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Supporting Information Text17

Single cell model details18

Here we give the details of the single cell model (Eq. 1 of the main text), and annotate their sources. Differential equations are19

solved using the Euler method with a step size of 0.2 ms.20

Expressions. Ca2+ flux through IPR (1):21

JIPR = kIPR
C2P 2R

(C2 +K2
a )(P 2 +K2

IP) (S − C)

dR
dt = kR

(
K2

i

K2
i + C2 −R

)
Ca2+ flux leaking from ER (1):22

Jleak = kleak(S − C)

Ca2+ flux through the SERCA pump (1):23

JSERCA = kSERCAC

Ca2+ flux through PMCA pump (1):24

JPMCA = kPMCAC

Ca2+ entry fluxes from the extracellular space (1):25

Jin = vin + vr
P 2

K2
r + P 2

Current through voltage-gated Ca2+ channels (2):26
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Current through voltage-gated K+ channels (2):27

IK = gKn
4(V − EK)

dn
dt = n∞ − n

τn

n∞ = 1
1 + exp(−V+18.5

23 )
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Leak current:28

IL = gL(V − EL)
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Parameters. The related parameters are shown in Table S1. Sensitivity analysis on parameters involved in the slow pathway29

(Fig. S1) shows that our model is insensitive to the change of these parameters in a large range (0.8× - 1.2×). Parameter30

sweeping on the two major factors of the fast pathway, gCa and gK (Fig. S2), shows that they are affecting the equilibrium31

of the action potential (AP), and in a large range of the combination of values of gCa and gK, a post-stimulation AP can be32

triggered, of which the lag time is smoothly changing with the parameter values.33

Calcium fluxes and ion currents. Fig. S3 includes the supplementary plots of Fig. 3B and 3C of the main text, showing the34

calcium fluxes and ion currents related to the dynamics.35

Equilibrium requirements. To maintain the cell in the equilibrium state with no external stimulation, several equilibrium36

conditions need to be held at the initiation.37

The equilibrium of membrane currents:38

ICa + IK + IL = 0

The equilibrium of Ca2+ fluxes through the cell membrane:39

Jin − JPMCA − αICa = 0

The equilibrium of Ca2+ fluxes through the ER membrane:40

JIPR + Jleak − JSERCA = 0

Initial values of the dynamical variables are set as equilibrium values of these equations.41

Multicellular model details42

Calibration of the size of muscle sheets. To simulate calcium signaling in the whole-body muscle sheets, we construct ectodermal43

and endodermal networks of Hydra epitheliomuscular cells. The number of muscle cells of Hydra varies considerably with44

body size (3). For a representative Hydra of length of 1.38 mm, we counted 62 cells longitudinally and 30 (15×2) - 34 (17×2)45

cells circumferentially, depending on the longitudinal location (Fig. S4). We approximate the body column as a cylinder46

composed of 30×60 square cells, of which the side length is 30 µm; the lateral sheet edges are connected and the topmost and47

bottommost cell rows are taken to be isolated from the environment. Cells within a layer are connected to their neighbours via48

gap junctions.49

Effects of stimulation strength on wave propagation. As shown in Table S1, we set the stimulation strength of the slow pathway50

(vPLCβ) as 1.0 µM/s and that of the fast pathway (Istim) as 0.02 mA/cm2. To explore how these values affect the results, we51

sweep them over an order of magnitude (0.1 - 1.0 for the slow wave; 0.004 - 0.04 for the fast wave) and plot how these inputs52

influence the longitudinal [Ca2+] propagation, given stimulation of a local (2×2 cells) domain at the center of a 30×60 muscle53

sheet (Fig. S5). The wavefront index is defined as the maximum index of cells whose [Ca2+] concentration is higher than a54

threshold (0.055 µM). The results show a clear phase transition of fast wave propagation when Istim is between 0.016 - 0.0255

mA/cm2, which does not appear in the slow wave.56

When the stimulation strengths are small, both the slow pathway and fast pathway propagate in a form of diffusion (not57

shown); when the strengths are large, the slow pathway gradually exhibits a diffusive-wave propagation pattern, while the fast58

pathway suddenly transitions to a regenerative-wave propagation pattern when the input strength exceeds a threshold.59

Effects of gap-junctional coupling coefficients on wave propagation. We explore the effects of the gap-junctional coupling60

coefficients gIP3 and gc (in units of s−1) by tuning their values along with longitudinal and circular directions and visualizing61

how they will affect the propagation range of the slow waves and the propagation speed of the fast waves, with the values of all62

other parameters fixed. Both are again initiated by stimulating a domain of 2×2 cells at the center of a 30×60 muscle sheet63

(Fig. S6). In both cases, a larger coupling coefficient facilitates the propagation in that direction, and reduces the propagation64

in the orthogonal direction. The default values used in our simulation are: gc = 1000 s−1 for both longitudinal and circular65

directions; gIP3 = 2 s−1 for the longitudinal direction and 0.1 s−1 for the circular direction.66

The reason that use different criteria to measure the slow and fast waves is due to the different natures between them: the67

amplitude of slow wave is significantly decaying with the propagation distance and ceases at some point, and we found the68

average speed (which is strongly affected by how we set the threshold to define wavefront) is not a good metric to measure the69

strength of wave propagation, instead, the farthest wavefront which shows “how far” the wave can propagate can perfectly70

reflect that; as for the fast wave, since it’s global which means it finally activates all cells, the farthest wavefront is just the71

border of the sheet which is trivial, so the speed which shows “how fast” the wave can reach the border plays a good metric.72
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Effects of intracellular parameters on wave propagation. Besides the coupling coefficients, some intracellular parameters that73

influence the strength or duration of the calcium dynamics can also affect wave propagation. We select some significant74

parameters here and explore their effects by sweeping them and measure the effects on propagation range (slow wave) or speed75

(fast wave) along the longitudinal direction under local stimulation (2×2 cells at the center) (Fig. S7), with all other parameters76

fixed. Fig. S7A shows that both larger kIPR or smaller kdeg can make the wave propagate farther – this is expected as a larger77

kIPR indicates a larger calcium release from ER stores when IPR is activated by IP3, and a smaller kdeg means the IP3 decays78

more slowly. Both effects will cause stronger calcium dynamics and facilitate wave propagation. Fig. S7B shows that increasing79

either kSERCA or kPMCA limits the maximum wave range, which is again reasonable since both factors are proportional to the80

extent that Ca2+ is recycled (kSERCA) or extruded (kPMCA) from the cytosol; therefore their increase results in a reduction in81

cytosolic Ca2+ concentration and hinders wave propagation. Fig. S7C shows larger gCa greatly facilitates the propagation82

speed of the fast wave, which can be due to the increase of Ca2+ influx from the extracellular space; larger gK can increase the83

Ca2+ efflux from the cytosol to extracellular space, thus reducing the strength of the calcium dynamics and hindering fast wave84

propagation.85

Force generation model details86

As given in Eq. 2 in the main text, we use the Hai-Murphy model to transform the Ca2+ dynamics into contracting stress87

patterns, and set different parameters for the ectoderm (phasic muscle) and endoderm (tonic muscle). The details of these88

parameters are shown in Table S2. Parameters are tuned to fit the length change of the model to that of the corresponding89

measured Hydra, based on the ranges and values provided in (4) and (5).90

Biomechanics details91

The parameters of our biomechanical model, constructed in COMSOL Multiphysicsr 5.3a, are shown in Table S3. The92

configurations of the solver are shown in Table S4. An additional example simulation result with a different neural drive is93

shown in Fig. S8.94

Effects of parameter variations on length change95

Fig. S9 shows how some key parameters can affect the length change of the model under a series of contraction pulse stimuli,96

with other parameters fixed. The stimulation train is extracted from measurements of real Hydra. These parameters are97

selected since they reflect pivotal physical properties that align with the focus of our model, and our simulation results match98

their definitions and the expectation: endodermal chalf represents the half-saturation [Ca2+]i for MLCK activation in endoderm,99

of which a larger value means a lower sensitivity of the response of endodermal stress to the calcium concentration, thus a100

smaller resistance of the body to the contraction (Fig. S9A); endodermal k7 represents the detachment rate of the latch-bridge101

state of endodermal myoneme, of which a larger value means a longer maintenance of contraction in endoderm, thus a longer102

time for the body to recover after contracted (Fig. S9B); endodermal KF represents the stress strength that generated by per103

unit of latch bridge state ratio in the endoderm, of which a larger value means a stronger endodermal stress, thus a larger104

resistance of the body to the contraction, and such a relationship is linear, different from that of chalf (Fig. S9C); relaxation105

time represents the viscosity of the muscle material, of which a larger value means a stronger and slower resistance to and106

recovery from the stress caused deformation of the body (Fig. S9D). We preferably select the parameters of the endoderm for107

sensitivity analysis because the tonic property provides more variant and complex effects on the behaviors compare to the108

phasic ectoderm.109

Model reduction110

To explore the high-level properties of the biophysical model, we apply a pointwise (a domain of 2×2 cells) pulse stimulation at111

the middle of the muscle sheet and plot the generated wave dynamics ([Ca2+]i) along with the center longitudinal line for both112

slow and fast dynamics (Fig. S10A, B). Based on the plots, we propose a Green’s function form for both slow and fast waves:113

G(ρ, t) = AΘ
(
t− ρ

v

)(
1− e−

t−ρ/v
τinc

)
e
− t−ρ/v

τdec e
− ρ
ρc

where Θ(·) is the Heaviside function, ρ is the distance between a point and the source, t is the time since the stimulation, A114

is the maximum amplitude constant, v is the velocity of the wave propagation, τinc is the time constant of the increasing phase,115

τdec is the time constant of the decreasing phase, ρc is the scaling constant of the amplitude. To represent the anisotropy of116

the coupling coefficients of slow waves, we define the distance as ρ =
√

(cwx)2 + y2, where x, y are the distance between the117

point and the source respectively in the circular and longitudinal direction, cw is a warping coefficient that represents the118

anisotropy. Warping the space is equivalent to defining directional velocities but simpler to represent.119

We fit the Green’s function by sweeping over the key parameters (A, v, τinc, τdec, ρc and cw) to match some selected targets:120

we firstly select a point on the sheet, then sweep τinc, τdec and A to fit its amplitude and the time of its increasing and decreasing121

phases, by picking the combination that minimizes the difference between the Green’s function and the biophysical model.122

Then we select two points that are far from each other, then sweep v, ρc and cw to fit their time difference and amplitude123

difference, picking the pair that gives a closest result with the biophysical model. The optimized values of these parameters are124
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shown in Table S5, and the spatiotemporal pattern of the Green’s function along with the center longitudinal line for the slow125

and fast dynamics are shown in (Fig. S10C, D).126

Though the Green’s function reproduces some characteristics of the biophysical model, its biggest limitation is it can only127

represent linear responses. However, our biophysical model includes strong nonlinearity in both single-cellular dynamics and128

the inter-cellular interactions. For instance, the refractory period of the action potential and the depletion of ER store make129

that when two fast waves or two slow waves collide with each other, they exhibit some extent of canceling (an example of the130

fast wave is shown in Fig. S11). Also, the wave-shapes of different cells differ a lot in the biophysical model simulation, so some131

parameters that are fitted with one or two arbitrary points are not generally accurate. Better simplification needs incorporating132

more nonlinearity and therefore greatly increases the problem complexity, and our attempt with Green’s functions is a start133

that may inspire the future work.134

Supplementary results135

Animation of the whole simulation pipeline. A movie showing the simulation results from neural activity to behaviors (Movie S1),136

as a supplement of Fig. 7 in the main text.137

Simulated movement without assuming phasic and tonic muscle types. A movie showing the simulated “contraction” of our138

model when we directly apply the transformed stress from calcium dynamics on the biomechanical model, without distinguishing139

the ectoderm and the endoderm with phasic/tonic muscle types (Movie S2).140
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Fig. S1. Effects on [Ca2+] by tuning parameters that are involved in a slow pathway. Each parameter is swept from 0.8× to 1.2× of the default value, with a step size as 0.1×.
This shows the subtle variation in dynamics due to these parameter choices.
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Spontaneous firing

No AP

gCa=0.0005, gK=0.0025

Fig. S2. Effects of different values of channel conductances gCa and gK on the lag time of the action potential peak after the stimulation. The choice used in the final model is
circled out, showing that there is a range of conductances that give rise to reasonable lag times.
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Fig. S3. Calcium fluxes (A) and ion currents (B), respectively correspond to Fig. 3A and Fig. 3B in the main text.
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Fig. S4. Cell counting and length measurement in a small Hydra. Green circles are the counts in longitudinal direction and red colors are the counts in circumferential direction.
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Fig. S5. Observables of [Ca2+] propagation change with different stimulation strengths of the slow wave (A - C) and the fast wave (D - F ), including the distribution of maximum
concentration (amplitude) over longitudinal index (A, D), the arrival time of peaks versus the longitudinal index (B, E) and the wavefront index change over time (C, F ).
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Fig. S6. Effects of gap-junctional coupling coefficients on wave propagation. (A) The effect of gIP3 on the longitudinal range of the slow wave. (B) The effect of gIP3 on the
circular range of the slow wave. (C) The effect of gc on the longitudinal propagation speed of the fast wave. (D) The effect of gc on the circular propagation speed of the fast
wave.
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Fig. S7. Effects of intracellular parameters on wave propagation. (A) Effects of sweeping kIPR and kdeg on the longitudinal range of the slow wave. (B) Effects of sweeping
kSERCA and kPMCA on the longitudinal range of the slow wave. (C) Effects of sweeping gCa and gK on the longitudinal propagation speed of the fast wave.
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Fig. S8. Simulation following another video where two bursts are consecutive. (A) whole-frame fluorescence trace and neural firing moments; (B) comparison between length
evolution of the model and the real Hydra in the video.
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Fig. S9. Effect on the length change by sweeping different parameters: (A) Endodermal chalf; (B) Endodermal k7; (C) Endodermal KF ; (D) relaxation time (representing
viscosity).
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Fig. S10. Spatiotemporal pattern of the impulse response of the longitudinal center-line points in the biophysical model and Green’s function. (A) Biophysical model response to
a fast pathway stimulation. (B) Biophysical model response to a slow pathway stimulation. (C) Green’s function of the fast wave. (D) Green’s function of the slow wave.
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Fig. S11. Nonlinearity exhibited by the interaction of two pointwise-stimulated fast waves. (A) Traces showing how [Ca2+]i evolves, in which each curve represents a time point.
(B) Snapshot of the muscle sheet at 25 ms after the stimulation, in which two waves cancel each other at the middle.
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Table S1. Parameters used in the single cell model

Parameter Description Value Unit Source
kIPR Rate constant of Ca2+ release through IPR 0.2 s−1 (1)∗
kR Rate constant of IPR inactivation 4 s−1 (1)
Ka Half-saturation constant for Ca2+ activation of IPR 0.2 µM (1)
Ki Half-saturation constant for Ca2+ inhibition of IPR 0.2 µM (1)
KIP Half-saturation constant for IP3 activation of IPR 0.3 µM (1)
kleak Rate constant of Ca2+ leak from ER 0.0002 s−1 (1)∗
kSERCA Rate constant of SERCA pump 0.3 s−1 (1)∗
kPMCA Rate constant of PMCA pump 0.8 s−1 (1)∗
vin Rate of Ca2+ leak across the plasma membrane 0.04 µM/s (1)∗
vr Maximal rate of activation-dependent Ca2+ influx 0.2 µM/s (1)
Kr Half-saturation constant for activation-dependent Ca2+ entry 1 µM (1)
vPLCβ Rate of PLCβ 0.002 - 1.0 µM/s (1)∗
kdeg Rate constant of IP3 degradation 0.05 s−1 (1)∗
α Current conversion factor 5182.13 µM·cm2/mC (6)
β Ratio of the volumes of cytoplasm and ER 20 1 (1)
gCa Maximal conductance of ICa 0.0005 S/cm2 (6)∗
ECa Reversal potential of ICa 51 mV (6)
gK Maximal conductance of IK 0.0025 S/cm2 (6)∗
EK Reversal potential of IK -75 mV (6)
gL Conductance of IL 0.000036 S/cm2 *
EL Reversal potential of IL -55 mV *
Cm Membrane capacitance per unit area 1 µF/cm2 (6)
Istim Current through ligand-gated ion channels 0 - 0.02 mA/cm2 (6)

* Modified or tuned in the physiological plausible range to match the time scales of single cellular dynamics and wave propagation.
Detailed sensitivity analysis is discussed and shown in Fig. S1 and Fig. S2.
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Table S2. Parameters used in the modified Hai-Murphy model

Parameter Description Value Unit

k1 Rate of M →Mp
CnM

c
nM
half + CnM

s−1

k2 Rate of Mp→M 0.15 s−1

k3 Rate of A+Mp→ AMp 16 (ecto) / 0.4 (endo) s−1

k4 Rate of AMp→ A+Mp 4 (ecto) / 0.05 (endo) s−1

k5 Rate of AMp→ AM k2 s−1

k6 Rate of AM → AMp k1 s−1

k7 Rate of AM → A+M 0.75 (ecto) / 0.015 (endo) s−1

chalf Half-saturation [Ca2+]i for MLCK activation 0.85 (ecto) / 0.15 (endo) µM
nM Hill coefficient of Ca2+ activation of MLCK 4 1
KF Proportional coefficient of active stress generation 3.3 (ecto) / 0.3 (endo) N/mm2
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Table S3. Parameters used in the COMSOL model

Parameter Value Unit
Top half sphere radius 97.5 µm
Bottom half sphere radius 97.5 µm
Body cylinder height 650 µm
Thickness 19.5 µm
Density of Enclosed Fluid 1000 kg/m3

Density of Muscle 1200 kg/m3

Lamé parameter µ of Muscle 3.336 kPa
Lamé parameter λ of Muscle 1.664 GPa
Initial bulk modulus of muscle 1.667 GPa
Relaxation time of muscle 70 s
Temperature 293.15 K
Time step 0.1 s
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Table S4. COMSOL solver configurations

Option Value
Time stepping method BDF
Steps taken by solver Intermediate
Initial step 0.001 s
Maximum step 0.1 s
Maximum BDF order 2
Minimum BDF order 1
Event tolerance 0.01
Nonlinear controller True
Singular mass matrix Maybe
Consistent initialization Backward Euler
Fraction of initial step fore Backward Euler 0.001
Error estimation Exclude algebraic
Absolute tolerance global method Scaled
Tolerance method Factor
Tolerance factor 0.05
Update scaled absolute tolerance True
Solver MUMPS
Memory allocation factor 1.2
Preordering algorithm Automatic
Row preordering True
Reuse preordering True
Use pivoting On
Pivot threshold 0.1
Out-of-core Automatic
Memory fraction for out-of-core 0.99
In-core memory method Automatic
Minimum in-core memory 512 MB
Used fraction of total memory 0.8
Internal memory usage factor 3
Check error estimate Automatic
Factor in error estimate 400
Iterative refinement True
Maximum number of refinements 15
Matrix symmetry Automatic
Matrix format Automatic
Row equilibration True
Null-space function Automatic
Orthonormal block limit 10000000
Store last residual Off
Solver log Normal
Log sampling (wall-clock) 0.005 s
Assembly block size 1000
Stop when undefined mathematical operation is detected True
Nonlinear method Constant (Newton)
Damping factor 1
Limit on nonlinear convergence rate 0.9
Jacobian update On every iteration
Termination technique Iterations or tolerance
Number of iterations 1
Tolerance factor 0.1
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Table S5. Parameters of Green’s function after fitting

Parameter Value (fast) Value (slow) Unit
A 0.9843 5.7737 µM
v 731 0.9 cell/s
τinc 0.008 9.3 s
τdec 1.01 3.9 s
ρc 55 5.2 µM
cw 1 4.9 1
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Movie S1. Simulation results from neural activity to muscle dynamics to behaviors.141

Movie S2. Simulation results from directly applying the transformed stress on the biomechanical model142

without distinguishing phasic/tonic muscle types.143
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