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Abstract

Cancers represent complex autonomous systems, displaying self-
sufficiency in growth signaling. Autonomous growth is fueled by a
cancer cell’s ability to “secrete-and-sense” growth factors (GFs): a
poorly understood phenomenon. Using an integrated computa-
tional and experimental approach, here we dissect the impact of a
feedback-coupled GTPase circuit within the secretory pathway
that imparts secretion-coupled autonomy. The circuit is assembled
when the Ras-superfamily monomeric GTPase Arf1, and the hetero-
trimeric GTPase Giαβγ and their corresponding GAPs and GEFs are
coupled by GIV/Girdin, a protein that is known to fuel aggressive
traits in diverse cancers. One forward and two key negative feed-
back loops within the circuit create closed-loop control, allow the
two GTPases to coregulate each other, and convert the expected
switch-like behavior of Arf1-dependent secretion into an unex-
pected dose–response alignment behavior of sensing and secre-
tion. Such behavior translates into cell survival that is self-
sustained by stimulus-proportionate secretion. Proteomic studies
and protein–protein interaction network analyses pinpoint GFs
(e.g., the epidermal GF) as key stimuli for such self-sustenance.
Findings highlight how the enhanced coupling of two biological
switches in cancer cells is critical for multiscale feedback control
to achieve secretion-coupled autonomy of growth factors.
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Introduction

Self-sufficiency in growth signaling, a.k.a, growth signaling auton-

omy, is the first of the six hallmarks of all cancers to have been

clearly defined (Hanahan & Weinberg, 2000). While most growth

factors (GFs) are made by one cell type to stimulate the proliferation

of another, many cancer cells synthesize GFs to which they are

responsive, creating a positive feedback signaling loop called auto-

crine stimulation (Fedi et al, 1997). Serum-free cell culture studies

squarely implicate such stimulation as key support for intracellular

mechanisms that impart autonomy (reviewed in Chigira

et al, 1990). Autonomy in cancer cells obviates dependence on

extrinsic GFs, as illustrated in the case of platelet-derived GF (PDGF)

and tumor GF α (TGFα) in glioblastomas and sarcomas, respectively

(Fedi et al, 1997). Beyond cancers, “secrete-and-sense” circuits that

allow cells to secrete and sense the same signaling molecule are

ubiquitous (Youk & Lim, 2014); these autocrine secrete-and-sense

mechanisms do not just enable autonomy (Maire & Youk, 2015) but

also generate diverse social behaviors, and recur across species

(Youk & Lim, 2014).

Autocrine secretion of GFs relies on an essential, efficient, and

accurate molecular machinery that constitutes a central paradigm of

modern cell biology, that is, the secretory pathway (Trombetta &

Parodi, 2003; Matlin & Caplan, 2017). This pathway consists of vari-

ous modules that are compartmentalized on the endoplasmic reticu-

lum (ER) and the Golgi apparatus, and are responsible for folding,

processing of the post-translational modifications, and trafficking of

the proteins routed to the cell membrane (Kelly, 1985; Rothman &

Orci, 1992). Nearly all these aspects of the secretory pathway have

been found to be dysregulated in cancers, ranging from observed

changes in Golgi shape (“onco-Golgi”; Petrosyan, 2015), or its func-

tion (Zhang, 2021), which inspired the development of disruptors of

this ER-Golgi secretory system as anti-cancer agents (Wlodkowic
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et al, 2009; Ohashi et al, 2012, 2016, 2017; Luchsinger et al, 2018;

N�u~nez-Olvera et al, 2020).

Despite these insights, the core mechanisms of cell secretion

that impart cell autonomy remain poorly understood. To begin

with, it is still unknown whether or not secretion is proportional

to GF stimulation, and whether such secretion is sufficient to sup-

port cell survival, perhaps via closed-loop autocrine sensing and

signaling (the so-called “secrete-and-sense” loop; Youk &

Lim, 2014). A recent study has shown that the secretory functions

of the Golgi apparatus require the unlikely coupling of two distinct

species of GTPases at the Golgi (Lo et al, 2015; Fig 1A): one is the

small or monomeric (m) GTPase Arf1 and the other is the hetero-

trimeric (t) GTPases Gi. GTPases serve as molecular switches that

gate signal transduction: “on” when GTP-bound (active) and “off”

when GDP-bound (inactive). The “ADP-ribosylation factor” (Arf1;

Kahn & Gilman, 1986) mGTPase is localized to the Golgi complex

in mammalian cells and is essential for the secretory pathway

(Stearns et al, 1990); it associates with Golgi membranes upon

activation and is released from Golgi membranes into the cytosol

upon inactivation. Such cycles of association and dissociation are

regulated by Golgi-associated, guanine nucleotide exchange factors

(GEFs), and GTPase activating proteins (GAPs). Trimeric GTPases

were detected in the Golgi over three decades ago (Stow

et al, 1991; Barr et al, 1992), and numerous studies have provided

clues that they may regulate membrane traffic and maintain the

structural integrity of the Golgi (reviewed in Cancino &

Luini, 2013). However, the concept of G protein activation at the

Golgi and the potential impact of such activation remained contro-

versial, primarily due to the lack of direct proof of G protein acti-

vation. The study that reported the coupling of Arf1 mGTPase and

Giαβγ tGTPase provided direct evidence, the first of its kind, that

the two GTPases are coupled by a linker protein, Gα-Interacting
vesicle-associated protein (GIV; Lo et al, 2015). Activation of Arf1

mGTPase facilitates the recruitment of GIV on the membrane via a

direct, nucleotide-dependent interaction. Upon recruitment, GIV

binds and activates Gαi serving its role as a GEF for the tGTPase,

Gi. Such activation of Gi at the Golgi affects two fundamental

functions of the Golgi, that is, vesicle trafficking and the structural

organization of the Golgi stacks—both via modulation of Arf1 sig-

naling. These findings firmly established that Gαi is functionally

active in the Golgi.

Because tGTPases are known to primarily transduce extracellu-

lar signals (“sensing”) into intracellular signals that shape cellular

responses, we asked how coupling of the two GTPases, one that

guards cell secretion (Arf1) and another that gates signal sensing

(Gi), may impact the cell’s ability to secrete-and-sense. In system-

atically interrogating this question, we viewed the experimentally

validated interactions and functions of the two GTPases and their

GEFs and GAPs as a circuit of coupled GTPases. Such coupling,

whose structural basis has been experimentally validated (Fig 1A-

right), forms a closed loop that is comprised of one forward reac-

tion and two negative feedback loops (Figs 1A-left and EV1;

Movie EV1; Materials and Methods). The forward reaction is the

recruitment of GIV/Girdin by active Arf1 on Golgi membranes

(arrow 1). GIV is a multi-modular cytosolic signal transducer that

is a prototypical member of the family of guanine nucleotide

exchange modulators (GEM) of tGTPases; GIV’s GEM domain

binds and activates the tGTPase Gαi, and thereby, serves as a

tGEF within this circuit. One negative feedback loop involves the

activation of the GAP for Arf1 (ArfGAP2/3) by GIV, which termi-

nates Arf1 signaling (arrow 2); the other is due to GIV’s role as a

GEF to activate Gi and thus enhance Arf1GAP2/3, which also lead

to the termination of Arf1 signaling (arrow 3). This phenomenon

of co-regulation between the two classes of GTPases maintains

the Golgi shape and function, two closely intertwined processes

that are regulated by Arf1. The triggers for and the consequence

(s) of such co-regulation on signal sensing/response remained

unknown.

Because coupling of two species of GTPase switches, Arf1 and

Gi, with feedback control is likely to generate complex, nonlinear,

and non-intuitive emergent properties, we use cross-disciplinary

approaches to dissect the role of the coupled GTPases within the

secretory pathway and explore its functional significance in eukary-

otic cells. Using computational biology approaches and explicit inte-

gration of experimental biology and computational methods, we

also assess the impact of perturbing this motif, that is, uncoupling

the GTPases. Our findings show how coupling makes secretion

responsive to GFs, in particular the epidermal GF (EGF), and

appears to impart secretion-coupled autonomy.

Results

An integrated computational and experimental approach to
dissect a Golgi-localized GTPase circuit

We began by developing a mathematical model for this coupled cir-

cuit (Fig 1B; see Materials and Methods) and drawing clues from

protein–protein interaction (PPI) network analyses, to generate test-

able hypotheses and validate them experimentally. The integrated

approach allowed us to connect across time scales of the emergent

behavior of the coupled GTPase circuit with cellular secretion, cell

survival, and ultimately, secretion-coupled survival, that is, auto-

crine autonomy.

▸Figure 1. Study design and approach.

A Schematic shows a system of two species of GTPases, mGTPases (mG), and heterotrimeric GTPases (tG), coupled by the linker protein, GIV/Girdin, that is localized on
the Golgi membranes within the secretory pathway as the focus of this study. The circuit begins when active Arf1-GTP directly binds GIV’s N-term HOOK domain,
recruits GIV to Golgi membranes, and activates Gi (Lo et al, 2015; arrow 1). The circuit is completed when GIV’s C-terminus orchestrates two feedback loops (arrows 2
and 3), both of which are essential for the inactivation of Arf1 (Lo et al, 2015; Kalogriopoulos et al, 2019). See also Fig EV1 for illustrations detailing the sequential steps
within the dynamic nature of the motif, and Movie EV1 for the visualization of these dynamic steps as a movie gif.

B Schematic of the mathematical model that we used to study the role of such coupling of GTPase (top panel) in autocrine secretion-supported cell survival and prolif-
eration (bottom panel). The modeling in the top panel is experimentally constrained, and the modeling in the bottom panel is a predictive module. This model is
based on the nominal time scale of these events (left panel) and has the typical behavior shown in the right panel.
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The first part of the mathematical model is an experimentally

constrained module for the coupled GTPases switches (upper panel

in Fig 1B), where normalized Hill functions are used (Saucerman &

McCulloch, 2004; Cao et al, 2020; see Materials and Methods for

details). This approach was chosen to capture the key timescales

and molecular players involved rather than focus on the specific

biochemical reactions. Additionally, this approach has fewer free

parameters than the traditional approach of building networks with

large numbers of reactions (Getz et al, 2019), leading to less ambi-

guity in decision-making for model development. The kinetic

parameters of the coupled GTPases module were subsequently

tuned to fit the time course data of GTPases in control cells and

GIV-depleted cells.

The second part of the mathematical model is a predictive

module for cell secretion and secretion-coupled cell survival

(lower panel in Fig 1B). The coupling of this predictive module

with the above experimentally constrained module is achieved by

setting the secretion rate as a function of mGAP. The following

findings allow us to make this coupling in the model: the finite-

ness of the Arf1 activation-inactivation cycle was assumed to be

a surrogate indicator of successful anterograde cargo movement

through the compartments within the secretory pathway, that is,

the ER–Golgi intermediate compartment (ERGIC) to the Golgi,

because Arf1 regulates membrane traffic through a cycle of GTP

binding and hydrolysis (Donaldson & Jackson, 2011); GTP bind-

ing is a pre-requisite for membrane curvature and vesicle forma-

tion (Beck et al, 2008) from the donor compartment, whereas

GTP hydrolysis is a pre-requisite for vesicle uncoating (Tanigawa

et al, 1993) and fusion with acceptor compartment. Therefore, we

set the secretion rate as a function of GTP hydrolysis, a process

regulated by mGAP. Except this setting for secretion rate, the

model for cell secretion and cell survival/proliferation is similar

to the model proposed by Hart et al (2014), where the kinetic

parameters are from biologically plausible ranges reported previ-

ously (Adler et al, 2018).

We chose two different cancer cell lines to conduct the experi-

ments: cervical (HeLa) and breast (MDA-MB231) cancer cell lines.

Our choice was guided by two reasons: (i) HeLa cells not only repre-

sent the most robust system to study Golgi structure (Ayala &

Colanzi, 2016; Wortzel et al, 2017) and function (Rauter et al, 2020)

but also provide continuity with prior work because all biophysical

and functional studies that led to the discovery of the coupled

GTPases at the Golgi were performed in this model and (ii) we and

others have shown that transcriptional upregulation or post-

transcriptional activation (Dunkel et al, 2012; Bhandari et al, 2015;

Sasaki et al, 2015) of GIV (the “linker” between the two GTPases;

Fig 1A) supports several aggressive tumor cell properties (of which,

many were demonstrated in MDA-MB231 cells (Jiang et al, 2008;

Lopez-Sanchez et al, 2015; Wang et al, 2015; Wang et al, 2017;

Midde et al, 2018; Rahman-Zaman et al, 2018; Rohena et al, 2020)),

including, invasion, matrix degradation, proliferation, and survival

(Garcia-Marcos et al, 2015; Aznar et al, 2016). Elevated expression

of GIV has also been reported in a variety of solid tumors (Garcia-

Marcos et al, 2015; Getz et al, 2019), both in primary tumors

(Ghosh, 2015; Ghosh et al, 2016b) as well as in circulating tumor

cells (Barbazan et al, 2016; Dunkel et al, 2018), and has been shown

to correlate with tumor aggressiveness and poor survival across

cancers.

Finally, model and PPI network-driven predictions of uncoupling

the GTPases or interrupting secrete-and-sense autonomy were

experimentally validated in the two cancer cell lines that lack

GTPase coupling in the absence of the GIV linker protein.

EGF activates Arf1 (mG*) at the Golgi and triggers the
recruitment of a GEF for trimeric Giαβγ

First, we sought to model the impact of coupling on m/tGTPase sig-

naling in response to the input signal (Fig 1A). Key events within

the circuit were measured experimentally using available tools and

experimental approaches (Arrows 1–3; Materials and Methods). The

EGF was prioritized as an input signal because of prior evidence

documenting its role in the regulation of Golgi secretion (Blagovesh-

chenskaya et al, 2008), its fragmentation during mitosis (Shaul &

Seger, 2006), and most importantly, in the activation of Arf1

(Boulay et al, 2008; Haines et al, 2014, 2015).

We measured Arf1 activity in response to EGF using an estab-

lished pull-down assay (Fig 2A and B) with the Glutathione S Trans-

ferase (GST)-tagged GAT domain of GGA3. This domain is known

to selectively bind the active GTP-bound pool of Arf1 (Cohen &

Donaldson, 2010). The levels of Arf1�GTP were increased ~3-fold
within 5 min after ligand stimulation, followed by a return toward

baseline by 30 min, which we assume reflects the level of Arf1

activity in cells at a steady state (Fig 2B). These temporal dynamics

were used to fit the parameters for Arf1 activity in the computa-

tional model of the circuit (blue line in Fig 2C; R2 and normalized

RMSE are 0.72 and 0.19 respectively; see Materials and Methods

and Table EV1 for model parameters). Such fitting completed the

characterization of the first GTPase switch, that is, Arf1; in this case,

the input is ligand stimulus (EGF) and the output is Arf1-GTP (OUT-

PUT #1; mG*).

A key consequence of Arf1 activity within the coupled GTPase

circuit is the first segment of the Gi activation pathway, that is, the

recruitment of GIV (Fig 2D), which is not only an effector of Arf1

but also the GEF of Gi (Lo et al, 2015). Previous studies showed that

an evolutionarily conserved region in the N-terminal Hook domain

of GIV can directly and preferentially bind to the active GTP-bound

conformation of Arf1 (Lo et al, 2015), revealing the structural basis

of the recruitment of GIV by active Arf1 (Fig 1A-right). To test

whether GIV recruitment occurs in cells responding to EGF, we used

immunofluorescence microscopy to observe HA-tagged Arf1 (green;

Fig 2E) and endogenous GIV (red; Fig 2E). Membrane-colocalization

of Arf1 and GIV was significantly increased within 5 min after EGF

stimulation for serum-starved cells, as determined by quantification

of the Arf1-positive Golgi regions using a Mander’s overlap coeffi-

cient (MOC; Fig 2F). These results indicate that EGF-induced Arf1

activity triggers the recruitment of GIV at the Golgi.

EGF triggers the activation of Gi (tG*) on Golgi membranes, and
then activates ArfGAP, terminating Arf1 signaling via feedback
loops within the closed-loop system

We next evaluated the second segment of the Gi activation pathway,

that is, the ability of membrane-recruited GIV to bind and activate

the tGTPase Gi at the Golgi (Fig 3A). To be more specific, we com-

pared the Gi activation level between control cells and GIV-depleted

cells. The Gi activation level is measured by a well-established
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Förster resonance energy transfer (FRET)-based assay (Gibson &

Gilman, 2006). In this assay, the α and βγ subunits of Gi were tagged

with YFP and CFP, respectively; if Gi is activated, that is, the α and

βγ subunits dissociate, YFP and CFP stay far from each other, lead-

ing to low FRET (Fig 3B; See Materials and Methods for details).

Besides, the GIV-depleted cells were obtained using a short hairpin
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Source data are available online for this figure.
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RNA to target GIV (shGIV cells; Fig 3C; See Materials and Methods

for details). When we conducted FRET assays in these cells, we

found that there was a significant drop in FRET (i.e., activation of

Gi and trimer dissociation after EGF stimulation) at the Golgi within

5 min after EGF stimulation in control cells. Activation of Gi contin-

ued to peak by 15 min in control cells, reaching a plateau by 25–
30 min (Figs 3D top and E, and EV2A and B for FRET at the PM).

We noted that the temporal propagation of the input signal (EGF)

takes ~5 min to trigger events at the Golgi, which is considerably

delayed compared to most of the well-defined EGF-stimulated,

receptor-proximal events (Fig EV4A) which begin within ~2–5 s

(Reddy et al, 2016). This delay is consistent with the concept of

propagation delay in networks (Brent, 2009). On the other hand, in

shGIV cells, such tGTPase activation was abolished due to the non-

changed FRET (Figs 3D bottom and E). Taken together, these results

demonstrate that Gi is activated at the Golgi upon EGF stimulation

and that such activation requires GIV.

Because FRET studies require the overexpression of G protein

subunits at levels much higher than relevant in physiology, we

sought to validate our FRET-based findings on endogenous Gi. To

this end, we performed confocal immunofluorescence microscopy

using a bona fide marker of the organelle, the Golgi-localized α-
mannosidase II (Man II; Zuber et al, 2000), and anti-Gαi�GTP
mAb, which selectively recognizes the active (GTP-bound) confor-

mation of the G protein (Lane et al, 2008). These signals coloca-

lized not only in EGF-stimulated cells (Fig 3F) but also in cells

exposed to other stimuli, for example, 10% serum (containing a

mixture of GFs) and lysophosphatidic acid (LPA), a ligand for the

GPCR, LPA-receptor (LPAR; Fig EV2C and D). The findings con-

firmed that Gi is activated on Golgi membranes after GF

stimulation and suggested the prevalence of this event in response

to diverse stimuli.

We fitted the above experimental data by tuning the kinetic

parameters. We obtained a good fit for the fold change of Gi activa-

tion in both control and shGIV cells (Fig 3G; R2 and RMSE, 0.54 and

0.41 for control cells; �0.44 and 0.71 for shGIV cells). The low level

of GIV in shGIV cells was mimicked by decreasing the levels of

expression of GIV to 10% of that in control cells (Fig 3C). Thus, the

model matched the overall trend of experimental data in both cells

(see Table EV1 for model parameters).

We next evaluated the feedback loops, which are critical for the

“closed loop” architecture of the circuit, that is, the deactivation of

Arf1 (mG*) by ArfGAP2/3 (mGAP; Fig 3H). Two negative feedback

loops activate ArfGAP2/3 (arrows 2 and 3 in Fig 1A). Arrow 2 repre-

sents GIV’s ability to bind and recruit ArfGAP2/3 to COPI vesicles

and the Golgi membranes; failure to do so results in elevated levels

of Arf1�GTP and stalled anterograde secretion in these cells (Lo

et al, 2015). Arrow 3 represents GIV’s ability to activate Gi and

release “free” Gβγ; GIV’s GEF function triggers this (Lo et al, 2015)

and “free” Gβγ is a co-factor for ArfGAP2/3. Both negative feedback

loops depend on the forward reaction, arrow 1, which involves the

recruitment of GIV (tGEF; Fig 1A). Using the Arf1 activity after

ligand stimulation as a readout, we next measured the activity of

ArfGAP2/3 in control and GIV-depleted (i.e., shGIV) cells

responding to EGF (Fig 3I). We found that Arf1 activity peaked

within 5 min after EGF stimulation and rapidly reduced thereafter

by 15 min in control cells but remained sustained until 15 min in

GIV-depleted cells (Figs 3I, and EV2E and F), suggesting that EGF

activates both mGEFs and mGAPs of Arf1. While activation of Arf1

is brought on by mGEF(s) (the identity of which remains unknown)

▸Figure 3. EGF triggers the activation of Gi (tG*) on Golgi membranes, activates ArfGAP, and terminates Arf1 signaling via a feedback loop.

A Schematic showing the specific step being interrogated in (B–G), that is, Gi activation.
B Schematic describing the mechanism of the FRET Gαi activity reporter. Serum-starved conditions are expected to have more inactive trimeric Gi, and hence show

high FRET (top). Upon ligand stimulation, GIV-dependent dissociation of trimers is expected, with a resultant loss of intermolecular FRET.
C Equal aliquots (~45 μg) of whole cell lysates of control (shControl; top) and GIV-GEM depleted (shGIV; bottom) HeLa cells were analyzed for GIV and tubulin (loading

control) by immunoblotting (IB).
D Control (sh Control; top) and GIV-GEM depleted (shGIV; bottom) HeLa cells were co-transfected with Gαi1-YFP, Gβ1-CFP and Gγ2 (untagged), and live cells were ana-

lyzed by FRET imaging at steady state, after being serum starved in 0.2% FBS overnight and then after stimulation with 50 nM EGF. Representative freeze-frame
FRET images are shown. FRET image panels display intensities of acceptor emission due to efficient energy transfer in each pixel. The FRET scale is shown in the
inset. Golgi and PM regions of interest are indicated with arrows. Scale bar = 10 μm. See also Fig EV2A and B for free-frame images for additional time points in
control HeLa cells.

E ΔFRET/CFP at the Golgi (derived from D) as a function of time. The data are represented as mean � SEM. Interrupted lines display the fitting results using
exponential functions for shControl (blue) and shGIV cells (red). Data represent five regions of interest (ROIs) analyzed over the pixels corresponding to the Golgi of
3–5 cells from two independent biological experiments, that is, n = 8 biological replicates. P-values, as determined against t0 using Mann–Whitney are displayed.

F HeLa cells starved with 0.2% FBS overnight or stimulated subsequently with 50 nM EGF were fixed and stained for active Gαi (green; anti-Gαi:GTP mAb) and Man II
(red) and analyzed by confocal microscopy. Activation of Gαi was detected exclusively after EGF stimulation. When detected, active Gαi colocalizes with Man II (yel-
low pixels in merge panel). See also Fig EV2C and D for additional time points and stimulus. Scale bar = 7.5 μm.

G Model fit for the fold change of active tGTPase (denoted as tG*). Experiment data are the fold change of ΔFRET/CFP in (D) and is shown as mean � SEM (n = 8; 3–5
cells from two independent biological experiments). Continuous lines display the model simulation results after parameter fitting (See Table EV1 for parameters).

H Schematic shows the step being interrogated in (I–K), that is, the termination of Arf1 signaling.
I Immunoblot shows bound Arf1 (active; top) and total Arf1 (input lysates; bottom) from equal aliquots of lysates of control (sh Control) and GIV-depleted (shGIV)

HeLa cells. Cells were stimulated with EGF for the indicated time points prior to lysis. Bar graphs in Fig EV2E display the fold change in Arf1 activity normalized to
t0 min. “Low” and “high” indicate exposures.

J, K Model predictions of Arf1 activation dynamics (J) and Gαi activation dynamics (K) when negative feedback do not exist. The depletion of negative feedback in the
model is achieved by deleting either tG� ! mGAP or tGEF ! mGAP (interrupted green line). These two depletion ways have no difference due to AND gate logic;
please see also Fig EV3 for model predictions using OR logic. The red line in (J) was obtained by setting the GIV amount to 10% of the control cell, matching the low
concentration of GIV in shGIV cells. As a reference, the experimental data (i.e., error bars in black and red) and model fit results (curves in blue and red) in Figs 2C
and 3G are also displayed here, which were plotted in a same way as in Figs 2C and 3G.

Source data are available online for this figure.
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and achieves similar levels of activation regardless of the presence

or absence of GIV, termination of Arf1 activity by mGAP (ArfGAP)

requires GIV.

Finally, we used the model which was fitted to the experimental

data in Figs 2C and 3G to make predictions. We conducted two sim-

ulations: one in which we decreased the GIV level to simulate the

Arf1 activation dynamics in the shGIV cell line (red line in Fig 3J),

and one in which we deleted either arrows 2 or 3 to simulate the

Arf1 and Gi activation dynamics for the uncoupled GTPase

switches. Based on the experimental results before (Lo et al, 2015),

arrows 2 and 3 are modeled by an “AND gate”-like digital logical

operation (Kime & Mano, 2003), that is, a HIGH output (ArfGAP2/3

activity, and resultant termination of Arf1 signaling) results only if

both the inputs to the AND gate (arrows 2 and 3) are HIGH. We also

tested the “OR” logic for the negative feedback (Fig EV3) and found

the model predictions to be indistinguishable from those obtained

with the AND gate. It is possible that one of these logical modes of

operation is more efficient than the other under certain circum-

stances. For the first simulation, the simulated Arf1 activation

dynamics (red line in Fig 3J) captured the sustained activation of

Arf1 dynamics in shGIV cells, indicating the ability of the model to

capture the experimental data. For the second simulation, the simu-

lated Arf1 dynamics (green line in Fig 3J) is the same as that in

shGIV cells, suggesting the equivalency of deleting GIV and uncou-

pling GTPase switches. The simulated Gi dynamics (green line in

Fig 3K) is similar to (maybe even slightly higher than) that in con-

trol cells, which is consistent with the fact that the feedback loops

have no effect on Gi. Thus, negative feedback within the “closed-

loop control” (CLC) exerts a significant effect on the mGTPase

(Arf1) and little or no effect on the tGTPase (Gi).

Coupled GTPases are predicted to enable high-fidelity
concordant response to EGF

To gain insights into how coupling impacts information transduc-

tion, we compared the dose–response alignment (DoRA) perfor-

mance between the coupled and uncoupled GTPase circuits.

Typically, DoRA, referring to the close match of the receptor occu-

pancy and the downstream response no matter what the stimuli

level is (Andrews et al, 2016), is believed to improve information

transduction, since the downstream molecules reflect the receptor

occupancy faithfully. We regarded the mGEF as an alternative to

the receptor because it serves as the first input to the coupled cir-

cuit via its ability to trigger the activation of the mGTPase switch.

Therefore, a close match of dose–response curves of mGEF and

mG* is equivalent to the linear relation between mGEF and mG*.

Using the model that has been fitted to the data in Figs 2C and

3G, we simulated the steady-state value of mG* and mGEF over a

wide range of stimuli and then plotted the fractional activation of

mG* for a given mGEF activity to observe the linearity. The misa-

lignment in the case of a single switch is evident; a single Arf1

switch displays hyperresponsiveness, in that, max mG* is

achieved even with minimal mGEF activity (Fig 4A). In the case

of coupled switches, similar plots of fractional activation of mG*

for a given mGEF activity show DoRA with an unexpected linear

relationship (Fig 4B). These results also hold in the presence of

noise, such as noise in EGF stimulus and the intracellular noise

[simulated within the concentrations of the different species

(nodes) and the connections between them (arrows)] (see Mate-

rials and Methods and Fig EV4). These results suggest that

coupled switches exhibit higher fidelity in information transduc-

tion than uncoupled switches. Although unexpected for a GTPase

switch, this finding is consistent with what is generally expected

in a closed loop with negative feedback (Becskei & Serrano, 2000;
�Aström & Murray, 2021).

Coupled GTPases are predicted to support secretion that is
linked to autocrine signaling and survival

To understand the impact of uncoupling of the GTPase circuit on

Arf1-dependent secretory functions of the Golgi, we carried out: (i)

PPI network analysis and (ii) the mathematical modeling based on

ordinary differential equations (ODEs).

To restrict the Arf1 interactome to the Golgi, we first extracted

a Golgi-annotated subcellular localization network of high-

confidence GIV and Arf1 correlators, based on a proximity-

dependent biotinylation map of a human cell (Go et al, 2021;

Appendix Fig S1). Next, the list of Golgi-localized proteins was

expanded by incorporating the GIV interactors from BioGRID

(Oughtred et al, 2021; Appendix Fig S2A and B). Arf1’s connectiv-

ity in the coupled network (in which Arf1�GIV�Gi interactions were

intact) was compared against an uncoupled network created in

silico by the removal of GIV from the network (Appendix Fig S2C).

Network analysis (see the workflow in Fig 4C; and as detailed in

Materials and Methods) showed that Arf1’s connectivity with

many proteins (“nodes”) and pathways was altered in the

uncoupled state (listed in Appendix Fig S2D–G). These altered

pathways share three key themes: (i) “sensing” of diverse ligands/

▸Figure 4. The predicted impacts of uncoupling the coupled switches.

A, B Fractional activations of mGEF vs. active Arf1 (mG*) for the single switch (A; mG alone) and coupled switches (B; mG and tG). We perform stochastic simulations in
the presence of noise in EGF (see Materials and Methods for details). The mean and the standard deviation (SD) of species are evaluated at steady states based on
1,000 repeated independent simulations of ODEs in the presence of noise. mGEF denotes the mean of mGEF; the shading shows the SD. The dimensionless EGF
concentrations in the simulations are obtained through normalization, that is, dividing the EGF concentration by 217.4 nM (=50 nM/0.23). In all simulations, noise
is introduced only in stimulus (i.e., EGF).

C, D A comparative analysis of the Golgi-localized Arf1 (mG) connectome with/without coupling to GIV (tGEF) and Gi (tGTPase). Workflow (C) shows how the list of
Golgi-localized Arf1 and GIV interacting proteins (Appendix Fig S1 and Dataset EV1) were used as “seeds” to construct a PPI network from the STRING database to
fetch the linking nodes to connect the seed proteins. The network was then perturbed by in silico deletion of GIV, followed by a topological analysis of how such
perturbation impacts the shortest paths associated with Arf1 to all other nodes in the network (see Materials and Methods). A network representation (D) using the
ClueGo algorithm of the cellular processes associated with the end proteins that were most frequently encountered in the most impacted shortest paths associated
with Arf1 (listed in Appendix Fig S2E). The deleted or newly added shortest paths were only considered using the differential network approach (see Materials and
Methods). The key in the lower left corner displays the color code of various overarching themes encountered in the network.
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stimulus, for example, GFs, peptide and steroid hormones, and

cytokines (yellow nodes in Fig 4D), (ii) “secreting” proteins to the

extracellular space (red nodes in Fig 4D), and (iii) “survival” sig-

naling via the PI3K-Akt pathways (teal nodes in Fig 4D). As

anticipated in the absence of GIV, Gi, and second messenger sig-

naling (blue nodes in Fig 4D), cellular homeostasis and cell num-

ber (green nodes in Fig 4D) were predicted to be impacted. These

findings suggest that removing GIV may impact secretion that is
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critical for auto/paracrine sensing/signaling, which maintains cell

number via balanced proliferation and/or death.

We next used computational modeling approaches to interro-

gate how coupled (CLC) vs. uncoupled (open loop) GTPase

systems at the Golgi impact cargo secretion and cell number upon

sensing GF stimulus (Fig 5A). However, unlike m/tG* activity

assays (which happen in a second to minute), cell secretion may

begin within minutes but is measured in hours, and their impact
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Figure 5. Coupled GTPases are predicted to support secrete-and-sense autonomy and maintenance of cell number.

A Schematic of the key features of the auto/paracrine loop that we hypothesize is regulated by the coupled GTPase circuit (left) and the corresponding
phenomenological models to capture these key effects (right).

B, C Model prediction for secretion as a function of stimulus in cells with coupled and uncoupled GTPases. Noise is introduced into the system in a similar way as
described in Fig EV4D–G. r2 > 0.99 in (B); r2 > 0.94 in (C).

D, E The secretion (D) or the cell number (E) as a function of stimulus in coupled and uncoupled switches. The stimulus = 0, 0.00046, 0.0046, 0.046, 0.115, 0.23, and
0.46 correspond to varying doses of EGF in simulations, ranging from 0, 0.1, 1, 10, 25, 50, and 100 nM, respectively. The error bar denotes SD based on 1,000
repeated independent simulations of ODEs when noise is in the stimulus and connections.

F The bar plot depicts cell numbers achieved by cells with either coupled or uncoupled switches, at different levels of stimulus. For the first two bars, the height and
error bars are the mean and SD of cell number when stimulus = 0.046 in (E), respectively. For the last two bars, the height and error bars are the mean and SD of
cell number when stimulus = 0 in (E), respectively.

G Relation between cell number and EGF in the presence of noise, which was introduced in a similar way as described in Fig EV4D–G. r2 > 0.95.
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on cell number requires a longer time scale (several hours and

even days). The secretion function was predicted to show an

ultrasensitive response (nHill = 1.86) as a function of the stimulus

(i.e., a given dose of EGF) when the two GTPase switches are

coupled; it was predicted to be reduced in the absence of coupling

(Fig 5B–D). Though the secretion response is a constant in the

absence of the coupling, it sets the baseline for EGF-to-Arf cou-

pling and thus supplies a platform for the comparison with the

coupled GTPases system. Intriguingly, secretion in the coupled

state shows different responses for most ranges of Gi activity

(tG*; Fig 5C), indicating faithful information transduction between

Gi and secretion. Furthermore, the cell number is higher for the

coupled vs. the uncoupled cells (Fig 5E and Appendix Fig S3). To

specifically analyze the impact of secrete-and-sense autocrine

autonomy, we carried out the simulations under restrictive growth

conditions. These simulations under restrictive growth conditions

revealed that cells with coupled switches display a higher cell

number compared to the cells with uncoupled switches only when

the secrete-and-sense loop is highly efficient; this advantage is lost

if the loop is abolished (Fig 5F). That coupling of GTPases that is

required for maintaining cell numbers was reproduced using EGF

as the stimulus (Fig 5G), providing continuity with prior model-

derived predictions. We also confirmed that the system and the

conclusions are not only robust to biological noise (Fig 5B, C and

G) but also robust to the variations in the kinetic parameter

(Appendix Fig S4).

GTPase coupling by GIV is required for time and dose-dependent
secretion of diverse cargo proteins

We next sought to experimentally validate the predicted impact

of uncoupling on cell secretion by studying the time-dependent

secretion of a few well-established transmembrane and soluble

cargo proteins. We began with the transmembrane cargo, vesicu-

lar stomatitis virus G protein (VSVG) using the well-

characterized GFP-tagged VSVG-tsO45 mutant (Gallione &

Rose, 1985). This mutant VSVG is retained in the ER at 40°C,
and accumulates in Golgi stacks at a 20°C temperature block,

from where it escapes to the PM at a permissive 32°C
(Fig EV5A). Considerable VSVG accumulated in the Golgi region

in both control and GIV-depleted cells under serum-starved con-

ditions at 20°C. EGF or serum stimulation was permissive to the

transport of the VSV-G protein to the PM in control cells at

32°C, but such transport was significantly diminished in GIV-

depleted cells (Fig EV5B and C). Similar results were observed

also in the case of EGF-stimulated secretion of three separate sol-

uble cargo proteins, MMP2, MM9 (Fig EV5D–F), and Collagen

(Fig EV5G and H); these cargo proteins were chosen because of

GIV’s published role in ECM degradation during cancer metasta-

sis (Rahman-Zaman et al, 2018) and tissue fibrosis (Lopez-

Sanchez et al, 2014). These findings show that the secretion of

diverse proteins in response to GFs is blunted in GIV-depleted

cells with uncoupled GTPases (Fig 6A).

▸Figure 6. Coupling of GTPases by GIV is required for growth factor-independent cell survival that relies upon autocrine secretion.

A Schematic summarizes the findings showcased in Fig EV5, which investigate the secretion of diverse cargo proteins [temperature-sensitive (ts) VSV-G, MMP2/9, and
ColVII], as determined by their accumulation in extracellular space over time after the stimulus (EGF or serum). For each cargo tested, compared to cells with GIV
(shControl), ligand-stimulated secretion was impaired in cells without GIV (shGIV).

B Immunoblots showing intracellular (left) and secreted (in the media; right) GFP-MMP9 at 24 h after stimulation with varying doses of EGF. Tubulin, used as a load-
ing control, confirms the presence of a similar number of plated cells in the assay.

C Left: Graph displays experimentally determined secretion of GFP-MMP9 in response to varying doses of EGF in control (shControl) and GIV-depleted (shGIV) HeLa
cells (as in B), and quantified by band densitometry. Results are expressed as mean � SEM; n = 3 biological replicates. P-values were determined by a two-sided
unpaired t-test. Right: Schematic diagram of dose responses (mG* and secretion) for the single switch and coupled switches. Coupled switches stretch the range of
proportionate responses. Single mG switch results in misaligned responses. DoRA, dose–response alignment.

D Left: Schematic summarizing the colorimetric assay used here to determine the number of metabolically viable cells. Right: The graph displays formazan
absorbance expressed as a measure of cell viability from the HeLa cells (Y-axis) cultured at varying conc. of serum (X-axis). Results are expressed as mean � SEM;
n = 3 biological replicates. P-values were determined by a two-sided unpaired t-test.

E Bar graphs display the % apoptotic (left) or necrotic (right) control (parental) and GIV-depleted (GIV KO) HeLa cells after 24 h growth in varying concentrations of
serum, as assessed by annexin V staining and flow cytometry. See also Appendix Fig S5A–C for dot plots and early and late apoptotic fractions. Results are
expressed as mean � SEM; n = 3 biological replicates. P-values were determined by a two-sided unpaired t-test.

F Schematic showing the rationale for and mechanism of action of fungal toxin, BFA, for interrupting the secrete-and-sense autocrine loop in cells.
G, H Control (parental) and GIV-depleted (GIV KO) HeLa cells grown in different concentrations of serum (FBS%) were treated or not with varying concentrations of BFA

(μM) as indicated. Line graphs in 3D (G) depict the formazan absorbance expressed as a measure of cell viability from the HeLa cells in various conditions tested.
Bar graphs (H) depict the cell number in serum-free growth conditions that are supported exclusively by the autocrine secrete-and-sense loop (without BFA;
BFA = 0.0 μM) or when such loop is interrupted (BFA = 0.1 μM). Results are expressed as mean � SEM; n = 3 biological replicates. Statistical significance was
determined by one-way ANOVA.

I–K Control (parental) and GIV-depleted (GIV KO) MDA MB-231 cells grown in different concentrations of serum (FBS%) were treated or not with varying concentrations
of BFA (μM) as in (G, H). Line graphs in 3D (I) depict the formazan absorbance expressed as a measure of cell viability from the MDA MB-231 cells in various condi-
tions tested. Bar graphs (J) depict the viability of the MDA MB-231 cells in serum-free growth conditions that are supported exclusively by the autocrine secrete-
and-sense loop (without BFA; BFA = 0.0 μM) or when such loop is interrupted (BFA = 0.1 μM). Results are expressed as mean � SEM; n = 3 biological replicates.
Statistical significance was determined by one-way ANOVA. Immunoblots (K) of equal aliquots of whole cell lysates confirm the depletion of GIV compared to tubu-
lin (loading control). See also Appendix Fig S5D–H for dot plots and early and late apoptotic fractions. Results are expressed as mean � SEM; n = 3 biological
replicates.

L Summary of conclusions of this work. Top: Coupling of GTPases within the secretory pathway enables dose–response alignment of secretion to stimulus, which
appears to be essential for “secrete-and-sense” autocrine autonomy in cancer cells. Bottom: Uncoupling of the GTPases within the secretory pathway disrupts such
autonomy and leads to cell death.

Source data are available online for this figure.
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We next asked if the DoRA predicted earlier in the case of Arf1

activity (Fig 4B) translates into a similar alignment in the case of cell

secretion. We analyzed the efficiency of secretion of one of the three

cargo proteins, MMP9, from control and GIV-depleted cells

responding to a range of EGF concentrations for 24 h (Fig 6B).

Quantitative immunoblotting confirmed that dose-dependent secre-

tion was observed in the case of control cells (coupled GTPases) but

not in GIV-depleted cells (uncoupled GTPases; Figs 6B and C left).

We conclude that the DoRA of Arf1 activity indeed translates into

DoRA of cell secretion in cells with coupled GTPases; by contrast, a

misaligned Arf1 activity (hyperresponsive; Figs 4A and 6C, right)

translates into misaligned secretion (hyporesponsive; Fig 6C, right)

in cells with uncoupled GTPases.

GTPase coupling by GIV is required for cell survival that relies
upon autocrine secretion

We next assessed by MTT assays the total number of metabolically

active cells that develop self-sufficiency in GF signaling, that is, sur-

vive in GF-free conditions (0% serum; Fig 6D, left). The number of

cells in serum-free or low-serum conditions was significantly higher

in the presence of GIV (parental HeLa cells; coupled) than in the

absence of GIV (GIV-KO cells; uncoupled; Fig 6D); this survival gap

closed at higher serum concentrations (see 10% Fetal Bovine Serum

(FBS), Fig 6D). Reduced cell number in GIV-KO cells in the low/no

serum conditions was associated with a concomitant increase in cell

death via apoptosis and necrosis (Fig 6E and Appendix Fig S5A–C).
We then sought to validate the results of the simulations in growth-

restrictive conditions which showed that interrupting the coupled

GTPase circuit at the Golgi will reduce cell numbers (Fig 5F). We

analyzed the number of metabolically active cells with (coupled) or

without (uncoupled) GIV across a range of serum conditions and

varying concentrations of the mycotoxin Brefeldin A (BFA), a well-

known tool to inhibit secretion via its ability to inhibit Arf1 activa-

tion (Prieto-Dominguez et al, 2019; Fig 6F). We made three observa-

tions: (i) cells with coupled circuits have a significant survival

advantage in serum-restricted conditions (see 0–2.0% FBS; Fig 6G);

(ii) that advantage depends on sensing what the cells secrete because

blocking secretion with BFA also eliminates such advantage

(Fig 6H); and (iii) survival in the presence of serum (5–10%) is simi-

lar for both “coupled” and “uncoupled” cells, implying non-secreting

cells with uncoupled circuits can survive if they can “sense” stimuli

that they did not generate (e.g., serum ~5–10% range; Fig 6G).

To avoid overreliance on a single model system (i.e., HeLa cells),

we generated a second model, GIV-depleted MDA MB-231 cells

(using CRISPR/Cas-mediated genome editing, see Materials and

Methods) and sought to reproduce key findings (Fig 6I–K). As in the

case of HeLa cells, the survival advantage of MDA MB-231 cells with

coupled circuit (with GIV, Parental cells) over those with uncoupled

circuit (GIV KO) was observed exclusively in low/no serum condi-

tions (see 0–2.0% FBS; Fig 6I) and blocking secretion with BFA

eliminates such advantage (Fig 6J). Reduced cell survival in cells

without GIV (uncoupled state) was associated with higher early and

later apoptosis and necrosis (Appendix Fig S5D–H).
These findings show that the coupled GTPase circuit is required

for cell survival that is supported exclusively by autocrine secretion

(i.e., independent of external GFs), and by that token, essential for a

functional autocrine “secrete-and-sense” loop (Fig 6L, top). Inter-

rupting the coupled GTPase circuit at the Golgi appears to disrupt

the “secrete-and-sense” loop and abrogate cell survival that is

supported by such secretion (Fig 6L, bottom). Because “secrete-and-

sense” loop is a key feature of cellular autonomy (Youk &

Lim, 2014; Maire & Youk, 2015), taken together our findings show

that the coupled GTPase circuit in the cell’s secretory pathway may

be critical for autocrine autonomy.

GTPase coupling supports self-sufficiency in GF signaling

To discern the nature of the pathway/processes whose autocrine

autonomy is supported by the coupled GTPases, we analyzed HeLa

and MDA MB-231 cells with coupled (WT) or uncoupled (GIV KO)

circuits by tandem mass tag (TMT) proteomics. The studies were

carried out in serum-free/restricted conditions (Fig 7A) to maxi-

mally enrich the proteome that supports auto-/paracrine secretion-

coupled sensing. To our surprise, the majority (76%; 1,437 proteins,

including EGFR; see the complete list in Dataset EV2) of the differ-

entially upregulated proteins (DEPs) in the two WT cell lines over-

lapped (despite the vast differences between HeLa and MDA MB-

231 cell lines in origin, genetics, and nearly every other possible

way). This suggests that the presence or absence of GTPase cou-

pling via GIV may impact both cells similarly. The interactions

between the DEPs were fetched from the STRING database to build

a PPI network, in which we found several major coat proteins (AP1,

AP2, COP, and CAV), the monomeric GTPases (Arfs, Rabs, Rho,

CDC42, and Rac1) and trimeric GTPases (GNAI; Fig 7B). A connec-

tivity analysis revealed that EGFR and the Arfs are some of the most

highly connected nodes in the interactome (Fig 7C). A reactome

pathway enrichment analysis confirmed that the most highly

connected proteins primarily engage in a variety of GF signaling

pathways (Fig 7D).

▸Figure 7. Differential proteomics of autonomy enabled vs. disabled MDA MB-231 and HeLa cells.

A Workflow for comparative proteomics on autonomy enabled vs. disabled cells by tandem mass tag (TMT) multiplex technique followed by mapping of upregulated
proteins in WT cells using the STRING database (see Materials and Methods).

B A protein–protein interaction (PPI) network shows the interactions between upregulated mapped proteins in WT cells. Node and font sizes correlate positively with
the degrees of connectivity.

C Bar plot shows the degree distribution of highly connected (degree > 20) nodes in the PPI network in (B).
D Reactome pathway analysis of the pathways enriched in the most connected proteins in (C). Red = pathways associated with growth factor signaling.
E Workflow for the construction of a multi-organelle network of autonomy-enabled cells using subcellular localization of upregulated proteins in the WT cells.
F Visualization of a multi-organelle network of proteins that partake in secretion-coupled autonomy across three compartments, the plasma membrane, the Golgi, and

the ER/ERGIC.
G Reactome pathway analyses of the pathways enriched within the three organelles in (F). Red pathways associated with RTK/EGFR signaling and Green pathways

associated with multi-cellular cell–cell communication in the plasma membrane.
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Because protein functions are determined by subcellular localiza-

tion, we sought to map the DEPs that are upregulated in the WT

cells based on their subcellular localization. To this end, we used a

Human Cell Atlas-supported explorer platform (that uses a large col-

lection of confocal microscopy images of patterns of subcellular

localization of human proteins) to include the proteins that localize

to three organelles, the Golgi, ER/ERGIC, and the PM (Fig 7E; see

Materials and Methods). Visualization of the DEP-derived PPI net-

works as multi-layered networks that are comprised of intra- and

inter-organelle interactions (Fig 7F) revealed greater insights. As

expected, reactome pathway analysis of the ER/ERGIC and the Golgi

interactomes showed an enrichment of protein processing and

secretory processes, respectively, and the PM-localized interactome

showed an enrichment of GF signaling (Fig 7G). The PM-localized

interactome also showed an enrichment of cell–cell contact and

contact-dependent signaling pathways (such as Semaphorins and

the Eph/ephrin system; green; Fig 7G), which enable cell–cell coor-
dination in multicellular eukaryotes. These findings indicate that the

coupled GTPase system supports a network of proteins that primar-

ily enable secretion-coupled GF sensing and thereby, growth signal-

ing autonomy.

Discussion

The major novelty we report here is the creation of an experimentally

constrained multi-timescale model for cell survival that relies on GF-

responsive cell secretion. One major consequence of such a phenom-

enon is autonomous growth/survival in the absence of external GFs.

We formally define the molecular basis for such autonomy and dem-

onstrate the consequences when it is manipulated/perturbed. The

insights and models derived from this study are expected to inform

and impact at least three fields, that is, signal transduction, cell secre-

tion, and cancer cell biology in the following ways.

In the field of signal transduction, emergent properties of ecto-

membrane signaling circuits at the PM have been identified using

mathematical modeling based on ODEs; however, none thus far have

coupled the events at the ectomembrane to the events in the cell’s

interior, that is, the endomembrane of organelles. Our study experi-

mentally validated a Golgi-localized natural coupling between the

two GTPase switches with exquisite feedback control that enables

linear activation of Arf1 in response to EGF, which in turn enables

the Golgi to mount a response (protein secretion) that is proportion-

ate to the stimulus (sensed at the PM) and robust to noise. The

model reveals two notable features: First we show that the CLC sys-

tem generated DoRA, enabling a linear increase in Arf1/mG* activa-

tion and protein secretion. Such DoRA has been described in several

major receptor-initiated signaling cascades at the PM (from the pher-

omone response system in yeast to the Wnt → βCatenin,
TGFβ→SMAD2/3 and EGFR→MAPK cascades in mammals; Andrews

et al, 2016), but never in endomembrane GTPases. Because a linear

DoRA maximally preserves any information during its propagation

(Andrews et al, 2018), we conclude that one of the major discernible

consequences of the closed-loop coupling of two GTPases is its abil-

ity to faithfully transmit information from the PM to the Golgi for the

latter to mount a concordant secretory response. Second, although

the first switch, that is, Arf1/mG* showed a linear response, the sub-

sequent steps (switch #2 and the step of membrane mechanics

leading to secretion) become progressively ultrasensitive. The net

result of this is that the closed-loop feedback control allows for a

tighter alignment of secretion with respect to EGF by “stretching”

out the dose–response curve across a series of switches to propagate

the signal from the extracellular space to the interior of the cell.

Because the stability behavior of a mathematically simpler version of

this closed-loop system of coupled GTPases showed that coupling

afforded a wide range of steady states (Stolerman et al, 2021), it is

tempting to speculate that the coupled system allows flexibility in

responses over a wide range of stimulus. In fact, follow-up work has

now revealed how ranges of activity of the mGTPase Arf1, reaction

kinetics, the negative feedback loop (mGAP), and the cascade length

affect DoRA (Qiao et al, 2023).

When it comes to the field of protein secretion, the cell’s secre-

tory pathway was originally believed to be a constitutive function

that is regulated by “housekeeping” genes/proteins that maintain

the integrity of the local (membrane or lumenal) environment

(Arvan et al, 2002). The earliest evidence that secretion is regulated

by exogenous GFs emerged in 2008 when the phosphoinositide

phosphatase SAC1 was implicated as a “brake” in anterograde Golgi

secretion that is released by GFs (Blagoveshchenskaya et al, 2008).

Despite these insights, what remained unknown was how the secre-

tory system (or any intracellular organelle/system) responds propor-

tionately to external cues. The functional consequences of an

endomembrane coupled GTPase system we dissected here fill that

knowledge gap. We show that coupling of m/tGTPases with CLC

within cells is critical to set up feedback controls in yet another

scale, that is, cell secretion and cell fate (i.e., survival vs. death).

Finally, when it comes to the field of cancer cell biology, it is

well-accepted that self-sufficiency in growth signaling is a hallmark

of all cancer cells (Hanahan & Weinberg, 2000); we show here how

cells achieve such self-sufficiency for the prototypical GF system,

that is, EGF/EGFR. Existing theories linking genetic circuits to cellu-

lar autonomy, although quantifiable and tunable (Youk &

Lim, 2014; Maire & Youk, 2015; Doğaner et al, 2016; Kamino

et al, 2017; Tang et al, 2021), do not apply to multicellular eukary-

otes. In dissecting the behavior of the coupled GTPase system, and

revealing the consequences of its disruption, both in silico and in

two different cancer cells, we fill that knowledge gap. Second, intra-

tumoral cellular heterogeneity is known to give rise to an ecosystem

of clonal interactions (Basanta & Anderson, 2013; Tabassum &

Polyak, 2015) that can drive tumor growth, therapeutic resistance,

and progression (Merlo et al, 2006; Basanta & Anderson, 2017;

Maley et al, 2017; Li & Thirumalai, 2019). Therefore, it is possible

that a few autonomous secretor clones with an intact secrete-and-

sense loop could be sufficient to support the survival of neighboring

non-secretor clones. If so, uncoupling the GTPases and disrupting

the secrete-and-sense autonomy could serve as an impactful thera-

peutic strategy. Finally, the evolutionary significance of our findings

is noteworthy. For example, the linker between the GTPases, that is,

GIV, evolved later in multicellular organisms such as worms (Nechi-

purenko et al, 2016) and flies (Puseenam et al, 2009; Yamaguchi

et al, 2010; Ha et al, 2015; Houssin et al, 2015). GIV’s HOOK module

(binds mGTPase) evolved in worms and flies (Puseenam et al, 2009;

Yamaguchi et al, 2010; Ha et al, 2015; Houssin et al, 2015); its GEM

domain (a short motif that binds and modulates tGTPases) evolved

later in fish (DiGiacomo et al, 2018) and remains to date. Thus, the

coupled GTPase circuit likely evolved in higher eukaryotes, and as
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suggested by our multi-organelle proteomic analyses, is geared to

support autonomy in multicellular organisms. This is consistent

with the fact that evolution appears to favor efficient signaling cir-

cuits that can accomplish many different tasks (Milo et al, 2002;

Shen-Orr et al, 2002). Because GIV is overexpressed in the most

aggressive tumor cells, it is likely that the GTPase coupled circuit is

more frequently assembled in those cells. If so, the circuit may rep-

resent an evolutionary masterpiece of multiscale feedback control to

achieve autonomy, adaptability, and flexibility. Follow-up work has

now shed light on the importance of this phenomenon in the orches-

tration of self-sustained EGFR/ErbB signaling in tumor cells (pre-

print: Sinha et al, 2022). Such autonomy in growth signaling

appears to be critical for the maintenance of high metastatic poten-

tial and epithelial–mesenchymal plasticity during the blood-borne

dissemination of human breast cancer.

Limitations of the study

The multi-timescale model we built ignores the spatial aspects of

the various feedback control loops. Because the spatial organization

of signaling motifs will influence their temporal behaviors, we antic-

ipate the need for further refinement of the current model. By

depleting GIV, we disconnect the GTPases and dismantle the entire

circuit; selective disruption of various connections within the Golgi-

localized circuit is not possible currently due to the lack the experi-

mental tools (e.g., specific point mutants of GIV, GEF, or GAPs or

perturbagens such as a small molecule or peptides). Although we

studied four different cargo proteins (VSV-G, MMP2/9, and Col-VII)

and two types of stimuli (EGF and serum), a more comprehensive

assessment of the cell’s secretome is expected to reveal how the

intracellular GTPase circuit controls the composition of the extracel-

lular space. We chose to use mathematical modeling to test the

experimentally determined key components by design, but there

may be missing components that enable other emergent properties

(such as advantages of AND vs. OR gate mechanisms in the feed-

back loops); future work is expected to build upon this framework

to fill these knowledge gaps. Conducting experiments across the full

range of stimuli to assess “proportionality/linearity” of response

was possible in some instances (e.g., cell survival) but not possible

in others (e.g., FRET, Arf1 activity, etc.) due to technical limitations

of the assays and/or detection thresholds. Finally, our mathematical

model ignores the effect of the physical location and heterogeneity

of cells. To explore such homogeneous and heterogeneous cell pop-

ulation (Gerlee & Anderson, 2008; Sottoriva et al, 2010; Poleszczuk

et al, 2015) future studies will need to include agent-based models

(Wang et al, 2007; Chao Dennis et al, 2008; Norton & Popel, 2014),

in which each cell is regarded as an individual agent that “senses”

the environment and “decides/acts” in response.

Materials and Methods

Reagents and Tools table

Reagent or Resource Source Identifier

Antibodies

Mouse monoclonal anti-Gαi-GTP Graeme Milligan (Lane et al, 2008) 26901

Rabbit anti-Arf1 Paul Randazzo (Marshansky et al, 1997) n/a

Rabbit anti-Mannosidase (Man)-II Gift from K. Moreman (Velasco et al, 1993) n/a

Anti-GFP Living Colors, Invitrogen (Thermo Scientific) Catalog # MA5-15256

Anti-RFP Invitrogen (Thermo Scientific) Catalog # MA5-15257

Anti-GIV coiled coil antibody Millipore (Sigma) ABT80

Goat anti-Rabbit IgG, Alexa Fluor 594
conjugated

Thermo Fisher Scientific A11072

Goat anti-Mouse IgG, Alexa Fluor 488
conjugated

Thermo Fisher Scientific A11017

IRDye 800CW Goat anti-Mouse IgG Secondary
(1:10,000)

LI-COR Biosciences 926-32210

IRDye 680RD Goat anti-Rabbit IgG Secondary
(1:10,000)

LI-COR Biosciences 926-68071

Biological samples

N/a

Chemicals, peptides, and recombinant proteins

DAPI (40 ,6-Diamidino-2-Phenylindole, Dilactate) Thermo Fisher Scientific D3571

MTT Millipore Sigma 475989-1GM

Puromycin Sigma P9620-10ML

Brefeldin A Sigma B6542-5MG
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Reagents and Tools table (continued)

Reagent or Resource Source Identifier

Fetal Bovine Serum PEAK SERUM PS-FB1

Paraformaldehyde 16% Electron Microscopy Biosciences 15710

Glutathione Sepharoseâ 4B Sigma–Aldrich GE17-0756-04

Protease inhibitor cocktail Roche 11 873 580 001

Tyr phosphatase inhibitor cocktail Sigma–Aldrich P5726

Ser/Thr phosphatase inhibitor cocktail Sigma–Aldrich P0044

PVDF Transfer Membrane, 0.45 mM Thermo Scientific 88518

Prolong Glass Thermo Fisher Scientific P36980

Paraformaldehyde 16% Electron Microscopy Biosciences 15710

Guava Cell Cycle Reagent Millipore Sigma 4700-0160

Commercial kits

Dead Cell Apoptosis Kit with Annexin V Alexa
Fluor™ 488 & Propidium Iodide (PI)

Thermo Fisher Scientific V13241

Experimental models: Cell lines

HeLa parental ATCC ATCC® CCL-2

HeLa GIV KO (CRISPR Cas9) Prior work (Abd El-Hafeez et al, 2023) n/a

MDA-MB-231 ATCC ATCC® HTB-26

MDA-MB-231 parental and GIV KO (CRISPR
Cas9) lines

Prior work (Abd El-Hafeez et al, 2023) n/a

HeLa shControl Prior work (Lo et al, 2015; Lopez-Sanchez et al, 2015;
Rohena et al, 2020)

n/a

HeLa shGIV Prior work (Rohena et al, 2020) n/a

Cos7 shControl Prior work (Ma et al, 2015; Rohena et al, 2020) n/a

Cos7 shGIV Prior work (Ma et al, 2015; Rohena et al, 2020) n/a

COS7 ATCC ATCC® CRL-1651™

HEK293T ATCC ATCC® CRL-1573™

Recombinant DNA

Internally tagged Gαi1-YFP Moritz Bünemann (Bunemann et al, 2003; Gibson &
Gilman, 2006; Lo et al, 2015; Midde et al, 2015)

N/A

Girdin CRISPR/Cas9 KO Plasmid (h2) Santa Cruz Biotechnology (SCBT) Inc. Sc-402236-KO-2

CFP-Gβ1 Lo et al (2015) N/A

Temperature sensitive (ts)VSVG-eGFP Lo et al (2015) N/A

MMP2-GFP Marc Coppolino (Kean et al, 2009) N/A

MMP9-GFP Marc Coppolino (Kean et al, 2009) N/A

Col VII-RFP Anderzej Fertala (Chung et al, 2009) N/A

GST GAT (GGA) Stuart Kornfeld (Dell’Angelica et al, 2000) N/A

Other: Software

ImageJ National Institute of Health https://imagej.net/Welcome

IX81 FV1000 inverted confocal laser scanning
microscope

Olympus n/a

ClueGO Cytoscape Bindea et al (2009)

NetworkX Python https://networkx.org

Gephi Gephi https://gephi.org

Prism GraphPad https://www.graphpad.com/scientific-
software/prism/

LAS-X Leica www.leica-microsystems.com/products/
microscope-software/p/leica-las-x-ls
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Reagents and Tools table (continued)

Reagent or Resource Source Identifier

Illustrator Adobe https://www.adobe.com/products/illustrator.
html

MATLAB MathWorks https://www.mathworks.com/

ImageStudio Lite LI-COR https://www.licor.com/bio/image-studio-lite/

Methods and Protocols

Modeling approaches
Model assumptions

We restrict our modeling considerations to the secretory pathway

on Golgi and its interactions with cell survival. The secretory path-

way on Golgi consists of mGTPases, tGTPases, their GEFs and

GAPs, and the secretion machinery. In the secretory pathway on

Golgi, EGF mediates the recruitment of GEF for mGTPase (mGEF)

and triggers the activation of corresponding mGTPases. Then active

mGTPase can recruit GIV to vesicles. GIV is GEF for tGTPase

(tGEF), and subsequently activates tGTPase. Upon activation of

tGTPase, Gβγ is released and activates the GAP for mGTPase

(mGAP). Besides, mGAP is also regulated by GIV, which binds to

mGAP and works as a co-factor for GAP activity. mGAP has a dual

role in this circuit: one is to turn “OFF” mGTPase, and the other is

to promote the vesicle formation. The vesicle formation is essential

for secretion, and the secreted GFs leads to cell proliferation. The

increase in cell number in turn enhances the secretion.

To model the above circuit, we assume that

• The total number of each type of GTPases is constant.

• The copy number of GAP for tGTPase (tGAP) is constant since it is

not regulated by other species.

• The species are present in large enough quantities that determi-

nistic approaches can be used to capture the dynamics of the

system.

• The process of secretion can be modeled using a simplified func-

tion that depends on mGAP.

Therefore, the circuit is modeled by a set of ODEs with six spe-

cies: active mGTPase, active tGTPase, mGEF, mGAP, tGEF, and the

secreted GFs. Besides, the cell’s survival number is also modeled by

an ODE. We note that our model does not include the spatial or

mechanical aspects associated with these signaling pathways.

Governing equations

Our model consists of two parts: one experimentally constrained

module for coupled switches on the Golgi and the other module to

predict the influence of coupled switches on the secrete-and-sense

autonomy (Fig 1B). In the module for coupled switches, we

modeled all the species interactions by normalized-Hill functions

(Saucerman & McCulloch, 2004; Cao et al, 2020) to capture the

overall input–output relationships. We did not consider all the inter-

mediary steps in the signaling pathway for the sake of simplicity.

When active tGTPase and tGEF both regulate mGAP, the “AND”

logic is applied and modeled as f act tGTPasesð Þ � f act tGEFð Þ. Thus, the
dynamics of the system can be described by the following

equations:

d mGEF½ �
dt

τmGEF ¼ f
1ð Þ
act stimulusð Þ þ kmGEF

� �
Ymax
mGEF� mGEF½ � (1)

d mGAP½ �
dt

τmGAP ¼ f
2ð Þ
act tGEF½ �ð Þf 3ð Þ

act tG�½ �ð Þ þ kmGAP

� �
Ymax
mGAP� mGAP½ �

(2)

d mG�½ �
dt

τmG� ¼ f
4ð Þ
act mGEF½ �ð Þ þ kmG�

� �
1� mG�½ �ð Þ�f

5ð Þ
act mGAP½ �ð Þ mG�½ �

(3)

d tGEF½ �
dt

τtGEF ¼ f
6ð Þ
act mG�½ �ð Þ þ ktGEF

� �
Ymax
tGEF� tGEF½ � (4)

d tG�½ �
dt

τtG� ¼ f
7ð Þ
act tGEF½ �ð Þ þ ktG�

� �
1� tG�½ �ð Þ�f

8ð Þ
act tGAP½ �ð Þ tG�½ � (5)

where variables mGEF½ �, mGAP½ �, mG�½ �, tGEF½ �, and tG�½ � denote

the fractional activation of mGEF, mGAP, mGTPase, tGEF, and

tGTPase, respectively. Here, the fractional activation is the copy

number divided by the maximal copy number, which changes

between 0 and 1. The variable stimulus denotes the input signal

EGF; the τ’s are time scale; k’s are basal production rates, and

Ymax
i ; i ¼ mGEF;mGAP; tGEF are maximal fractional activations for

species. The function f
ið Þ
act i ¼ 1; 2;⋯; 9ð Þ is the normalized-Hill

function, which takes the following form:

f act Xð Þ ¼
BXn

Kn þ Xn ; if 0 ≤ X< 1

1; if X ≥ 1

(
(6)

where B ¼ ECn
50�1

2ECn
50�1 and K ¼ B�1ð Þ1=n. Here, EC50 and n are half-

maximal activation and Hill coefficient, respectively. With these

choices of constants B and K, we have f act 0ð Þ ¼ 0, f act EC50ð Þ ¼ 0:5.

It should be noted that constants B and K can be different in differ-

ent functions f
ið Þ
act. In most cases, we used k ¼ 0 and Ymax ≤ 1, so

the maximal value of variables 1þ kð ÞYmax is smaller than 1 to

ensure the range of the fractional activation. But, when we used a

non-zero k, the variable may be larger than 1, and then we regard

the variable as the relative activation, which is normalized by a

number smaller than the maximal copy number. We refer to this

model as the coupled system throughout our study.

To predict the effect of coupled switches on the secrete-

and-sense autonomy, we also built a model for secretion (denoted

by S) and cell number (denoted by X). Since the activation-

deactivation circle of mGTPase is necessary for the secretion, we

assume the secretion rate is positively correlated to f
9ð Þ
act mGAP½ �ð Þ. In

addition, the proliferation of cells is regulated by secreted GFs to

ensure homeostasis (Hart et al, 2014; Adler et al, 2018). Then, the

dynamics of S and X are governed by:
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dS

dt
¼ βS f

9ð Þ
act mGAP½ �ð Þ þ kS

� �
�αS

S

Sþ K2

� �
X�γS (7)

dX

dt
¼ λ

S

Sþ K1
1�X

K

� �
�μ

� �
X (8)

where βS is the maximal secretion rate; kS is the basal secretion

rate; αS is the maximal endocytosis rate; γ is the degradation rate

of secreted GFs; K2 is the binding affinity of secreted GFs. In equa-

tion (8), λ and μ are cell proliferation and death rates by the cells,

respectively; K1 is the value of S when the Hill function S
SþK1

is 0.5;

K is the carrying capacity, that is, once the cell number is K, the

cell proliferation rate is zero, preventing the cell number from

exceeding K.

Single switch model
For the circuit that only contains the single switch of mGTPases, its

dynamics is described by equations (1–3), except that equation (2)

is replaced by

d mGAP½ �
dt

τmGAP ¼ kmGAPYmGAP� mGAP½ � (9)

Note that this equation also can be used to describe the dynamics

of mGAP when the regulation from tGEF to mGAP or the regulation

from active tGTPase to mGAP does not exist.

Numerical simulations for the deterministic model

Numerical simulations were implemented in MATLAB. We use the

solver ode15s to simulate the dynamics on the time interval

[0, 1,440] min unless otherwise specified.

Fitting against experimental data

To fit the time course data for control cells and GIV-depleted cells,

we manually tuned the parameters in our model until the normalized

RMSE between simulated and measured fold changes of active Arf1

was less than 0.2 and that for active tGTPase less than 0.45. More-

over, parameters for secretion and cell survival are taken from their

biologically plausible ranges (Adler et al, 2018). Our fitting goal was

to capture the experimentally observed trends rather than obtain

kinetic parameters since our model does not include all the reactions

in the pathway(s). Here, the normalized RMSE is the RMSE over the

mean value of all experimental data; the baseline for the simulation

result is the initial fractional activation when simulating dynamics

for control cells, and those for experimental Arf1 and tGTPase data

are initial states in control cells. The obtained parameter values are

listed in Table EV1. In all simulations, the initial condition is the

starved state when stimulus ¼ 0, and then stimulus is set to be 0.23

to simulate the dynamics under the EGF-stimulated condition. In all

simulations, we use normalized values of EGF concentrations. The

normalization was conducted such that the value of 0.23 EGF used

in simulations corresponds to 50 nM in the experiments. The dimen-

sionless EGF concentrations in the simulations are obtained by divid-

ing the EGF concentration by 217.4 nM (=50 nM/0.23).

Testing model

We verify that our setting in the model for GIV-deplete cells indeed

makes the system behave like the uncoupled system. We set the

maximal fractional activation of tGEF as 0.1 (i.e., YtGEF ¼ 0:1) but

keep other parameters unchanged to model the system in GIV-

depleted cells. The initial state is determined by the steady-state

values of all species when the stimulus is zero, which are obtained

as follows: we set stimulus zero and chose an arbitrary initial condi-

tion (e.g., all species are 0.5), and then simulated the deterministic

dynamics on the time interval [0, 2,400 h] to ensure that the steady

state is reached. ! Then we changed the stimulus to 0.23 to simu-

late the dynamics of all species when EGF = 50 nM. We find that

GIV-depleted cells are more likely behave as the uncoupled system

(Appendix Fig S3A). For these two systems, mGEF and mG* both

increase upon the stimulus of EGF, and mGAP will not increase

because of low activation of tGEF in GIV-depleted cells or the

absence of the positive regulation from tGEF and tG* in the

uncoupled system. Due to the non-increasing level of mGAP, these

two systems both show non-decreasing fractional activation of

mG*, low secretion, and low cell number. The only difference

between these two systems is the dynamics of tGTPase switch: tGEF

is low in GIV-depleted cells and thus cannot activate tG*, while in

the uncoupled system the fractional activations of tGEF and tG* are

both high. The schematics of these three systems are shown in

Appendix Fig S3B–D.

Sensitivity analysis

To test the robustness of the model, we performed sensitivity ana-

lyses. The sensitivity measures how the system output is vulnerable

to the parameter change and can be captured by the following

quantity:

Sensitivity ¼ dln Xð Þ
dln αð Þ

where the X is the system’s output and α is the kinetic parameter.

In our analyses, we calculated this sensitivity for each kinetic

parameter, that is, the α can be every kinetic parameter. The out-

put X is the normalized RMSE value for simulated mG* or tG*

dynamics, or steady-state values of the secretion or the cell num-

ber. This derivative is approximated by the ratio of the difference

of ln Xð Þ when α is 1:1� α and 0:9� α to the 0:2� α. We found

that, perturbations of the half-maximal activation EC50 will cause

large changes in the normalized RMSEs and the steady-state value

of the secretion for coupled switches (Appendix Fig S4). Except

EC50, the mG* and tG* dynamics seem robust to other kinetic

parameters, since the sensitivities for other kinetic parameters are

between −0.5 and 0.5. Besides, the steady state of the secretion in

coupled switches is sensitive to the maximal secretion rate αS and

the maximal endocytosis rate βS. These not very large sensitivities

indicate that the main conclusions hold under small perturbations.

The stochastic model

To investigate the impact of noise, we consider three different

sources of noise: stimulus, species, and connections. A noisy stimu-

lus is modeled by the summation of the mean and a noise term

ηsti tð Þ; another type of noise, originated from species, is generated

by adding a noise term ηspe tð Þ in the equation for each species, and

tGAP is also perturbed by a noise term ηtGAPspe tð Þ; the third type of

noise, which comes from connections, is modeled by adding a noise

term ηlink tð Þ to each activation function f act and nonlinear reaction

rates in equations for the secretion and the cell number. Here, these
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noise terms are independent of each other, and all modeled by the

following Ornstein–Uhlenbeck process:

τnoisej dηj ¼ �ηjdt þ σjdW
j
t (10)

where j ¼ sti; spe; link, and Wj
t’s are independently and identically

distributed standard Wiener processes. This equation implies that

ηj tð Þ has zero mean and variance
σ2j

2τnoise
j

. The equations for active

tGEF, the secretory protein, and the cell number in the presence of

noise are taken as an example: when noise exists only in species,

the dynamics of active tGEF, the secretory protein, and the cell

number are described by

d tGEF½ �
dt

τmGEF ¼ f
6ð Þ
act mG�½ �ð Þ þ ktGEF

� �
YtGEF� tGEF½ � þ ηtGEFspe (11)

dS

dt
¼ βS f

9ð Þ
act mGAP½ �ð Þ þ kS

� �
�αS

S

Sþ K2

� �
X�γSþ ηSspe (12)

dX

dt
¼ λ

S

Sþ K1
1�X

K

� �
�μ

� �
X þ ηXspe (13)

while the corresponding dynamics when noise are present in con-

nections are governed by

d tGEF½ �
dt

τmGEF ¼ f
6ð Þ
act mG�½ �ð Þ þ ηtGEFlink þ ktGEF

� �
YtGEF� tGEF½ � (14)

dS

dt
¼ βS f

9ð Þ
act mGAP½ �ð Þ þ kS

� �
þ ηS;1link�αS

S

Sþ K2
þ ηS;2link

� �
X�γS

(15)

dX

dt
¼ λ

S

Sþ K1
1�X

K

� �
þ ηXlink�μ

� �
X (16)

where ηlink’s with different superscripts are independent noise

terms.

Numerical simulations for the stochastic model

Numerical simulations were implemented in MATLAB. We used the

Milstein scheme (Kloeden & Platen, 1992) to numerically solve the

noise term ηj (j ¼ sti; spe; link), and used the Euler scheme to solve

the dynamics of molecules on the time interval [0, 1,440 min]. To

be specific, the noise term ηj at nþ 1 time step is determined in the

following manner (τnoisej ¼ 1):

ηnþ1
j ¼ ηnj �ηnj dt þ σjδWn þ 1

2
σ2j δWnð Þ2�dt
h i

where dt is the time step and δWn obeys the normal distribution

with mean zero and variance dt. Then, the activation of mole-

cules or the cell number is solved by the Euler scheme. For

example, when noise is only in stimulus, the mGEF at nþ 1

time step, denoted as mGEF½ �nþ1, is obtained by the following

equation:

½mGEF�nþ1 ¼ ½mGEF�n þ dt
1

τmGEF
f
1ð Þ
act stimulusþ ηnþ1

sti

� ���

þ kmGEF

�
YmGEF�½mGEF�n

�
;

the schemes to solve equations (12) and (15) are

Snþ1 ¼ Sn þ dt βS f
9ð Þ
act ½mGAP�nð Þ þ kS

� �
�αS

Sn

Sn þ K2

� �
X�γSn

0
@

þ ηSspe

� �nþ1

1
A;

and

Snþ1 ¼ Sn þ dt βS f
9ð Þ
act ½mGAP�nð Þ þ kS

� �
þ ηS;1link

� �nþ1
�0

@

� αS
Sn

Sn þ K2
þ ηS;2link

� �nþ1
�
X�γSn

1
A;

respectively.

We compare coupled switches with the single switch of mGTPase

for three different cases of noise: noise in the stimulus, noise in the

stimulus and species simultaneously, and noise in the stimulus and

connections simultaneously. The values of noise amplitudes used

for simulations are listed as follows:

• When noise is only in the stimulus, the parameter σsti for ηsti tð Þ is
0.02, and τnoisesti is 1.

• When noise is in the stimulus and species simultaneously, para-

meters σsti and τnoisesti for ηsti tð Þ are the same as those when noise is

only in the stimulus. In addition, for the noise term ηspe tð Þ,
τnoisespe ¼ 1, and σspe is 0.02 for all species except the secretion and

cell number. Since the secretion and cell number have small reac-

tion rates, σSspe and σXspe are set to be 2� 10�5 and 2� 10�6 respec-

tively, and thus the noisy behaviors cannot overwhelm the

deterministic behaviors.

• When noise is in the stimulus and connections simultaneously,

parameters σsti and τnoisesti for ηsti tð Þ are still the same as those when

noise is only in the stimulus. Moreover, τnoiselink ¼ 1, and

σnoiselink ¼ 0:02 for all species except the cell number. The σXlink is

0.002 to ensure the same order of the noise and the production

rate of cell number.

In this study, for a given input signal, we performed 1,000

repeated simulations on the time interval [0, 1,440 min] (with the

steady state under this signal as the initial state). The time step dt is

set to be 0.01.

Computational and bioinformatics approaches
Identification of a Golgi-localized Arf1 and GIV interactome

We have previously extracted an annotated subcellular localization

network of high-confidence GIV correlators (Ear et al, 2021), based

on Human Cell Map (HCM; Go et al, 2021). From the same HCM

data set, a set of high-confidence Arf1 correlators were also

extracted. Using the combined set of proteins that were correlated

with GIV and Arf1, a full correlation network between every protein

was extracted. Annotated unique GIV interactors from BioGRID

(Oughtred et al, 2021) were also incorporated to expand the GIV–
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Arf1 interaction network. To assign subcellular localization of the

GIV interactors from BioGRID (Oughtred et al, 2021), they were first

matched to subcellular localization as annotated by HCM. For those

proteins that were not assigned by HCM, they were then matched to

Gene Ontology (GO) Cellular Component terms, Uniprot (The

UniProt, 2019), and Human Protein Atlas (Uhl�en et al, 2015), which

were all used as a guide to manually assign them based on their bio-

logical function. The complete list of this “Golgi-localized Arf1-GIV

interactome” is provided as Dataset EV1.

Protein–protein interaction network construction, in silico

perturbation, and topological analyses

The list of proteins (Dataset EV1) was used as “seed” to generate the

Golgi-specific Arf1-GIV network by fetching other connecting interac-

tions and proteins from STRING database (Franceschini et al, 2013).

The shortest path NetworkX algorithm (Sinha et al, 2021) was used to

trace the connected proteins and interactions between every possible

pair of proteins from the above-mentioned list. The highest possible

interaction cutoff score was used to avoid false positive interactions.

To understand the impact of GIV deletion, a similar network was pre-

pared, except without GIV. The shortest path alteration fraction (Sinha

et al, 2021) associated with Arf1 was calculated using differential

shortest path analysis of the original and GIV-depleted PPI network.

Here only the paths having shortest path alteration fraction 1 were

considered which indicated only the deleted or newly added shortest

paths due to GIV deletion. GO Biological Process (BP) analysis of the

proteins identified using shortest path alteration fraction analysis was

performed using the Cytoscape tool ClueGO (Bindea et al, 2009) and

significant GO BP terms were visualized.

TMT proteomics analysis, network construction, and

multi-layer visualization

Proteins that are upregulated in WT were mapped using the STRING

database (https://string-db.org/). A pathway enrichment analysis of

the most highly connected nodes was performed using the Reactome

database (https://reactome.org/). The compartmentalized distribution

of proteins within the PPI network based on their organelle-specific

location was mapped using the Cell Atlas Uniform Manifold Approxi-

mation and Projection (UMAP) explorer that was generated using the

large collection of confocal microscopy images showing the subcellular

localization patterns of human proteins, curated and made available at

Human protein atlas (https://www.proteinatlas.org/). Multilayer visu-

alization of an organelle-based interaction network was constructed

using MultiViz plugin (preprint: Jayamohan Pillai et al, 2022) of Gephi

platform. All the source codes for network analysis are available at

https://github.com/sinha7290/PPIN. MultiViz plugin source code is

available at https://github.com/JSiv/gephi-plugins.

Experimental model and subject details
Cell lines and culture methods

HeLa, Cos7, and MDA-MB-231 cells were grown at 37°C in their

suitable media, according to their supplier instructions, supple-

mented with 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomy-

cin, 1% L-glutamine, and 5% CO2.

GIV CRISPR/Cas9 gene editing and validation

Pooled guide RNA plasmids (commercially obtained from Santa

Cruz Biotechnology; Cat# sc-402236-KO-2) were used to generate

both HeLa and MDA MB-231 GIV KO lines as described before (Ear

et al, 2021). Briefly, these CRISPR/Cas9 KO plasmids consist of GFP

and Girdin-specific 20 nt guide RNA sequences derived from the

GeCKO (v2) library and target human Girdin exons 6 and 7. Plas-

mids were transfected into Hela and MDA-MB-231 cells using PEI.

Cells were sorted into individual wells using a cell sorter based on

GFP expression. To identify cell clones harboring mutations in the

gene coding sequence, genomic DNA was extracted using 50 mM

NaOH and boiling at 95°C for 60 min. After extraction, pH was neu-

tralized by the addition of 10% volume 1.0 M Tris-pH 8.0. The

crude genomic extract was then used in PCR reactions with primers

flanking the targeted site. Amplicons were analyzed for insertions/

deletions (indels) using a TBE-PAGE gel. Indel sequence was deter-

mined by cloning amplicons into a TOPO-TA cloning vector (Invi-

trogen) following manufacturer’s protocol.

Reagents and antibodies

All sources for key reagents are listed in the Resource Table above.

Unless otherwise mentioned, all chemicals were purchased from

Sigma (St Louis, MO). A mouse mAb against the active conforma-

tion of Gαi was obtained from Dr. Graeme Milligan (University of

Glasgow, UK). Rabbit anti-Arf1 IgG was prepared as described

(Marshansky et al, 1997). Rabbit polyclonal anti-α-mannosidase II

(Man II) serum was prepared as described (Velasco et al, 1993).

Highly cross-absorbed Alexa Fluor 594 or 488 F(ab)’2 fragments of

goat anti-mouse or anti-rabbit IgG (H + L) for immunofluorescence

were purchased from Invitrogen (Carlsbad, CA). Goat anti-rabbit

and anti-mouse Alexa Fluor 680 or IRDye 800 F(ab)’2 for immuno-

blotting, were obtained from LI-COR Biosciences.

Cell culture, transfection, ligand stimulation, and lysis

HeLa and MDA MB-231 (American Type Culture Collection, Manassas,

VA) were maintained in DMEM (Invitrogen) supplemented with 10%

FBS (Hyclone, Logan, UT), 100 U/ml penicillin, 100 μg/ml streptomy-

cin, 1% L-glutamine, and 5% CO2. Control and GIV shRNA HeLa and

Cos7 stable cell lines were selected with 2 μg/ml of Puromycin (GIBCO)

using a plasmid expressing an shRNA targeting its 30 UTR (Ghosh

et al, 2016a). Depletion of GIV was verified using a GIV-CT antibody

with an efficiency of ~95% and cells were extensively validated in prior

studies (Lo et al, 2015; Ma et al, 2015; Rohena et al, 2020). Transfection

of cells with fluorescent plasmids (FRET studies) was carried out using

transit-LT1 (Mirus Bio, Madison, WI) following the manufacturer’s pro-

tocol. Cells were checked for mycoplasma contamination and authenti-

cated by STR profiling periodically.

For ligand stimulation of cells, serum starvation was carried out

overnight (~16–18 h) by replacing media with 0.2% FBS-containing

media in the case of HeLa prior to exposing them to the ligands.

Lysates used as a source of proteins in pulldown assays were pre-

pared by resuspending cells in Tx-100 lysis buffer [20 mM HEPES,

pH 7.2, 5 mM Mg-acetate, 125 mM K-acetate, 0.4% Triton X-100,

1 mM DTT, supplemented with sodium orthovanadate (500 mM),

phosphatase (Sigma) and protease (Roche) inhibitor cocktails], after

which they were passed through a 28G needle at 4°C, and cleared

(10,000 × g for 10 min) before use in subsequent experiments.

Arf1 activation assays

Purification of GST-GAT protein and assessment of Arf1 activation

was described previously. In brief, cells were lysed with 1% Triton
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X-100, 50 mM Tris, pH 7.5, 100 mM NaCl, 2 mM MgCl2, 0.1% SDS,

0.5% sodium deoxycholate, and 10% glycerol with protease inhibi-

tors. Equal amounts of lysates were incubated with GST-GGA3

(~40 μg) prebound glutathione-Sepharose 4B beads at 4°C for 1 h.

Beads were washed, and the bound proteins were eluted by boiling

in Laemmli sample buffer for 5 min, resolved on a 15% SDS–PAGE,
and analyzed by immunoblotting.

Quantitative immunoblotting

For immunoblotting, protein samples were boiled in Laemmli sam-

ple buffer, separated by SDS–PAGE and transferred onto 0.45 mM

PVDF membrane (Millipore) prior to blotting. The duration of trans-

fer was 30 min, at 100 V. Post transfer, membranes were blocked

using 5% non-fat milk or 5% BSA dissolved in PBS. Primary anti-

bodies were prepared in a blocking buffer containing 0.1% Tween-

20 and incubated with blots, rocking overnight at 4°C. After incuba-
tion, blots were incubated with secondary antibodies for 1 h at

room temperature, washed, and imaged using a dual-color Li-Cor

Odyssey imaging system.

Immunofluorescence and confocal microscopy

For immunofluorescence, cells grown on coverslips were fixed in

3% paraformaldehyde (PFA) and processed as described previously

(Ghosh et al, 2010). Antibody dilutions were as follows: Man II,

1:800; anti-Gαi�GTP, 1:25; goat anti-mouse or anti-rabbit Alexa 488

or Alexa 594, 1:500. DAPI was used at 1:10,000. To estimate the

degree of colocalization (Mander’s overlap coefficient; MOC) in

immunofluorescence assays, an ImageJ plugin, JACoP (https://

imagej.nih.gov/ij/plugins/track/jacop2.html) was used. This was

preferred over Pearson’s because it is a good indicator of the propor-

tion of the green signal (active G protein) coincident with a signal in

the red channel (Man II, indicative of Golgi membranes) over its

total intensity, which may even apply if the intensities in both chan-

nels are really different from one another. Coverslips were mounted

using Prolong Gold (Invitrogen) and imaged using a Leica SPE

CTR4000 confocal microscope.

Image processing

All images were processed on ImageJ software (NIH) and assembled

into figure panels using Photoshop and Illustrator (Adobe Creative

Cloud). All graphs were generated using GraphPad Prism.

FRET studies

Intramolecular FRET was detected by sensitized emission using the

three-cube method performed as previously reported by Midde

et al (2015). Briefly, previously validated internally tagged Gαi1-YFP
and CFP-Gβ1 FRET probe pairs were used (Bunemann et al, 2003;

Gibson & Gilman, 2006). Cells were transfected with the probes,

serum-starved overnight, and then stimulated with EGF (50 nM)

exactly as done previously (Midde et al, 2015; Kalogriopoulos

et al, 2020). All fluorescence microscopy assays were performed on

single cells in a mesoscopic regime to avoid inhomogeneities from

samples as shown previously by Midde et al (Borejdo et al, 2012;

Midde et al, 2015). Briefly, cells were sparsely split into sterile

35 mm MatTek glass bottom dishes and transfected with 1 μg of

indicated constructs. To optimize the signal-to-noise ratio in FRET

imaging, various expression levels of the transfected FRET probes

were tested. However, to minimize complexities arising from

molecular crowding, FRET probes were overexpressed by ∼1.5- to
2-fold compared with the endogenous proteins. Because the stoichi-

ometry of FRET probes has a significant impact on FRET efficiency,

cells that expressed equimolar amounts of donor and acceptor

probes (as determined by computing the intensity of the fluores-

cence signal by a photon-counting histogram) were chosen selec-

tively for FRET analyses. An Olympus IX81 FV1000 inverted

confocal laser scanning microscope was used for live cell FRET

imaging (UCSD-Neuroscience core facility). The microscope is stabi-

lized on a vibration-proof platform, caged in temperature controlled

(37°C) and CO2 (5%) supplemented chamber. A PlanApo

60× 1.40 N.A. oil immersed objective designed to minimize chro-

matic aberration and enhance resolution for 405–605 nm imaging

was used. Olympus Fluoview inbuilt software was used for data

acquisition. A 515 nm Argon-ion laser was used to excite EYFP and

a 405 nm laser diode was used to excite ECFP as detailed by Claire

Brown’s group (Broussard et al, 2013). Spectral bleed-through coef-

ficients were determined through FRET-imaging of donor-only and

acceptor-only samples (i.e., cells expressing a single donor or accep-

tor FP). Enhanced CFP emission was collected from 425–500 nm

and EYFP emission was collected through 535–600 nm and passed

through a 50 nm confocal pinhole before being sent to a photomulti-

plier tube to reject out-of-plane focused light. Every field of view

(FOV) is imaged sequentially through ECFPex/ECFPem, ECFPex/

EYFPem, and EYFPex/EYFPem (3 excitation and emission combina-

tions) and saved as a donor, FRET, and acceptor image files through

an inbuilt wizard. To obtain the FRET images and efficiency of

energy transfer values a RiFRET plugin in Image J software was

used (Roszik et al, 2009). Prior to FRET calculations, all images

were first corrected for uneven illumination, registered, and back-

ground subtracted. For FRET quantification, regions of interest

(ROI) were drawn in the juxtanuclear area presumably in the Golgi

region (or at the cell periphery, presumed to be the plasma mem-

brane regions) to compute energy transfer. Individual cells with

fluorescence intensity in the mesoscopic regime detected in the

donor and acceptor channels were selected for FRET analysis to

avoid inhomogeneities between samples (Midde et al, 2013, 2014).

Manual and automatic registration of each individual channel in

ImageJ was critical to correct motion artifacts associated with live

cell imaging. Controls were performed in which images were

obtained in different orders. The order in which images were

obtained had no effect. FRET images were obtained by pixel-by-

pixel ratiometric intensity method and the efficiency of transfer was

calculated by the ratio of intensity in the transfer channel to the

quenched (corrected) intensity in the donor channel. The following

corrections were applied to all FOVs imaged: for crosstalk correc-

tion, cells transfected with CFP or YFP alone were imaged under all

three previously mentioned excitation and emission combinations.

FRET efficiency was quantified from 3–4 Regions of Interests (ROI)

per cell drawn exclusively along the P.M. Because expression of

FRET probes may have a significant impact on FRET efficiency, cells

that expressed similar amounts of probes, as determined by comput-

ing the fluorescence signal/intensity by a photon counting histo-

gram were selectively chosen for FRET analyses. Furthermore,

untransfected cells and a field of view without cells were imaged to

correct for background, autofluorescence, and light scattering. To

avoid artifacts of photobleaching, Oxyfluor (www.oxyrase.com)

was used to minimize the formation of reactive oxygen species.
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GFP-tsO45-VSVG transport assays

To monitor anterograde (ER to Golgi) trafficking control or GIV-

depleted COS7 cells were transiently transfected with GFP-tsO45-

VSV-G plasmid (Presley et al, 1997). Transfected cells were

incubated for 14–16 h at the restrictive temperature (40°C) to accu-

mulate VSV-G protein in the ER, shifted to 32°C for 0–60 min to

release VSV-G protein in the conditions described (i.e., 10% serum,

EGF, or starved condition) and then fixed and processed under

non-permeabilized conditions (without detergent) for immunofluo-

rescence. The rate of VSV-G trafficking from the secretory compart-

ments to the PM was determined by calculating the ratio of VSV-G

that was already at the PM (as determined using an anti-VSV-G ecto-

domain antibody; red pixels) normalized to the total cellular pool of

VSV-G (GFP; green pixels, using NIH ImageJ software).

Metalloprotease and collagen secretion assays

HeLa cells grown in a 6-well plate were transfected with 2 μg of

GFP-MMP2, GFP-MMP9, or Collagen-RFP for 5 h. After 5 h, cells

were fed with fresh media without FBS. Media was subsequently

changed the next day (without FBS; exactly 1.5 ml/well) and stimu-

lated with EGF. Media (100 μl) was collected just before the addition

of EGF, as T = 0 h, and at the indicated time points after EGF stim-

ulation. Each aliquot was subjected to high-speed (14,000 × g) spin

for 10 min prior to the addition of 50 μl of Laemmli sample buffer

and boiling at 100°C.

MTT assay

Cell proliferation was measured using the MTT reagent and cells

cultured in 96-well plates. Parental or GIV-KO HeLaor MDA-MB-231

cells were cultured in different concentrations of FBS (0, 0.25, 2, 5,

and 10%). Then the cell lines were incubated with MTT for 4 h at

37°C. After incubation, culture media was removed and 150 μl of
DMSO was added to solubilize the MTT formazan crystals. Optical

density was determined at 590 nm using a TECAN plate reader. At

least three independent experiments were performed. In an indepen-

dent experiment, we tested the effect of using a Brefeldin A (BFA), a

well-known tool to inhibit secretion, on cell proliferation. The cell

lines were cultured in different concentrations of FBS (0, 0.25, 2, 5,

or 10%) and then treated with different concentrations of BFA (0,

0.01, 0.05, 0.1, 0.5, 1, 10, or 100 μM) and the MTT assays were

done as described.

Cell cycle and apoptosis analyses

Cell cycle analysis and apoptotic cell quantification were performed

using the Guava cell cycle reagent (Millipore Sigma) or the annexin

V/propidium iodide (PI) staining kit (Thermo Fisher Scientific),

respectively, according to the manufacturer’s instructions. Cells

were quantified on a BD™ (BD Biosciences) LSR II flow cytometer

and analyzed using FlowJo software (FlowJo, Ashland, OR, USA).

Tandem Mass Tag™ (TMT) proteomics

WT and GIV-KO MDA-MB231 cells were maintained in 0 and 10%

serum concentration in p10 dishes (Corning) for 16 h prior to har-

vest, and cell pellets were subsequently processed for TMT proteo-

mics using LUMOS Orbitrap-Fusion analyzer. Samples were

processed at the UC San Diego Biomolecular and Proteomics Mass

Spectrometry Core Facility (https://bpmsf.ucsd.edu/). Peptides are

identified and mapped using Peaks X Pro pipeline. The intensity

ratio of each identified protein in WT MDA-MB231 vs. GIV-KO

MDA-MB231 cells has been identified and selected if the significance

score > 20. A list of differentially expressed proteins is provided in

Dataset EV2. The mass spectrometry proteomics data have been

deposited to the ProteomeXchange Consortium via the PRIDE part-

ner repository (Perez-Riverol et al, 2022) with the dataset identifier

PXD037253.

Quantification and statistical analysis
Statistical analyses in modeling approaches

In the deterministic model, we fitted the dose–response curve by

finding the best-fit function with the form a xn

xnþK þ d. We solved this

optimal problem using “lsqcurvefit” in Matlab, and d can be deleted

depending on the effect of the fitting. The only exception is for the

mG vs. mGEF, where we used linear function axþ d. The difference

between the fitted curve and the original curve is measured by R2,

and it is defined as 1�∑i yi�f ið Þn
∑i yi�yð Þn , where yi is the point in the original

curve and f i is the prediction for yi based on the best-fit curve. In

the stochastic model, the standard deviation is calculated based on

the data at 1,440 min, which is defined as the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 xi�xð Þ2
N�1

s
;

where N ¼ 1; 000 and x ¼ ∑N
i¼1xi
N . The xi is the molecular activation

or the cell number at 1,440 min in the i-th simulation.

Statistical analyses in protein–protein network analyses

An interaction cutoff score has been optimized while fetching the

new proteins and their interactions from the STRING database, such

that all the possible proteins will be included keeping the cutoff very

high. In this instance, an interaction cutoff score of 667 has been

used to include all the proteins from the seed list (Dataset EV1).

Statistical analyses in experimental studies and replication

All experiments were repeated at least three times (biological repli-

cates, conducted on different days), and results were presented either

as one representative experiment or as average � SEM. Statistical sig-

nificance was assessed with two-sided unpaired Student t-test and

Mann–Whitney t-test. For all tests, a P-value of 0.05 was used as the

cutoff to determine significance. The actual P-values are indicated in

each figure. All statistical analysis was performed using GraphPad

Prism 8 or Matlab. Experiments undertaken did not require blinding;

nor did they require sample size calculation or randomization.

Materials availability
This study did not generate new unique reagent.

Data availability

• Modeling computer scripts: GitHub (https://github.com/

RangamaniLabUCSD/Coupled-switches-secretion).

• Protein–protein network analyses: Github (https://github.com/

RangamaniLabUCSD/Coupled-switches-secretion).

• TMT proteomics datasets: PXD037253 (http://www.proteom

exchange.org).
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Expanded View Figures

▸Figure EV1. An endomembrane network motif of two species of GTPases regulates membrane trafficking through the secretory pathway and regulates Golgi
functions.

A Dynamics within the endomembrane GTPase system. Left to right panels display the deconstructed arrows denoting key molecular events/chemical reaction
cascades within this system, in which, the GIV-GEM links the monomeric (m) and trimeric (t) GTPase systems and enables the conversion of extracellular stimulus
(ligand; left) into membrane trafficking events (e.g., vesicle uncoating/budding/fusion; right). The forward and feedback reactions (arrows) are numbered 1–3. See
Movie EV1 for a gif of the circuit.

B Schematic summarizing the findings reported by Lo et al (2015) delineating how arrows 1–3 within the endomembrane GTPase system regulate the finiteness of
Arf1 signaling for efficient secretion.
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▸Figure EV2. GEV-GEM is required for Gi activation at the Golgi and for maintaining the finiteness of Arf1 signaling upon EGF stimulation.

A FRET-based studies were carried out in sh Control cells as in Fig 3B and C. Briefly, HeLa cells were co-transfected with Gαi1-YFP, Gβ1-CFP and Gγ2 (untagged), and
live cells were analyzed by FRET imaging at steady state, after being serum starved in 0.2% FBS overnight and then after stimulation with 50 nM EGF. Representa-
tive freeze-frame FRET images are shown. FRET image panels display intensities of acceptor emission due to efficient energy transfer in each pixel. The FRET scale is
shown in the inset. Golgi and PM regions of interest are indicated with arrows. Scale bar = 10 μm.

B Bar graphs display the change in FRET at t5 min at the Golgi and the PM regions of 3–5 cells, from four independent biological replicates. Scale bar = 7.5 μm. Results
are displayed as mean � SEM. Statistical significance was determined by student t-test and the P-values are depicted as: **P < 0.01; ****P < 0.0001.

C Schematic showing how a conformation-specific anti-Gαi�GTP antibody detects GTP-bound active Gαi in situ.
D HeLa cells starved with 0.2% FBS overnight or stimulated subsequently with 50 nM EGF or 250 μM LPA were fixed and stained for active Gαi (green; anti-Gαi:GTP

mAb) and Man II (red) and analyzed by confocal microscopy. Activation of Gαi was detected exclusively after LPA/EGF stimulation. When detected, active Gαi coloca-
lizes with Man II (yellow pixels in merge panel). Negative control (secondary antibody) staining was carried out on cells stimulated with EGF, 15 min. Scale
bar = 10 μm.

E Control (sh Control) and GIV-depleted (shGIV) HeLa cells that were stimulated with EGF for the indicated time points prior to lysis were assessed for Arf1 activity.
Immunoblots are shown in Fig 3I. Bar graphs display the fold change in Arf1 activity normalized to t0 min that was observed in control (shControl) and GIV-depleted
(shGIV) cells. Results are expressed as mean � SEM; n = 3 biological replicates; P-values were determined using Mann–Whitney t-test compared to t0: *P < 0.05;
**P < 0.01; ***P < 0.001. Immunoblots are representative of findings from at least three independent repeats.

F Line graph in red displays a model-derived simulation of Arf1 activation dynamics (mG*) in cells without tGEF (shGIV). As a reference, the results of model-derived
simulation fit to experimental data in control cells are displayed in blue, and the experimental data for Arf1 activation dynamics are shown as mean � SEM (n = 3
biological replicates).
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Figure EV3. Simulations of Arf1 activation dynamics (mG*) and Gi activation dynamics (tG*) when using OR logic.

A Comparisons of equations for mGAP when using different logics. The AND and OR logic are modeled by f 2ð Þ
act tGEF½ �ð Þf 3ð Þ

act tG�½ �ð Þ and f 2ð Þ
act tGEF½ �ð Þ þ f 3ð Þ

act tG�½ �ð Þ,
respectively. The constants 0.24 and 0.0017 ensure that the steady-state values of all species when using OR logic are the same as those for AND logic. The differ-
ences between the two models are underlined in red in the equations.

B, C Simulations of Arf1 (B) and Gi (C) activation dynamics for OR logic. The OR logic also captures the experimental data reasonably well but the AND logic is better
informed experimentally. The experimental data are the same as those in Fig 3J and K.
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Figure EV4. Coupled switches enable the alignment of endomembrane responses (Arf1 and tG* activities) to the dose of an extracellular stimulus.

A Published dynamics of EGF-stimulated events that are initiated at the PM (blue, continuous) or experimentally determined dynamics of events at the Golgi con-
firmed here (red, interrupted) are compared. The interrupted line at 5 min provides a reference frame for the observed peak Arf1 activity upon EGF stimulation.

B, C Dose responses of fractional activations of mGEF and active Arf1 (mG*) for the single switch (B; mG alone) and coupled switches (C; mG and tG). We perform
stochastic simulations in the presence of noise in EGF (see Materials and Methods for details). The mean and the standard deviation (SD) of species are evaluated
at steady states. The dimensionless EGF concentrations in the simulations are obtained through normalization, that is, dividing the EGF concentration by
217.4 nM (=50 nM/0.23). In all simulations, noise is introduced only in stimulus (i.e., EGF).

D, E The same plots as in Fig 4A and B but in the presence of three different types of noise: noise in stimulus (shown in red), noise in stimulus and connections
simultaneously (shown in green), and noise in stimulus and species simultaneously (shown in blue; see Materials and Methods for details). Data are shown as
mean values (dashed curves), with the shading showing the SD. The black curves are fitting curves (r2 > 0.95) for red dashed curves (see Materials and Methods
for the calculations of r2 and nHill).

F, G The fractional activations of tGTPase (tG*) as a function of EGF (F) or tGEF (G). The plots are generated in a similar way as in (F, G). tGEF denotes the mean of
tGEF. r2 > 0.95 for all fitting curves. The EGF-tG* relationship shows a Hill coefficient of 1.73, and the tGEF→tG* switch (switch #2) shows a dose–response behav-
ior close to the saturation regime of an ultrasensitive curve (nHill = 3.82).
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▸Figure EV5. GIV-GEM is required for EGF-triggered secretion of diverse cargo proteins through the Golgi compartment.

A Schematic shows the basis for measuring secretion of transmembrane cargo protein, ts-VSVG-eGFP. This temperature-sensitive mutant VSVG is retained in the ER
at 40°C, at the Golgi at 20°C, and moves out of the Golgi to the PM when shifted to 32°C (Gallione & Rose, 1985). When visualized with immunofluorescence
under non-permeabilized conditions, a VSVG-ectodomain targeting antibody selectively detects PM-localized cargo, whereas a GFP tag allows the visualization of
total VSVG in the cell.

B, C Control (sh Control; top) and GIV-depleted (shGIV; bottom) Cos7 cells were transfected with tsO45-VSVG-GFP and cells were shifted to 40°C for O/N and then
incubated at 20°C for 1 h in HEPES buffered serum-free media followed by temperature shift at 32°C for 15 min in plain DMEM and or containing 50 nM EGF or
10% serum. Coverslips were fixed and stained with VSVG-ectodomain-specific monoclonal antibody (red). Representative images are shown in (B). Scale
bar = 10 μm. Green fluorescence indicates total VSVG expression whereas red fluorescence shows the surface-localized pool of VSVG. Bar graphs in (C) display the
Red:Green intensity ratio indicative of the fraction VSVG that is secreted to the cell surface. Results are expressed as mean � SEM; n = 3 biological replicates; P-
values were determined using Mann–Whitney t-test compared to t0: *P < 0.05.

D–H Control (sh Control) and GIV-depleted (shGIV) HeLa cells were analyzed for EGF-stimulated secretion of three soluble cargo proteins, MMP2 (D, E), MMP9 (D, F),
and Collagen-Vii RFP (G, H), as detected from the supernatants at indicated time points after EGF stimulation. Results are expressed as mean � SEM; n = 3 repli-
cates; P-values were determined using Mann–Whitney t-test compared to t0: **P < 0.01; ***P < 0.001. Immunoblots are representative of findings from at least
three independent repeats.
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Appendix Figure S1. A comparative analysis of the Golgi-localized Arf1 (mG) connectome with/without coupling 
to GIV (tGEF) and Gi (tGTPase).  
A. Workflow for extracting the proteins that bind Arf1 and GIV and are localized at the Golgi. The complete list of these 
proteins is provided as Dataset EV1.  
B. Gene Ontology (GO) analysis of a Golgi-specific GIV and Arf1 interaction network, as visualized using ClueGO.  
Groups/clusters were collapsed and only those nodes are displayed that have the highest logP value. As anticipated, the 
list of proteins in such a Golgi-restricted interactome was enriched for cellular processes that are normally dependent on 
the secretory pathway, e.g., intracellular transport, post-Golgi vesicle transport, etc., and that require the secretory pathway, 
e.g., cell junctions, cell polarity, and growth factor signaling (see also Appendix Figure S2A). 
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Appendix Figure S2. Protein-Protein Interaction (PPI) network analysis to predict the functions of Golgi-localized 
coupled GTPases.  
A. Gene Ontology biological processes (BP) analysis of a Golgi-specific GIV and Arf1 interaction network. See also Dataset 
EV1 for the complete list of proteins.   
B. Workflow schematic for PPI network analysis. See also Figure 4C.    
C. A PPI network created using Golgi specific interactions of Arf1 and GIV fetched from HCM using Golgi specific proteins. 
Here the diameter of each node corresponds to its degree of connectivity within this PPI network. The interactions of GIV 
that allow it to serve as a linker between Arf1 (mGTPase) and GNAI3 (tGTPase) are highlighted. 
D. Consequences of GIV(CCDC88A) deletion on the shortest paths alterations associated with Arf1. The end proteins of 
the most affected shortest paths have been highlighted in red. 
E. Table displays a selected list of end proteins associated with altered shorted paths of Arf1 due to GIV deletion. The 
proteins are selected based on their frequency of appearance as end proteins in these shortest paths, using a Z score of 
the frequency >=1 as cut-off.  
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Appendix Figure S3. Simulations of secretion and cell number models for control cells (with a fully coupled 
GTPase system), in GIV-depleted cell (arrows 1-3) and cells with an uncoupled GTPase system (missing feedback 
control arrows 2 and 3).  
A. Model-derived simulation of dynamics for control cells, GIV-depleted cells and the uncoupled system when EGF=50nM. 

Schematics in B-D display these three conditions. The initial condition is the steady state in serum-starved condition except 

that the cell number is set to be the carrying capacity 𝑲. The equations (1)-(7) and (9) with parameters in Table EV1 are 

used, and the 𝒔𝒕𝒊𝒎𝒖𝒍𝒖𝒔 changes to 0.23 at time zero.  
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Appendix Figure S4. Sensitivity analysis.  
A-B. Sensitivities for the normalized RMSE of simulated mG* (A) or tG* (B) dynamics. The normalized RMSE is 

calculated in the same way as in Figure 2C or Figure 3G.  

C-D. Sensitivities for the steady-state values for the secretion and the cell number in coupled switches (C) or the single 

switch (D). The steady state values are calculated with 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 = 0.23 to mimic the case when EGF=50 nM. 	
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Appendix Figure S5. GIV-GEM is required for cell survival.  
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A-C. Bar graphs display the % early (A) or late (B) apoptotic control (parental) and GIV-depleted (GIV KO) HeLa cells 

after 24 h growth in varying concentration of serum, as assessed by annexin V staining and flow cytometry. The dot plot 

diagrams are shown in C.  

D-H. Bar graphs display the % early (D), late (E) or total (early + late; F) apoptotic and necrotic (G) control (parental) and 

GIV-depleted (GIV KO) MDA MB-231 cells after 24 h growth in varying concentration of serum, as assessed by annexin V 

staining and flow cytometry. The dot plot diagrams are shown in H. Results are expressed as mean ± S.E.M; n = 3. p 

values were determined by unpaired t-test. 
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