Science Translational Medicine

Supplementary Materials for

Precise genomic editing of pathogenic mutations in *RBM20* rescues dilated cardiomyopathy

Takahiko Nishiyama et al.

Corresponding author: Eric N. Olson, eric.olson@utsouthwestern.edu

Sci. Transl. Med. **14**, eade1633 (2022) DOI: 10.1126/scitranslmed.ade1633

The PDF file includes:

Figs. S1 to S15 Tables S1 and S2 Legend for data file S1

Other Supplementary Material for this manuscript includes the following:

Data file S1 MDAR Reproducibility Checklist

Supplementary Materials

Fig. S1: Screening of sgRNAs with adenine base editors in iPSCs.

(A) Sequence of sgRNA (blue) targeting exon 9 of the human *RBM20* gene. PAM is highlighted in pink. Sanger sequence of the genomic region spanning the *RBM20*^{R634Q} mutation (underlined)

in wild type (WT), heterozygous (R634Q/+) and homozygous (R634Q/R634Q) iPSC lines. (**B**) Percentage of adenine (A) to guanine (G) editing in R634Q/R634Q iPSCs after ABE correction using sgRNA1 and ABE8e-NG-SpCas9 or ABE8e-VRQR-SpCas9. A6 is on-target site (blue). A14 is bystander site (green). Data are expressed as mean \pm SEM (n = 3). (**C**) Illustration showing the binding positions of sgRNA2, 3 and 4 in the region of the *RBM20*^{R634Q} mutation. On-target site (red) and bystander site (green) are indicated. (**D**) Percentage of adenine (A) to guanine (G) editing in R634Q/R634Q iPSCs after ABE correction using sgRNA2, 3 and 4 coupled with each ABE8e base editor. On-target site (blue). Bystander site (green). Data are expressed as mean \pm SEM (n = 3). (**E**) Percentage of normal allele in heterozygous (R634Q/+) iPSCs before and after correction with sgRNA1 and ABEmax-VRQR-SpCas9. Data are expressed as mean \pm SEM (n = 3). Unpaired two-tailed Student's *t* test was performed. *P* value *****P*<0.0001.

Fig. S2: RBM20^{R634Q} granules co-localized with stress granules in iPSC-derived cardiomyocytes.

(A) Immunostaining showing the distribution of RBM20 and G3BP stress granule assembly factor 1 (G3BP1) under normal and stress (1mM NaAsO₂) conditions. G3BP1, which is a marker for stress granules, expressed diffusely in cytoplasm under normal conditions. Under acute stress conditions, G3BP1 formed puncta (stress granules). DAPI denotes nuclei (blue). Scale bar, 10 μ m. (B) RBM20^{R634Q} granules co-localized with stress granules are indicated by white arrowhead. Scale bar, 10 μ m. (C) Co-localization of RMB20 and G3BP1 was measured by Pearson's coefficient. Data are expressed as mean ± SEM (*n* = 4). One-way ANOVA with Tukey's multiple comparisons test was performed. *P* value *****P*<0.0001.

Fig. S3: Correction of alternative splicing of *TTN* and *CAMK2* δ genes in *RBM20*^{R634Q} iPSC-

CMs after adenine base editing.

(A) and (B) Splicing pattern of the TTN (A) and $CAMK2\delta$ (B) genes as measured by percent spliced in (PSI) indicates exon-inclusion ratio. Recovery of splicing was seen in ABE-corrected R634Q/R634Q iPSC-CMs.

Fig. S4: Adenine base editing of R634Q/R634Q iPSC-CMs restored gene expression and calcium handling.

(A) Percentage of cardiac troponin T positive CMs in each group at day 40 post-differentiation (n = 3). One-way ANOVA with Tukey's multiple comparisons test was performed. (**B**) *RBM20* mRNA expression was quantified by qRT-PCR. Data are expressed as mean \pm SEM (n = 5). One-way ANOVA with Tukey's multiple comparisons test was performed. (**C**) Heatmap showing differentially regulated gene expression of wild type (WT), R634Q/+, R634Q/R634Q and ABE-corrected R634Q/R634Q iPSC-CMs. (**D**) and (**E**) Gene Ontology (GO) terms associated with the up- (D) and down-regulated genes (E) in R634Q/R634Q iPSC-CMs compared to WT iPSC-CMs. RNA-seq analysis was performed on three independent differentiated iPSC-CMs at day 40 after differentiation. (**F**) and (**G**) Heatmaps of selected genes related to cardiomyopathy.

(**H** to **J**) Heatmap showing differentially regulated gene expression (H) and GO terms associated with the up- (I) and down-regulated genes (J) in ABE-corrected R634Q/R634Q iPSC-CMs compared to R634Q/R634Q iPSC-CMs. (**K**) Representative calcium traces of each group. (**L**) Quantification of the calcium release phase by time to peak and calcium reuptake phase by tau (n = 50 cells in each group; quantification was performed across three independent differentiation groups). Data are shown as means ± SEM. One-way ANOVA with Tukey's multiple comparisons was performed. *P* value *****P*<0.0001. ns: not significant.

Fig. S5: ABE delivered by AAV6 restored the nuclear localization of RBM20 in differentiated R634Q/R634Q iPSC-CMs.

(A) Illustration of dual AAV vectors used to deliver ABE components to iPSC-CMs. ABEmax, VRQR-SpCas9 and inteins (Int) are driven by the cardiac troponin T promoter. sgRNA expression cassette is driven by U6 RNA polymerase III promoter. (B) Schematic showing experimental design of ABE delivery by AAV6 into differentiated iPSC-CMs. (C) Sanger sequence of the genomic region of the *RBM20*^{R634Q} mutation (underlined) in wild type (WT), uncorrected and ABE-corrected homozygous (R634Q/R634Q) iPSC-CMs. (D) Immunocytochemistry of WT, R634Q/R634Q and ABE-corrected R634Q/R634Q iPSC-CMs. α -Actinin (red), RBM20 (green) and DAPI (blue). Scale bar 20 µm.

Fig. S6: Prime editing of the *RBM20*^{R636S} mutation in iPSCs.

(A) Illustration of the prime editing (PE) strategy for correction of the *RBM20*^{R636S} mutation. Prime editing guide RNA (pegRNA) contains a spacer, prime binding site (PBS, 11nt length) and reverse

transcriptase template (RT, 17nt length). The *RBM20*^{R636S} mutation and intended edited nucleotides are colored red. Silent mutation for disrupting the PAM is colored blue. The nicking site of pegRNA is indicated by a green arrowhead. The second nicking site of the sgRNA is indicated by a red arrowhead. (**B**) Percentage of adenine (A) to cytosine (C) editing after PE3b correction or PE3bmax with engineered pegRNA (epegRNA) correction in homozygous (R636S/R636S) iPSCs. Data are expressed as mean \pm SEM (n = 3). Unpaired two-tailed Student's *t* test was performed. *P* value ****P*<0.001. (**C**) Sanger sequence of the genomic region of the *RBM20*^{R636S} mutation (underlined) in wild type (WT), uncorrected and PE-corrected R636S/R636S iPSC lines. (**D**) Immunocytochemistry of WT, R636S/R636S and PE-corrected R636S/R636S iPSC-CMs. α -Actinin (red), RBM20 (green) and DAPI (blue). Scale bar, 10 µm. (**E**) Normal karyotype was observed in iPSCs after BE and PE genomic correction.

Fig. S7: Off-target analysis of base and prime editing in iPSCs.

(A) Genomic deep sequencing analysis on eight predicted off-target sites of BE and PE in iPSCs. (B) and (C) Percentage of editing determined by deep sequencing on the eight predicted off-target sites. Data are expressed as mean \pm SEM (n = 3).

Fig. S8: Generating a knock-in mouse model carrying the *Rbm20*^{R636Q} mutation.

(A) Sequence of sgRNA (blue) targeting exon 9 of the *Rbm20* gene for generating a knock-in mouse model carrying the *Rbm20*^{R636Q} mutation. PAM is highlighted in pink. (B) Illustration showing the nucleotide and amino acid sequences around the genomic region of the *Rbm20*^{R636Q} mutation. Nucleotides shown in red are the knock-in *Rbm20*^{R636Q} mutation. Sanger sequence of the genomic region of the *Rbm20*^{R636Q} mutation in wild type (WT), heterozygous (R636Q/+) and homozygous (R636Q/R636Q) mice.

Fig. S9: Cardiac dysfunction in postnatal *Rbm20*^{R636Q} **mice and strategy for ABE correction.** (**A**) Experimental design for systemic delivery of AAV9 with ABE components. R636Q/R636Q mice were injected intraperitoneally with 2.5 x 10^{14} vg/kg of total AAV9 components at postnatal day 5 (P5). Time points of analyses are indicated. (**B**) M-mode echocardiographic tracings of WT, R636Q/+ and R636Q/R636Q mice at P5. (**C**) Fractional shortening (FS), left ventricular end diastolic (LVIDd) and systolic (LVIDs) diameters measured by echocardiography. Data are expressed as mean \pm SEM (n = 5-6 per genotype). One-way ANOVA with Tukey's multiple comparisons was performed. *P* value ***P*<0.01 and *****P*<0.0001. ns: not significant. (**D**) H&E staining of four-chamber heart histological sections from WT, R636Q/+ and R636Q/R636Q mice at P5. Scale bar, 1 mm.

Fig. S10: Correction of the *Rbm20*^{R636Q} mutation by adenine base editing in vivo.

(A) Percentage of adenine (A) to guanine (G) editing determined by deep sequencing in DNA from hearts of ABE-corrected R636Q/R636Q mice at 6-weeks post-ABE correction. A6 is on-target site (blue). A14 is bystander site (green). A4 and A13 are silent mutations (brown). Data are expressed as mean \pm SEM (n = 3). (B) Sanger sequencing showing the region of the *Rbm20*^{R636Q} mutation of heart cDNA in wild type (WT), homozygous (R636Q/R636Q) and ABE-corrected R636Q/R636Q (Corrected) mice. (C) M-mode echocardiographic tracings of WT, heterozygous (R636Q/+), R636Q/R636 and ABE-corrected R636Q/R636Q mice at 8-weeks post-ABE correction. (D) Left ventricular end diastolic (LVIDd) and systolic (LVIDs) diameters measured by echocardiography at 4- and 8-weeks after ABE correction in WT, R636Q/+, R636Q/R636Q and Corrected mice. Data are expressed as mean \pm SEM (n = 6 per group). Two-way ANOVA with Tukey's multiple comparisons test was performed. P value *P<0.05, **P<0.01 and ****P<0.0001. ns: not significant.

Fig. S11: Histological analysis of mouse hearts before and after ABE correction.

(A) H&E staining and (B) Picrosirius red staining of left ventricle in WT, R636Q/+, R636Q/R636Q and ABE-corrected R636Q/R636Q mice at 12-weeks after ABE correction. Scale bar, 50 μ m. (C) Quantification of fibrosis area as determined by picrosirius red staining. Data are expressed as mean \pm SEM (n = 4 per group). One-way ANOVA with Tukey's multiple comparisons test was performed. *P* value *****P*<0.0001. ns: not significant.

Fig. S12: Adenine base editing partially restored the alternative splicing and gene expression in vivo.

(A) Relative expression of the N2B isoform and the N2BA isoform of the titin (*Ttn*) gene was quantified by qRT-PCR in hearts of wild type (WT), heterozygous (R636Q/+), homozygous (R636Q/R636Q) and ABE-corrected R636Q/R636Q (Corrected) mice at 6-weeks after ABE

correction. Data are expressed as mean \pm SEM (n = 4 per group). One-way ANOVA with Tukey's multiple comparisons test was performed. P value ***P<0.001 and ****P<0.0001. (**B**) Relative expression of selected genes quantified by qRT-PCR. Data are expressed as mean \pm SEM (n = 4 per group). One-way ANOVA with Tukey's multiple comparisons test was performed. P value *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. ns: not significant.

Fig. S13: Analysis of edited read counts and RNA A-to-I editing by RNA-seq.

(A) Percentage of read counts in the region of sgRNA sequence in hearts of WT, R636Q/+, R636Q/R636Q and ABE-corrected R636Q/R636Q mice at 6-weeks after ABE correction. (n = 4 per genotype). (B) Transcriptome-wide cellular levels of RNA A-to-I editing in WT, R636Q/+, R636Q/R636Q and Corrected mice at 6-weeks after ABE correction. Data are expressed as mean \pm SEM (n = 4 per group). One-way ANOVA with Tukey's multiple comparisons test was performed. ns: not significant.

Fig. S14: Analysis of dysregulated genes in R636Q/R636Q compared to WT hearts.

Heatmap showing expression of selected (**A**) up- and (**B**) down-regulated genes in R636Q/R636Q compared to WT hearts.

Fig. S15: No adverse events were observed in heart and liver following ABE-correction using AAV9 delivery system.

(A) Representative images showing TUNEL staining on heart sections from wild type (WT), heterozygous (R636Q/+), homozygous (R636Q/R636Q) and ABE-corrected R636Q/R636Q (Corrected) mice at 12-weeks after ABE correction. Scale bar, 20 μ m. (B) Quantification of TUNEL positive cells in WT, R636Q/+, R636Q/R636Q and Corrected mice. Data are expressed as mean \pm SEM (n = 4 per genotype). One-way ANOVA with Tukey's multiple comparisons test was performed. *P* -value **P*<0.05 and ***P*<0.01. ns: not significant. (C) H&E staining of liver from WT, R636Q/+, R636Q/R636Q and Corrected mice at 12-weeks after ABE correction. Scale bar, 2 mm.

Table S1. Base editing single guide RNAs (sgRNAs) for correction of the *RBM20*^{R634Q}

mutation.

Base editing sgRNA	sgRNA sequence	PAM	Cas9
sgRNA1	GCCGCAGTCTCGTAGTCCGG	TGA	NG- or VRQR-SpCas9
sgRNA2	AGGCCGCAGTCTCGTAGTCC	GG	NG-SpCas9
sgRNA3	AGGCCGCAGTCTCGTAGTCCG	GTGAGC	SaCas9
sgRNA4	CGCAGTCTCGTAGTCCGGTG	AG	NG-SpCas9

Table S2. List of primers and single-stranded oligodeoxynucleotides used in this study.

Primer function	Primer name	Primer sequence	
	R634Q-sgRNA-FW	CACCGCTCACCGGACTACGAGACCG	
Generating iPSCs	R634Q-sgRNA-RV	AAACCGGTCTCGTAGTCCGGTGAGC	
	RBM20-Ex9-FW	GCCAGTGCTGTGCTTAGGA	
	RBM20-Ex9-RV	TGGTGTTTGCGATCATGTGC	
(<i>RBM20</i> ^{R634Q})		GTCTGTGTGTGGGTGGGGTGGGATGGGAGGTGT	
	ssODN- <i>RBM20</i> -R634Q	GAAGATTCTAAATCCTGCTCCTTGGCTCCCTCACA	
		GATATGGCCCAGAAAGGCCGCAGTCTCGTAGTCC	
		GGTGAGCCGGTCACTCTCCCCGAGG	
	R634Q-sgRNA1-FW	CACCGCCGCAGTCTCGTAGTCCGG	
	R634Q-sgRNA1-RV	AAACCCGGACTACGAGACTGCGGC	
Popo oditing	R634Q-sgRNA2-FW	CACCGAGGCCGCAGTCTCGTAGTCC	
	R634Q-sgRNA2-RV	AAACGGACTACGAGACTGCGGCCTC	
(RRM20R634Q)	R634Q-sgRNA3-FW	CACCGAGGCCGCAGTCTCGTAGTCCG	
	R634Q-sgRNA3-RV	AGACCGGACTACGAGACTGCGGCCTC	
	R634Q-sgRNA4-FW	CACCGCGCAGTCTCGTAGTCCGGTG	
	R634Q-sgRNA4-RV	AAACCACCGGACTACGAGACTGCGC	
	qRT-18SrRNA-FW	ACCGCAGCTAGGAATAATGGA	
	qRT-18SrRNA-RV	GCCTCAGTTCCGAAAACCA	
Human aRT-PCR	qRT-TTN-N2B-FW	CCAATGAGTATGGCAGTGTCA	
	qRT-TTN-N2B-RV	TACGTTCCGGAAGTAATTTGC	
	qRT-TTN-N2BA-FW	ATCCTGAGAACCCAGGTGGT	
	qRT-TTN-N2BA-RV	GGTTGGTGGATATGCCTCTGT	
	BE OT1-FW	TTTGTTGAGGGCAGAGCCAA	
	BE OT1-RV	TGGCACTCTTTGCTTGGTGA	
	BE OT2-FW	GACTCTCTGTGGGCCTTCAAAGATGGA	
	BE OT2-RV	TATTGGCGCTCGTCTGCCCAATCTC	
	BE OT3-FW	CTTTCCTGACTACTTCCCTGGT	
	BE OT3-RV	GAGTCTGGCAGTGGAACAAGA	
	BE OT4-FW	GCAACTTGGCAAAGGGAAGAAAAACA	
BE Off-target	BE OT4-RV	CAGAGTACCACTGCCTACCACTACAA	
	BE OT5-FW		
	BE OT5-RV	GCGGCTTTCCCACTGAAATC	
	BE OT6-FW	TGAACTGGACCCCCGAGGTGTAGCC	
	BE OT6-RV	TTTCCTAAGAGTCGGTCGGCTTGAG	
	BE OT - FW	ATCCTTTGGGTCCAACCAGC	
	BE OT /-RV		
	BE OT8-FW		
	BE 018-RV	GGGAGACTGTTGGGAAGATA	
	PE 011-FW		
	PE 011-RV		
PE Off-target	PE 012-RV		

	PE OT6-RV	GAGGAACAGAGGACGCCAGA	
	PE OT7-FW	GACAGAACGCGACTTCAGGA	
	PE OT7-RV	TGCAGCTGGAAAGACTGAGG	
	PE OT8-FW	GCAGATGGAATCAAACTGGTTGATC	
	PE OT8-RV	CCATCCTAGATGAGAGTCTGTGCA	
	R636S-sgRNA-FW	CACCGACCGGCTCACCGGACTACG	
	R636S-sgRNA-RV	AAACCGTAGTCCGGTGAGCCGGTC	
Generating iPSCs		GTGTGGGTGGGGTGGGGATGGGAGGTGTGAAGATT	
$(RBM20^{R636S})$			
(1120)	ssODN- <i>RBM20</i> -R636S		
	FeyrinA-spacel-RV		
	Scaffold-FW		
PegRNA (PBS	Scaffold-RV	GCACCGACTCGGTGCCACTTTTCAAGTTGATAAC	
11nt, RTT 17nt)		GGACTAGCCITATITTAACTIGCTATITCTAG	
	PegRNA-FW	GIGCGGACIACGAGAGCGCGGCCIIICIGGGC	
	PegRNA-RV	AAAAGCCCAGAAAGGCCGCGCTCTCGTAGTCC	
	PegRNA-2ndnick-FW	CACCGCTCACCGGACTACGAGAGCG	
	PegRNA-2ndnick-RV	AAACCGCTCTCGTAGTCCGGTGAGC	
		GTGCGGACTACGAGAGCGCGGCCTTTCTGGGCTT	
	EpegRNA-FW	GACGCGGTTCTATCTAGTTACGCGTTAAACCAACT	
EpegRNA (PBS		AGAAA	
11nt, RTT 17nt)	EpegRNA-RV	AAAATTTCTAGTTGGTTTAACGCGTAACTAGATAGA	
		ACCGCGTCAAGCCCAGAAAGGCCGCGCTCTCGTA	
		GTCC	
		TTTTTTCAGGTTGGACCGGTGCCACCATGAAACG	
	Agel-ABEmax-FVV	GACAGCC	
ABE-SpCasy-	ABEmax-RV	GCCCACAGAGTTGGTGCCGAT	
variants-2A-GFP	SpCas9-FW	TCGGCACCAACTCTGTGGGC	
	Apal-SpCas9-RV	GCTGTTTCCCCTGGCCAGAGG	
		TTTTTTCAGGTTGGACCGGTGCCACCATGAAACG	
ABE8e-SaCas9-	Age1-ABE8e-FW	GACAGCCG	
2A-GFP	D10A-SaCas9-RV	TTGATGCTCTGGATGAAGCTCCGC	
	Xhol-Pacl-cTnT-F1	GGGATAAAAGCAGTCTGGGC	
	Agel-cTnT-R1	TGGGT	
AAV-cTnT-			
ABEmax-VRQR-	U6-gRNA-F1		
SpCas9-N and -C	-		
	Xbal-Notl-U6-gRNA-R1		
	Xhol-U6-gRNA-F1		
Generating a mouse model (<i>Rbm20</i> ^{R636Q})	Rbm20-sgRNA-FW		
	Rbm20-sgRNA-RV	AAACCGTTCTCGAAGTCCAATGAGC	
	Rbm20-Ex9-FW	GGTAGAGGGCAGAGAGTGTCTTAGGG	
	Rbm20-Ex9-RV	CCTTCGAGTCGCTCATCCAACTCAGC	
	ssODN- <i>Rbm20</i> -R636Q	GTCTCCATCTGGGTGATGCAGGTTACGAGCTCTG	
		CAGAGTCTAAACCCTGTCTCTTCCCTTCCTCCCAG	
		GTATGGTCCAGAGCGGCCACagTCTCGAAGTCCAA	
		TGAGCCGATCACTCTCCCCAAGA	
	R636Q-saRNA-FW	CACCGCCACAGTCTCGAAGTCCAA	

Base editing sgRNA (<i>Rbm20</i> ^{R636Q})	R636Q-sgRNA-RV	AAACTTGGACTTCGAGACTGTGGC	
Mouse RT-PCR	Rbm20-FW	ATGGCTTACACAGAAGCCGC	
	Rbm20-RV	CCTTCGAGTCGCTCATCCAA	
	qRT-mmu18SrRNA-FW	GTAACCCGTTGAACCCCATT	
	qRT-mmu18SrRNA-RV	CCATCCAATCGGTAGTAGCG	
	qRT-Ttn-N2B-FW	GGAGTACACCTGCAAAGCCT	
	qRT-Ttn-N2B-RV	TGCGGCTTAGGTTCAGGAAG	
	qRT-Ttn-N2BA-FW	GGAGTACACCTGCAAAGCCT	
	qRT-Ttn-N2BA-RV	CCTTGGGCCTGGAGAGAAAG	
	qRT-Ankrd1-FW	ATAAACGGACGGCACTCCAC	
	qRT-Ankrd1-RV	CATCTGCGTTTCCTCCACGA	
	qRT-Nppa-FW	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Nppa-RV	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Nppb-FW	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Nppb-RV	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Myh7B-FW	KiCqStart SYBR Green Primers (Millipore Sigma)	
Mouse yr I-FCR	qRT-Myh7B-RV	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Hopx-FW	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Hopx-RV	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Mylk4-FW	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Mylk4-RV	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Thbs4-FW	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Thbs4-RV	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Postn-FW	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Postn-RV	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Casq1-FW	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-Casq1-RV	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-TnnT3-FW	KiCqStart SYBR Green Primers (Millipore Sigma)	
	qRT-TnnT3-RV	KiCqStart SYBR Green Primers (Millipore Sigma)	

RBM20; RNA binding motif protein 20, Ex; Exon, sgRNA; single guide RNA, FW; forward, RV; reverse, ssODN; single-stranded oligodeoxynucleotide, OT; off-target, BE; base editing, PE; prime editing, ABE; adenine base editing, PegRNA; prime editing guide RNA, EpegRNA; engineered prime editing guide RNA, PBS; primer binding site, RTT; reverse transcriptase template, AAV; adeno associated virus, cTnT; cardiac troponin T, 18SrRNA; 18S ribosomal RNA, Ttn; titin, Ankrd1; ankyrin repeat domain 1, Nppa; natriuretic peptide A, Nppb; natriuretic peptide B, Myh7B; Myosin heavy chain 7B, HOPX; HOP homeobox, Mylk4; myosin light chain kinase family member 4, Thbs4; thrombospondin 4, Postn; periostin, Casq1; calsequestrin 1, TnnT3; troponin T3, fast skeletal type.

Data file S1. Raw data for all experiments where *n*<20.