# FOX/3 pathogenic variants cause one form of craniofacial microsomia Mao et al.

#### **Supplementary Information contains**

Supplementary Tables Supplementary Table 1 Supplementary Table 2 Supplementary Table 3 Supplementary Table 4 Supplementary Figures Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 3 Supplementary Figure 4 Supplementary Figure 5 Supplementary Figure 6 Supplementary Figure 7 Supplementary Figure 8 Supplementary Figure 9 Supplementary Figure 10 Supplementary Figure 11 Supplementary Figure 12 Supplementary References

### Supplementary Tables

## Supplementary Table 1. Summary of CFM pedigrees and patients with FOXI3 variants

| Family ID | Individual | Variants in FOXI3 | Genotype     | Presumed <i>FOXI3</i><br>trans Haplotype            |                                                      | Microtia<br>Type | Microtia-related Phenotype                                                                                                                                                                     |
|-----------|------------|-------------------|--------------|-----------------------------------------------------|------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |            |                   |              | A LD block<br>(from<br>rs11686866 to<br>rs66891658) | B LD block<br>(from<br>rs56297047 to<br>rs111497808) |                  |                                                                                                                                                                                                |
| F252      | IV : 1     | p.(Phe234Leu)     | homozygous   | absent                                              |                                                      | Type III         | Bilateral type III microtia and deafness                                                                                                                                                       |
|           | IV : 5     | p.(Phe234Leu)     | homozygous   | abs                                                 | sent                                                 | Type III         | Bilateral type III microtia and deafness                                                                                                                                                       |
| CHN01     | II : 8     | p.(Arg236Trp)     | heterozygous | absent                                              | B LD block                                           | Type III         | Unilateral (right) microtia III and atresia of the external auditory canal                                                                                                                     |
|           | III : 1    | p.(Arg236Trp)     | heterozygous | absent                                              | B LD block                                           | Type III         | Bilateral type III microtia, mild bilateral eyelid ptosis, severe micrognathia, irregular teeth arrangement, yellow-white mass can be seen in the temporal bulbar conjunctiva of the right eye |
|           | III : 10   | p.(Arg236Trp)     | heterozygous | A LD block                                          | B LD block                                           | Type II          | Unilateral (left) microtia II with shell-shaped ear, absence of the superior anti-helical crus, the external auditory canal was atretic                                                        |
|           | III : 12   | p.(Arg236Trp)     | heterozygous | absent                                              |                                                      | Type I           | Underdeveloped tragus, bilateral                                                                                                                                                               |
|           | III : 13   | p.(Arg236Trp)     | heterozygous | A LD block                                          | B LD block                                           | Type III         | No photos, described by his family as with unilateral (right) microtia III                                                                                                                     |
|           | IV : 1     | p.(Arg236Trp)     | heterozygous | absent                                              | B LD block                                           | Type III         | Unilateral (left) microtia III                                                                                                                                                                 |
|           | IV : 8     | p.(Arg236Trp)     | heterozygous | A LD block                                          | absent                                               | Type III         | Bilateral type III microtia and atresia of the external auditory canals                                                                                                                        |
|           | IV : 11    | p.(Arg236Trp)     | heterozygous | absent                                              | B LD block                                           | /                | Abnormality in the posterior crus of the antihelix of the right ear                                                                                                                            |
| EUR01     | EUR01      | p.(Arg240Cys)     | heterozygous | A LD block                                          | B LD block                                           | Type III         | Unilateral (right side) type III microtia; Variant inherited from unaffected father, and present in two unaffected siblings                                                                    |

| EUR02    | EUR02    | p.(Phe234Val)                          | heterozygous | A LD block                                                | B LD block | Type III | Bilateral type III microtia; Variant inherited from affected father |  |  |  |
|----------|----------|----------------------------------------|--------------|-----------------------------------------------------------|------------|----------|---------------------------------------------------------------------|--|--|--|
| EUR03    | EUR03    | p.(Cys225Arg)                          | heterozygous | absent                                                    | B LD block | Type III | type III microtia; Variant inherited from unaffected father         |  |  |  |
| EUR04    | EUR04    | p.(Ala32GlyfsTer147)                   | heterozygous | absent                                                    | B LD block | Type III | Microtia type III; Variant inherited from unaffected mother         |  |  |  |
| EUR05    | EUR05    | p.(Phe102Tyr)                          | heterozygous | absent                                                    | absent     | Type III | Microtia type III                                                   |  |  |  |
| EUR06    | EUR06    | chr2:87317229-<br>89306982<br>deletion | heterozygous | A LD block                                                | B LD block | Type III | Unilateral type III microtia                                        |  |  |  |
| CHN02    | II : 1   | p.(Arg238Glu)                          | heterozygous | absent                                                    | B LD block | Type III | Unilateral (right) type III microtia                                |  |  |  |
| CHN03    | II : 1   | p.(Arg240Cys)                          | heterozygous | absent                                                    | B LD block | Type III | Unilateral (right) type III microtia                                |  |  |  |
| CHN04    | II : 1   | p.(Arg240His)                          | heterozygous | absent                                                    |            | Type III | Unilateral (right) type III microtia                                |  |  |  |
| CHN05    | II : 1   | p.(Leu199Phe)                          | heterozygous | absent                                                    |            | Type III | Bilateral type III microtia                                         |  |  |  |
| CHN05    | ll : 2   | p.(Leu199Phe)                          | heterozygous | absent                                                    |            | Type III | unilateral (left) type III microtia                                 |  |  |  |
| CHN-S001 | CHN-S001 | p.(Ser119_Ala124del)                   | heterozygous | A LD block B LD block                                     |            | Type III | Unilateral (left side) microtia type III                            |  |  |  |
| CHN-S002 | CHN-S002 | p.(Pro147Thr)                          | heterozygous | A LD block                                                | absent     | Type III | Unilateral (right side) microtia type III                           |  |  |  |
| CHN-S003 | CHN-S003 | p.(Ser169Asn)                          | heterozygous | abs                                                       | sent       | Type II  | Unilateral (left side) microtia type II                             |  |  |  |
| CHN-S004 | CHN-S004 | p.(Arg235Cys)                          | heterozygous | A LD block                                                | B LD block | Type III | Unilateral (left side) microtia type III                            |  |  |  |
| CHN-S005 | CHN-S005 | p.(Arg236Gln)                          | heterozygous | absent                                                    | B LD block | Type III | Bilateral type III microtia                                         |  |  |  |
| CHN-S006 | CHN-S006 | p.(Arg238Gln)                          | heterozygous | A LD block                                                | B LD block | Type III | Bilateral type III microtia                                         |  |  |  |
| CHN-S007 | CHN-S007 | p.(Pro355Leu)                          | heterozygous | absent                                                    | B LD block | Type III | Unilateral (right side) type III microtia                           |  |  |  |
| CHN-S008 | CHN-S008 | p.(Ser373_Thr376del)                   | heterozygous | absent Type III Unilateral (right side) type III microtia |            |          |                                                                     |  |  |  |

| CHN-S009 | CHN-S009 | p.(Ser373_Thr376del) | heterozygous | absent                |  | absent  |                                                         | Type III | Bilateral microtia (left side, type I microtia; right, type III microtia, with appendage) |
|----------|----------|----------------------|--------------|-----------------------|--|---------|---------------------------------------------------------|----------|-------------------------------------------------------------------------------------------|
| CHN-S010 | CHN-S010 | p.(Arg415Ter)        | heterozygous | A LD block B LD block |  | Type II | Left type II microtia, with appendage on the right side |          |                                                                                           |

| Variables                                 | Probands (Value)   | Probands (Value)   |
|-------------------------------------------|--------------------|--------------------|
|                                           | (Chinese Families) | (Chinese sporadic) |
| No.                                       | 48                 | 498                |
| Age, year                                 |                    |                    |
| Mean                                      | 8.7                | 11.2               |
| Range                                     | 5-18               | 5-41               |
| Gender                                    |                    |                    |
| Male                                      | 36 (75.0%)         | 396 (79.5%)        |
| Female                                    | 12 (25.0%)         | 102 (20.5%)        |
| Laterality                                |                    |                    |
| Left                                      | 9 (18.8%)          | 187 (37.6%)        |
| Right                                     | 37 (77.1%)         | 280 (56.2%)        |
| Bilateralª                                | 2 (4.2%)           | 31 (6.2%)          |
| Nagata definition                         |                    |                    |
| Anotia                                    | 0                  | 9 (1.8%)           |
| Lobule type                               | 43 (89.6%)         | 372 (74.7%)        |
| Small conchal type                        | 1 (2.1%)           | 63 (12.7%)         |
| Conchal type                              | 4 (8.3%)           | 54 (10.8%)         |
| External auditory meatus of affected-side |                    |                    |
| Atresia                                   | 44 (91.7%)         | 386 (77.5%)        |
| Stricture                                 | 4 (8.3%)           | 112 (22.5%)        |
| Temporal bone agenesis of affected-side   |                    |                    |
| No                                        | 43 (89.6%)         | 383 (76.9%)        |
| Yes                                       | 5 (10.4%)          | 115 (23.1%)        |
| Other craniofacial abnormal               |                    |                    |
| Micromandible                             | 1 (2.1%)           | 5 (1%)             |
| Teeth irregular                           | 3 (6.25%)          | 33 (6.7%)          |
| OMENS <sup>b</sup> classification         |                    |                    |
| O0                                        | 19 (39.6%)         | 369 (74.1%)        |
| 01                                        | 19 (39.6%)         | 80 (16.1%)         |
| 02                                        | 4 (8.3%)           | 35 (7.0%)          |
| O3                                        | 6 (12.5%)          | 14 (2.8%)          |
| M1                                        | 24 (50.0%)         | 261 (52.4%)        |
| M2A                                       | 15 (31.3%)         | 189 (38.0%)        |
| M2B                                       | 9 (18.8%)          | 48 (9.6%)          |
| E1                                        | 0                  | 2 (0.4%)           |
| E2                                        | 40 (83.3%)         | 60 (12.0%)         |
| E3                                        | 8 (16.7%)          | 436 (87.6%)        |
| S1                                        | 18 (37.5%)         | 331 (66.5%)        |
| S2                                        | 22 (45.8%)         | 148 (29.7%)        |
| S3                                        | 8 (16.7%)          | 19 (3.8%)          |

## Supplementary Table 2. Clinical characteristics of the Chinese CFM Patients

a Patients with Bilateral laterality were classified according to the more severe ears. b OMENS, Orbit, Mandible, Ear, Nerve, and Soft tissue.

| Gene      | Chromosome | Number | stat.kernel | P-val.kernel | stat.burden | P-val.burden |
|-----------|------------|--------|-------------|--------------|-------------|--------------|
| FOXI3     | 2          | 6      | 6.55E+03    | 7.85E-08     | 5.31241     | 1.08E-07     |
| OR8G1     | 11         | 5      | 1.27E+04    | 4.34E-05     | 4.13863     | 3.49E-05     |
| WDR76     | 15         | 2      | 2.46E+03    | 8.15E-04     | 3.84219     | 1.22E-04     |
| CEP112    | 17         | 3      | 1.57E+03    | 2.75E-03     | 3.75836     | 1.71E-04     |
| OR8G5     | 11         | 1      | 1.40E+01    | 1.84E-04     | 3.74059     | 1.84E-04     |
| OR8J3     | 11         | 1      | 1.40E+01    | 1.84E-04     | 3.74059     | 1.84E-04     |
| TGOLN2    | 2          | 3      | 4.43E+03    | 5.85E-06     | 3.68044     | 2.33E-04     |
| KIAA1211L | 2          | 2      | 1.92E+03    | 3.20E-03     | 3.46858     | 5.23E-04     |
| ZDHHC11B  | 5          | 6      | 1.54E+03    | 2.89E-03     | 3.43702     | 5.88E-04     |
| CPSF3     | 2          | 1      | 1.16E+01    | 6.73E-04     | 3.4004      | 6.73E-04     |
| DVL1      | 1          | 2      | 1.53E+03    | 2.91E-03     | 3.34116     | 8.34E-04     |
| COL4A3    | 2          | 1      | 1.12E+01    | 8.37E-04     | 3.34036     | 8.37E-04     |
| FEM1B     | 15         | 1      | 1.12E+01    | 8.37E-04     | 3.34036     | 8.37E-04     |
| GART      | 21         | 1      | 1.12E+01    | 8.37E-04     | 3.34036     | 8.37E-04     |
| OR2L3     | 1          | 1      | 1.12E+01    | 8.37E-04     | 3.34036     | 8.37E-04     |
| TAF5      | 10         | 1      | 1.12E+01    | 8.37E-04     | 3.34036     | 8.37E-04     |

# Supplementary Table 3. Burden test on rare loss-of-function variants of 48 Chinese CFM families

The table shows the output for top 16 associatied genes for CFM disease based on the 48 Chinese pedigree data. Number indicates the number of variants used, the non-informative variants that were removed. For the kernel statistic and *P*-value (without multiple adjusting; Gene with *P*-value less than 2.5E-06 (0.05/20,000) is considered as gene-wide significant), and the burden statistic and *P*-value (without multiple adjusting; Gene with *P*-value less than 2.5E-06 (0.05/20,000) is considered as gene-wide significant), and the burden statistic and *P*-value (without multiple adjusting; Gene with *P*-value less than 2.5E-06 (0.05/20,000) is considered as gene-wide significant), the kernel *P*-value is calculated using Kounen's saddlepoint method<sup>1</sup>, and the burden *P*-value is based on the normal distribution.

# Supplementary Table 4. Exome and whole genome sequencing identified known candidate genes related to syndromes with microtia

| Patient<br>ID | Gene  | Transcript     | cHGVS    | pHGVS                   | Conseque<br>nce | Inheritance                                                         | Phenotype                                        |  |
|---------------|-------|----------------|----------|-------------------------|-----------------|---------------------------------------------------------------------|--------------------------------------------------|--|
| CHN20         | CHD7  | NM_017780.3    | c.G1779C | p.(GIn593His)           | missense        | compound heterozygous inheritance, inherited from unaffected father | Unilateral (right); microtia type III            |  |
|               |       |                | c.G3218A | p.(Gly1073Glu)          | missense        | compound heterozygous inheritance, inherited from unaffected mother |                                                  |  |
| CHN43         | CHD7  | NM_017780.3    | c.G4516A | p.(Gly1506Ser)          | missense        | inherited from her unaffected father                                | Unilateral (right); microtia type II             |  |
| CHN11         | TBX1  | NM_001330677.3 | c.C491T  | p.(Pro164Leu)           | missense        | inherited from her unaffected mother                                | Unilateral (right); microtia type III            |  |
| CHN47         | TBX1  | NM_001330677.3 | c.A1469G | p.(Try490Cys)           | missense        | inherited from his unaffected mother                                | Unilateral (right); microtia type III            |  |
| CHN29         | SF3B2 | NM_006842.3    | c.G784T  | p.(Asp262Tyr)           | missense        | denovo                                                              | Unilateral (right); microtia type III            |  |
| WGS02         | SF3B2 | NM_006842.3    | c.G2542A | p.(Val848Met)           | missense        | unknown                                                             | Unilateral (left); microtia type III             |  |
| CHN35         | DHODH | NM_001361.5    | c.610del | p.(Leu204TrpfsTe<br>r7) | frameshift      | denovo                                                              | Unilateral (right); microtia type III            |  |
| CHN07         | FGFR2 | NM_000141.3    | c.A1213G | p.(Lys405Glu)           | missense        | inherited from her unaffected mother                                | Unilateral (right); microtia type III; appendage |  |
| CHN08         | EYA1  | NM_000503.3    | c.G679A  | p.(Ala227Thr)           | missense        | inherited from his unaffected father                                | Unilateral (left); microtia type III;            |  |

#### SUPPLEMENTARY FIGURES

#### **Supplementary Figure 1**

| Α | F252 FOXI3:1 | NM_001135649.3:c.702C>A:p.(Phe234Leu) | B FOXI3:NM_001135649.3:c.706C>T:p.(Arg236Trp)                                                                                                                         |
|---|--------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | III:6 (+/M)  | month                                 | CHN01 IV:8 C C G T Y G G A A $\land \land $                                 |
|   | III:5 (+/M)  | mmmmmmm                               | FOXI3:NM 001135649.3:c.713G>A:p.(Arg238Gln)                                                                                                                           |
|   | IV:1 (M/M)   | mannanhamman                          |                                                                                                                                                                       |
|   | IV:5 (M/M)   | mannahan                              |                                                                                                                                                                       |
|   | IV:2 (+/+)   | mannanh                               | CHN03 II:1 GCGGYGCTT                                                                                                                                                  |
|   | IV:4 (+/M)   | manna                                 |                                                                                                                                                                       |
|   | IV:6 (+/M)   | mannahamman                           | FOXI3:NM_001135649.3:c.719G>A: p.(Arg240His)<br>CHN04 II:1 CGGCRCTTT                                                                                                  |
|   | IV:7 (+/M)   | mannen                                |                                                                                                                                                                       |
|   | IV:9 (+/+)   | manna                                 | FOXI3:NM_001135649.3:c.595C>T: p.(Leu199Phe)                                                                                                                          |
|   | IV:10 (+/M)  | manna                                 | $\begin{array}{c} CHN05II:1 \qquad G T C G Y T C A A \\ \land $ |

**Supplementary Figure 1. Sanger sequencing validate variants identified from F252 and CHN01 families.** A: The Sanger sequences of the likely pathogenic variant of *FOXI3*:c.702C>A for Pakistani family. The grey-shaded site shows the opposite strand sequence, that is *FOXI3*:c.702G>T. B: The Sanger sequences of the likely pathogenic variants identified from Chinese CFM families. The black arrow indicates the changes of the nucleotide.



Supplementary Figure 2. Pedigrees of Chinese and European CFM families and ear phenotype of CFM patients. A: Pedigrees for the CHN02-05 families. B: Pedigrees for the European CFM families. The variants were detected by exome sequence (ES). C: The ear phenotype of family members of EUR01. The pictures of the right ear of patient EUR01 show the surgical reconstruction and the long-term outcome after the surgical procedure.

|                      | *                |                 |           |                   |            |                      |                |              |            |              |         |         |
|----------------------|------------------|-----------------|-----------|-------------------|------------|----------------------|----------------|--------------|------------|--------------|---------|---------|
| 1 1<br>12.8 M 25.6 M | 1 I<br>384M 512M | 1 1<br>64M 768M | 89.6 M 10 | I I<br>024M 1152M | 1<br>128 M | 1 1<br>140.8 M 153.6 | I<br>M 166.4 M | I<br>179.2 M | 1<br>192 M | 1<br>204.8 M | 217.6 M | 230.4 M |

**Supplementary Figure 3. Screenshot of the analysis of the Bionano experiment of sample EUR06 (SEA15421)**. The shaded area shows the extent of the heterozygous deletion that includes the *FOXI3* gene. The red box denotes the region of the deletion that contains *FOXI3*, and the red bar represents the centromeric region of chromosome 2.



**Supplementary Figure 4. Haplotypes of polymorphic sites around the** *FOXI3* gene. The polymorphic sites are shown on the left. The various haplotypes are shown vertically. The haplotype shown by the red arrow in South Asians and Europeans respectively is mentioned in the text as the presumed trans haplotype that modifies the phenotypic severity of the *FOXI3*-related CFM. The frequency of the various haplotypes is shown at the bottom.



**Supplementary Figure 5. Prediction on the effect of mutations on FOXI3 structure and stability.** A: A phylogenetic tree of 6 members of the FOX family. The maximum likelihood tree is constructed according to the homology sequence of Forkhead Domain (FHD) and nuclear localization signal (NLS) by using MEGA. The branch length is labeled on each branch. The similarity between FOXI3

and other members is shown in brackets. B-C: Homology modeling for FOXI3 (in purple) is based on FOXC2 (B, 6AKO, in light golden) and Foxk1A (C, 2C6Y, in light pink). The positions of mutations are shown in the modeled crystal structure. The side chains of wild-type residues are represented. D: The prediction of mutations on protein stability and DNA binding ability. The prediction of free energy changes of each mutation on monomer and protein-DNA complex was replicated 10 times with default parameters. The blue bar indicates the average of the free energy changes ( $\Delta$ Gmut -  $\Delta$ Gwt) caused by each mutation (n = 10). Data are presented as the means ± s.d. The orange bar indicates the maximum difference of the free energy ( $\Delta\Delta G_{(monomer)}$ - $\Delta\Delta G_{(complex)}$ ) between the prediction of each mutation based on the monomer and protein-DNA complex. Mutations with  $\Delta$ Gmut -  $\Delta$ Gwt > 1.6 kcal/mol were predicted as affecting the stability of FOXI3, while mutations with  $\Delta$ Gmut -  $\Delta$ Gwt < 1.6 kcal/mol and  $\Delta\Delta G_{(monomer)}$  -  $\Delta\Delta G_{(complex)}$  > 0.25 will affect the DNA binding ability<sup>2,3</sup>. Source data are provided as a Source Data file. E: The modeled 3D structure of FOXI3:DNA complex and the effects of mutations on the 3D structure. The 3D structure is modeled based on 6AKO (Left). The mutant protein caused by mutations from Pro147 to Arg236 is based on the predicted 3D structure of FOXI3 using 6AKO as a template, while Arg238 to Arg240 is based on the predicted 3D structure of FOXI3 using Foxk1A as a template. The wild-type residues are marked by green and mutant residues are marked by red. The interaction between residues is shown by the green line.



Supplementary Figure 6. The predicted structure of nuclear localization sequence (NLS) of FOXI3 and the effects of mutations in NLS. A: The prediction on the NLS of FOXI3 from 7 vertebrate species using Nucpred algorithm. The prediction on the whole human FOXI3 is shown at the top of the panel. The conservation analysis on the NLS across species is shown at the bottom of the panel. B: The prediction of the effect of mutations on NLS by NLStradamus algorithm<sup>4</sup>. The prediction cutoff value is using 0.6 as default and the green box shows the start and stop positions of predicted NLS.



Supplementary Figure 7. The localization and distribution of FOXI3-EGFP fusion proteins with mutant IDR in HEK-293T cells. DAPI counterstain (blue) shows the location of the nucleus. EGFP (green fluorescent protein) shows the subcellular localization of the FOXI3-EGFP fusion protein. All mutations in IDRs seem not to affect the localization and distribution of FOXI3-EGFP. Scale bar = 10µm. Each experiment was performed in triplicate and repeated at least three times.

p.(Arg236Trp)

p.(Arg236Gln)

p.(Arg238Gln)

p.(Arg240Cys) p.(Arg240His) p.(Pro355Leu)

p.(Arg415Ter)

p.(Ser373\_Thr376del)

NLS

.⊆

ped





p.(Arg240His)

in the Nucleus and Cytoplasm

2380 2400 2400 2400 2400 2400 2400 2400

====

Arg240H redeced the transacvitity shows significant effect

Arg240H affect human FOXI3-EGFP entering nucleus

rationale for selecting p.(Phe234Leu) and p.(Arg240His) to produce mice models. The left panel shows all 18 variants identified in our cohorts. p.(Phe234Leu) is inherited in recessive mode and is marked by red letter. The variants within NLS are marked in blue. The right panel shows the rationale for selecting p.(Phe234Leu) and p.(Arg240His). Red dots indicate these variants are identified from pedigrees.



**Supplementary Figure 9. The strategy of generating** *Foxi3* mutant mice and the phenotypes of the mutant mice. A-B: Targeting strategy to generate  $Foxi3^{Arg224His}$  and  $Foxi3^{R220W-R222Q-R224H}$  mutant mice. The mutant alleles of *Foxi3* are shown in red and the corresponding wild-type alleles are shown in black. Sanger sequencing is used to validate the genotype of the mutant mouse. C: Skeletal staining of wild-type, heterozygous, and homozygous  $Foxi3^{R220W-R222Q-R224H}$  P0 mice (n = 3 for each genotype mice). D: The phenotypes of the homozygous and heterozygous  $Foxi3^{R220W-R222Q-R224H}$  mice (P0). The black arrow indicates the ear of the newborn homozygous mice. E: The statistics show the weight and length of the wild, heterozygous, and homozygous  $Foxi3^{R220W-R222Q-R224H}$  newborn mice (P0; n = 7 for wild type, n = 15 for the heterozygous, and n = 11 for the homozygous). Significant differences between two groups (wild type and each mutant) were determined by unpaired Student's *t*-test (two-tailed). Data are presented as the means  $\pm$  s.d. The asterisk (\*) means the *P*-value < 0.05, (\*\*) means the *P*-value < 0.01. Source data are provided as a Source Data file. F: The skeletal staining showed the differences

of the ear structure of the wild-type, heterozygous, and homozygous  $Foxi3^{R220W-R222Q-R224H}$  mice at P0. P0: Postnatal day 0. Rtp: retrotympanic process. Ma: Malleus; St: Stapes; Mc: Meckel's cartilage; tr: tympanic ring. Scale bar = 100µm. Each experiment repeated at least three times.



**Supplementary Figure 10.** The *Foxi3*<sup>Phe218Leu / Phe218Leu</sup> mice. A: Targeting strategy to generate *Foxi3*<sup>Phe218Leu</sup> mutant mice. The sequence of interest and corresponding amino acid sequences are shown with the nuclear localization signal shown in blue. The *Foxi3*<sup>Phe218Leu</sup> mutation is shown in red and the corresponding wild type sequence is shown in green. B: Validation of the CRISPR mutation by

Sanger sequencing. The top panel shows the sequence of wild type allele and the bottom panel shows the mutated allele generated by CRISPR targeting. The boxes denote the wild type and mutant sequences at position 218. C: The Foxi3<sup>Phe218Leu</sup> variant has reduced transcriptional activity in a dual luciferase assay using the AE4 promoter (n = 6/group). The p.(Phe218Leu) variant is compared to a mutant in which every amino acid was mutated to Ala for the nuclear localization signal (NLS), leading to a functionally null protein. We used luciferase reporter with AE4 promoter along with blank FLAG as negative control and with wild-type FOXI3 as positive control. Luciferase activity is shown as relative fold activation compared with control. Each experiment was performed in triplicate and was repeated at least two times. Significant differences between two groups (wild type and each mutant) were determined by unpaired Student's t-test (two-tailed). Data are presented as the means ± s.d.Source data are provided as a Source Data file. D: Phenotypic analysis of an allelic series of mouse Foxi3 mutants. The Foxi3 null mutant<sup>5</sup> is compared to a homozygous Foxi3<sup>Phe218Leu</sup> / Foxi3<sup>Phe218Leu</sup> mouse and a compound heterozygous F218L/null P0 mouse. Both *Foxi3<sup>Phe218Leu</sup>* combinations have a normal jaw, inner ear and middle ear ossicles; however, F218L/null mice completely lack a thymus (asterisk). Foxi3 null mice have a severely truncated jaw (red arrow), and completely lack the inner ear and thymus (asterisk). P0: Postnatal day 0. mx: Maxilla. md: Mandible. mc: Meckel's cartilage. m: Malleus. Go: Gonuim, ty: Tympanic ring. Scale bars = 2mm (lateral and ventral views), 1mm (dentary), 500µm (inner ear: thymus and heart). Each experiment repeated at least three times.

Mouse-Foxi3-EGFP



Mouse-Foxi3 Arg219Cys-EGFP



Mouse-Foxi3 Arg220Trp-EGFP



Mouse-Foxi3 Arg220GIn-EGFP



Mouse-Foxi3 Arg222GIn-EGFP



Mouse-Foxi3 Arg224Cys-EGFP



**Supplementary Figure 11.** The localization and distribution of wild-type or mutant mouse Foxi3-EGFP fusion proteins in HEK-293T cells. DAPI counterstain (blue) shows the location of the nucleus. EGFP (green fluorescent protein) shows the subcellular localization of the Foxi3-EGFP fusion proteins. Wild-type Foxi3 and single-point mutated Foxi3 are almost completely transferred into the nucleus and uniformly distributed. Mouse Foxi3 with triple mutation in NLS tends to block outside the nucleus. Scale bar = 10µm. Each experiment was performed in triplicate and repeated at least three times.

Mouse-Foxi3 Arg224His-EGFP



Mouse-Foxi3 Arg220Trp-Arg222GIn-EGFP



Mouse-Foxi3 Arg220Trp-Arg224His-EGFP



Mouse-Foxi3 Arg222GIn-Arg224His-EGFP



Mouse-Foxi3 Arg220Trp-Arg222GIn-Arg224His-EGFP





**Supplementary Figure 12. P0** *Foxi3*<sup>R220W-R222Q-R224H</sup> **homozygotes exhibit asymmetric and variable soft tissue facial phenotypes.** Compared to wildtype littermates, *Foxi3*<sup>R220W-R222Q-R224H</sup> homozygotes (*n* = 3) all exhibit asymmetric microstomia and fully penetrant microtia but with asymmetry in severity. More severe presentations are associated with mandibular soft tissue transformations, including the presence of a line of mystacial whisker follicles on the mandible proper (see homozygote embryo in Fig 3E) and the absence of both the large lateral genal and central interramal whisker follicles (yellow asterisks on wild-type neonate). Note: The yellow line indicates bilateral absence of the genal follicles in *Foxi3<sup>Mut/Mut</sup>* embryo 2 and unilateral absence (left side) of the genal follicles in *Foxi3<sup>Mut/Mut</sup>* embryo 3. P0: Postnatal day 0. Scale bar = 1mm.

#### **Supplementary References**

- 1. Kuonen, D. Saddlepoint approximations for distributions of quadratic forms in normal variables. *Biometrika* 86, 929-935 (1999).
- 2. Alibés, A. *et al.* Using protein design algorithms to understand the molecular basis of disease caused by protein-DNA interactions: the Pax6 example. *Nucleic Acids Res* 38, 7422-31 (2010).
- 3. Williamson, K.A. *et al.* Recurrent heterozygous PAX6 missense variants cause severe bilateral microphthalmia via predictable effects on DNA-protein interaction. *Genet Med* 22, 598-609 (2020).
- 4. Nguyen Ba, A.N., Pogoutse, A., Provart, N. & Moses, A.M. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. *BMC Bioinformatics* 10, 202 (2009).
- 5. Edlund, R.K., Ohyama, T., Kantarci, H., Riley, B.B. & Groves, A.K. Foxi transcription factors promote pharyngeal arch development by regulating formation of FGF signaling centers. *Dev Biol* 390, 1-13 (2014).