Supplemental Information for

A Ciprofloxacin Derivative with Four Mechanisms of Action Overcomes Paclitaxel Resistance in p53-Mutant and MDR1 Gene-Expressing Type II Human Endometrial Cancer

Suhaila O. Alhaj-Suliman, Youssef W. Naguib, Emad I. Wafa, Sanjib Saha, Kareem Ebeid, Xiangbing Meng, Hamada H. Mohammed, Gamal El-Din A. Abuo-Rahma, Shujie Yang, Aliasger K. Salem*

* Correspondence to: aliasger-salem@uiowa.edu

This file includes:

Supplementary Tables

Supplementary Figures

Supplementary Tables

Table S1. Estimated IC₅₀ values (expressed as nM of either PTX or DOC) for indicated cell line following treatment with either PTX ± CIP2b or DOC ± CIP2b.

	Ishikawa-H WTp53	Hec50co LOFp53	Hec50co GOFp53	KLE GOFp53
РТХ	2.593 ± 0.134	5.137 ± 0.303	3.593 ± 0.165	5.424 ± 0.363
PTX + 1 µM CIP2b	2. 534 ± 0.137	4.148 ± 0.132	2.581 ± 0.130	5.195 ± 0.478
PTX + 10 µM CIP2b	2.250 ± 0.152	1.693 ± 0.291	1.969 ± 0.099	3.139 ± 0.338
PTX + 20 µM CIP2b	1.765 ± 0.103	1.456 ± 0.426	1.481 ± 0.383	1.439 ± 0.529
PTX + 10 μM CIP	2.790 ± 0.180	6.096 ± 0.352	3.757 ± 0.213	4.844 ± 0.438
DOC	0.319 ± 0.013	1.381 ± 0.062	0.837 ± 0.053	5.11 ± 0.451
DOC + 1 µM CIP2b	0.226 ± 0.023	0.564 ± 0.156	0.319 ± 0.172	2.673 ± 0.165
DOC + 10 µM CIP2b	0.095 ± 0.021	0.687 ± 0.100	0.176 ± 0.067	2.204 ± 0.131
DOC + 20 µM CIP2b	0.040 ± 0.048	0.628 ± 0.053	0.039 ± 0.033	1.409 ± 0.238
DOC + 10 µM CIP	0.250 ± 0.026	1.377 ± 0.043	2.008 ± 0.058	4.844 ± 0.438

Target	Centre Grid Box (Å in X, Y, Z-axis)	Size (Å in X, Y, Z-axis)
MDR1	173.33 × 166.742 × 161.482	25 × 25 × 25
Торо I	21.473 × -2.226 × 27.863	$20 \times 20 \times 20$
Topo II (1 st binding site of ETO)	31.341 × -23.166 × -57.75	25 × 25 × 25
Topo II (2 nd binding site of ETO)	23.307 × -38.584 × -59.568	25 × 25 × 25
αβ-tubulin	0.702 × -16.806 × 14.694	25 × 25 × 25

Table S2. Selected grid box parameters for protein targets (human MDR1, $\alpha\beta$ -tubulin, Topo I, and Topo II).

Targets	Target binding pocket	Lowest binding energy (kcal/mol)	Interacting residues	Residues forming H-bonds
MDR1	РТХ	-10.8	LEU65, GLN195, THR199, PHE303, TYR307, ILE340, PHE343, SER344, LEU724, GLN725, SER766, ASN842, GLN946, MET949, MET986, ALA987, GLN990	SER344
Торо I	САМ	-10.8	DG12, DA13, DC112, DA 113, DT10, ALA351, ASN 352, ARG364, TYR426, ILE427, MET428, LEU429, LYS436	DG12, DC112, ARG364, MET428
Торо II	ETO (1 st site)	-12.0	DC8, DT9, DA12, DG13, GLY462, ARG487, GLY488, ASP541, HIS759, GLY760, MET762, SER763, MET766, TYR805	DC8, DA12
Торо II	ETO (2 nd site)	-12.9	DC8, DT9, DA12, DG13, GLY462, ARG487, GLY488, ALA505, GLU506, ASP541, GLY760, MET762, SER763, HIS759, TYR805	DC8, ARG487
αβ-tubulin	РТХ	-9.6	VAL23, GLU27, LEU217, LYS218, LEU219, HIS229, ALA233, SER236, GLY237, PHE272, SER277, ARG278, ARG320, PRO360	LEU219

Table S3. Binding energies and interacting residues for protein targets (human MDR1, αβ-tubulin, Topo I, and Topo II).

Table S4. Band intensity of the Western blot analysis to evaluate the effect of PTX ± CIP2b on cell cycle regulatory proteins in Hec50co LOFp53 cells. Data are reported as relative percentages to the band intensity of the untreated cell samples.

	cdc2	Phospho-cdc2-Tyr15	Cdc25C
PTX 40 nM	87.93%	21.02%	29.98%
PTX 40 nM + 10 μM CIP2b	76.62%	2.15%	9.49%
PTX 40 nM + 25 μM CIP2b	69.39%	0.93%	5.41%
PTX 40 nM + 50 μM CIP2b	66.79%	2.28%	10.84%
CIP2b 10 μM	68.00%	57.18%	99.09%
CIP2b 25 µM	80.40%	63.51%	98.05%
CIP2b 50 μM	69.50%	48.06%	96.41%

Fig. S1. Chemical structures of (1) ciprofloxacin (CIP) and (b) its derivative (CIP2b).

Fig. S2. ¹H NMR spectrum of CIP2b.

Fig. S3. ¹H NMR spectrum of PTX.

Fig. S4. ¹H NMR spectrum of PTX + CIP2b.

Fig. S5. Electrospray ionization mass spectrometry analysis of CIP2b.

Fig. S6. *In vitro* antitumor effect of the PTX + CIP2b drug combination against different endometrial cancer cell lines. (a–d) Survival analysis of Ishikawa-H WTp53, Hec50co LOFp53, Hec50co GOFp53, and KLE GOFp53 cells, respectively, treated for 72 hours with different concentrations of PTX (1, 10, and 20 nM) and CIP2b (1, 10, and 20 μ M). A two-way ANOVA with the Tukey *post hoc* test was used for statistical analysis. Data are plotted as mean ± SD (n=3). *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, nonsignificant.

Fig. S7. *In vitro* antitumor activity of DOC \pm CIP2b combinatorial treatment against four different human endometrial cancer cell lines. (a–d) Cytotoxicity assay for indicated cell line following treatment for 72 hours with different concentrations of either DOC or CIP2b or different concentrations of DOC and fixed concentrations of CIP2b. (e–h) Cytotoxicity assay for indicated cell line following treatment for 72 hours with different concentrations of either DOC or CIP or CIP2b or different concentrations of DOC and fixed concentrations of either DOC or CIP or CIP2b or different concentrations of DOC and fixed concentrations of either CIP or CIP2b. (i–l) Estimated IC₅₀ values for indicated cell line treated with DOC \pm CIP or CIP2b. (m–p) Cytotoxic synergy between DOC and CIP2b for the indicated cell line is calculated using the CI method where CI values less than 1 indicate synergy. Data are plotted as mean \pm SD (n=3). A one-way ANOVA with Tukey *post hoc* test was used for statistical analysis. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, nonsignificant.

Fig. S8. Molecular docking of CIP2b within the binding pockets. 2D diagrams of the molecular docking interactions of CIP2b with different binding sites on human (a) MDR1 in the binding pocket of PTX; (b) Topo I in the binding pocket of CAM; (c) Topo II in the first binding pocket of ETO; (d) Topo II in the second binding pocket of ETO; and (e) αβ-tubulin in the binding pocket of PTX.

Fig. S9. Representative bright-field microscope images of (a) LLC-PK1-WT, and (b)LLC-PK1-MDR1 cells. Cells were untreated or treated for 72 hours with 5 nM PTX in the presence or absence of 50 μ M CIP2b. Rounded cells represent those undergoing apoptosis (under stress, pointed out by arrows). Images were acquired with a 10x objective lens; the total magnification is 100x. Scale bar = 400 μ m.

Fig. S10. Protein content in the lysate of Hec50co LOFp53 cells incubated with different treatments. Protein concentration was measured using Micro BCA Protein Assay Kit.

Fig. S11. *In vivo* acute toxicity study following IV administration of different doses of CIP2b. (a and b) Body weight monitoring of female and male BALB/c mice, respectively. (c and d) Organ to body weight ratio of female and male BALB/c mice, respectively. Data are plotted as mean ± SD (n=3). A two-way ANOVA with the Tukey *post hoc* test was used for statistical analysis. ns, nonsignificant.