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Supplementary Figure S1. Overview of the model development process. 1. The data was split into a
training and a validation set in a scaffold-split manner, each time excluding one of the chemical series
(Supplementary Figure S2) from the training set. 2. Pair-wise differences between the descriptors of the
protein-ligand structure and the measured activity value were estimated for all pairs within the training
and the validation sets. 3. A model was trained to learn if two compounds differed by more than a half
pIC50 unit as a function of the differential fingerprint. 4. The performance of the model was quantified
on the left-out set using the area under the receiver-operator characteristic curve (auROC) as a metric.
The process was repeated across all the four distinct chemical series and the set of hyperparameters that
allowed for a good performance (highest mean auROC value) across all the four chemical series was
chosen as the optimal model.
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Supplementary Figure S2. Division of the molecules into chemical series. Representative example
from each of the four chemical series with the salient chemical motif highlighted in red.

Supplementary Figure S3. The distribution of heavy atom root-mean squared distance (RMSD) be-
tween the docked structures and the experimental determined structures for the four chemical series.
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RMSD threshold on training data

Supplementary Figure S4. auROC value achieved with the docking-based model when training data
is restricted to the cases where the heavy atom root mean squared displacement (RMSD) between the
crystal and the docked structure is below a specified threshold. The number of structures with heavy
atom RMSD values below each threshold is shown in Supplementary Figure S3.
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Supplementary Figure S5. auROC value for the structure-based learning approach with the validation
data being restricted to ligands for which the root mean square deviation (RMSD) between the crystal
and the experimental structure is below a specific threshold.
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Supplementary Figure S6. Structures of the five highly potent non-covalent compounds from the
COVID moonshot campaign that were used as the reference when evaluating the relative rankings of
each of the compounds in the virtual library.
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auROC Aminopyridine-like     
(n = 123)

Isoquinoline   
(n = 44)

Benzotriazole    
(n = 19)

Quinolone    
(n = 15)

Mean

Logistic regression 0.76 ± 0.04 0.73 ± 0.01 0.82 ± 0.02 0.73 ± 0.02 0.76 ± 0.02
Extra Tree classifier 0.71 ± 0.04 0.68 ± 0.02 0.82 ± 0.01 0.72 ± 0.04 0.73 ± 0.03
Random forest 0.78 ± 0.01 0.73 ± 0.01 0.81 ± 0.01 0.79 ± 0.02 0.78 ± 0.02
k-nearest neighors 0.71 ± 0.05 0.70 ± 0.01 0.81 ± 0.01 0.72 ± 0.03 0.73 ± 0.03

Supplementary Table S1. Area under the receiver operator characteristic curve (auROC) for the 
learn-to-rank task on SARS-CoV-2 MPro binding. Each column shows performance for the case 
when the specific chemical series is left out as test data. The values correspond to the mean and 
standard error of the mean when a 10-fold boostrapping process was performed on the test data. All 
models were built using Autodock Vina descriptors using the structure-based learning approach 
where experimental crystal structures were used for the training the model and docked structures 



auPRC Aminopyridine-like     
(n = 123)

Isoquinoline   
(n = 44)

Benzotriazole    
(n = 19)

Quinolone     
(n = 15) Mean

Logistic regression 0.66 ± 0.06 0.70 ± 0.01 0.82 ± 0.01 0.72 ± 0.03 0.73 ± 0.03
Extra Tree classifier 0.60 ± 0.04 0.67 ± 0.02 0.81 ± 0.02 0.70 ± 0.05 0.70 ± 0.04
Random forest 0.73 ± 0.02 0.70 ± 0.01 0.82 ± 0.02 0.77 ± 0.02 0.76 ± 0.03
k-nearest neighors 0.74 ± 0.07 0.73 ± 0.01 0.84 ± 0.03 0.78 ± 0.02 0.77 ± 0.03

Supplementary Table S2. Same data as in Supplementary Table S1 with the performance evalulated 
using area under the precision-recall curve (auPRC) as the performance metric.
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auROC Aminopyridine-like     
(n = 123)

Isoquinoline   
(n = 44)

Benzotriazole    
(n = 19)

Quinolone    
(n = 15) Mean

Ligand-based learning 0.64 ± 0.05 0.46 ± 0.07 0.42 ± 0.01 0.56 ± 0.10 0.76 ± 0.02
Docking-based learning 0.51 ± 0.09 0.62 ± 0.02 0.79 ± 0.02 0.82 ± 0.03 0.73 ± 0.03
Docking with structure-based learning 0.80 ± 0.01 0.71 ± 0.01 0.81 ± 0.01 0.78 ± 0.02 0.78 ± 0.02

Supplementary Table S4. The performances of structure-based modelling strategy in comparison to the ligand-based and docking-based 
learning strategies for each of the four scaffolds as quantified by auROC value. The values correspond to the average and the standard 
deviation of the auROC scores on the left-out data using a 10-fold bootstrapping process.


