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Supporting Information Text14

1. Finite size effects in minimal model of clone size distribution15

Here, using a 1D mathematical model of growth layer expansion, we derive a relationship between birth position (∆) and clone16

size (n) without relying on an assumption that clone sizes are infinitesimal.17

We first consider an infinitesimally small mutant of width dσ0 born at a distance ∆ from the front. This mutant will grow18

until it is pushed out of the growth layer by the cells proliferating in front of it, which occurs when the thickness ∆ of cells in19

front has reached width λ filling the growth layer. Because growth is constant within the growth layer, the infinitesimal mutant20

will grow by the same relative amount as the thickness of cells in front, reaching a final width dσf = λ
∆dσ0.21

Next, we consider a mutant with an initial finite width σ0 centered at a distance ∆ from the front by subdividing it into22

many infinitesimal mutant segments over the range [∆− σ0/2,∆ + σ0/2]. Since each infinitesimal segment d∆′ satisfies the23

relationship above, the final size of the mutant clone will be24

σf =
∫ ∆+σ0/2

∆−σ0/2

λ

∆′ d∆′ = λ log
(

∆ + σ0/2
∆− σ0/2

)
. [1]25

Assuming that the initial width σ0 corresponds to one cell width, we refer to n = σf/σ0 as the final clonal size and express λ26

n = λ log
(

∆ + σ0/2
∆− σ0/2

)
. [2]27

In the limit where ∆� 1/2 (or equivalently n� λ)28

n ≈ λ

∆/σ0
, [3]29

This relationship between position at birth and final clone size is consistent with what we predict in the main text for30

infinitesimal clones (Eq. 1 in the main text) and find in cell-based simulations (Fig. 3b).31

This approximation underestimates the final clone size, with the largest errors corresponding to mutations that occur32

closest to the front (∆ � λ). However, the approximation works very well even for the largest possibly non-surfing clones33

that originate at ∆ = σ0, corresponding to a relative error of |(nexact − napprox)/nexact| = 0.1. Clones born closer to the front34

(∆ < σ0) tend to surf (Fig. 3c), leading to a qualitative change in the clone size distribution that is highly dependent on the35

granular nature of the cell colony.36

The relationship between position at birth and final clone size, which holds for each clone individually, translates into a37

prediction for the global clone size distribution when combined with the probability of observing a mutation at distance ∆. We38

assume that the mutation rate is proportional to the growth rate (no death), meaning that mutations occur with a certain39

probability only when a new cell is born. Since growth is constant within the growth layer, the probability that a mutation will40

occur at ∆ (for 0 < ∆ < λ) is P (∆) = λ−1. By inverting Eq. 2 in order to calculate d∆/dn41

∆ = 1
2
en/λ + 1
en/λ − 1

, [4]42

we can obtain the probability of observing a clone of size n43

P (n) = P (∆)
∣∣∣∣d∆
dn

∣∣∣∣ = en/λ

λ2(en/λ − 1)2 , [5]44

If n � λ/σ0, we find the approximate relation we had before P (n) ≈ n−2 (and cumulative distribution P (n > Clone45

size) ≈ n−1).46

2. Extension to non-uniform growth layer47

We built an ODE model able to explain the form of the clone size distribution we observe for an arbitrary one-dimensional48

growth profile k(z). At time t = 0, a mutant cell is born a distance ∆ behind the front. We assume that the growth rate k(z)49

depends only on the z position of the cell measured as distance from the front in units of cell widths and that k(z) is constant50

over the length of one cell. The clone size n grows according to51

ṅ =
∫ z(t)+n

z(t)
k(z′)dz′ ≈ k(z(t))n52

where z(t) is mutant clone’s position at time t and where we have taken the limit that the clone size is smaller than the53

lengthscale on which k decays (the growth layer size). Formally, the final size of the clone will be:54

n∞ = n0 exp
[∫ ∞

0
k(z(t))dt

]
55
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where n0 is the initial size of the clone (in most cases n0 = 1) The element’s position, z, will move away from the front with56

velocity57

ż =
∫ z

0
k(z′)dz′ .58

A key assumption here is that the growth profile is not time varying in the frame moving with the front. Now, we can write59

the asymptotic clone size as:60

n∞ = n0 exp
[∫ ∞

∆

k(z)
ż
dz

]
= n0 exp

[∫ ∞
∆

k(z)∫ z
0 k(z′)dz′

dz

]
61

Note that in order for the asymptotic area to be well-defined, the integral over z must be finite. We make the following change62

of variables:63

κz ≡
∫ z

0
k(z′)dz′64

dκz = k(z)dz65

Therefore,66

n = n0 exp
[∫ κ∞

κ∆

dκ

κ

]
= n0

κ∞
κ∆

,67

where we have dropped the subscript on n. We see that κ∞ must be a finite constant to have a finite asymptotic area, so this68

further constrains our choice of k(z).69

The clone size distribution P (n) can be written as70

P (n) =
∣∣∣ da
d∆

∣∣∣−1
P (∆),71

and from the relationship above we have that72 ∣∣∣ dn
d∆

∣∣∣ = n0
κ∞
κ2

∆
k(∆)73

If we assume that the probability of mutating is proportional to the growth rate, then P (∆) ∼ k(∆). It thus follows that74

P (n) ∼ κ2
∆

n0κ∞
∼ 1
n2 .75

The result holds for exponential growth profiles, power law profile with small and large z cutoffs, and Monod type profiles of76

the form e−z

1+e−z . We explicitly test this prediction for mechanical cell-based simulations with exponential profiles in Fig. S9.77

Another interesting aspect of this analysis is that the final bubble area depends on its position at birth through the term78

κ∆. We see that κ∆ is a measure of the total amount of available biomass between the bubble’s birth position and the front.79

In other words, the bubble size is dictated by global properties of the nutrient profile.80

3. Selection: single effect size81

If the mutations are not neutral, the mutant population will grow at a different rate compared to the WT. We assume that this82

difference is given by a multiplicative constant, so that if the WT grows according to k(z), the mutant grows according to83

(1 + s)k(z) where s > −1 is the “fitness difference” between the two strains.84

Using the same analytical derivation as in the previous section, we find that85

n = n0

(
κ∞
κ∆

)1+s
.86

Note that for neutral mutations (s = 0) we recover the old result. We now get for the probability distribution (conditioned on87

s):88

P (n|s) ∼ n−
2+s
1+s89

corresponding to cumulative distribution P (Clone size> n) ∼ n−1/(1+s). See Fig. S8 for verification of this prediction in90

mechanical cell-based simulations.91

This prediction follows our intuition: if s < 0 (deleterious mutations) the bubble distribution falls off more steeply, whereas92

it becomes more broad as we get to larger positive fitness effects.93
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4. Selection: distribution of fitness effects94

A distribution of fitness effects will also create noticeable distortions in the clone size distribution. For small s, we have:95

P (a|s) ∼ n−2+s
96

For a distribution of fitness effects P (s), we have the clone size distribution:97

P (n) =
∫
P (n|s)P (s)ds ∼ n−2〈ns〉s98

where 〈ns〉s is related to the generating function of the distribution of fitness effects, 〈ezs〉s, evaluated at z = logn.99

Let’s assume s ∼ N (0, σ), so we have:100

P (n) ∼ n−2
∫
nses

2/σ2
ds101

where we have dropped any constant factors. We can complete the square and perform the integral to get:102

P (n) ∼ n−2 exp
(
−σ

2 log2 n

4

)
≈ n−2

(
1− σ2 log2 n

4

)
103

since σ is assumed to be small.104

5. Clone size in microfluidic lineage tracking105

In microfluidic experiments, we measure the size of clones within a culture chamber at each time point and use the maximum106

value as a proxy of final clone size. We show here that this approximation does not affect the predicted power-law of the site107

frequency spectrum.108

If a cell is born at distance ∆ from the front with initial length σ0, then the initial position of the leading edge of the clone109

is z = ∆ + σ0/2. When the leading edge makes contact with the back of the growth layer (z = λ), the entire clone is stretched110

to size σf = σ0λ/(∆ + σ0/2). Inverting this relationship gives ∆ = λ/n− 1/2, where the length scale is rescaled by σ0. The111

result slightly deviates from Eq. 1 in the main text, but P (n) ∝ d∆/dn ∝ n−2 holds in this case as well.112

6. Clone size distribution with non-homogeneous death rate113

The clone size distribution for non-surfing clones behaves like n−2 when assuming that the probability P (∆) for a mutation to
appear at position ∆ is proportional to the net growth rate k(∆) in such position. However, this assumption might break
under certain conditions, for instance if a non-homogeneous death rate is present. In the general case, it still holds that the
probability of observing a mutant of size n is

P (n) = P (∆)
∣∣∣ dn
d∆

∣∣∣−1

and the relationship between final size n and position at birth ∆ remains

n ∝
[∫ ∆

0
k(z)dz

]−1

where k(z) is the net growth rate at position z. However, further simplifications cannot be made, leading to the general
expression

P (n) ∝ P [∆(n)]
n2k[∆(n)] ,

where the notation ∆(n) highlights that ∆ is a function of n. The functional form of the clone size distribution P (n) will then114

in general depend on the specific form of P (∆) and k(∆).115

For illustration, we report here an example in which we define the net growth rate k(z) = exp(−z/λ) = α(z) − β(z),
where α(z) represents the birth rate and is proportional to the mutation rate P (z), while β(z) is the death rate. In this case,
n = [1− e−∆/λ]−1 and

P (n) ∝ α(∆)
n2(1− 1/n) = α(∆)

n(n− 1) .

If α(z) is uniform along z and β(z) = 1− e−z/λ, then the clone size distribution P (n) ∝ 1
n(n−1) , which tends to n−2 for large116

n, but deviates from it at small n. This would correspond to the case in which replication rate is not affected by position, but117

death rate increases as we move deeper inside the colony, for instance because of the accumulation of toxic waste.118
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7. Inferring mutation rate from non-surfing clones distribution and localized deep sequencing119

We have shown that for non-surfing clones, the probability that a mutation is larger than size n is P (Clone size > n) = 1/n.120

Indeed, by definition, a mutation has to be carried by at least n = 1 cells and P (Clone size > 1) = 1 as intuition suggests. A121

related quantity to P (Clone size > n) that can be observed experimentally is the number of mutations M(Clone size > x) that122

are carried by at least a frequency x of the population (Fig. 4). Because the total number of mutations in a population of final123

size N is approximately µN , where µ is the mutation rate per replication, it follows that M(Clone size > x) = µNP (Clone size124

> n) = µN/n = µ/x. It is therefore possible to estimate the mutation rate µ from the prefactor of the non-surfing clone regime125

of M(Clone size > x) (low-frequency range of the black line in Fig. 4).126

If the population is too large or sequencing coverage is too low to observe the non-surfing clone regime, we find that localized127

bulk deep sequencing can be used (cyan line in Fig. 4). In this case, the observed frequency x̂ of a mutation represents the128

frequency in the sequenced sub-population N̂ < N . However, also the total number of mutations in the sub-population scales129

like µN̂ . As a result, the observed number of mutations above an observed frequency, M̂(Clone size > x̂) = µN̂

x̂N̂
= µ/x̂.130

Therefore, the prefactor of the power-law can again be used to estimate the mutation rate of the population, even if only part131

of the population is sequenced.132

8. Rescaling of entire colony frequency spectra133

In order to rescale the clone frequency distributions from sub-sampled regions, we calculate a characteristic frequency fc and134

corresponding value of the cumulative distribution Nc. The frequency fc can be thought of as the frequency that a mutation135

carried by a single cell in the sub-sample would have in the entire colony.136

For the side sampling technique, fc is determined the the solid angle θ =(sampled width)/(colony radius) that is inscribed137

by the sampled region: fc = θ. For the middle sampled regions, nc further takes into account the ratio r =(number of cells in138

fictitious inner colony with radius equal to outer extent of sampled region)/(number of cells in entire colony): nc = rθ.139

Nc is then determined by aligning the smallest of value of N is the subsampled region with with predicted trend N/Nc = nc/f .140
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a) b)

Fig. S1. (a) Clone size distribution for a range of growth layers depths: λ = 4, λ = 9, λ = 14, and λ = 20 (units of cell widths). The dashed line shows the n−1 prediction.
(b) Clone size distribution rescaled by λ shows that the n−1 regime extends over the range n = 1 to n = λ. For n > λ, the clone size distribution is dominated by surfing
bubbles (Fig. 3a).

Fig. S2. (a) Clone size distribution (black) for colony with λ = 14 cells and radius R = 602 cells (total number of cells in colony = 106). Colored lines show distributions
obtained via sub-sampling using side technique with widths 11 cells (green), 36 cells (blue), 112 cells (cyan) and depths of 11 cells (solid line), 36 cells (dashed line), 120 cells
(dotted line). Shaded regions correspond to non-surfing bubbles, surfing bubbles, and established sectors. The grayscale regions correspond to non-surfing bubbles (light gray),
surfing bubbles (intermediate gray), and sectors (darkest gray). (b) Rescaled distributions, xc and Nc are described in Section 8.

6 of 14 Carl F. Schreck, Diana Fusco, Yuya Karita, Stephen Martis, Jona Kayser, Marie-Cécilia Duvernoy, Oskar Hallatschek



Fig. S3. A schematic of the engineered S. cerevisiae strain yJK10 that stochastically switches the color from RFP (yEmRFP) to GFP (yEGFP). The switching rate is tunable
with β-estradiol, and the fitness advantage/disadvantage of switched cells can be tuned with drugs, hygromycin B and cycloheximide due to an additional cycloheximide
resistance allele cyh2∆::cyh2r (1). The genotype of the strain is as follows:
W303 MATa cyh2∆::cyh2-Q37E-cs hmlα2∆::R ho∆::prSCW11-cre-EBD78-natMX ura3∆::prGPD-loxP-yEmRFP-tCYC1-CYH2-hygMX-loxP-yEGFP-tADH3.
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Fig. S4. (a) A snapshot from the particle image velocimetry analysis (2, 3). Each arrow shows the parallel component of the displacement of a 20x20 µm2 region (32x32-pixel)
during one time frame (10 minutes). For the sake of visibility, the length of arrows is rescaled by factor of 2, and the number of arrows is reduced from 37x37 to 13x13. (b)
Under our usual experimental conditions (nutrient-rich condition, 2%-glucose YPD media), the velocity field is linear along the growth direction, showing that all cells grow at
the same rate. To make sure this method would capture a drop in growth rate, we replicated this experiment under nutrient-poor condition (0.01%-glucose YPD media). As
expected, the overall velocity is reduced (slower growth rate) and heterogeneous along the growth direction (see inset), showing a slow down in the middle of the chamber due
to nutrient depletion. The error shows the standard deviation of the statistics across horizontal positions and over 100 (nutrient-rich) and 140 (nutrient-poor) time points.
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Fig. S5. Estimation of the relative fitness between the original yJK10 strain and the color-switched yJK10 strain. (a) Colony collision experiments to estimate the fitness effect of
color switching. Collisions of 12 pairs of the original yJK10 colony and the color-switched yJK10 colony were observed on YPD plates. The relative fitness between two strains
was estimated at s = 0.022± 0.040 by the formula s = L/R from the equal time argument (4). The lines on the figure are illustrations of the concept and not the actual
fittings. (b) Population expansion experiments in microfluidics. 1-3 cells were initially trapped in the microfluidic chamber, and the growth of the population was observed for the
original yJK10 strain (with YPD) and the color-switched yJK10 strain (with YPD and YPD + β-estradiol). (c) The exponential fitting of the growth curves gives us the estimation
of the relative fitness of the color-switched strain to the original strain: s = 0.019 (YPD) and s = −0.020 (YPD + β-estradiol).
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Fig. S6. Proportion of color-switched cells whose final clone size is greater than n, where area is used as a proxy for clone size. The different lines indicate experimental
replicas with respectively 45 (blue), 64 (green), 150 (red), 245 (cyan) mutant clones. The solid lines correspond to the chamber depth of λ = 500 µm as used in Fig. 2c and the
dashed lines correspond to clones imaged at a distance λ = 300 µm, mimicking the clones we would expect to see in a shorter chamber. (d) Relationship between final clone
size and distance from the front at which such clone arose. Purple point correspond to λ = 500 µm and cyan points correspond to λ = 300 µm. The different point types
indicate experimental replicas with respectively 45 (diamonds), 64 (upside down triangles), 150 (circles), 245 (rightside up triangles) mutant clones. The black line corresponds
to λ/∆, where λ is the size of the chamber and ∆ is the distance from the front.
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Fig. S7. Clone size distributions for neutral mutations in mechanical simulations of ellipse-shaped and budding cells with different division rules (growth layer depth λ = 14
cell widths). The ellipse-shaped cells in these simulations have aspect ratio = 1 at birth and grow to aspect ratio = 2. These simulations use conjugate gradient energy
minimization (5) rather than overdamped molecular dynamics as used in the main text (Fig. 3). Ellipse data is shown in cyan, budding data is shown in red, and budding data
from the main text (Fig. 3b) is shown in solid black for reference. The dashed black line shows the 1/n prediction. We compare four different rules for assigning the orientations
after division, including the case where cells retain the orientation of their mothers (solid black/cyan/red lines), are assigned random orientations (dashed red/cyan lines), exhibit
polar budding with new buds facing outward (dotted red line), and exhibit axial budding with new buds facing inward (dot-dashed red line).
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Cell growth rate:
  kmut = (1+s)kWT

s = 0
s = 0.01
s = 0.05
s = 0.2

Fig. S8. Clone size distributions for advantageous mutations in mechanical simulations with a uniform growth layer depth of λ = 14 cell widths. (a) Distributions for selective
advantages (s = kmut/kWT − 1) of s = 0 (solid black), s = 0.01 (dashed red), s = 0.05 (dotted green), and s = 0.2 (dash-dotted blue). The dashed black line show the
1/n prediction. (b) The small-n power-law exponent (cyan points), found in the range n < 10, compared to the predicted value P (Clone size> n) ∝ n−1/(1+s) (dashed
black line). For these simulations, we used ellipse-shaped cell simulations where cells have aspect ratio = 1 at birth and grow to aspect ratio = 2. These simulations use
conjugate gradient energy minimization for population dynamics.
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Fig. S9. Clone size distributions for neutral mutations in mechanical simulations with a uniform growth layer (solid black line) and a growth layer profile where cellular growth
rate decreases exponentially with distance to front (dashed red line). The dashed black line show the a/n prediction. Both simulations have a characteristic growth layer depth
of λ = 14 cell widths. For the uniform growth layer, the growth rate k = k0 for ∆ < λ and k = 0 for ∆ > λ, where ∆ is the distance to the colony front. For the uniform
growth layer, the growth rate k = k0 exp−∆/λ for ∆ < λcut and k = 0 for ∆ > λcut, where we used a cut-off distance of λcut = 40 cell widths. For these simulations,
we used ellipse-shaped cell simulations where cells have aspect ratio = 1 at birth and grow to aspect ratio = 2. These simulations use conjugate gradient energy minimization
for population dynamics.
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Movie S1. Experimental tracking of the clone size of the switcher budding yeast yJK10. The growth of141

switched cells were tracked for ∼43 hours. The left panel shows the green fluorescent channel where only142

switched cells were visible in a jam-packed population (see Fig. 2). The right panel shows the data after the143

image processing. Clones from a single switching event are labeled by colored circles. The different colors144

correspond to different switching events.145
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