1	Supplementary Information
2	High-throughput screening of spike variants uncovers
3	the key residues that alter the affinity and antigenicity
4	of SARS-CoV-2
5 6 7 8 9	Yufeng Luo ^{1, †} , Shuo Liu ^{2, 3, †} , Jiguo Xue ^{4, †} , Ye Yang ¹ , Junxuan Zhao ¹ , Ying Sun ⁵ , Bolun Wang ¹ , Shenyi Yin ¹ , Juan Li ¹ , Yuchao Xia ^{6, 7} , Feixiang Ge ¹ , Jiqiao Dong ⁶ , Lvze Guo ⁶ , Buqing Ye ¹ , Weijin Huang ³ , Youchun Wang ^{2, 3, *} & Jianzhong Jeff Xi ^{1, *}
10	1. Department of Biomedical Engineering, College of Future Technology,
12	Peking University, Beijing, China
13	2. Graduate School of Chinese Academy of Medical Sciences & Peking Union
14	Medical College, Beijing, China
15	3. Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for
16	Biological Product Control, National Institutes for Food and Drug Control
17	(NIFDC), Beijing, China
18	4. Institute of Health Service and Transfusion Medicine, Beijing, China
19	5. Academy for Advanced Interdisciplinary Studies, Peking University, Beijing,
20	China
21	6. GeneX Health Co. Ltd, Beijing, China
22	7. College of Science, Beijing Information Science and Technology University,
23	Beijing, China
24 25	
25	+ These authors contributed equally: Yufeng Luo, Shuo Liu, Jiguo Yue
20	* Correspondence to: Youchun Wang (wangyc@nifdc.org.cn) or lianzhong
28	.leff Xi (izxi@pku edu cn)
20	
20	
00	
31	

Supplementary Fig. S1:

Evaluation of the mammalian cell-surface-display system for S variants.

a, The histogram graph of WT-S and Δfurin-S cell line. The x-axis is the FITC signal and the y-axis is the cell counts. The upper panel and the bottom panel represented the incubation with low (0nM) and high (78nM) concentration of biotin-ACE2, respectively. b, The relative mRNA expression of S-variant in the WT-S and Afurin-S cell line. GAPDH was served as the control gene. And n.s meant no significant difference. c, Western blotting analysis of cytoplasm protein samples that were extracted from the WT-S, Δfurin-S, and blank HEK293T cell lines, respectively. The primary antibody targeted the S2 subunit. The Mw of S (S1+S2) and S2 was migrated as ~230 kDa and ~101 kDa due to its glycosylation, respectively. d, The confocal imaging of the WT-S and the Δ furin-S cell line with the incubation of diverse antibodies (RBD-directed 4A8 and REGN10987) or cellular receptor ACE2. The microscope was photographed at 60 x. The nuclei were stained with DAPI. e, MFI of FITC in the WT-S, Δfurin-S, and VOC cell lines (Alpha, Beta, Gamma, Delta), incubating with gradient concentration of biotin-ACE2 (0, 0.39, 3.9, 9.75, 19.5, 39, 78, 156 nM). f, The percentage of FITC cells and its MFI of FITC for Δfurin-S cell line, incubating with varying concentration of REGN10987 (0, 0.001, 0.01, 0.05, 0.1, 0.5, 1, 10 nM).

58

Supplementary Fig. S2: Plasmid library construction and sequencing sample preparation.

59 a, The amplification, digestion, and purification of the chip-synthesized pools. 23807 pairs of ~100 nt 60 ssDNA oligos were first amplified to dsDNA. After the digestion with BspQI (X symbol), the mutagenesis 61 primer (45 bp) locating at the middle was cut and purified. Star mark represented the designed mutation. 62 b, The ligation of the heterologous S variants fragment and the linearized lentivirus plasmid pWSLV03. 63 The S variants were acquired by two-step overlap PCR (first F+mix 20 cycles, R+mix 20 cycles, 64 respectively; then blended them together for another 10 cycles). The pWSLV03 was cut by Notl and 65 EcoRI (X symbol). c, The bacterial transformation plate of the Gibson assembly (~10⁴ CFU/plate). d, 66 The mutational types were simply analysed by the Sanger sequencing. We randomly picked about 25 67 colonies and classified the mutational categories as follows: WT meant none mutation or synonymous 68 mutation (n = 3), Stop meant premature stop codon (n = 2); Indel meant insertion or deletion (n = 3); MT 69 meant correct length S variants with the number of mutations ranging from only 1 to \geq 5 (n = 17). 70 Thereby, the actual positive efficiency was about 70% (17/25). Theoretically, we considered that the 71 useful counts of S variants were equal to the (total colonies) x (positive efficiency). e, The preparation of 72 the transcription sample from S₁, S₁₁, and S₁₁ cells. The first strand cDNA was obtained by GSP primer. 73 The 5' F and 3' R primer was located outside the S variant, respectively. f, The amplification of the cDNA 74 for third-generation sequencing (~20 cycles). The resulting PCR product was specific with a band of 75 3850 bp.

- 76
- 77
- 78
- 79
- 80
- 81
- 82

120 nM). **c**, The position of the important disulfide bonds. The green cartoon structure represented the ACE2 and the surface structure indicated one S protomer (PDB ID: 7DF4). The S was pre-colored with the bind score of each residue (the bluer the tighter affinity). Two disulfide bonds (C391-C525 and C379-C432) were colored in black and the surronded residues (F374, V382, S383, P384, K386, L390, and T430) were colored in red. **d**, The position of the naturally existed N-glycans (N331 and N343) and the manually introduced N-glycans (Y369, A372, L390, and G413).

and K_d (K_{off}) analysis of the WT and each RBD variant. The fold change was normalized to the WT level,
by calculating KD WT/ KD, K_{on}/ K_{on} WT, and K_{off} WT/ K_{off}, respectively.

	a \mathbf{v}
206	N501T DE14G $10^{2} - 10^{2}$
207	Supplementary Fig. S8:
208	The titration of high-risk S variants pseudoviruses.
209	a-j, The infectivity of serial dilution pseudovirus (3X, 9X, 27X, 81X, 243X, 729X, 2187X, 6561X, and
210	19683X) for WT, S205F, Y453F, Q493A, Q493M, Q498H, Q498Y, N501F, N501T, and D614G,
211	respectively. The left y-axis represented RLU (luciferase) and the right y-axis meant the normalize to WT
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225	Generally, 9X dilution was considered as the unified infection standard (the vertical dashed line).
226	
227	
228	
229	
230 221	
231 232	
232	
233	

a, The virus titer of the tested S variants pseudoviruses. The virus RNA was isolated and immediately quantified by the RT-PCR of VSV-P gene. b-d, The normalized infectivity of S variants pseudoviruses to WT (1X, 3X, and 9X dilution), which was measured in the context of 293T-ACE2, Huh-7, and Vero cell lines, respectively. D614G was set as the positive control. e-h, The S2/S ratio of all the tested S variants pseudoviruses. The intensity of each protein band was measured by Image J software. i, The correlation between infectivity (RLU normalized to WT) and affinity (MFI of FITC normalized to WT). j, The correlation between infectivity (RLU normalized to WT) and furin-cleavage activity (S2/S ratio normalized to WT).

247		
248		
249		
250		
251		
252		
253		
254		
255		
256		
257		
258		
259		

Keep viral surveillance and continually discover the harmful mutation.

a, The mutation frequency of the top-ranked sites in the real world. The time frame spanned from 2019-12 to 2022-11. About 14 million analysed genomic sequences were downloaded from the GISAID database. The mutation sites that appeared in Alpha, Beta, Gamma, Delta, Omicron, and Omicron sublineages were colored in blue, purple, green, red, and orange, respectively. b, The sketch map of multifactor screening in this work, taking ACE2 binding, mAb evasion, and pseudovirus infection into account. The green, yellow, and red battery represented no risk (greatly lost the infectivity versus WT), low risk (comparable or slightly lower infectivity relative to WT), and high risk (higher infectivity than WT), respectively. c, The dose-dependent curves of S variants library incubating with three animals' ACE2 (cat, cattle, and sheep) that pre-conjugated with FITC. The percentage of double-positive (mcherry* & FITC⁺) cells were increased with the adding of ACE2-FITC, so that the S variants with higher adherence could presumably be collected.

396	Protein sequence
397	
398	>SARS-CoV-2 WT-S-T2A-mCherry (1273aa WT-S is underlined, of which
399	RRAR and KV are red colored, C terminal 19aa is green highlighted; T2A
400	linker is purple highlighted; mCherry is blue highlighted)
401	MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHV
402	SGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFL
403	GVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPI
404	NLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNE
405	NGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA
406	WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN
407	YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFP
408	LQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFL
409	PFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTP
410	TWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRARSVASQSIIAYTMSLGA
411	ENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVE
412	QDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDI
413	AARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQN
414	VLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLD
415	KVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQS
416	APHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSG
417	NCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNE
418	SLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVL
419	KGVKLHYTEFTR <mark>EGRGSLLTCGDVEENPGP</mark> DMLMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYE
420	GTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVT
421	QDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDA
422	EVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*
423	
424	

- 426 >SARS-CoV-2 tPA-RBD-his (the 5' terminal tPA signal peptide is green
- 427 highlighted, the middle 223aa-length RBD is underlined, and the 3'

428 terminal hexa-histidine tag is blue highlighted)

- 429 MDAMKRGLCCVLLLCGAVFVSPSRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVAD
- 430 <u>YSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVI</u>
- 431 <u>AWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNG</u>
- 432 <u>VGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFHHHHHH</u>*
- 433

434

ACE2-hFC (the extracellular domain of ACE2 is underlined, linker is purple highlighted, hFc is blue highlighted)

- 437 MSSSSWLLLSLVAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQSSLASWNYNTNITEENVQNMNNAGDKW
- 438 SAFLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGKVCNPDNPQ
- 439 ECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNEMARANHYEDYGDYWRGD
- 440 <u>YEVNGVDGYDYSRGQLIEDVEHTFEEIKPLYEHLHAYVRAKLMNAYPSYISPIGCLPAHLLGDMWGRFW</u>
- 441 <u>TNLYSLTVPFGQKPNIDVTDAMVDQAWDAQRIFKEAEKFFVSVGLPNMTQGFWENSMLTDPGNVQKAV</u>
- 442 <u>CHPTAWDLGKGDFRILMCTKVTMDDFLTAHHEMGHIQYDMAYAAQPFLLRNGANEGFHEAVGEIMSLSA</u>
- 443 ATPKHLKSIGLLSPDFQEDNETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEMK
- 444 REIVGVVEPVPHDETYCDPASLFHVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAG
- 445 <u>QKLFNMLRLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNKNSFVGWSTDWSPYADQSI</u>
- 446 <u>KVRISLKSALGDKAYEWNDNEMYLFRSSVAYAMRQYFLKVKNQMILFGEEDVRVANLKPRISFNFFVTAP</u>
- 447 KNVSDIIPRTEVEKAIRMSRSRINDAFRLNDNSLEFLGIQPTLGPPNQPPVSPGGDKTHTCPPCPAPELL
- 448 GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV
- 449 SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY
- 450 PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL
- 451 SLSPGK*
- 452
- 453
- 454
- 455

456	The bioinformatic analysis of the third-generation DNA
457	sequencing data
458	
459	Annoation:
460	In the following code, L0 is the name of the sample and can be changed by user.
461	The ref.fa file was a 3762bp-length nucleotide sequence (in this case, Δ furin-S).
462	
463	Steps:
464	(1) Extract reads from the bam file to generate the corresponding fastq file:
465	samtools view "./L0.subreads.bam" perl -ne'chomp;@ar=split(/\t/,\$_);{print"\@\$ar[0]\n\$ar
466	[9]\n+\n\$ar[10]\n"}' > ./L0.fastq
467	
468	(2) Prepare the ref.fa file and name it Chromosome P according to the reference
469	genome format. In this study, minimap2 software was used to compare and map
470	the fastq file extracted from the previous step (L0.fastq in this case), and the
471	resulting sam file was obtained (L0.sam in this case). The -a parameter specified
472	the output format, and the -x parameter selected the comparison model.
473	minimap2 -ax map-pb ./ref.fa ./L0.fastq > ./L0.sam
4/4	(0) The main function of equiv(4 is to extract multiple productions of the second seco
475	(3) The main function of scriptilis to extract qualified nucleotide sequences from
470	the sam file (Lu.sam in this case) and output it in fasta format. The sequencing
477 470	neads with too short length of too many bases deleting was intered out. The last
470	be changed by user
479	perl script1 pl /l 0 sam /ref fa /l 0 filter fa 30
481	
482	(4) The main function of script2 is to convert gualified nucleotide sequences into
483	corresponding amino acid sequences, count the number and print them out. The
484	input is the fasta file filtered in the previous step (L0.filter.fa 30 in this case), and
485	the output is L0.result
486	perl script2.pl ./L0.filter.fa ./L0.result
487	
488	(5) The main function of script3 is to conduct analysis on the obtained amino acid
489	sequence (not considering the sequence with premature stop mutation). The final
490	statistical information included the number of mutations in each sequencing read,
491	the number of sequencing reads for each mutational type, and the number of times
492	each original residue position of the sequence was mutated into other amino acids.
493	perl script3.pl ./L0.result ./L0.stat
494	
495	
496	

Supplementary Table S1. Codon usage (*Homo sapiens*)

	_	-	_	The	codon	of 20 n	atural	amino	acids	(the op	otimal	codon	is red l	highlig	hted)	-	_		
A GCC	R AGA	N AAC	D GAC	C TGC	E GAG	Q CAG	G GGC	H CAC	I ATC	L CTG	K AAG	M ATG	F TTC	P CCC	S AGC	T ACC	W TGG	Y TAC	V GTG
(0.40)	(0.21)	(0.53)	(0.54)	(0.54)	(0.58)	(0.73)	(0.34)	(0.58)	(0.47)	(0.40)	(0.57)	(1.00)	(0.54)	(0.32)	(0.24)	(0.36)	(1.00)	(0.56) TAT	(0.46)
(0.27)	(0.21)	(0.47)	(0.46)	(0.46)	(0.42)	(0.27)	(0.25)	(0.42)	(0.36)	(0.20)	(0.43)		(0.46)	(0.29)	(0.22)	(0.28)		(0.44)	(0.24)
GCA (0.23)	CGG (0.20)						GGG (0.25)		ATA (0.17)	TTG (0.13)				CCA (0.28)	TCT (0.19)	ACT (0.25)			GTT (0.18)
GCG (0.11)	CGC (0.18)						GGT (0.16)			CTT (0.13)				CCG (0.11)	TCA (0.15)	ACG (0.11)			GTA (0.12)
	CGA (0.11)									TTA (0.08)					AGT (0.15)				
	CGT									CTA (0.07)					TCG				
	$\begin{array}{c} 4.0.05\\ 4.9\\ 4.9\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0$	L 22 F 29 A 29 A 20 F 20 C 20 C 20 C 20 F 20 K 20 K	A: Alar A: Argi N: Asp D: Asp D: Cyst E: Glut D: Glut C: Cyst C: Cy	line nine aragine artic aci ine amic ac tamine cine idine cine cine cine hionine eonine ptophan osine ne	id iid														
	52	·																	
	52	23																	
	52	24																	
	52	25																	
	52	26																	
	52	27																	
	52	28																	
	52	29																	
	53	30																	
	53	81																	
	53	32																	

Supplementary Table S2. Primers used in this study

Primer name	Sequence (5'-3') (underlined letter indicated the restriction endonuclease recognition sites, highlighted letter represented the homologous arms for Gibson Assembly)	Application
M13F	TGTAAAACGACGGCCAGT	Amplify ~100nt
M13F	CAGGAAACAGCTATGACC	chip-synthesis oligo pools
pLV-S-F	ATATTAAGGGTTCCAAGCTTAAGCGGCCGCGCGCCACCATGTTCGTGTTTCTGGTGCT GCTG	Amplify 1254aa-length S variants to pWSLV03
pLV-S-R	AGACTTCCTCTGCCCTCACGCGTGAATTCACAGCAGCTTCCACAAGAACAGCAGC	
pLV-GSAS-F		Mutate RRAR to GSAS
pLV-GSAS-R		(lower case letter)
pLV-PP-F	CTGAGCCGGCTGGACcctcccGAGGCAGAGGTGCAGATCGACCGGC	Mutate KV to PP
pLV-PP-R		(lower case letter)
pCD-S-F	ACTTAAGCTTGGTACCGAGCTCGGATCCGCCACCATGTTCGTGTTTCTGGTGCTGC TG	Amplify 1273aa-length S variants to pCDNA3.1(+)
pCD-S-R	GGGTTTAAACGGGCCCTCTAGACTCGAGTTAGGTGTAGTGCAGCTTCACGCCCTTC	
pCD-RBD-1F	tgctgtgtgctgctgctgtgtggagcagtcttcgtttcgcccagcAGGGTGCAGCCTACCGAGTCCATCG	Amplify 223aa-length
pCD-RBD-2F	ACTTAAGCTTGGTACCGAGCTCGGATCCGCCACCATGgatgcaatgaagaggggctctgctgt gtgctgctgtgtgggag	RBD variants to pCDNA3.1(+) with 5' tPA signal peptide
pCD-RBD-R	GGGTTTAAACGGGCCCTCTAGACTCGAGTTAatggtgatggtgatggtgGAAGTTCACGCACTTGTTCTTCACC	(lower case letter) and 3' hexa-histidine tag (lower case italic letter)
S-seq-1F	CTGCCCATCGGCATCAACATCAC	Verify the correct mutation of each
S-seq-2F	TTCCAGCCAACCAACGGCGTGG	S variants
S-seq-3F	GAATAGAGCCCTGACAGGCATCG	
S-seq-4F	CTGGGCCAGTCCAAGAGAGTGG	
S-seq-1R	GCTGCAGATAGCCCACATAGTAG	
RBD-seq-F	CTCTGGCTAACTAGAGAACCCACTG	Verify the correct mutation of each
RBD-seq-R	ACCTTCCAGGGTCAAGGAAGGCACG	RBD variants
RT-GSP	TCGAACTCGTGGCCGTTCAC	Reverse transcription of total RNA sample
cDNA-F	GTTATATTAAGGGTTCCAAGCTTAAGC	Amplify the first strand of cDNA
cDNA-R	CCACGTCACCGCATGTTAGTAGAC	
qPCR- GAPDH-F	TGCACCACCAACTGCTTAGC	Quantify the expression of GAPDH
qPCR- GAPDH-R	GGCATGGACTGTGGTCATGAG	
qPCR-S-F	ATCTTTGGCACCACACTGGAC	Quantify the expression of S
qPCR-S-R	AACTCGCTCTCCATCCAAGACT	variants
qPCR-VSV-F	TCTCGTCTGGATCAGGCGG	Quantify the titer of S variants
qPCR-VSV-R	TGCTCTTCCACTCCATCCTCTTGG	pseudovirus

Supplementary Table S3. The third-generation sequencing reads

Experiment	The collected mCherry ⁺ cells	ted Totally obtained CCS reads				analysed CC reads are un	S reads derlined)	Average mutation per read			
	for screening (MOI ~0.1)	Sı	Sıı	Siii	Sı	Sıı	Siii	Sı	Sıı	Siii	
Rep. 1	7.5 X 10 ⁶	3.87 M	3.76 M	0.61 M	2.96 M (<u>1.64 M</u>)	3.06 M (<u>0.98 M</u>)	0.49 M (<u>0.20 M</u>)	2.35 aa	1.77 aa	2.34 aa	
Rep. 2	1.0 X 10 ⁷	3.62 M	3.82 M	0.81 M	3.00 M (<u>1.66 M</u>)	3.29 M (<u>1.08 M</u>)	0.67 M (<u>0.29 M</u>)	2.32 aa	1.88 aa	2.53 aa	
535		1		1		1	1	1	1		
536											
537											
538											
539											
540											
541											
542											
543											
544											
545											
546											
547											
548											
549											
550											
551											
552											
553											
554											
555											
556											
557											

Supplementary Table S4. The relevant work on the screening of RBD, S variants, or its derived mAbs

Species	Technical route	Application	Mutational range	Throughput	Analysis strategy	Vital mutational types	Ref.
Yeast	Incubate with dimer	Reveal the feature of	RBD (331-531aa)	~ 10 ⁵ barcoded	Link each RBD variant to its barcode via	Low affinity (L455Y, Y449F,	[28]
(Saccharomyces	ACE2; FACS screen;	RBD folding and	Mutate 201aa	variants	long-read PacBio SMRT sequencing; then	N501D, G502D, etc.)	
cerevisiae)	Titration curves verify	ACE2 binding			deep sequencing of variant barcodes	High affinity (N501F, N501T,	
						Q498Y, Q498H etc.)	
Yeast	Incubate with ACE2;	S-variants prediction;	RBD (336-528aa)	~ 10 ⁴ variants	Sanger sequencing	RBD62 drug (I358F, V445K,	[29]
(Saccharomyces	FACS screen;	Antiviral drug design	RBD (431-528aa)			N460K, I468T, T470M, S477N,	
cerevisiae)	Titration curves verify		RBD (336-528aa)			E484K, Q498R, N501Y)	
			3 cycle mutating			1000-fold higher affinity	
Yeast	Incubate with 10	Map antibody-escape	RBD (331-531aa)	~ 10 ⁵ barcoded	Link each RBD variant to its barcode via	C361, K378, V382, S383, P384,	[30]
(Saccharomyces	mAbs; FACS screen	mutation	Mutate 201aa	variants	long-read PacBio SMRT sequencing; then	F392, D420, A475, E484, F486,	
cerevisiae)					deep sequencing of variant barcodes	N487, F490, G496, Q498, T500,	
						etc.	
Yeast	Incubate with 5 mAbs;	Identify antibody-	RBD (333-537aa)	~2000 mutations	Isolate genomic DNA, amplify the certain	Escape positions K417, D420,	[31]
(Saccharomyces	FACS screen	escape mutants	Mutate 119aa that were		region, send for the next-generation	Y421, F486, and Q493 as	
cerevisiae)			surface-exposed		sequencing	notable hotspots	
Yeast	Incubate with 7 mAbs;	Map antibody-escape	RBD (331-531aa)	~ 10 ⁵ barcoded	Link each RBD variant to its barcode via	R346, K417, K444, Y449, L452,	[32]
(Saccharomyces	FACS screen	mutation by different	Mutate 201aa	variants	long-read PacBio SMRT sequencing; then	L455, F456, N460, A475, E484,	
cerevisiae)		classes of mAbs			deep sequencing of variant barcodes	N486, F490, etc.	

Mice	Immunized with a	Yield a SARS-CoV-2	Spleens from mice were	Naturally paired	The antibody variable regions were	VH3-53 paired with VKI-9, VKI-	[57]
(Genetically	DNA plasmid that	antibody cocktail	subjected to biotin-	heavy and light	sequenced by next-generation sequencing,	33, or VKI-39	
humanized	expressed S		labeled monomeric RBD	chain cDNAs	and the repertoire for heavy and light chain		
VelocImmune (VI)	and boosted with a		antigen	were cloned,	pairs was identified;		
breed)	recombinant protein			then transfect	The selected four antibodies displayed		
	that was composed of			CHO cells to	~37.1 to 42.8pM affinity against trimeric S		
	RBD; FACS screen			produce >200			
Human	Survivor that has been		Whole blood was	antibody		VH3-66 paired with VKI-33	
(B cells)	infected by SARS-		collected from patients;			VH3-70 paired with VKI-39	
	CoV-2; FACS screen		Sort RBD-specific B cells				
Yeast	Incubate with	Understand how	RBD (331-531aa)	~10 ⁵ barcoded	Link each RBD variant to its barcode via	Q498R, N501Y, G446, Y449	[62]
(Saccharomyces	monomer ACE2;	epistasis shifts the	WT/Alpha/Beta/Delta/Eta	variants	long-read PacBio SMRT sequencing; then		
cerevisiae)	FACS screen	effects of mutations	backbone		deep sequencing of variant barcodes		
Mammalian	Spike display;	Evaluate the evasion	Ectodomain (1-1208aa),	~200 variants	Test one S variant at a time	Y145, K147, and W152 are	[64]
(HEK293T)	Flow cytometry	of various mAbs	but only consider the			public epitopes of 4-A8, CM17,	
			clinically circulating NTD			CM25, and 1-6	
			variants				
Mammalian	Fluorescence-based	S-based immunogen	Based on S-2P	Thousands of	Isolate genomic DNA, amplify the certain	S50Q and G232E	[65]
(HEK293T)	sorting	design (with	Mutate 14-301aa	single mutations	region, send for the next-generation		
		increased expression)	Cover NTD domain	in parallel	sequencing		

Mammalian	Fluorescence-based	Vaccine design	Based on S-2P;	Thousands of	Isolate genomic DNA, amplify the certain	A892P, A942P, and D994E/Q	[66]
(HEK293T)	fusion assay;	(prefusion-stabilized)	Mutate 883-1034aa;	single mutations	region, send for the next-generation		
	To detect the green-	High expression but	Cover HR1 (912-984aa)	in parallel	sequencing		
	fluorescent syncytia	Low fusogenicity	and CH (985-1034aa)				
Mammalian	Non-replicative VSV-G	Identify mutation that	Full-length S scale, but	~135000 unique	First perform long-read PacBio sequencing	N439, K444, G446, G447, P499	[67]
(HEK293T-rtTA)	pseudotyped lentivirus	impact the antibody	only consider the	mutation	to link the barcodes to the full set of spike	for mAb LYCoV1404;	
		neutralization and	mutations that occurred	combinations	mutations for each variant; then conduct	S172, L176, D178 for mAb 5-7;	
		pseudovirus infection	in GISAID		short-read Illumina sequencing of the	D1146, D1153, F1156 for mAb	
					barcode in all subsequent experiments	CC9.104, and CC67.105	
Mammalian	Fluorescence-based	Discover the key	Based on Δfurin-S;	10 ⁶ ~10 ⁷	Isolate the total RNA, reverse-transcribed	S205F, Y453F, Q493A, Q493M,	This
(HEK293T)	sorting (mCherry &	residues of tighter	Full-length S scale;	combinations of	with GSP, amplification with low cycles, and	Q498H, Q498Y, N501F, N501T,	work
	FITC); Incubate with	ACE2 affinity and	Mutate 1-1254aa	mutations/ cycle	send for the third-generation DNA	etc. mutational types that	
	dimer ACE2 and mAb	higher mAb evasion			sequencing	enhance infectivity;	
	REGN10987					Y453, Q493, Q498, etc.	
						residues that escape antibody	