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Appendix Figure S1. A comparative analysis of the Golgi-localized Arf1 (mG) connectome with/without coupling
to GIV (tGEF) and Gi (tGTPase).

A. Workflow for extracting the proteins that bind Arf1 and GIV and are localized at the Golgi. The complete list of these
proteins is provided as Dataset EV1.

B. Gene Ontology (GO) analysis of a Golgi-specific GIV and Arf1 interaction network, as visualized using ClueGO.
Groups/clusters were collapsed and only those nodes are displayed that have the highest logP value. As anticipated, the
list of proteins in such a Golgi-restricted interactome was enriched for cellular processes that are normally dependent on
the secretory pathway, e.g., intracellular transport, post-Golgi vesicle transport, etc., and that require the secretory pathway,
e.g., cell junctions, cell polarity, and growth factor signaling (see also Appendix Figure S2A).
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Appendix Figure S2. Protein-Protein Interaction (PPI) network analysis to predict the functions of Golgi-localized
coupled GTPases.

A. Gene Ontology biological processes (BP) analysis of a Golgi-specific GIV and Arf1 interaction network. See also Dataset
EV1 for the complete list of proteins.

B. Workflow schematic for PPI network analysis. See also Figure 4C.

C. A PPI network created using Golgi specific interactions of Arf1 and GIV fetched from HCM using Golgi specific proteins.
Here the diameter of each node corresponds to its degree of connectivity within this PPl network. The interactions of GIV
that allow it to serve as a linker between Arf1 (mGTPase) and GNAI3 (tGTPase) are highlighted.

D. Consequences of GIV(CCDCB88A) deletion on the shortest paths alterations associated with Arf1. The end proteins of
the most affected shortest paths have been highlighted in red.

E. Table displays a selected list of end proteins associated with altered shorted paths of Arf1 due to GIV deletion. The
proteins are selected based on their frequency of appearance as end proteins in these shortest paths, using a Z score of
the frequency >=1 as cut-off.
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Appendix Figure S3. Simulations of secretion and cell number models for control cells (with a fully coupled
GTPase system), in GIV-depleted cell (arrows 1-3) and cells with an uncoupled GTPase system (missing feedback
control arrows 2 and 3).

A. Model-derived simulation of dynamics for control cells, GIV-depleted cells and the uncoupled system when EGF=50nM.
Schematics in B-D display these three conditions. The initial condition is the steady state in serum-starved condition except
that the cell number is set to be the carrying capacity K. The equations (1)-(7) and (9) with parameters in Table EV1 are

used, and the stimulus changes to 0.23 at time zero.
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Appendix Figure S4. Sensitivity analysis.

A-B. Sensitivities for the normalized RMSE of simulated mG* (A) or tG* (B) dynamics. The normalized RMSE is
calculated in the same way as in Figure 2C or Figure 3G.

C-D. Sensitivities for the steady-state values for the secretion and the cell number in coupled switches (C) or the single

switch (D). The steady state values are calculated with stimulus = 0.23 to mimic the case when EGF=50 nM.
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Appendix Figure S5. GIV-GEM is required for cell survival.




A-C. Bar graphs display the % early (A) or late (B) apoptotic control (parental) and GIV-depleted (GIV KO) HeLa cells
after 24 h growth in varying concentration of serum, as assessed by annexin V staining and flow cytometry. The dot plot
diagrams are shown in C.

D-H. Bar graphs display the % early (D), late (E) or total (early + late; F) apoptotic and necrotic (G) control (parental) and
GIV-depleted (GIV KO) MDA MB-231 cells after 24 h growth in varying concentration of serum, as assessed by annexin V
staining and flow cytometry. The dot plot diagrams are shown in H. Results are expressed as mean £+ S EM; n=3. p

values were determined by unpaired t-test.



