Transformer performance for chemical reactions: analysis of different predictive and evaluation scenarios

Fernando Jaume-Santero^{‡1,2}, Alban Bornet^{‡1,2}, Alain Valery³, Nona Naderi^{2,4}, David Vicente Alvarez^{1,2}, Dimitrios Proios¹, Anthony Yazdani¹, Colin Bournez³, Thomas Fessard³, Douglas Teodoro^{*1,2,4}

¹ Department of Radiology and Medical Informatics, University of Geneva, 1205 Geneva, Switzerland

² Geneva School of Business Administration, HES-SO University of Applied Sciences and Arts of Western Switzerland, 1227 Geneva, Switzerland

³ SpiroChem AG, 4058 Basel, Switzerland

- ⁴ Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- * Equal contribution
- * Corresponding author douglas.teodoro@unige.ch

S-1 - SUPPLEMENTARY INFORMATION FOR FIGURE 2 - TOP-K ACCURACY (K>=1) - USPTO-MIT

Figure S1. Top-1 accuracy for different data augmentation levels, using the USPTO-MIT testing dataset (same as Figure 2).

Figure S2. Top-3 accuracy for different data augmentation levels, using the USPTO-MIT testing dataset.

Figure S3. Top-5 accuracy for different data augmentation levels, using the USPTO-MIT testing dataset.

Figure S4. Top-10 accuracy for different data augmentation levels, using the USPTO-MIT testing dataset.

S-2 – SUPPLEMENTARY INFORMATION FOR FIGURE 2 – TOP-K ACCURACY (K>=1) – USPTO-50K

Figure S5. Top-1 accuracy for different data augmentation levels, using the USPTO-50k dataset.

Figure S6. Top-3 accuracy for different data augmentation levels, using the USPTO-50k dataset.

Figure S8. Top-10 accuracy for different data augmentation levels, using the USPTO-50k dataset.

S-3 - SUPPLEMENTARY INFORMATION FOR FIGURE 3 - USPTO-MIT AND USPTO-50K

Figure S9. Same as Figure 3. Top-1 and round-trip accuracy for the reactant prediction task, using the USPTO-MIT testing dataset, for different levels of data augmentation. Top. Top-1 accuracy. "Strict" requires an exact match between the model prediction and the target. "Lenient" requires that at least one molecule predicted by the model matches a target molecule. Bottom. Round-trip accuracy. The diagram shows how round-trip accuracy was computed. When reagents were part of the datasets, the true reagents were added to the predicted reactants before being fed to the product prediction model. P - true product, $[R_c] -$ true reactant(s), $[R_g] -$ true reagent(s), $\hat{P} -$ predicted product, $[\hat{R}_c] -$ predicted reactant(s).

Figure S10. Top-1 and round-trip accuracy for the reactant prediction task, using the USPTO-50k testing dataset, for different levels of data augmentation. Top. Top-1 accuracy. "Strict" requires an exact match between the model prediction and the target. "Lenient" requires that at least one molecule predicted by the model matches a target molecule. Bottom. Round-trip accuracy. The diagram shows how round-trip accuracy was computed. When reagents were part of the datasets, the true reagents were added to the predicted reactants before they were fed to the product prediction model. *P* – true product, $[\hat{R}_c]$ – true reactant(s), $[R_g]$ – true reagent(s), \hat{P} – predicted product, $[\hat{R}_c]$ – predicted reactant(s). Note: lower performance is observed when the model was trained with reagent information, since no reagent information is included in the reactions of the USPTO-50k dataset. Still, the model reaches around 80% roundtrip accuracy.

S-4 - SUPPLEMENTARY INFORMATION FOR FIGURE 4 - DIFFERENT DATA AUGMENTATION LEVELS

	12 -	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
eaction	11 -	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	10 -	0.03	0.05	0.07	0.07	0.07	0.07	0.07	0.08	0.09	0.09
er re	9-	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05
ts p	8 -	0.03	0.05	0.05	0.06	0.06	0.06	0.07	0.07	0.07	0.07
gen	7 -	0.09	0.11	0.11	0.12	0.12	0.13	0.13	0.13	0.14	0.14
rea	6 -	0.07	0.10	0.11	0.11	0.12	0.12	0.13	0.13	0.13	0.14
true	5 -	0.08	0.11	0.13	0.15	0.15	0.16	0.17	0.17	0.18	0.18
L of	4 -	0.11	0.16	0.18	0.21	0.22	0.24	0.25	0.26	0.27	0.27
nbei	3 -	0.12	0.17	0.20	0.22	0.24	0.25	0.26	0.27	0.28	0.28
Nun	2 -	0.19	0.25	0.30	0.33	0.35	0.37	0.38	0.39	0.40	0.41
	1-	0.27	0.36	0.43	0.47	0.50	0.53	0.54	0.56	0.58	0.59
		i	2	3	4	5	6	7	8	9	10
					Т	op-ka	ccurac	v			

Figure S11. Top-k accuracy for reagent prediction, binning reactions of the USPTO-MIT testing dataset by the number of target reagents, after training the model with 2-fold data augmentation.

Figure S12. Top-k accuracy for reagent prediction, binning reactions of the USPTO-MIT testing dataset by the number of target reagents, after training the model with 5-fold data augmentation.

	12 -	0.00	0.02	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
er reaction	11 -	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	10 -	0.02	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.04
	9 -	0.03	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06
ts p	8 -	0.01	0.02	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.05
gen	7 -	0.08	0.10	0.11	0.11	0.12	0.12	0.13	0.13	0.13	0.13
rea	6 -	0.06	0.08	0.09	0.10	0.10	0.11	0.11	0.11	0.12	0.12
true	5 -	0.07	0.09	0.11	0.12	0.13	0.13	0.14	0.15	0.15	0.16
L of	4 -	0.09	0.14	0.17	0.19	0.21	0.23	0.24	0.25	0.26	0.26
nbei	3 -	0.11	0.16	0.19	0.21	0.23	0.24	0.25	0.26	0.26	0.27
Nun	2 -	0.19	0.25	0.29	0.32	0.33	0.35	0.36	0.38	0.39	0.39
	1 -	0.24	0.34	0.41	0.45	0.48	0.51	0.53	0.54	0.55	0.56
		i	2	3	4	5	6	7	8	9	10
	Top-k accuracy										

Figure S13. Top-k accuracy for reagent prediction, binning reactions of the USPTO-MIT testing dataset by the number of target reagents, after training the model with 10-fold data augmentation.

	12 -	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
ion	11 -	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
eact	10 -	0.02	0.05	0.08	0.09	0.09	0.10	0.10	0.10	0.10	0.10
er re	9 -	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04
ts p	8 -	0.01	0.01	0.01	0.02	0.02	0.03	0.03	0.03	0.03	0.03
igen	7 -	0.07	0.09	0.10	0.10	0.11	0.11	0.11	0.11	0.11	0.12
rea	6 -	0.05	0.06	0.06	0.07	0.08	0.08	0.09	0.09	0.10	0.10
true	5 -	0.06	0.08	0.10	0.11	0.12	0.13	0.13	0.14	0.14	0.15
r of	4 -	0.07	0.12	0.14	0.17	0.18	0.20	0.21	0.22	0.23	0.24
nbe	3 -	0.09	0.14	0.16	0.18	0.20	0.21	0.22	0.23	0.23	0.24
Nur	2 -	0.17	0.23	0.27	0.29	0.31	0.33	0.34	0.35	0.36	0.37
	1 -	0.21	0.32	0.39	0.43	0.47	0.49	0.52	0.53	0.54	0.55
		i	2	3	4 T	ōp-ka	6 ccurac	7 У	8	9	10

Figure S14. Top-k accuracy for reagent prediction, binning reactions of the USPTO-MIT testing dataset by the number of target reagents, after training the model with 20-fold data augmentation.

Figure S15. Same as Figure 5. Top. Precision, recall, and F1 scores at rank 1 for reagent predictions from the USPTO-MIT test dataset grouped by the number of target reagents.

Figure S16. Precision, recall, and F1 scores at rank 3 for reagent predictions from the USPTO-MIT test dataset grouped by the number of target reagents.

Figure S17. Top. Precision, recall, and F1 scores at rank 5 for reagent predictions from the USPTO-MIT test dataset grouped by the number of target reagents.

Figure S18. Top. Precision, recall, and F1 scores at rank 3 for reagent predictions from the USPTO-MIT test dataset grouped by the number of target reagents.

S-6 – SUPPLEMENTARY INFORMATION FOR TABLE 1 – TOP-K ACCURACY (K=1, 3) – USPTO-MIT

Table S1. Same as Table 1. Top-1 accuracy using different molecule formats, tokenization schemes and embeddings strategies. Models evaluated with USPTO-MIT testing data.

Product prediction (with reagents)

	Atom-level	Atom-level		BPE		
	FS	РТ	FS	РТ		
SMILES	0.879	0.865	0.854	0.512		
SELFIES	0.768	0.721	0.654	0.313		

Product prediction (without reagents)

	Atom-level		BPE		
	FS	PT	FS	PT	
SMILES	0.837	0.827	0.807	0.589	
SELFIES	0.745	0.695	0.623	0.379	

Reactant prediction (with reagents)

	Atom-level		BPE		
	FS	PT	FS	РТ	
SMILES	0.678	0.643	0.660	0.421	
SELFIES	0.610	0.545	0.540	0.301	

Reactant prediction (without reagent)

	Atom-level		BPE		
	FS	РТ	FS	PT	
SMILES	0.525	0.504	0.514	0.401	
SELFIES	0.472	0.449	0.427	0.311	

Reagent prediction

	Atom-level		BPE		
	FS	PT	FS	PT	
SMILES	0.196	0.135	0.183	0.211	
SELFIES	0.187	0.122	0.174	0.196	

FS – input embeddings trained from scratch, PT – pre-trained input embeddings.

Table S2. Top-3 accuracy using different molecule formats, tokenization schemes and embeddings strategies. Models evaluated using USPTO-MIT testing datasets.

Product prediction (with reagents)

	Atom-level		BPE	
	FS	РТ	FS	РТ
SMILES	0.928	0.918	0.907	0.620
SELFIES	0.861	0.825	0.756	0.405

Product prediction (without reagents)

	Atom-level		BPE		
	FS	РТ	FS	PT	
SMILES	0.913	0.902	0.885	0.700	
SELFIES	0.848	0.814	0.733	0.484	

Reactant prediction (with reagents)

	Atom-level		BPE		
	FS	PT	FS	PT	
SMILES	0.806	0.775	0.774	0.530	
SELFIES	0.739	0.675	0.655	0.395	

Reactant prediction (without reagent)

	Atom-level		BPE		
	FS	PT	FS	PT	
SMILES	0.696	0.679	0.663	0.535	
SELFIES	0.631	0.607	0.561	0.424	

Reagent prediction

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.303	0.212	0.274	0.314
SELFIES	0.289	0.199	0.261	0.298

S-7 - SUPPLEMENTARY INFORMATION FOR TABLE 1 - TOP-K ACCURACY (K=5, 10) - USPTO-MIT

Table S3. Top-5 accuracy using different molecule formats, tokenization schemes and embeddings strategies. Models evaluated using USPTO-MIT testing datasets.

Product prediction (with reagents)

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.938	0.929	0.920	0.654
SELFIES	0.885	0.851	0.789	0.439

Product prediction (without reagents)

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.926	0.915	0.902	0.734
SELFIES	0.873	0.844	0.769	0.521

Reactant prediction (with reagents)

	Atom-level		BPE	
	FS	РТ	FS	РТ
SMILES	0.836	0.807	0.802	0.568
SELFIES	0.772	0.711	0.689	0.427

Reactant prediction (without reagent)

	Atom-level		BPE	
	FS	РТ	FS	PT
SMILES	0.741	0.729	0.708	0.579
SELFIES	0.680	0.654	0.604	0.462

Reagent prediction

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.350	0.248	0.314	0.357
SELFIES	0.334	0.234	0.300	0.341

FS – input embeddings trained from scratch, PT – pre-trained input embeddings.

Table S4. Top-10 accuracy using different molecule formats, tokenization schemes and embeddings strategies. Models evaluated using USPTO-MIT testing datasets.

Product prediction (with reagents)

	Atom-level		BPE	
	FS	РТ	FS	РТ
SMILES	0.945	0.938	0.931	0.688
SELFIES	0.901	0.874	0.824	0.474

Product prediction (without reagents)

Atom-level		BPE		
	FS	РТ	FS	PT
SMILES	0.935	0.925	0.917	0.765
SELFIES	0.892	0.868	0.805	0.578

Reactant prediction (with reagents)

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.854	0.829	0.828	0.601
SELFIES	0.800	0.740	0.722	0.457

Reactant prediction (without reagent)

	Atom-level		BPE	
	FS	PT	FS	РТ
SMILES	0.774	0.763	0.750	0.621
SELFIES	0.717	0.692	0.645	0.496

Reagent prediction

	Atom-level		BPE	
	FS	РТ	FS	PT
SMILES	0.403	0.291	0.369	0.416
SELFIES	0.386	0.281	0.355	0.398

S-8 - SUPPLEMENTARY INFORMATION FOR TABLE 1 - TOP-K ACCURACY (K=1, 3) - USPTO-50K

Table S5. Top-1 accuracy using different molecule formats, tokenization schemes and embeddings strategies. Models evaluated using USPTO-50k. Note: The lower performance when the model was trained without reagent is explained by the absence of reagents in USPTO-50k.

Product prediction (with reagents)

	Atom-level		BPE	
	FS	PT	FS	РТ
SMILES	0.807	0.790	0.733	0.374
SELFIES	0.693	0.654	0.548	0.235

Product prediction (without reagents)

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.860	0.851	0.835	0.631
SELFIES	0.774	0.728	0.682	0.482

Reactant prediction (with reagents)

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.362	0.349	0.360	0.207
SELFIES	0.332	0.294	0.305	0.156

Reactant prediction (without reagent)

	Atom-level		BPE	
	FS	РТ	FS	РТ
SMILES	0.573	0.549	0.592	0.484
SELFIES	0.508	0.489	0.525	0.401

FS – input embeddings trained from scratch, PT – pre-trained input embeddings.

Table S6. Top-3 accuracy using different molecule formats, tokenization schemes and embeddings strategies. Models evaluated using USPTO-50k. Note: The lower performance when the model was trained without reagent is explained by the absence of reagents in USPTO-50k.

Product prediction (with reagents)

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.875	0.869	0.812	0.447
SELFIES	0.802	0.770	0.641	0.306

Product prediction (without reagents)

	Atom-level		BPE	
	FS	РТ	FS	РТ
SMILES	0.912	0.904	0.889	0.700
SELFIES	0.854	0.830	0.756	0.623

Reactant prediction (with reagents)

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.510	0.482	0.472	0.285
SELFIES	0.461	0.409	0.394	0.216

Reactant prediction (without reagent)

	Atom-level		BPE	
	FS	РТ	FS	РТ
SMILES	0.745	0.731	0.709	0.594
SELFIES	0.671	0.648	0.648	0.626

S-9 - SUPPLEMENTARY INFORMATION FOR TABLE 1 - TOP-K ACCURACY (K=5, 10) - USPTO-50K

Table S7. Top-5 accuracy using different molecule formats, tokenization schemes and embeddings strategies. Models evaluated using USPTO-50k. Note: The lower performance when the model was trained without reagent is explained by the absence of reagents in USPTO-50k.

Product prediction (with reagents)

	Atom-level		BPE	
	FS	PT	FS	РТ
SMILES	0.887	0.884	0.832	0.473
SELFIES	0.831	0.803	0.673	0.331

Product prediction (without reagents)

	Atom-level		BPE	
	FS	PT	FS	РТ
SMILES	0.919	0.911	0.901	0.721
SELFIES	0.872	0.852	0.782	0.588

Reactant prediction (with reagents)

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.564	0.526	0.512	0.314
SELFIES	0.506	0.448	0.426	0.238

Reactant prediction (without reagent)

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.787	0.779	0.746	0.625
SELFIES	0.715	0.629	0.626	0.504

FS – input embeddings trained from scratch, PT – pre-trained input embeddings.

Table S8. Top-10 accuracy using different molecule formats, tokenization schemes and embeddings strategies. Models evaluated using USPTO-50k. Note: The lower performance when the model was trained without reagent is explained by the absence of reagents in USPTO-50k.

Product prediction (with reagents)

	Atom-level		BPE	
	FS	PT	FS	PT
SMILES	0.896	0.894	0.853	0.502
SELFIES	0.853	0.826	0.706	0.356

Product prediction (without reagents)

	Atom-level		BPE	
	FS	РТ	FS	РТ
SMILES	0.922	0.915	0.911	0.741
SELFIES	0.886	0.870	0.809	0.609

Reactant prediction (with reagents)

	Atom-level		BPE	
	FS	РТ	FS	PT
SMILES	0.620	0.575	0.557	0.344
SELFIES	0.557	0.493	0.460	0.260

Reactant prediction (without reagent)

	Atom-level		BPE	
	FS	РТ	FS	РТ
SMILES	0.815	0.807	0.780	0.552
SELFIES	0.750	0.727	0.685	0.558

S-10 – MOLECULES WITHOUT SELFIES ENCODING

Table S9. SMILES molecules of the USPTO-MIT dataset that could not be encoded as SELFIES. Note: these molecules occurred very rarely in the reactions.

0=I(=0)Cl
Cl[IH2](Cl)Cl
0=[IH2]clccccl
F[P-](F)(F)(F)F
0=C(0)clcccclI(=0)=0
0=C10I(=0)(0)c2cccc21
S=[Re](=S)(=S)(=S)(=S)=S
CC1(C)0[IH2](C(F)(F)F)c2cccc21
C12C3C4C5C1[Fe]23451678C2C1C6C7C28
C12C3C4C5C1[Zr]23451678C2C1C6C7C28
0=C(0I(0C(=0)C(F)(F)F)clccccl)C(F)F)
CC(=0)0I1(0C(C)=0)(0C(C)=0)0C(=0)c2cccc21
Cclccc(S(=0)(=0)N=C2CCCC[IH2]2c2ccccc2)cc1
0=C(0[IH2](0C(=0)C(F)(F)F)clcccccl)C(F)(F)F
COclcc2c(cclOC)C([PH2](clcccccl)(clcccccl)oC2=0
0=c1[nH]c2c3occc3c(F)c(F)c2n1-c1ccc([IH]S(=0)(=0)C2CC2C0Cc2cccc2)cc1F