
PhyloMed: Supplementary Material

Note A: Definition of mediation effect via potential outcomes

framework and identifiability assumptions

A.1: Regression models in Methods

In this section, we consider the regression models (1) and (2) in Methods. We drop the

subject index i and node index j for the simplicity of notation and let G denote logit(M).

The mediator regression model (1) can be rewritten as

E(G) = αT
XX+ αT.

For the continuous and binary outcomes, regression model (2) can be rewritten as

E(Y ) = βT
XX+ βTT + βG,

and

logit{Pr(Y = 1)} = βT
XX+ βTT + βG.

Our primary interest is the natural indirect effect that measures the effect of the treatment on

the outcome mediated through the mediator. The term has been defined and widely used in

the causal inference literature and we use it interchangeably with mediation effect throughout

this Supplementary Note. We first define the counterfactual notation. Let G(T = t) be the

potential outcome of the mediator that would have been observed if treatment T had been

set to t. Let YT=t,G=g be the potential outcome that would have been observed if treatment T

and mediator G had been set to t and g, respectively. Note that G(T = t) and YT=t,G=g may

or may not be observed. They are equivalent to observed values when their determinants

are set to the observed values.
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With these counterfactual notations, we can define the causal mediation effect (ME) as

follows. For the continuous outcome, we have

ME = E{YT=t1,G(T=t1)|X} − E{YT=t1,G(T=t0)|X}.

For the binary outcome, the causal mediation effect is defined on the log odds ratio (OR)

scale

log
(
ORME

)
= logit

[
Pr{YT=t1,G(T=t1) = 1|X}

]
− logit

[
Pr{YT=t1,G(T=t0) = 1|X}

]
.

These ME are expressed by conditioning on the measured confounders X.

Identifying the mediation effect using the observed data requires five standard identifiability

assumptions: (1) no unmeasured treatment-outcome confounders givenX; (2) no unmeasured

mediator-outcome confounders given (X, T ); (3) no unmeasured treatment-mediator confounders

given X; (4) no effect of treatment that confounds the mediator-outcome relationship; (5)

no treatment and mediator interaction on the outcome.

Under these assumptions, ME for the continuous outcome can be expressed as

ME = E{YT=t1,G(T=t1)|X} − E{YT=t1,G(T=t0)|X}

=

∫
E(Y |X, T = t1, G = g)f(G = g|X, T = t1)dg −

∫
E(Y |X, T = t1, G = g)f(G = g|X, T = t0)dg

=

∫
(βT

XX+ βT t1 + βg)f(G = g|X, T = t1)dg −
∫
(βT

XX+ βT t1 + βg)f(G = g|X, T = t0)dg

=β {E(G|X, T = t1)− E(G|X, T = t0)}

=(t1 − t0)αβ.

For the rare binary outcome, we can approximate logit by log

logit
[
Pr

{
YT=t1,G(T=t0) = 1|X

}]
≈ log

{∫
Pr(Y = 1|X, T = t1, G = g)f(G = g|X, T = t0)dg

}
≈ log

{∫
exp(βT

XX+ βT t1 + βg)f(G = g|X, T = t0)dg

}
= βT

XX+ βT t1 + β(αT
XX+ αt0) +

1

2
β2σ2,
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where the last equation holds under the assumption that G follows the normal distribution

with variance σ2.

Then, the corresponding ME can be approximated as

log
(
ORME

)
= logit

[
Pr

{
YT=t1,G(T=t1) = 1|X

}]
− logit

[
Pr

{
YT=t1,G(T=t0) = 1|X

}]
≈ (t1 − t0)αβ.

For the nonrare binary outcome, the ME can be approximated as

log
(
ORME

)
= logit

[
Pr

{
YT=t1,G(T=t1) = 1|X

}]
− logit

[
Pr

{
YT=t1,G(T=t0) = 1|X

}]
≈ c(t1 − t0)αβ,

where c = (1 + 0.35× β2σ2)−1/2.

In summary, for the continuous outcome, the null hypothesis of testing no causal mediation

effect in the jth local model can be formulated as Hj
0 : αjβj = 0. For the binary outcome,

if we are willing to make the normality assumption on logit(Mj), we can test the same null

hypothesis no matter whether the binary outcome is rare or not.

A.2: An extension of the outcome model for the treatment-mediator
interaction

In the presence of treatment-mediator interaction, we build the following outcome model

g {E(Y )} = βT
XX+ βTT + β1G+ β2TG.

Following the similar derivation in A.1, we can show that the mediation effect for the

continuous outcome takes the form

ME = (t1 − t0)α(β1 + t1β2),

and the mediation effect for the binary outcome becomes

log
(
ORME

)
≈ c(t1 − t0)α(β1 + t1β2),
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where c is 1 for the rare outcome and {1+0.35×(β1+t1β2)
2σ2}−1/2 for the nonrare outcome.

Therefore, given t1 = 1, the null hypothesis of testing no mediation effect in the jth local

model can be formulated as Hj
0 : αj(βj1 + βj2) = 0.
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Note B: Details on obtaining pα and pβ

To facilitate the description, we keep the subject index i and drop the node index j in this

section. In PhyloMed, we need to obtain the p-value from testing α = 0 in the mediator

model and the p-value from testing β = 0 in the outcome model.

B.1: Asymptotic test pα

In the mediator model, we only assume that the mean of Gi takes the form

E(Gi) = αT
XXi + αTi.

The parameters αX and α can be estimated by solving the estimating equation

n∑
i=1

U(αX , α) =
n∑

i=1

(Gi −αT
XXi − αTi)

[
Xi

Ti

]
= 0.

To test the null hypothesis α = 0, we use the generalized score statistic

U =
n∑

i=1

(Gi − α̂T
XXi)Ti,

where α̂X is the restricted estimate ofαX under the null hypothesis. The empirical covariance

estimate of U takes the form

V = D̂22 − [ZTZ]21[Z
TZ]−1

11 D̂12 − D̂21[Z
TZ]−1

11 [Z
TZ]12 + [ZTZ]21[Z

TZ]−1
11 D̂11[Z

TZ]−1
11 [Z

TZ]12,

where Zi = (XT
i , Ti)

T, Z = (Z1, . . . ,Zn)
T, D̂ = n

n−p+1

∑n
i=1(Gi− α̂T

XXi)
2ZiZ

T
i , p is the total

number of regression parameters, and the matrix with subscript is the submatrix with the

partition corresponding to αX and α.

We construct the test statistic U2/V and obtain the asymptotic p-value pα using the reference

chi-square distribution with 1 degree of freedom.
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B.2: Asymptotic test pβ

In the outcome model, we relate Yi to Zi = (XT
i , Ti)

T and Gi through a generalized linear

model by specifying the conditional density function as

n∏
i=1

exp

{
Yi

(
γTZi + βGi

)
− b(γTZi + βGi)

a(ϕ)
+ c(Yi, ϕ)

}
, (1)

where γ = (βT
X , βT )

T and β are regression parameters, ϕ is a dispersion parameter, and a, b,

and c are specific functions. We use the first and second derivatives of b, which are denoted

by b′ and b′′. For the linear regression model with error variance σ2, we have a(ϕ) = σ2,

b(x) = x2/2, b′(x) = x, and b′′(x) = 1. For the logistic regression model, we have a(ϕ) = 1,

b(x) = log(1 + ex), b′(x) = ex/(1 + ex), and b′′(x) = ex/(1 + ex)2.

To test the null hypothesis β = 0, we use the score statistic

U =
1

a(ϕ̂)

n∑
i=1

{
Yi − b′(γ̂TZi)

}
Gi,

where γ̂ and ϕ̂ are the restricted maximum likelihood estimators of γ and ϕ under the null

hypothesis. Under H0, U is asymptotically normal with mean 0 and variance

V =
1

a(ϕ̂)

 n∑
i=1

b′′(γ̂TZi)G
2
i −

{
n∑

i=1

b′′(γ̂TZi)GiZ
T
i

}
×

{
n∑

i=1

b′′(γ̂TZi)ZiZ
T
i

}−1

×

{
n∑

i=1

b′′(γ̂TZi)ZiGi

} ,

We construct the test statistic U2/V and obtain the asymptotic p-value pβ using the reference

chi-square distribution with 1 degree of freedom.

B.3: Permutation test pα and pβ

To obtain the permutation p-value, we employ Smith’s permutation strategy. The p-value is

calculated as the fraction of permutation test statistics that are as or more extreme than the

observed one. Obtaining an accurate estimate of a small p-value requires a large number of

permutations. However, most p-values are relatively large and can be estimated accurately

with a small number of permutations. Thus, we employ an adaptive procedure that uses
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small numbers of permutations for large p-values and large numbers of permutations only for

small p-values. In addition, to estimate extremely small p-values, we adopt the approach, in

which a generalized Pareto distribution (GPD) is fit to the extreme values of permutation

test statistics. The detailed algorithm is provided in Algorithm 1.

Algorithm 1: Adaptive permutation procedure

input : Bmax maximum number of permutations
output: Pperm permutation p-value

1 Determine Rsel for the desired precision level of p-value, which is calculated
using the number of tests and the target FDR level;

2 Sobs ← observed test statistic;
3 SB ← NULL, b← 0, Nexc ← 0;
4 while Nexc < Rsel and b < Bmax do
5 permute the orthogonalized covariate of interest with respect to X (Smith’s

method);
6 Sperm ← permutation test statistic;
7 if Sperm ≥ Sobs then
8 Nexc ← Nexc + 1;
9 SB ← {SB, Sperm};

10 b← b+ 1;

11 end
12 if b < Bmax then
13 Pperm = Nexc/b;
14 else
15 if Nexc ≤ 10 then
16 Ngpd ← 250;
17 F (·)← empirical CDF of Ngpd most extreme SB;
18 pgof ← goodness-of-fit test p-value assessing whether F (·) follows GPD;
19 while pgof ≤ 0.05 and Ngpd > 0 do
20 Ngpd ← Ngpd − 10;
21 Update F (·) and pgof ;

22 end
23 if pgof > 0.05 then
24 Pperm ← tail approximation using F (·);
25 else
26 Pperm = (Nexc + 1)/(Bmax + 1);
27 end

28 else
29 Pperm = Nexc/Bmax;
30 end

31 end
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Note C: Sobel’s test and joint significance test

We compare the performance of proposed mixture-distribution-based method to traditional

Sobel’s and joint significance tests. In this section, we describe how we employ these two

tests to obtain the p-value for testing the subcomposition mediation effect in each local

model.

C.1: Sobel’s test

In each local mediation model at the jth internal node, the Sobel test statistic takes the

form

TSobel,j =
α̂jβ̂j√

β̂j

2
σ̂2
αj

+ α̂2
j σ̂

2
βj

,

where α̂j is the estimates of the αj under the mediator model (Equation (1) in Methods)

and β̂j is the estimates of the βj under the outcome model (Equation (2) in Methods). The

σ̂2
αj

and σ̂2
βj

are the estimated variances of αj and βj, respectively. The standard normal

distribution is used as the reference distribution to calculate the p-value of TSobel,j.

C.2: Joint significance test

The joint significance test statistic takes the maximum of the permutation test p-values pαj

and pβj
(Note B.3). The usual uniform distribution for a null p-value is used to declare

significance.
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Additional Tables and Figures

Table S1: Empirical FDR in identifying mediating nodes when different mediation tests
are employed in local models (target FDR = 0.05). PhyloMed (permutation version):
mixture-distribution-based test; JS: joint significance test; Sobel: Sobel’s test.

n
Num.

mediating
taxa

PhyloMed JS Sobel

Continuous outcome
50 3 0.017 0 0
50 6 0.008 0 0
200 3 0.017 0 0
200 6 0.009 0 0

Binary outcome
50 3 0.015 0 0
50 6 0.007 0 0
200 3 0.009 0 0
200 6 0.007 0 0

Table S2: Discovery rate in identifying the most recent common ancestor of mediating
OTUs when different mediation tests are employed in local models (target FDR = 0.05).
PhyloMed (permutation version): mixture-distribution-based test; JS: joint significance test;
Sobel: Sobel’s test.

n
Num.

mediating
OTUs

PhyloMed JS Sobel

Continuous outcome
50 3 0.295 0.141 0.085
50 6 0.248 0.111 0.068
200 3 0.581 0.456 0.419
200 6 0.560 0.443 0.402

Binary outcome
50 3 0.101 0.016 0
50 6 0.077 0.014 0
200 3 0.334 0.175 0.105
200 6 0.315 0.170 0.101
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Table S3: Empirical type I error of the PhyloMed asymptotic global mediation test
when different subcomposition models were used. LR: log-ratio model (proposed); BB:
Beta-binomial model; QL: quasi-likelihood model for composition counts. The results
were generated under the simulation setting for the continuous outcome and large sample
size n = 200. The |Sα| and |Sβ| denote the number of treatment-associated OTUs and
outcome-associated OTUs, respectively. Different combinations of (|Sα|, |Sβ|) represent
different mixtures of mediation nulls H00, H10 and H01.

|Sα| |Sβ| LR BB QL

0 0 0.023 0.032 0.012
3 0 0.030 0.038 0.020
6 0 0.035 0.042 0.024
0 3 0.032 0.066 0.024
0 6 0.040 0.089 0.025
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Table S4: Type I error and power of PhyloMed global test at the significance level of 0.05
when different pseudocounts (“psc”) were added in the data. The simulation is conducted
under the continuous outcome. The |Sα| and |Sβ| denote the number of treatment-associated
OTUs and outcome-associated OTUs, respectively. The power results are under |Sα| =
|Sβ| = 3 or 6 and the rest are the type I error results.

PhyloMed.A PhyloMed.P

n |Sα| |Sβ| psc=0.1 psc=0.5 psc=1 psc=0.1 psc=0.5 psc=1

50 0 0 0.019 0.020 0.021 0.027 0.028 0.026
50 3 0 0.022 0.021 0.021 0.030 0.028 0.028
50 6 0 0.034 0.036 0.035 0.044 0.042 0.042
50 0 3 0.020 0.021 0.021 0.026 0.025 0.024
50 0 6 0.024 0.024 0.023 0.031 0.028 0.029
50 3 3 0.517 0.468 0.448 0.533 0.495 0.470
50 6 6 0.705 0.664 0.643 0.727 0.682 0.665

200 0 0 0.024 0.023 0.024 0.027 0.025 0.024
200 3 0 0.029 0.030 0.030 0.033 0.032 0.035
200 6 0 0.034 0.035 0.034 0.038 0.036 0.037
200 0 3 0.034 0.032 0.031 0.035 0.034 0.034
200 0 6 0.039 0.040 0.042 0.042 0.043 0.041
200 3 3 0.807 0.790 0.780 0.812 0.794 0.783
200 6 6 0.963 0.954 0.948 0.965 0.955 0.950

Table S5: The p-value of global mediation tests in real data analyses using different
pseudocounts

Study Pseudocount PhyloMed.A PhyloMed.P MedTest∗ MODIMA∗

Mouse cecal
0.1 0.053 0.064 0.452 1.000
0.5 0.094 0.085 0.239 1.000
1 0.141 0.126 0.683 1.000

Human gut
0.1 0.071 0.049 0.509 0.342
0.5 0.074 0.047 0.676 0.267
1 0.091 0.057 0.763 0.412

∗ Pseudocount is used in the calculation of the Aitchison distance
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Table S6: Bias and standard deviation of the estimated proportions of the three null
hypotheses using two different approaches described in Methods. The estimates are based
on the asymptotic p-values pαj

’s and pβj
’s. The results were generated under the simulation

setting for the continuous outcome and sample size n = 200. The |Sα| and |Sβ| denote
the number of treatment-associated OTUs and outcome-associated OTUs, respectively.
Mediation signals are present at some internal nodes under |Sα| = |Sβ| = 3 or 6 and the
remaining settings are under the global mediation null.

|Sα| |Sβ|
π00 π10 π01

product maxp product maxp product maxp

0 0 -0.062 (0.062) -0.063 (0.064) 0.032 (0.046) 0.033 (0.047) 0.028 (0.043) 0.029 (0.045)
3 0 0.019 (0.074) 0.017 (0.077) -0.050 (0.059) -0.048 (0.061) 0.029 (0.043) 0.031 (0.046)
6 0 0.068 (0.080) 0.065 (0.083) -0.100 (0.069) -0.097 (0.070) 0.029 (0.042) 0.032 (0.046)
0 3 -0.010 (0.102) -0.013 (0.107) 0.030 (0.042) 0.033 (0.047) -0.023 (0.091) -0.020 (0.094)
0 6 -0.008 (0.120) -0.014 (0.125) 0.028 (0.039) 0.033 (0.047) -0.025 (0.114) -0.019 (0.116)
3 3 -0.117 (0.079) -0.120 (0.084) 0.055 (0.048) 0.058 (0.052) 0.059 (0.062) 0.062 (0.066)
6 6 -0.190 (0.089) -0.198 (0.098) 0.076 (0.048) 0.084 (0.054) 0.104 (0.075) 0.112 (0.081)
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Fig. S1 Different scenarios of the ground truth of the presence/absence of mediation
effects at the leaf-level taxa and the aggregated taxa at the common ancestors. White
circles represent leaf-level taxa not associated with the treatment and outcome. Blue circles
represent leaf-level taxa only associated with the treatment. Red circles represent leaf-level
taxa only associated with the outcome. Purple star represents mediating leaf-level taxon
associated with both the treatment and the outcome.
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Fig. S2 Quantile-quantile plots of p-values from different global mediation tests in the
simulation study for the binary outcome. The observed p-values were compared to the
expected quantiles generated by the uniform null distribution. The |Sα| and |Sβ| denote the
number of treatment-associated OTUs and outcome-associated OTUs, respectively. Different
combinations of (|Sα|, |Sβ|) represent different mixtures of mediation nulls H00, H10 and H01.

14



Continuous outcome Binary outcome

n = 50
n = 200

3 6 3 6

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Number of mediating OTUs

P
ow

er

PhyloMed.A PhyloMed.P MedTest MODIMA LDM−med

Fig. S3 Power comparison of different global mediation tests when including all OTUs in
the basis dataset in the simulation. The mediating OTUs are clustered on the tree.
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Fig. S4 Power comparison of different global mediation tests when mediating OTUs are
randomly scattered. To further challenge the performance of PhyloMed, we added additional
settings with 15 mediating OTUs and the small mediation effect. The outcome is continuous
in this set of simulations.
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Fig. S5 Empirical FDR of PhyloMed (permutation version) with varying signal strength
and density. The target FDR is 5%. The effect of mediator-outcome association is fixed and
the effect of treatment-mediator association is controlled by A and increases from 0 to 1.
The outcome is continuous and the sample size is 200 for this set of simulation.
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Fig. S6 Box plots of body fat percentage in the control and antibiotics treatment groups
in the mouse cecal microbiome study.
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Fig. S7 Scatter plot of fat intake (after adjusting for total calorie intake) and BMI values
in the human gut microbiome study.
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Fig. S8 Phylogenetic tree in the human gut microbiome data analysis. The size of the circle
at each internal node is proportional to − log 10(PhyloMed local mediation test p-value). The
identified mediating internal node has the largest red circle and the subtree under the node
with two OTU descendants is highlighted in a blue rectangle.
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Fig. S9 Mediation sensitivity analysis for average mediation effect at the two identified
mediating nodes in the mouse cecal microbiome study and human gut microbiome study,
respectively. In each plot, the solid line represents the estimated average mediation effect
for the identified subcomposition mediator (in log-ratio) for varying values of the sensitivity
parameter ρ. The gray region represents the 90% confidence interval.
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