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S.1: Identified clusters by quantile and variable

Figure 1: Detected sensitive regions to SM and VOD changes by quantile from annual distribution.
The northeast China coast cluster was removed from the study due to potential interference in
microwave data.
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S.2: Identified clusters by variable

Figure 2: Detected sensitive regions to SM (left) and VOD (right) changes. The raise (decay)
patterns are shown in green (brown). The northeast China coast cluster was removed from the
study due to potential interference in microwave data.
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S.3: Cross-relation between variables
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Figure 3: Estimated joint and marginal distributions of (a) trends in rainfall and mean annual
rainfall, (b) trends in NDVI and mean annual NDVI, (c) trends of SM and rainfall, (d) trends
of VOD and NDVI, (e) trends in VOD and mean annual SM, and (f) trends in SM and mean
annual VOD, for the identified clusters. The distinct sensitivity to rainfall and trend in VOD of
clusters A and D, related to natural reforestation and rain shift or irrigation change, respectively,
is evidenced in (a), (c) and (e). Areas with highest mean annual values of VOD related to high
biomass are the most sensitive to changes in SM (f). The sensitivity in NDVI and VOD are highly
correlated (d), being the exception Cluster D related to rain shift or irrigation change regions with
little change in NDVI for the study period (b).

Table 1 shows the separability score S between the different clusters (A-E) depending on the
different combinations of variable trends (∆SM, ∆VOD, and ∆NDVI). The score S is a standard
measure of cluster separability that accounts for intercluster Mahalanobis distances; the lower the
value, the most separable the cluster is. We observe that the optimal pair combination is obtained
with (∆SM,∆VOD). This combination of variables maximizes cluster separability in all cases and
yields the best overall results (lowest OS).
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Table 1: Cluster evaluation metrics (intercluster separability score) with different input combina-
tions for each considered cluster (A-E), and the overall separability measure, OS.

Variable combination Cluster
A B C D E OS

(∆SM) 0.10 0.12 0.13 0.08 0.10 0.11
(∆VOD) 0.10 0.11 0.17 0.15 0.06 0.12
(∆NDVI) 0.15 0.12 0.20 0.20 0.06 0.14
(∆SM,∆VOD) 0.07 0.08 0.10 0.06 0.05 0.07
(∆SM,∆NDVI) 0.07 0.08 0.10 0.07 0.05 0.08
(∆VOD,∆NDVI) 0.08 0.08 0.13 0.12 0.04 0.09
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S.4: Land cover change
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Figure 4: Main changes of land cover between 2011 and 2019 over the regions contained in
the identified Clusters: Cluster A related to natural reforestation (Russia, North America, East
Africa), Cluster B related to deforestation (Amazon, Central Africa), Cluster E related to wildfires
(East Australia), Cluster D related to rain shift or irrigation change (India, Argentina, Russia
and Central North America). The Southeast china region and Cluster C related to artificial
reforestation is not showed because no major land cover changes have been observed (see also
Fig.2).
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S.5: SMOS-IC L-VOD and soil moisture products

The simultaneous retrieval of SM and VOD is based on theoretical analyses showing the possibility
of decoupling the effects of SM and VOD and performing 2-Parameters (SM and VOD) retrievals
from multi-angular and dual-polarized SMOS L-band observations [1]. These theoretical analyses
have been validated from evaluations of both the SM and VOD products. A review of these analyses
has been made in the SMOS-IC reference paper [2], and we provide here the key elements of the
review. SMOS-IC SM has been evaluated against SM model output simulations at a global scale
and in situ observations from the ISMN networks (International Soil Moisture Network, Dorigo21).
Results have shown the high quality of the SMOS-IC SM, which ranked first of all SMOS products
in many intercomparison analyses [3, 4]. Similarly, the SMOS-IC L-VOD retrievals have been
evaluated in numerous studies. As a direct evaluation is not possible (there is no large-scale
product of vegetation water content VWC (kg/m2)), we used several proxies Li20. Assuming the
average moisture content of vegetation is relatively constant at the interannual scale, L-VOD is
closely related to vegetation biomass [5]. For instance, L-VOD is strongly spatially correlated
(R > 0.8) to biomass and vegetation height (a proxy of biomass) at continental and global scales
using reference biomass maps [2, 6]. Interannual variations (IAV) in L-VOD have also been shown
to be strongly correlated to the IAV of key factors controlling the IAV of biomass in several forest
ecosystems, such as the IAV in forest fraction in the Brazilian Amazon (where forest fraction can
be used to monitor deforestation intensity, Qin et al., 2021, Li et al., 2022), and the IAV in burnt
areas in the Siberian forests [7] and Australia [8].

Regarding inputs, the SMOS-IC SM and VOD retrievals use very few auxiliary inputs. Contrary
to some other retrieval algorithms, SMOS-IC is well known as it does not use any vegetation (as
NDVI or LAI) or hydrological variables as inputs, making the independent application studies
much more robust. SMOS-IC only uses soil and vegetation temperature parameters estimated
from ERA5 model simulations. A detailed analysis of the uncertainties associated with L-VOD
retrievals has been made by Fan19. Based on a bootstrap cross-validation method, the analysis
considered internal errors (associated with the algorithm process and noise on the SMOS TB
observations) and external errors (associated with the reference aboveground biomass (AGB) maps
used to calibrate the L-VOD / AGB relationships). Fan et al. showed that external errors are
the dominant term in the uncertainties associated with L-VOD. There is an order of magnitude
between uncertainties arising from internal and external errors. Considering combined internal
and external errors, the relative uncertainties associated with the AGC stocks and changes in the
AGC stocks over the tropics are 20-30%. Similar orders of magnitude were found at continental
scales.
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S.6: Qualitative comparison with previous literature

Many studies have been published trying to characterise the changes in terrestrial ecosystems using
trend analysis over various drivers. A direct intercomparison to these studies is challenging, and
this is not even possible for many reasons. Here we analyse the works closely related to ours
[9, 10, 11, 12, 13, 14]. Still, crucial differences were observed that preclude a direct comparison
because

• different considered variables, as none of these works considers SM, and only [12] and [13]
consider VOD, but such VOD was retrieved at high frequencies (mostly X-band), which is
very sensitive to strong saturation effects in dense vegetation [15]

• different study periods, as only [13, 14] have an (unfortunately short) coincident period of a
few years only;

• different and single variables, as changes have been typically identified using a single variable
(mainly LAI or NDVI), and the results are assessed by comparison with others-

• adopted methodology to estimate trends is typically different. For example, except for [11],
the rest of the methods consider non-monotonic trends and do not care for the spatial ho-
mogeneity of clusters. We use the method proposed in [11], so a key multiple hypothesis
testing correction is applied, which reduces the amount of false positive trends (estimated by
as much as 25%, cf. [11]). These properties of the applied approach impact the relevance and
statistical significance of the identified groups and consequently make a direct comparison
more convoluted.

• spatial resolution used is generally higher[9, 11, 14] than the 0.25º used in our work, and in
the most similar case, i.e. [12], the study period is completely different. This may have an
impact when analysing defragmented cropland areas like in Europe.

• issues related to data preprocessing, such as the RFI contamination in mainland China that
may affect some L-band estimates and that had to be screened out in our study.

Still, an incomplete (yet reasonable) comparison is possible only with the works [9, 11, 13], essen-
tially because (a) some similar period but at a higher spatial resolution of LAI trends is studied
in [9], which allows us to clarify some divergent patterns, (b) we use the same methodology for
computing trends as in [11] over a similar period, but on SM and VOD instead of LAI, and (c)
only [13] considers VOD (yet retrieved from high-frequency observations and strongly affected by
saturation issues in dense vegetation) at similar spatial and temporal resolutions over a similar
period to estimate trends in global terrestrial ecosystems, but using standard linear regression
without a non-monotonic or statistical significance test. All these points have been analyzed to
compare the methodologie and findings, as well as similarities and contrasting patterns found in
the literature, and are reported and summarized in Table 2.
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Reference Comparable? Study period Data & methods Similar observations Different or contrasting observations

[1] Chen et al. YES,
similar
methodology
and study
period, but
using LAI
only

2000–2017 * LAI (MODIS)

* 0.05º

* Signif. Trends
(Mann–Kendall,
P � 0.1)

We also observe significant
changes in Indian crops and
capture patterns of natural
reforestation in western
China. Other croplands, like
the dry (southern) US corn
belt, are also identified,
probably due to irrigation
shifts.

We identified the patterns in northeast China (see S2). Still, We decided to
remove this region from the study due to potential RFI not being captured
by the RFI flags provided and impacting SMOS brightness temperatures
and hence the SM and VOD products.

We capture patterns of natural reforestation in southeast China. As in
Chen’s Fig.2, our work also highlights the southeast China region as being
the most active in reforestation.

In Sahel, we identify deforestation, but Chen et al. clearly state a greening
cluster compared to previous studies using AVHRR (2000–2016, similar
period); the sub-Saharan cluster is missing as in our work.

We did not find statistically significant clustered trends due to croplands in
Europe, probably due to the highly heterogeneous (defragmented)
croplands, which cannot be captured at the SMOS resolution, or the lack
of saturation of L-VOD, unlike in vegetation indices.

[12] Zhu et al. NO,
completely
different
period and
methodology

1982–2009 * LAI products
(GIMMS,
GLOBmaps,
GLASS)
* 0.5º

[13] Cortés et al. YES,
the same
method and
overlapping
period, but
using LAI
only

2000–2018 * LAI products
(AVHRR,
MODIS, Cyclops)

* 0.05º

* Multiple
hypothesis
testing of
significant trends

In our study, cereals are
associated with clusters A (w/
shrubs) and D (w/ deciduous
forests): these are in India
and parts of the corn belt.

A coincident region in the
western Siberian plain /
central Siberian plateau of
Eurasian boreal forests
compared to the BU AVHRR
LAI in [13]-Fig.1.

Some greening patterns are missing in our results (Europe, SouthEast
China) when looking at the LAI trends extracted from the BU AVHRR LAI
in [13]-Fig.1. Not identifying croplands in Europe is due to our coarser
spatial resolution. Irrigation management change can be detected in India,
where only the VOD has a significant positive trend. Our analysis only
considers interannual changes; seasonal phenology is not covered here.

Northeast China has been removed from the study due to potential RFI
impacting SMOS measurements in the region

We identify east Africa as natural reforestation in cluster A, as in
[17,39-41], but [13] Cortes et al. do not.

[14] Andela et al. NO,
completely
different
period and
methodology

1988–2008 * NDVI

* VOD *0.25º

* monthly

[17] Zhang et al. YES,
different
method but
same VOD
data over the
slightly
overlapping
period

1992-2012 * LAImax
(GIMMS3g,
MODIS)

* NDVI

* bi-monthly

* 1/12º

* VOD, 0.25�

* linear
regression,
non-monotonic
or significance
tests

Non-conclusive pattern in
Amazonia; [17] shows mainly
a ‘not-significant’ correlation
between LAI and rainfall
trends in Amazonia. A decline
in the woody cover is
observed for high-rainfall
zones (>1800 mm/yr),
presumably caused by
deforestation. This is also
confirmed by (Brandt et al.,
2017), who identified woody
cover changes between
1992–2011 in approximately
half of sub-Saharan Africa
and attributed it to human
population growth and the
related deforestation
practices, as we capture in
cluster B.

[20] Munier et al. NO, different
period and
completely
different
resolution

1999–2015 * LAI (MODIS)

* 0.05º

* Significant
Trends

Our work 2010-2020 * SM

* VOD 0.25º
monthly

*same method
as [13]

Table 2: Comparison to related approaches in the literature.
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[13] Zhang W, Brandt M, Peñuelas J et al. Ecosystem structural changes controlled by altered
rainfall climatology in tropical savannas. Nature Communications 2019; 10: 671.

[14] Munier S, Carrer D, Planque C et al. Satellite leaf area index: Global scale analysis of the
tendencies per vegetation type over the last 17 years. Remote Sensing 2018; 10.

[15] Li X, Wigneron JP, Frappart F et al. Global-scale assessment and inter-comparison of recently
developed/reprocessed microwave satellite vegetation optical depth products. Remote Sensing
of Environment 2021; 253: 112208.

9


