 3 720 or 864 3 480 resolution (30 fps) in

the MP4 or AVI format.

Drosophila larval behaviors responding to sound stimuli

Late third instar larvae were exposed to white noise at 80 or 94 dB SPL (0.2–20 kHz) for 5 s. The larvae were tested on a black agar

plate to increase the contrast between the background and the foreground for a better signal-to-noise ratio. All larvae were raised in a

custom-made sound-resistant box for 5–7 days at room temperature to minimize sound exposure, and were recorded with a Log-

itech 4K Brio webcam (30 fps) at 1080 3 1080 resolution in the MP4 format.

Drosophila adult courtship behaviors

To demonstrate the potential capacity of LabGym in analyzing social behaviors, we used some videos of Drosophila courtship be-

haviors from a previous report.56 In these experiments, a wild-typemale (Oregon R) was paired with either one or 4 females (Oregon R

or w1118) in a mating chamber.

Psychomotor sensitization in rats

All rodent procedures were approved by University of Michigan Institutional Animal Care and Use Committee and are consistent with

NIH guidelines.

Adult male Sprague-Dawley rats (�55 days old at the start of the experiment) were pair-housed on reverse 12/12 h light/dark cycle

throughout, food and water were available ad libitum and rats were tested in red light conditions during the dark phase of the cycle

(Envigo; Indianapolis, IN). All testing occurred in custommade chambers (1300Wx 26.500L x 2400T) equipped with overhead video cam-

eras (fps:30; frame size: 9283 480; video format:.MP4). Behavior was recorded throughout each session. Rats were first habituated

to the testing chambers and injection procedure; they were placed in the chamber for 40 min, given an i.p. injection of saline (0.9%,

1mL/kg) and returned to their home cage after an additional 40min (4 sessions, 1/day). Rats were then split into two groups given i.p.

injections of either saline (N = 3) or d-amphetamine sulfate dissolved in saline (Sigma Aldrich, N = 7). On each injection day rats were

placed in the chambers for 40 min prior to injection. On the first day, responses to increasing doses of d-amphetamine were deter-

mined within session (0.32, 1.0, 3.2, and 5.6 mg/kg, i.p), as previously described.57 The following day rats began a sensitization

regimen in which they were given increasing concentrations of d-amphetamine (0.5, 2, 4, 5, 6, 0.5, 6, 6, 0.5 mg/kg, i.p.) with one in-

jection given per day, adapted from.58 The within session dose response was then re-assessed after 20–21 days of withdrawal. Rats

in the saline group received saline throughout. The rat videos used for demonstration of tracking in LabGym were sample video in

previous reports.36,37

Mouse

All rodent procedures were approved by University of Michigan Institutional Animal Care and Use Committee and are consistent with

NIH guidelines.

Adult male C57BL/6J mice (one animal aged �80 weeks old at the start of the video recordings, one animal aged �32 weeks old

at the start of the video recordings) were single housed in cages within a humidity and temperature-controlled vivarium and kept on a

12/12 h light/dark cycle (lights on 6 a.m.) with ad libitum access to food and water. At the time of video recording, both mice were sin-

gle-housed in a cagewith bedding, 1/4 Nestlet (Ancare, Bellmore, NY) for nest building, and aMouse Igloo and Fast Trac runningwheel

(Bio-Serv, Flemington, NJ), located within a custom-made white PVC foam sheet (American Plastics Solutions, Saline, MI) enclosure,

located within a humidity and temperature-controlled room. Animals had ad libitum access to food and water during the video record-

ings and were kept on a 12/12 h light/dark cycle (lights on 6 a.m.). Behavior was recorded with a Basler acA1300-200mm camera,
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equipped with a Basler C123-0418-5M lens and a NIR Bandpass Infrared Filter (Machine Vision Store, St. Paul, MN). InfraRed lighting

(850 nm, LEDLightsWorld) diffused by a 1/4’’ x 13.500 x 2400 sheet of white acrylic plexiglass (estreetplastics, RoyseCity, Tx) was used to

illuminate the homecage as well as to provide the background for all video recordings. Free home-cage behavior was recorded in 4-h

segments as.mkv files, at a resolution of 1280 3 1024, 30 fps, with an exposure time of 6500 ms.

QUANTIFICATION AND STATISTICAL ANALYSIS

Test Categorizer in practice
LabGym provides two convenient ways of validation on how Categorizers perform. First, the copies of behavioral videos with full

annotations of the behaviors assist the visualization of both the tracking and the behavioral categorizations. Second, for a more

solid test, users can use Generate Behavior Examples functional unit in the GUI of LabGym to generate unsorted behavior ex-

amples (an animation and its paired pattern image) and sort them into different categories (into folders under the behavior

names) to build a ground-truth testing dataset. Users can then use this ground-truth testing dataset in Test Categorizers func-

tional unit to test a trained Categorizer. In this way, the users are blinded to the predictions of the Categorizer to be tested and

thus the validation is unbiased. In this study, all tests for the in-practice performance of the LarvaN, RatA and MouseH were

performed through this approach.

We used the following performancemetrics in testing Categorizers: precision (Equation 2), recall (Equation 3), f1 score (Equation 4),

overall accuracy (Equation 5).

precisioni =
true positivesi

true positivesi + false positivesi
(Equation 2)
recalli =
true positivesi

true positivesi + false negativesi
(Equation 3)
f1 scorei =
2 3 ðprecisioni 3 recalliÞ

precisioni + recalli
(Equation 4)
overall accuracy =
total correct predictions

total predictions
(Equation 5)

Calculate behavioral parameters
In the current version of LabGym, 14 behavioral parameters are computed based on the information of behavioral categories and

animal foregrounds: acceleration/velocity reduction, angle, count, distance, duration, intensity (area), intensity (length), latency,

magnitude (area), magnitude (length), speed, velocity, vigor (area) and vigor (length).

1. The angle is the movement direction (against to the animal body axis) of the animal during a behavior, which is the mean of all

the included angle (q) between animal body axis and the movement direction during the time window (t) for categorizing the

behavior (Equation 6).

angle =

Pn
i = n� t

ðqiÞ
n

(Equation 6)

2. The count is the summary of the behavioral frequencies, which is the occurrence number of a behavior within the entire duration

of analysis. Consecutive single occurrences (at a single frame) of the same behavior are considered as one count.

3. The distance is the total distance traveled of the animal by performing a behavior within the entire duration of analysis.

4. The duration is the summary of how persistent a behavior is, which is the total time of a behavior within the entire duration of

analysis.

5. The intensity (area)/intensity (length) is the summary of how intense a behavior is, which is the accumulated proportional

changes of the animal body area (a)/length (L) between frames divided by the time window for categorizing the behaviors (t)

when performing a behavior (Equations 7 and 8).
intensity ðaÞ =
a

t
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n �

a =

X
i = 0

an � ai
ai

�
(Equation 7)
intensity ðlÞ =
l

t

n

l =
X
i = 0

�
ln � li

li

�
(Equation 8)

6. The latency is the summary of how soon a behavior starts, which is the time starting from the beginning of the analysis to the

time point that the behavior occurs for the first time.

7. The magnitude (area)/magnitude (length) is the summary of the motion magnitude, which is the maximum proportional change

in animal body area (a) or length (L) when performing a behavior (Equations 9 and 10).
magnitude ðaÞ = max
0% i%n

�
an � ai

ai

�
(Equation 9)
magnitude ðlÞ = max
0% i%n

�
ln � li

li

�
(Equation 10)

8. The speed is the summary of how fast the animal moves when performing a behavior, which is the total distance traveled (can

be back and forth) (d) (between the two centers of mass of the animal) during the time window for categorizing the behavior

divided by the time window (Equation 11).

speed =

Pn
i = n� t

ðdiÞ
t

(Equation 11)

9. The velocity is the summary of how efficient the animal’s movement is when performing a behavior, which is the shortest dis-

tance between the beginning and end location (dt) (between the two centers of mass of the animal) divided by the time (toccuring)

that such displacement takes place (Equation 12).

velocity =
max

0% i%n
dti

toccuring
(Equation 12)

10. The acceleration/velocity reduction is the summary of how fast the animal’s velocity changes while performing a behavior,

which is the difference between maximum velocity (vmax) and minimum velocity (vmin) divided by the time (toccuring) that

such velocity change takes place (Equation 13).

acceleration =
vmax � vmin

toccuring
(Equation 13)

11. The vigor (area)/vigor (length) is the summary of how vigorous a behavior is, which is the magnitude (area)/magnitude (length)

divided by the time (toccuring) that such a change takes place (Equations 14 and 15).

vigor ðaÞ =
magnitude ðaÞ

toccuring
(Equation 14)
vigor ðlÞ =
magnitude ðlÞ

toccuring
(Equation 15)
Statistics
Each statistical test was indicated in the according figure legend.
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Figure S1. The stable-value detection method outperforms the state of the art, related to Figure 2.  3 
A. Illustrations showing the designing rationale of stable-value detection method for reconstructing the 4 
static background of a video in two different scenarios (animal lighter or darker than the backgrounds). 5 
B. Examples for reconstructed static backgrounds of the same videos using different methods. Arrows 6 
point at the remaining animal traces in the reconstructed static backgrounds.  7 
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Figure S2. The design of the Categorizer, related to Figure 3.  3 
A. The Animation Analyzer first uses time-distributed convolutional layers to compute all frame-wise 4 
spatial details of an animation, and then uses recurrent layers (long short-term memory, LSTM) to 5 
compute the temporal connectivity among the frame-wise spatial details.  6 
B. The Pattern Recognizer uses convolutional layers to analyze the pattern image, which is 7 
superimposed contours of animal body (and body parts) along the temporal sequence (indicated by 8 
gradually changing colors) during a behavior.  9 
C. The Decision Maker uses a concatenating layer to integrate the outputs from both the Animation 10 
Analyzer and the Pattern Recognizer, and then passes the integrated information to dense layers for 11 
concluding the behavioral categories. 12 
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Figure S3. LabGym generates stand-alone, visualizable behavior examples, related to Figure 4. 3 
A. Every frame of an animation (background is included) and its paired pattern image, showing nest 4 
building behavior of a mouse. 5 
B. Every frame of animations and their paired pattern images (body parts are not included), showing 6 
(from top to bottom) larva curling and uncoiling, fly abdomen bending (copulation attempt) and wing 7 
extension (courtship song), and rat walking and rearing.  8 
C. Every frame of animations and their paired pattern images (body parts are included), showing (from 9 
top to bottom) mouse facial grooming, sniffing, ear grooming, and sitting. 10 
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Figure S4. The Quantifier analyzes diverse aspects of a behavior, related to Figures 5 and 6. 3 
A schematic that shows the process of frame-wise categorizations on behaviors, and how the Quantifier 4 
uses the information of behavioral categories and animal foregrounds to calculate 14 behavioral 5 
parameters in LabGym. 6 
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Figure S5. The benchmark comparison between DLC + B-SOiD and LabGym, related to Figure 7.  3 
A. The GUI in LabGym demonstrated with Generate Behavior Examples functional unit. 4 
B. The evaluation of training in DLC on the training dataset. 5 
C. The best fit of clustering (5 groups) in B-SOiD using the outputs from DLC on the training dataset. 6 
D. The behavior assignment of the 5 groups clustered by B-SOiD on the training dataset. All video 7 
examples in group 2 showed head movement behavior and group 2 was assigned as ‘head movement’; 8 
most of the videos examples in group 0 and group 3 showed rearing behavior and group 0 and group 3 9 
were assigned as ‘rearing’; most of the video examples in group 4 showed locomotion behavior and 10 
group 4 was assigned as ‘locomotion’; none of the video examples in all groups showed complete 11 
orientating behavior; most of the video examples in group 1 showed in place resting behavior and group 1 12 
was assigned as ‘in place’. 13 
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Table S1. Example showing the training metrics for all tested Categorizers in selecting the ones 3 
that are most suitable for each of the 3 behavioral datasets, related to Figure 4.  4 
We started from the simplest networks for each dataset and gradually increase the network complexity 5 
until the training performance was satisfying. 6 


	CRMETH100415_proof_v3i3.pdf
	LabGym: Quantification of user-defined animal behaviors using learning-based holistic assessment
	Introduction
	Results
	The LabGym pipeline
	Effective background subtraction ensures efficient analyses
	The Categorizer assesses holistic behavioral information
	The Categorizer accurately categorizes user-defined behaviors across species
	The Quantifier provides quantitative measurements that are sufficient for capturing subtle changes in diverse aspects of ea ...
	Drosophila larva behavior
	Rodent behavior

	GUI with optional settings for user-friendly usage
	Benchmark comparison with the existing standards

	Discussion
	Innovations in LabGym
	LabGym provides a way for users to generate visualizable behavioral datasets
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Drosophila
	Rodents

	Methods details
	Overall implementation
	Computation hardware
	Remove backgrounds and track multiple animals
	Reconstruct the static backgrounds for a video
	Track the animals

	Generation of animations and pattern images
	Generate animations
	Generate pattern images

	The design and implementation of Categorizer
	Animation Analyzer
	Pattern Recognizer
	Decision Maker

	Train Categorizers
	Select suitable categorizers for different behavioral datasets
	Criteria for labeling the behavioral categories
	Drosophila larva
	Mouse
	Rat

	Behavioral experiments
	Drosophila larval behaviors responding to nociceptor stimulation
	Drosophila larval behaviors responding to sound stimuli
	Drosophila adult courtship behaviors
	Psychomotor sensitization in rats
	Mouse


	Quantification and statistical analysis
	Test Categorizer in practice
	Calculate behavioral parameters
	Statistics





