SUPPORTING INFORMATION Post-diagnosis dietary factors, supplement use and breast cancer prognosis: Global Cancer Update Programme (CUP Global) systematic literature review and meta-analysis Nerea Becerra-Tomás, Katia Balducci, Leila Abar, Dagfinn Aune, Margarita Cariolou, Darren C. Greenwood, Georgios Markozannes, Neesha Nanu, Rita Vieira, Edward L Giovannucci, Marc J Gunter, Alan A Jackson, Ellen Kampman, Vivien Lund, Kate Allen, Nigel T Brockton, Helen Croker, Daphne Katsikioti, Deirdre McGinley-Gieser, Panagiota Mitrou, Martin Wiseman, Amanda J Cross, Elio Riboli, Steven K Clinton, Anne McTiernan, Teresa Norat, Konstantinos K Tsilidis Doris S M Chan | APPENDIX 15 | |--| | Supplementary Table S1. PRISMA checklist5 | | Supplementary Table S2A. Search terms used for PubMed7 | | Supplementary Table S2B. Search terms used for Embase10 | | Supplementary Table S3. Description of the potential influential sources of bias in cancer survival studies | | Supplementary Table S4. Grading criteria for evidence on diet, nutrition, physical activity and survival in women with breast cancer | | Supplementary Table S5. Study characteristics of the included dietary intervention trials in breast cancer survivors | | Supplementary Table S6. Main characteristics of dietary patterns of the included observational studies of dietary patterns, lifestyle scores and breast cancer prognosis | | Supplementary Table S7. Descriptive table of the included observational studies of post-diagnosis dietary patterns, lifestyle scores and breast cancer prognosis 25 | | Supplementary Table S8. Descriptive table of the included observational studies of post-diagnosis fruit and vegetable intake and breast cancer prognosis | | Supplementary Table S9. Descriptive table of the included observational studies of post-diagnosis whole grain intake and breast cancer prognosis79 | | Supplementary Table S10. Descriptive table of the included observational studies of post-diagnosis meat intake and breast cancer prognosis | | Supplementary Table S11. Descriptive table of the included observational studies of post-diagnosis fish intake and breast cancer prognosis | | Supplementary Table S12. Descriptive table of the included observational studies of post-diagnosis milk and dairy product intake and breast cancer prognosis 88 | | Supplementary Table S13. Descriptive table of the included observational studies of post-diagnosis soy and isoflavone intake and breast cancer prognosis | | Supplementary Table S14. Descriptive table of the included observational studies of post-diagnosis carbohydrate intake and breast cancer prognosis | | |--|-----| | Supplementary Table S15. Descriptive table of the included observational studies of post-diagnosis protein intake and breast cancer prognosis | | | Supplementary Table S16. Descriptive table of the included observational studies of post-diagnosis fat intake and breast cancer prognosis | | | Supplementary Table S17. Descriptive table of the included observational studies of post-diagnosis fibre intake and breast cancer prognosis | | | Supplementary Table S18. Descriptive table of the included observational studies of post-diagnosis alcohol intake and breast cancer prognosis | | | Supplementary Table S19. Descriptive table of the included observational studies of post-diagnosis multivitamin use and breast cancer prognosis | | | Supplementary Table S20. Descriptive table of the included observational studies of post-diagnosis antioxidants use and breast cancer prognosis | | | Supplementary Table S21. Descriptive table of the included observational studies of post-diagnosis any vitamin or mineral use and breast cancer prognosis | | | Supplementary Table S22. Descriptive table of the included observational studies of post-diagnosis single vitamin supplementation and breast cancer prognosis 1 | | | Supplementary Table S23. Descriptive table of the included observational studies of post-diagnosis vitamin D from diet and/or supplements and breast cancer prognosis | s | | Supplementary Table S24. Descriptive table of the included observational studies of post-diagnosis serum 25(OH)D and breast cancer prognosis | of | | Supplementary Figure S1. Forest plot of prognostic outcomes for the highest compared with the lowest level of fruit and vegetable intake after breast cancer diagnosis | :32 | | Supplementary Figure S2. Forest plot of prognostic outcomes for the highest compared with the lowest level of wholegrains intake after breast cancer diagnosis2 | | | Supplementary Figure S3. Forest plot of prognostic outcomes for the highest compared with the lowest level of meat intake after breast cancer diagnosis 2 | :34 | | Supplementary Figure S4. Forest plot of prognostic outcomes for the highest compared with the lowest level of fish intake after breast cancer diagnosis 2 | 35 | | Supplementary Figure S5. Forest plot of all-cause mortality for the highest compare with the lowest level of dairy intake after breast cancer diagnosis | | | Supplementary Figure S6. Forest plot of breast cancer mortality for the highest compared with the lowest level of dairy intake after breast cancer diagnosis 2 | :37 | | Supplementary Figure S7. Forest plot of breast cancer recurrence for the highest compared with the lowest level of dairy intake after breast cancer diagnosis 2 | :38 | | Supplementary Figure S8. Forest plot of breast cancer prognosis for the highest compared with the lowest level of carbohydrate intake after breast cancer diagnosis | s | | | 39 | | Supplementary Figure S9. Nonlinear dose-response meta-analysis of post-diagnosis carbohydrate intake and breast cancer-specific mortality | |---| | Supplementary Figure S10. Forest plot of all-cause mortality for the highest compared with the lowest level of protein intake after breast cancer diagnosis 241 | | Supplementary Figure S11. Forest plot of breast cancer mortality for the highest compared with the lowest level of protein intake after breast cancer diagnosis 242 | | Supplementary Figure S12. Forest plot of distant breast cancer recurrence for the highest compared with the lowest level of protein intake after breast cancer diagnosis | | Supplementary Figure S13. Forest plot of all-cause mortality for the highest compared with the lowest level of fat intake after breast cancer diagnosis 244 | | Supplementary Figure S14. Forest plot of breast cancer mortality for the highest compared with the lowest level of fat intake after breast cancer diagnosis 245 | | Supplementary Figure S15. Forest plot of all-cause mortality for the highest compared with the lowest level of fibre intake after breast cancer diagnosis 246 | | Supplementary Figure S16. Forest plot of breast cancer mortality for the highest compared with the lowest level of fibre intake after breast cancer diagnosis 247 | | Supplementary Figure S17. Forest plot of all-cause mortality for the highest compared to the lowest level of alcohol intake after breast cancer diagnosis 248 | | Supplementary Figure S18. Forest plot of breast cancer mortality for the highest compared to the lowest level of alcohol intake after breast cancer diagnosis 249 | | Supplementary Figure S19. Forest plot of breast cancer recurrence for the highest compared to the lowest level of alcohol intake after breast cancer diagnosis 250 | | Supplementary Figure S20. Forest plot of second cancer for the highest compared to the lowest level of alcohol intake after breast cancer diagnosis | | Supplementary Figure S21. Nonlinear dose-response meta-analyses of post-diagnosis alcohol intake and all-cause mortality | | Supplementary Figure S22. Nonlinear dose-response meta-analyses of post-diagnosis alcohol intake and breast cancer mortality | | Supplementary Figure S23. Forest plot of all-cause for the highest compared to the lowest level of vitamin D intake from diet and/or supplements after breast cancer diagnosis | | Supplementary Figure S24. Non-linear dose-response meta-analysis of post-diagnosis serum 25-hydroxyvitamin D and all-cause mortality | | Supplementary Figure S25. Meta-analysis for highest compared with the lowest level of post-diagnosis serum 25(OH)D collected before initiation treatment and all-cause mortality | | Supplementary Figure S26. Linear dose-response meta-analysis per 10 nmol/L increase of post-diagnosis serum 25(OH)D collected before initiation treatment and all-cause mortality | | Supplementary Figure S27. Meta-analysis for highest compared with of post-diagnosis serum 25(OH)D collected before initiation treatment cancer mortality | t and breast | |--|--------------| | Supplementary Figure S28. Forest plot of breast cancer recurrence for compared to the lowest level of serum 25(OH)D after breast cancer d | | | APPENDIX 2 | 260 | | Material and methods | 260 | | Outcome definition | 260 | | Risk of bias assessment | 260 | | Statistical analysis | 261 | | References | 263 | # APPENDIX 1 Supplementary Table S1. PRISMA checklist | PRISMA Checklist 2009 | | | | | | | |------------------------------------|----
---|--|--|--|--| | Section/topic | # | Checklist item | Reported on page # | | | | | TITLE | | | | | | | | Title | 1 | Identify the report as a systematic review, meta-analysis, or both. | 1 | | | | | ABSTRACT | | | | | | | | Structured
summary | 2 | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | 3 | | | | | INTRODUCTION | ı | | | | | | | Rationale | 3 | Describe the rationale for the review in the context of what is already known. | 4 | | | | | Objectives | 4 | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS). | 4 | | | | | METHODS | | | | | | | | Protocol and registration | 5 | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number. | 5 | | | | | Eligibility
criteria | 6 | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. | 5 | | | | | Information sources | 7 | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched. | 5 | | | | | Search | 8 | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated. | Supplementa ry Material | | | | | Study selection | 9 | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis). | 5 | | | | | Data collection process | 10 | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators. | 5 | | | | | Data items | 11 | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made. | 5 | | | | | Risk of bias in individual studies | 12 | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. | 5 | | | | | Summary
measures | 13 | State the principal summary measures (e.g., risk ratio, difference in means). | 5 | | | | | Synthesis of results | 14 | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis. | 5-6, and
Supplementa
ry Material | | | | From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097 For more information, visit: www.prisma-statement.org. Supplementary Table 1 PRISMA Checklist 2009 Checklist item Section/topic Reported on page # 15 Specify any assessment of risk of bias that may affect the cumulative evidence Risk of bias 6 and supplementary across studies (e.g., publication bias, selective reporting within studies). material Additional 16 Describe methods of additional analyses (e.g., sensitivity or subgroup 6 and supplementary analyses analyses, meta-regression), if done, indicating which were pre-specified. material **RESULTS** 17 Give numbers of studies screened, assessed for eligibility, and included in the 6 and Figure 1 Study selection review, with reasons for exclusions at each stage, ideally with a flow diagram. 18 For each study, present characteristics for which data were extracted (e.g., Study 6-12, and characteristics study size, PICOS, follow-up period) and provide the citations. Supplementary tables S4-S22 Risk of bias within Present data on risk of bias of each study and, if available, any outcome level SLR published online studies assessment (see item 12). Results of 20 For all outcomes considered (benefits or harms), present, for each study: (a) 6-12, and individual studies simple summary data for each intervention group (b) effect estimates and Supplementary material confidence intervals, ideally with a forest plot. Synthesis of Present results of each meta-analysis done, including confidence intervals and 6-12, and results measures of consistency. Supplementary material Risk of bias 22 Present results of any assessment of risk of bias across studies (see Item 15). across studies Additional 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup 12 analyses, meta-regression [see Item 16]). analysis DISCUSSION Summary of 24 Summarize the main findings including the strength of evidence for each main 13-15, and Table 1 evidence outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers). Limitations 25 Discuss limitations at study and outcome level (e.g., risk of bias), and at 16-17 review-level (e.g., incomplete retrieval of identified research, reporting bias). Conclusions 26 Provide a general interpretation of the results in the context of other evidence, 13-15 and implications for future research. **FUNDING Funding** 27 Describe sources of funding for the systematic review and other support (e.g., 18-19 supply of data); role of funders for the systematic review. ## Supplementary Table S2A. Search terms used for PubMed ## a. Searching for mortality, survival, recurrence, second cancer 1. Recurrence [MeSH Terms] OR "Neoplasm Recurrence, Local" [MeSH Terms] OR "Disease Progression" [MeSH Terms] OR "Disease-Free Survival" [MeSH Terms] OR Mortality [MeSH Terms] OR Mortality [Subheading] OR "Survival Analysis" [MeSH Terms] OR recurrence [tiab] OR recurrences [tiab] OR relapse [tiab] OR relapses [tiab] OR survivor [tiab] OR survivors [tiab] OR progression [tiab] OR survival [tiab] OR mortality [tiab] OR death [tiab] OR second cancer [tiab] ## b. Searching for studies on breast cancer (Search terms are those tested in the SLR for the WCRF Second Expert Report and the CUP) - 2. Breast Neoplasms [MeSH Terms] - 3. Breast AND (cancer* OR neoplasm* OR tumor* OR tumor* OR carcinoma* OR adenocarcinoma*) - 4. mammary AND (cancer* OR neoplasm* OR tumor* OR tumor* OR carcinoma* OR adenocarcinoma*) - 5. #2 OR #3 OR #4 ### c. Search for all studies relating to diet, body fatness and physical activity - 6. diet therapy[MeSH Terms] OR nutrition[MeSH Terms] - 7. diet[tiab] OR diets[tiab] OR dietetic[tiab] OR dietary[tiab] OR eating[tiab] OR intake[tiab] OR nutrient*[tiab] OR nutrition[tiab] OR vegetarian*[tiab] OR vegan*[tiab] OR "seventh day adventist"[tiab] OR macrobiotic[tiab] - 8. "food and beverages" [MeSH Terms] - 9. food*[tiab] OR cereal*[tiab] OR grain*[tiab] OR granary[tiab] OR wholegrain[tiab] OR wholewheat[tiab] OR roots[tiab] OR plantain*[tiab] OR tuber[tiab] OR tubers[tiab] OR vegetable*[tiab] OR fruit*[tiab] OR pulses[tiab] OR beans[tiab] OR lentils[tiab] OR chickpeas[tiab] OR legume*[tiab] OR soy[tiab] OR soya[tiab] OR nut[tiab] OR nuts[tiab] OR peanut*[tiab] OR groundnut*[tiab] OR (seeds[tiab] AND (diet*[tiab] OR food*[tiab])) OR meat[tiab] OR beef[tiab] OR pork[tiab] OR lamb[tiab] OR poultry[tiab] OR chicken[tiab] OR turkey[tiab] OR duck[tiab] OR (fish[tiab] AND (diet*[tiab] OR food*[tiab])) OR ((fat[tiab] OR fats[tiab] OR fatty[tiab]) AND (diet*[tiab] OR food*[tiab] OR adipose[tiab] OR blood[tiab] OR serum[tiab] OR plasma[tiab])) OR egg[tiab] OR eggs[tiab] OR bread[tiab] OR (oils[tiab] AND (diet*[tiab] OR food*[tiab] OR adipose[tiab] OR blood[tiab] OR serum[tiab] OR plasma[tiab])) OR shellfish[tiab] OR seafood[tiab] OR sugar[tiab] OR syrup[tiab] OR dairy[tiab] OR milk[tiab] OR herbs[tiab] OR spices[tiab] OR chilli[tiab] OR chillis[tiab] OR pepper*[tiab] OR condiments[tiab] OR tomato*[tiab] 10. fluid intake[tiab] OR water[tiab] OR drinks[tiab] OR drinking[tiab] OR tea[tiab] OR coffee[tiab] OR caffeine[tiab] OR juice[tiab] OR beer[tiab] OR spirits[tiab] OR liquor[tiab] OR wine[tiab] OR alcoholic[tiab] OR alcoholic[tiab] OR beverage*[tiab] OR (ethanol[tiab] AND (drink*[tiab] OR intake[tiab] OR consumption[tiab])) OR yerba mate[tiab] OR ilex paraguariensis[tiab] - 11. pesticides[MeSH Terms] OR fertilizers[MeSH Terms] OR "veterinary drugs"[MeSH Terms] - 12. pesticide*[tiab] OR herbicide*[tiab] OR DDT[tiab] OR fertiliser*[tiab] OR fertilizer*[tiab] OR organic[tiab] OR contaminants[tiab] OR contaminate*[tiab] OR veterinary drug*[tiab] OR polychlorinated dibenzofuran*[tiab] OR PCDF*[tiab] OR polychlorinated dibenzodioxin*[tiab] OR PCDD*[tiab] OR polychlorinated biphenyl*[tiab] OR PCB*[tiab] OR cadmium[tiab] OR arsenic[tiab] OR chlorinated hydrocarbon*[tiab] OR microbial contamination*[tiab] - 13. food preservation[MeSH Terms] - 14. (mycotoxin*[tiab] OR aflatoxin*[tiab] OR pickled[tiab] OR bottled[tiab] OR bottling[tiab] OR canned[tiab] OR canning[tiab] OR vacuum pack*[tiab] OR refrigerate*[tiab] OR refrigeration[tiab] OR cured[tiab] OR smoked[tiab] OR preserved[tiab] OR preservatives[tiab] OR nitrosamine[tiab] OR hydrogenation[tiab] OR fortified[tiab] OR additive*[tiab] OR colouring*[tiab] OR coloring*[tiab] OR flavouring*[tiab] OR nitrates[tiab] OR nitrites[tiab] OR solvent[tiab] OR solvents[tiab] OR ferment*[tiab] OR processed[tiab] OR antioxidant*[tiab] OR genetic
modif*[tiab] OR genetically modif*[tiab] OR vinyl chloride[tiab] OR packaging[tiab] OR labelling[tiab] OR plasma[tiab]) AND (diet*[tiab] OR food*[tiab] OR adipose[tiab] OR blood[tiab] OR serum[tiab] OR plasma[tiab]) - 15. cookery[MeSH Terms] - 16. cooking[tiab] OR cooked[tiab] OR grill[tiab] OR grilled[tiab] OR fried[tiab] OR fry[tiab] OR roast[tiab] OR bake[tiab] OR baked[tiab] OR stewing[tiab] OR stewed[tiab] OR casserol*[tiab] OR broiled[tiab] OR boiled[tiab] OR ((microwave[tiab] OR microwaved[tiab] OR re-heating[tiab] OR reheating[tiab] OR heating[tiab] OR re-heated[tiab] OR heated[tiab] OR food*[tiab]) OR poach[tiab] OR poached[tiab] OR steamed[tiab] OR barbecue*[tiab] OR chargrill*[tiab] OR heterocyclic amines[tiab] OR polycyclic aromatic hydrocarbons[tiab] - 17. ((carbohydrates[MeSH Terms] OR proteins[MeSH Terms]) AND (diet*[tiab] OR food*[tiab])) OR sweetening agents[MeSH Terms] - 18. (salt[tiab] OR salting[tiab] OR salted[tiab] OR fiber[tiab] OR fibre[tiab] OR polysaccharide*[tiab] OR starch[tiab] OR starchy[tiab] OR carbohydrate*[tiab] OR lipid*[tiab] OR linoleic acid*[tiab] OR starchy[tiab] OR sugar*[tiab] OR sweetener*[tiab] OR saccharin*[tiab] OR aspartame[tiab] OR acesulfame[tiab] OR cyclamates[tiab] OR maltose[tiab] OR mannitol[tiab] OR sorbitol[tiab] OR sucrose[tiab] OR xylitol[tiab] OR cholesterol[tiab] OR protein[tiab] OR proteins[tiab] OR hydrogenated dietary oils[tiab] OR hydrogenated lard[tiab] OR hydrogenated oils[tiab]) AND (diet*[tiab] OR food*[tiab] OR adipose[tiab] OR blood[tiab] OR serum[tiab] OR plasma[tiab]) - 19. vitamins[MeSH Terms] - 20. supplements[tiab] OR supplement[tiab] OR vitamin*[tiab] OR retinol[tiab] OR carotenoid*[tiab] OR tocopherol[tiab] OR folate*[tiab] OR folic acid[tiab] OR methionine[tiab] OR riboflavin[tiab] OR thiamine[tiab] OR niacin[tiab] OR pyridoxine[tiab] OR cobalamin[tiab] OR mineral*[tiab] OR (sodium[tiab] AND (diet*[tiab] OR food*[tiab])) OR iron[tiab] OR ((calcium[tiab] AND (diet*[tiab] OR food*[tiab] OR supplement*[tiab])) OR selenium[tiab] OR (iodine[tiab] AND (diet*[tiab] OR food*[tiab] OR supplement*[tiab] OR deficiency)) OR magnesium[tiab] OR potassium[tiab] OR zinc[tiab] OR copper[tiab] OR phosphorus[tiab] OR manganese[tiab] OR chromium[tiab] OR phytochemical[tiab] OR allium[tiab] OR isothiocyanate*[tiab] OR glucosinolate*[tiab] OR indoles[tiab] OR polyphenol*[tiab] OR phytestrogen*[tiab] OR genistein[tiab] OR saponin*[tiab] OR coumarin*[tiab] OR lycopene[tiab] - 21. physical fitness[MeSH Terms] OR physical exertion[MeSH Terms] OR physical endurance[MeSH Terms] OR walking[MeSH Terms] OR exercise[MeSH Terms] OR muscle stretching exercises[MeSH Terms] OR tai ji[MeSH Terms] OR yoga[MeSH Terms] OR sedentary lifestyle[MeSH Terms] - 22. recreational activit*[tiab] OR household activit*[tiab] OR occupational activit*[tiab] OR physical activit*[tiab] OR physical inactivit*[tiab] OR exercise[tiab] OR exercising[tiab] OR energy intake[tiab] OR energy expenditure[tiab] OR energy balance[tiab] OR energy density[tiab] OR sedentar*[tiab] OR standing[tiab] OR sitting[tiab] OR television[tiab] OR aerobic activities[tiab] OR aerobic activity[tiab] OR cardiovascular activities[tiab] OR cardiovascular activity[tiab] OR endurance activities[tiab] OR endurance activity[tiab] OR resistance training[tiab] OR strength training[tiab] OR physical conditioning[tiab] OR functional training[tiab] OR leisure-time physical activity[tiab] OR lifestyle activities[tiab] OR lifestyle activity[tiab] OR qi gong[tiab] OR tai chi[tiab] OR tai ji[tiab] OR yoga[tiab] OR free living activities[tiab] OR free living activity[tiab] OR walk[tiab] OR walk[tiab] - 23. body weight[MeSH Terms] OR anthropometry[MeSH Terms] OR body composition[MeSH Terms] OR body constitution[MeSH Terms] OR body size[MeSH Terms] OR body size[fiab] - 24. weight loss[tiab] OR weight gain[tiab] OR anthropometry[tiab] OR birth weight[tiab] OR birth-weight[tiab] OR child development[tiab] OR height[tiab] OR body composition[tiab] OR body mass index[tiab] OR BMI[tiab] OR obesity[tiab] OR obese[tiab] OR overweight[tiab] OR over-weight[tiab] OR over-weight[tiab] OR skinfold measurement*[tiab] OR skinfold thickness[tiab] OR DEXA[tiab] OR bio-impedence[tiab] OR waist circumference[tiab] OR hip circumference[tiab] OR waist hip ratio*[tiab] ### 25. #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23 OR #24 ### d. Limiting to human studies: - 26. animal [MeSH Terms] NOT human [MeSH Terms] - 27. #25 NOT #26 ## e. Combining the searches for each cancer - (a) AND (b) AND (c) AND (d) - i.e. #1 AND #5 AND #27 ## Supplementary Table S2B. Search terms used for Embase - a. Searching for mortality, survival, recurrence, second cancer. - 1 *Recurrent disease/ - 2 *Disease exacerbation/ - 3 Disease free survival/ - 4 mortality/ or all-cause mortality/ or cancer mortality/ or cardiovascular mortality/ or mortality rate/ or premature mortality/ - 5 Survival analysis/ - 6 Relapse/ - 7 Survivor/ - 8 Second cancer/ - 9 (recur\$ or local recurrence or progression or relap\$ or prognos\$ or surviv\$ or mortality or death or (second\$ adj5 primar\$)).ab,ti. - 10 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 ## b. Searching for studies on breast cancer - 11 breast tumor/ - 12 (breast and (cancer\$ or neoplasm\$ or tumour\$ or tumor\$ or carcinoma\$ or adenocarcinoma\$)).tw,kw. - (mammary and (cancer\$ or neoplasm\$ or tumour\$ or tumor\$ or carcinoma\$ or adenocarcinoma\$)).tw,kw. - 14 11 or 12 or 13 ## c. Search for all studies relating to diet, body fatness and physical activity - 15 Diet therapy/ - 16 Nutrition/ - 17 (diet or diets or dietetic\$ or dietary or eating or intake or nutrient\$ or nutrition or vegetarian\$ or vegan\$ or (seventh adj1 day adj1 adventist) or macrobiotic).ab,ti. - 18 15 or 16 or 17 - 19 Food/ - 20 (food\$ or cereal\$ or grain\$ or granary or wholegrain or wholewheat or roots or plantain\$ or tuber or tubers or vegetable\$ or fruit\$ or pulses or beans or lentils or chickpeas or legume\$ or soy or soya or nut or nuts or peanut\$ or groundnut\$ or (seeds and (diet\$ or food\$))).ab,ti. - (meat or beef or pork or lamb or poultry or chicken or turkey or duck or (fish and (diet\$ or food\$)) or ((fat or fats or fatty) and (diet\$ or food\$ or adipose or blood or serum or plasma)) or egg or eggs or bread or (oils and (diet\$ or food\$ or adipose or blood or serum or plasma)) or shellfish or seafood or sugar or syrup or dairy or milk or herbs or spices or chilli or chillis or pepper\$ or condiments or tomato\$).ab.ti. - 22 19 or 20 or 21 - 23 Beverage/ - 24 (fluid intake or water or drinks or drinking or tea or coffee or caffeine or juice or beer or spirits or liquor or wine or alcohol or alcoholic or beverage\$ or (ethanol and (drink\$ or intake or consumption)) or yerba mate or ilex or paraguariensis).ab,ti. - 25 23 or 24 - 26 *Pesticide/ - 27 *Fertilizer/ - 28 *Veterinary drug/ - 29 (pesticide\$ or herbicide\$ or DDT or fertiliser\$ or fertilizer\$ or organic or contaminents or contaminate\$ or veterinary drug\$ or polychlorinated dibenzofuran\$ or PCDF\$ or polychlorinated dibenzodioxin\$ or PCDD\$ or polychlorinated biphenyl\$ or PCB\$ or cadmium or arsenic or chlorinated hydrocarbon\$ or microbial contamination\$).ab,ti. - 30 26 or 27 or 28 or 29 - 31 Food Preservation/ - ((mycotoxin\$ or aflatoxin\$ or pickled or bottled or bottling or canned or canning or vacuum pack\$ or refrigerate\$ or refrigeration or cured or smoked or preserved or preservatives or nitrosamine or hydrogenation or fortified or additive\$ or colouring\$ or coloring\$ or flavouring\$ or flavouring\$ or nitrates or nitrites or solvent or solvents or ferment\$ or processed or antioxidant\$ or genetic modif\$ or genetically modif\$ or vinyl chloride or packaging or labelling or phthalates) and (diet\$ or food\$ or adipose or blood or serum or plasma)).ab,ti. - 33 31 or 32 - 34 Cooking/ - 35 (cooking or cooked or grill or grilled or fried or fry or roast or bake or baked or stewing or stewed or casserol\$ or broil or broiled or boiled or (microwave or microwaved or re-heating or reheating or heating or re-heated or heated and (diet\$ or food\$)) or poach or poached or steamed or barbecue\$ or chargrill\$ or heterocyclic amines or polycyclic aromatic hydrocarbons).ab,ti. - 36 34 or 35 - 37 Carbohydrate/ and ((diet\$ or food\$).ab,ti.) - 38 Protein/ and ((diet\$ or food\$).ab,ti.) - 39 Sweetening agent/ - 40 ((salt or salting or salted or fiber or fibre or polysaccharide\$ or starch or starchy or carbohydrate\$ or lipid\$ or linoleic acid\$ or sterols or stanols or sugar\$ or sweetener\$ or saccharin\$ or aspartame or accesulfame or cyclamates or maltose or mannitol or sorbitol or sucrose or xylitol or cholesterol or hydrogenated dietary oils or hydrogenated lard or hydrogenated oils or protein\$) and (diet\$ or food\$ or adipose or blood or serum or plasma)).ab,ti. - 41 37 or 38 or 39 or 40 - 42 Vitamins/ - Vitamin D/ or (supplements or supplement or vitamin\$ or retinol or carotenoid\$ or tocopherol or folate\$ or folic acid or methionine or riboflavin or thiamine or niacin or pyridoxine or cobalamin or mineral\$ or (sodium and (diet\$ or food\$)) or iron or (calcium and (diet\$ or food\$ or supplement\$)) or selenium or (iodine and (diet\$ or food\$ or supplement\$ or deficiency)) or magnesium or potassium or zinc or copper or phosphorus or manganese or chromium or phytochemical or allium or isothiocyanate\$ or glucosinolate\$ or indoles or polyphenol\$ or phytoestrogen\$ or genistein or saponin\$ or coumarin\$ or lycopene).ab,ti. - 44 42 or 43 - 45 *Fitness/ - 46 Exercise/ - 47 *Endurance/ - 48 Walking/ - 49 Stretching exercise/ - 50 Tai Chi/ - 51 Qigong/ - 52 Yoga/ - 53 Sedentary lifestyle/ - (physical fitness or physical exertion or physical endurance or muscle stretching exercise\$ or recreational activit\$ or household activit\$ or occupational activit\$ or physical activit\$ or
physical inactivit\$ or exercise\$ or exercising or energy intake or energy expenditure or energy balance or energy density or sedentar\$ or standing or sitting or television viewing or aerobic activit\$ or cardiovascular activit\$ or endurance activit\$ or resistance training or strength training or physical conditioning or functional training or leisure time physical activit\$ or lifestyle activit\$ or qigong or tai chi or tai ji or yoga or free living activit\$ or walk or walking).ab,ti. - 55 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 - 56 Body weight/ - 57 Anthropometry/ - 58 Body Composition/ - 59 Body Constitution/ - 60 Body size/ - (weight or weight loss or weight gain or anthropometry or birth weight or birthweight or birth weight or child development or height or body composition or fat distribution or body mass or BMI or obesity or obese or overweight or over weight or skinfold measurement\$ or skinfold thickness or DEXA or bio-impedence or waist circumference or hip circumference or waist hip ratio\$ or body size).ab,ti. - 62 56 or 57 or 58 or 59 or 60 or 61 - 63 18 or 22 or 25 or 30 or 33 or 36 or 41 or 44 or 55 or 62 - 64 exp animal/ - 65 exp human/ - 66 64 not 65 - 67 63 not 66 #### Combined 68 10 and 14 and 67 ## Supplementary Table S3. Description of the potential influential sources of bias in cancer survival studies | Bias type | Description | |------------------------------|--| | Selection bias | Bias resulting from the inclusion in the analyses of participants who are different from the source population. | | | Bias could arise from non-random allocation (in randomised clinical trials), self-selection, survival bias or differential loss to follow-up. | | Information bias | Errors in measuring or classifying the exposures and outcomes | | - Exposure measurement error | 1. The tool or method used to assess the exposure (or confounders) results in inaccurate measurement of exposures with regards to the actual value of the measure. The possibility of measurement error mainly arises from non-valid assessment methods. | | | 2. Bias may also occur due to deviations from the assigned exposures measurements, for instance, when the exposures may change over time, but it is only measured using a single baseline measurement. It could be minimised by updating the exposure at multiple follow-up times. | | | 3. Immortal time bias. It could arise when the non-exposed person-time is classified erroneously | | - Outcome measurement error | 1. Detection bias due to different assessment methods across exposed and non-exposed groups. Recurrence is more likely to be affected by this bias than mortality. | | | 2. Systematic measurement error of the outcome related to the exposure. For example, differential attendance to clinical examinations for recurrence detection related to the lifestyle of the participants | | Residual confounding | Bias arising when common risk factors between the exposure and outcome are missing as covariates in the analysis | | | Cancer stage and treatment affect the risk of
mortality and/or recurrence and are associated
with the exposures. | ## Supplementary Table S4. Grading criteria for evidence on diet, nutrition, physical activity and survival in women with breast cancer | Evidence grades | | GRADING CRITERIA FOR EVIDENCE ON DIET, NUTRITION, PHYSICAL ACTIVITY AND SURVIVAL IN WOMEN WITH BREAST CANCER | | | | | |--------------------|----------------------------|---|------|----|-----------------|--| | Strong
evidence | Convincing | Convincing Evidence of an effect from a meta-analysis of RCTs or at least two well-designed independent RCTs | | | | | | | Probable | Evidence of an effect from a meta-analysis of RCTs or two well-designed RCTs | Some | No | Desirable | | | | | OR Evidence of an effect from one well-designed RCT and one well-designed cohort study | No | No | Required | | | | | OR Evidence from at least one well-designed pooled analysis of follow-up studies | No | No | Required | | | | | OR Evidence from at least two independent well-designed follow-up studies | No | No | Required | | | Limited evidence | Limited suggestive | Evidence from a meta-analysis of RCTs or at least two well-designed RCTs but the confidence interval may include the null | Some | No | Not required | | | | | OR Evidence from one well-designed RCT but the confidence interval may include the null | No | No | Required | | | | | OR Evidence of an effect from a pooled analysis of follow-up studies | Some | No | Not required | | | | | OR Evidence from a pooled analysis of follow-up studies but the confidence interval may include the null | Some | No | Required | | | | | OR Evidence of an effect from at least one follow-up study | No | No | Required | | | | | OR Evidence of an effect from at least two follow-up studies | No | No | Not
required | | | | | OR Evidence from at least two follow-up studies but the confidence interval may include the null | Some | No | Required | | | | Limited – no conclusion | Any of the following reasons: - Too few studies available - Inconsistency of direction of effect | - | - | - | | | | | - Poor quality of studies | | | | | | Strong
evidence | Substantial effect on risk | Evidence of the absence of an effect (a summary estimate close to 1.0) from any of the following: | | | | | | | unlikely | a) A meta-analysis of RCTs | | | | | | | | b) At least two well-designed independent RCTs | No | - | Absence | | | | | c) A well-designed pooled analysis of follow-up studies | | | | | | | | d) At least two well-designed follow-up studies Absonce of a desc response relationship (in follow up studies) | | | | | | | | - Absence of a dose response relationship (in follow-up studies) | | | | | Het: Substantial unexplained heterogeneity or some unexplained heterogeneity PB: Publication bias Mec: Strong and plausible mechanistic evidence is required, desirable but not required, not required, or absent ### Special upgrading factors: - Presence of a plausible biological gradient ('dose response') in the association. Such a gradient need not be linear or even in the same direction across the different levels of exposure, so long as this can be explained plausibly. - A particularly large summary effect size (a relative risk of 2.0 or more, or 0.5 or less, depending on the unit of exposure), after appropriate control for confounders - Evidence from appropriately controlled experiments demonstrating one or more plausible and specific mechanisms. - All plausible known residual confounders or biases including reverse causation would reduce a demonstrated effect, or suggest a spurious effect when results show no effect. Special considerations important for evidence for breast cancer survivors including the following potential confounding variables – the type of treatment, amount of treatment received, and the dissemination of the disease. ## Supplementary Table S5. Study characteristics of the included dietary intervention trials in breast cancer survivors | Author,
Year,
Study
name,
Country | Characteristics of study population | Intervention and timeframe | Follow-up time,
Compliance | Outcome | Intervention vs
control group | RR (95% CI) | Adjustments | |--|--|--------------------------------------|--|--|--|--|---| | Reddy ¹
2005, WINS,
USA
(superseded
by
Chlebowski ² ,
2006 | Early-stage
breast cancer
(n=2437)
Age:48-79 years | Reducing fat intake to 15% of energy | Median 5 years | Secondary endpoint: Overall survival Primary endpoint: Relapse-free survival events Overall ER+ ER- Secondary endpoint: Disease-free survival | Reduced fat diet
(n=975) vs
comparison
(minimal dietary
counselling)
(n=1,462) | Overall survival 0.89 (0.65-1.21) Relapse-free survival 0.76 (0.60-0.98) 0.85 (0.63-1.14) 0.58 (0.37-0.91) Disease-free survival 0.81 (0.65-0.99) | | | Chlebowski ² ,
2006
WINS,
USA | Stage I-IIIA
breast cancer
(n=2,437)
Age:48-79 years
Peri- and
postmenopausal
women
Recruited within
1 year of breast
cancer
diagnosis | Reducing fat intake to 15% of energy | Median 60 months Intervention: 45 lost and 170 withdrew Comparison: 66 lost and 106 withdrew Adherence: 80% of women provided dietary data for at least three time periods after baseline. | Secondary endpoint: Overall survival (34 deaths without breast cancer recurrence) Primary endpoint: Relapse-free survival events: 277 events | Reduced fat diet (n=975) vs comparison (minimal dietary counselling) (n=1,462) Overall ER
positive ER negative PR positive PR negative | Overall survival: 0.89 (0.65-1.21) Relapse-free survival: 0.76 (0.60-0.98) 0.85 (0.63-1.14) 0.58 (0.37-0.91) (P for interaction - 0.15) 0.83 (0.59-1.15) 0.54 (0.35-0.83) | Nodal status,
systemic adjuvant
therapy, tumor
size, and
mastectomy | | Author,
Year,
Study
name,
Country | Characteristics of study population | Intervention and timeframe | Follow-up time,
Compliance | Outcome | Intervention vs
control group | RR (95% CI) | Adjustments | |---|---|--|---|--|--|--|---| | | | | | | ER+/PR+
ER+/PR-
ER-/PR+
ER-/PR- | 0.83 (0.58-1.17)
0.73 (0.37-1.46)
0.57 (0.17-1.87)
0.44 (0.25-0.77) | | | Pierce,
2007³ (a)
WHEL,
USA | Stage I-IIIA breast cancer (n=3,080) Age:18-70 years Pre-and postmenopausal women Recruited within 4 years of breast cancer diagnosis | Diet rich in
fruits,
vegetables and
fibre, and 15 to
20 % energy
from fat | Mean 7.3 years Intervention: 16 lost and 22 withdrew Comparison: 8 lost and 19 withdrew | Overall survival: 315 deaths Disease-free survival events: 518 events | Healthy pattern (n=1,537) vs. comparison (minimal dietary counselling) (n=1,551) (5-a-day dietary advice) ER+/PR+ER-/PR-ER-/PR+ER-/PR- | Overall survival: Overall: 0.91 (0.72-1.15) (P = 0.43) By cancer types: 0.92 (0.68-1.26) 1.03 (0.57-1.85) 1.08 (0.41-2.83) 1.13 (0.74-1.73) (P for interaction = 0.88) Disease-free survival: 0.96 (0.80-1.14) 0.95 (0.76-1.20) | Stratified by tumour stage, age, and clinical site; adjusted for antioestrogen use, oophorectomy status | | | | | | | ER+/PR-
ER-/PR+
ER-/PR- | 0.97 (0.60-1.56)
0.89 (0.42-1.88)
1.14 (0.80-1.61)
(P for interaction
= 0.85) | | | Author,
Year,
Study
name,
Country | Characteristics of study population | Intervention and timeframe | Follow-up time,
Compliance | Outcome | Intervention vs
control group | RR (95% CI) | Adjustments | |---|---|---|-------------------------------|---|---|---|---| | Gold, 2009 ⁴
Secondary
analysis of
the WHEL
study, USA | Stage I-IIIA
breast cancer
(n=2,967)
Age: 18-79
years
Within 4 years of
diagnosis | Consume low-
fat diet high in
vegetables,
fruit, and fiber | 7.3 years | Additional breast cancer events (n=179) No hot flushes reported at baseline Additional breast cancer events (n = 313) hot flushes reported at baseline | | 0.69 (0.51-0.93)
P= 0.02
0.77 (0.59-1.00)
P=0.05 | Menopausal status, tumor size and grade, number of positive lymph nodes, hormone receptor status, antiestrogen therapy, quality of life and clinical site | | Pierce,
2009 ⁵
WHEL,
USA | Early stage
breast cancer
(n=869)
< 4 years | Daily intake of 5 vegetable servings, 16 oz of vegetable juice or vegetable servings equivalents, 3 fruit servings, 30 g fiber, and 15–20% energy from fat) | 7.3 years | Primary endpoint: Additional breast cancer events (n=179) Women without hot flushes | Vegetables- fruits Q4 vs Q1 Intervention (n=72) vs Comparison (n=107) Fibre Q4 vs Q1 Intervention (n=72) vs Comparison (n=107) Energy from fat Q4 vs Q1 | 0.41 (0.19-0.86)
P=0.01
0.48 (0.26, 0.87)
P=0.02
0.75 (0.4, 1.43)
P=0.06 | Stage and grade of original tumour and antiestrogen therapy | | Author,
Year,
Study
name,
Country | Characteristics of study population | Intervention and timeframe | Follow-up time,
Compliance | Outcome | Intervention vs
control group | RR (95% CI) | Adjustments | |--|-------------------------------------|--|-------------------------------|---|---|---------------------------|--| | | | | | | Intervention (n=72) vs Comparison (n=107) Fibre-to-fat ratio Intervention (n=72) vs Comparison (n=107) | 0.38 (0.19-0.77)
=0.01 | | | Rock ⁶ , 2009
WHEL,
USA
(superseded
by Pierce,
2007 ³) | (n=3043)
mean age:51.3
years | Low-fat diet
high in
vegetables,
fruit, and fiber | Mean 7.12 years | Additional breast cancer events (n=508) | Reduced fat diet vs comparison | 1.06 (0.89-1.27) | Stage, grade,
tamoxifen use,
plasma total
carotenoids | Abbreviations: WHEL; Women's Healthy Eating and Living, WHI, Women's Health Initiative, WINS, Women's Intervention Nutrition ## Supplementary Table S6. Main characteristics of dietary patterns of the included observational studies of dietary patterns, lifestyle scores and breast cancer prognosis | PATTERNS | Study, author, | | |---|--|--| | DATA-DRIVEN DIETARY PATTERNS | year | | | Prudent pattern | | | | Higher prudent pattern scores indicate diet with higher amounts of fruit, vegetables, whole grains, protein and fibre and low-fat dairy products, lower amounts of trans-unsaturated and saturated fats, lower glycaemic load | NHS Kroenke ⁷ ,
2005(a) | | | Higher prudent pattern scores indicate a diet with higher intakes of fruits, vegetables, whole grains, and poultry | LACE Kwan ⁸ ,
2009 | | | Higher scores indicate a diet with higher intakes of leafy vegetables, non-leafy vegetables, fruits, potatoes and legumes | HKNKBCSS Lei ⁹ ,
2021 | | | Western pattern | | | | Higher western pattern scores indicate a diet with higher amounts of refined grains, red and processed meats, high-fat dairy, desserts, trans- and saturated fats, higher glycaemic load, and less protein and fibre | NHS Kroenke ⁷ ,
2005(a) | | | Higher western pattern scores indicate a diet with higher intakes of refined grains, red and processed meats | LACE Kwan ⁸ ,
2009 | | | Higher western pattern scores indicate a diet with high intakes of refined grain, red meat, oil, fish and seafood, cakes and snacks, cessed meat and eggs | HKNKBCSS Lei ⁹ ,
2021 | | | LIFESTYLE PATTERN INDICES (DIET AND OTHER LIFESTYLE FACTORS) | | | | World Cancer Research Fund (WCRF) Score | | | | Higher score indicates higher concordance with the 2007 WCRF guidelines for cancer prevention; include recommendations for BMI, physical activity level, intakes of sugary beverages, fruit and vegetables, fibre, red and processed meats, alcohol, and sodium | IWHS Inoue-
Choi ¹⁰ , 2013 | | | Healthy lifestyle pattern | | | | Adherence to high level of fruit and vegetables intake and high level of physical activity | WHEL (control group) Pierce, 200117(b) | | | DIETARY PATTERN INDICES | | | | Dietary inflammatory index (DII) | | | | Higher DII score indicate a more pro-inflammatory diet. Calculated using nutrients and bioactive compounds reported to be associated with biomarkers of inflammation: carbohydrate, protein, total fat, fibre, cholesterol, SFA, MUFA, PUFA, n-3 PUFA, n-6 PUFA, thiamine, riboflavin, niacin, vitamins B6, B12, A, C, D and E, carotene, folic | Jang ¹² , 2018;
WHI Zheng ¹³ ,
2018
PLCO Wang ¹⁴ , | | | | PLCO Wang ¹⁴ ,
2020 | | | turmeric, alcohol, caffeine, and green tea and in the WHI also ginger, | | |--|---| | turmeric and pepper | | | American Cancer Society (ACS) guidelines diet score | | | Higher score indicates
higher conformance with the ACS Nutrition and Physical Activity Guidelines for Cancer Prevention for intakes of fruits and vegetables, whole grains, and red and processed meats | CPS-II McCullough ¹⁵ , 2016 The Pathways study Ergas ¹⁶ , 2021 | | Healthy Eating Index (HEI)-2005 | | | Higher score indicates higher conformance with the Dietary Guidelines for Americans-2005; use an energy-adjusted density approach for intakes of total fruit; whole fruit; total vegetables; darkgreen vegetables, orange vegetables, legumes; total grains; whole grains, milk; meats; beans; oils; saturated fat; sodium and calories from solid fat, alcohol, and added sugar | HEAL George ¹⁷ ,
2011 WHI
George ¹⁸ , 2014(a)
NHANES III
Karavasiloglou ¹⁹ ,
2019 | | Healthy Eating Index (HEI)-2010 | | | Higher score indicates higher conformance with the Dietary Guidelines for Americans 2010 using a density approach for intakes of total fruit; whole fruit; total vegetables; green vegetables beans; total protein foods; seafood, plant proteins, whole grains; dairy; fatty acids, refined grains, sodium and empty calories in the. | WHI Sun ²⁰ ,
2018(a) | | Healthy Eating Index (HEI)-2015 | | | Higher score indicates higher conformance with the Dietary
Guidelines for Americans 2015. Component densities were derived
for total fruits, whole fruits, total vegetables, greens and beans, dairy,
total protein, seafood and plant protein, refined grains, added sugars,
fatty acids, sodium, and saturated fats | SBCSS Wang ²¹ ,
2020
The Pathways
study Ergas ¹⁶ ,
2021 | | Alternative Healthy Eating Index (AHEI) | | | Adapted from the original HEI. Based on intakes of vegetables, fruits, nuts and soy, cereal fibre, ratio of white to red meat, trans fat, polyunsaturated: saturated fat ratio, alcohol, and duration of multivitamin use. A higher score indicates better diet quality | NHS Kim ²² , 2011 | | Alternative Healthy Eating Index (AHEI)-2010 | | | Alternative to the HEI. Based on fruits and nutrients predictive of chronic disease risks: vegetables, fruits, whole grains, sugarsweetened beverages, nuts and legumes, red and processed meats, trans Fats, long-chain (n-3) fats (EPA + DHA), and polyunsaturated fats, and alcohol | NHS Izano ²³ ,
2013 | | Diet quality index-revised (DQI-R) | | | Higher score indicated higher diet diversity and moderation based on intakes of grains, vegetables, fruits, total fat, saturated fat, cholesterol, iron, calcium, diet diversity, added fat and sugar | NHS Kim ²² , 2011 | | Pacammandad food spera (PES) | | |--|---| | Recommended food score (RFS) | | | Higher score indicates conformance to recommended foods. Calculated from intakes of fruits, vegetables, whole grains, low saturated fat proteins, and low fat dairy products | NHS Kim ²² , 2011 | | Dietary Approaches to Stop Hypertension (DASH) | | | Higher score indicates more healthy eating pattern as recommended
by the United States Department of Agriculture (more plant proteins,
fruits and vegetables, moderate amounts of low-fat dairy products, | NHS Izano ²³ ,
2013
SBCSS Wang ²¹ , | | and low amounts of sweets and sodium) | 2020 | | | The Pathways
study Ergas ¹⁶ ,
2021 | | Alternate Mediterranean Diet Score (aMED) | | | Higher score is higher conformance to Mediterranean dietary pattern. | NHS Kim ²² , 2011 | | Modified from the Mediterranean Score and calculated from intakes of vegetables, legumes, fruits, nuts, whole grains, fish, monounsaturated: saturated fat ratio, meat and dairy, and alcohol | The Pathways study Ergas ¹⁶ , 2021 | | Trichopoulou Mediterranean Diet Score (MedDiet) | | | Higher score is higher conformance to Mediterranean dietary pattern | NHANES III | | calculated from intakes of legumes, vegetables, fruit and nuts, cereals, fish and seafood, meat and meat products, dairy products, the ratio of monounsaturated to saturated fats and alcohol | Karavasiloglou ¹⁹ ,
2019 | | Chinese Food Pagoda (CHFP)-2007 and 2016 | | | Higher score is higher conformance to the Chinese food pagoda pattern. Calculated from salt, fats and oil, dairy products, beans, meat and poultry, fish, eggs, vegetables, fruits and grains | SBCSS Wang ²¹ ,
2020 | | Diabetes risk reduction diet (DRRD) | | | Higher score is higher conformance to the diabetes risk reduction diet. Calculated from intakes of cereal fiber, coffee (caffeinated and decaffeinated), nuts, polyunsaturated:saturated fat ratio, whole fruits, glycemic index, trans-fat, SSBs/fruit juices, and red meat | NHSI and II
Wang ²⁴ , 2021 | | Plant-based dietary index (PDI) | | | Higher score is higher conformance to a plant-based dietary index. Calculated from intakes of whole grains, fruits, vegetables, nuts, legumes, vegetable oils, tea, and coffee, fruit juices, refined grains, potatoes, sugar-sweetened beverages, sweets and desserts, dairy, animal fat, egg, meat, fish or seafood, and miscellaneous animal-based foods. | Pathways Study
Anyene ²⁵ , 2021 | | For PDI, positive scores are assigned to all plant foods. For healthy PDI, positive scores are assigned to healthful plant foods, and reverse scores are assigned to unhealthful plant foods. For unhealthy PDI, positive scores are assigned to unhealthful plant foods, and reverse scores are assigned to healthful plant foods | | | Potential renal acid load (PRAL) | | |---|---------------------------------| | Higher score indicates a more acid-forming potential. Calculated from protein, phosphorus, potassium, magnesium and calcium | WHEL Wu ²⁶ ,
2020 | | Endogenous acid production (NEAP) | | | Higher score indicates a more acid-forming potential. Calculated from protein and potassium | WHEL Wu ²⁶ ,
2020 | Abbreviations: CPS-II, Cancer Prevention Study II Nutrition Cohort; HEAL, Health, Eating, Activity, and Lifestyle Study; HKNKBCSS, Hong Kong NTEC-KWC Breast Cancer Survival Study; IWHS, Iowa Women's Health Study; LACE, Life After Cancer Epidemiology; NHANES, National Health and Nutrition Examination Survey; NHS, Nurses' Health Study; PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; SBCSS, Shangai Breast Cancer Study; WHEL; Women's Healthy Eating and Living, WHI, Women's Health Initiative ## Supplementary Table S7. Descriptive table of the included observational studies of post-diagnosis dietary patterns, lifestyle scores and breast cancer prognosis | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|---|--|---|--|--|--| | Dietary Inflan | nmatory Index (DII) | | | | | | | | | Jang ¹² 2018,
South Korea | rea cohort of cancer 2000-2017, survivors follow-up: median 63 | Stage 0-III | Stage 0-III 24h recall, interviewed by trained dietitian at | All-cause mortality (n=44) | 5.48 vs5.87 | 0.32 (1.11-
0.93)
P
trend=0.041 | Age, BMI, postmenopaus al status, subtype, | | | | age: 51.9 years,
race: mostly
Asian | months, until
2018 | post-
diagnosis | Recurrence (n=88) | | 0.43 (0.21-
0.85)
P
trend=0.019 | histological
grade, tumour
size, lymph
node | | | | | | | | Pre-menopausal
women, recurrence
(n=50) | | 0.30 (0.12-
0.80)
P
trend=0.014 | metastasis,
AJCC stage,
treatment,
energy intake | | | | | | | Post-menopausal
women, recurrence
(n=38) | | 0.78 (0.25-
2.44)
P
trend=0.669 | | | Fnergy-adjus | ted Dietary Inflam | matory Index (F | רווט. | | | | trend=0.009 | | | Zheng ¹³
2018, WHI,
USA | Population-
based cohort
study (n=2150), | Recruitment:
1993-1998,
follow-up: | Invasive breast cancer | FFQ, self-
administered
at 1.5 years
post-
diagnosis,
diet in the
past 3
months | All-cause mortality (n=580) | 3.79 vs6.81 | 0.82 (0.63-
1.05)
P trend=0.17 | Age, ER status, race/ethnicity, PR status, smoking status, income, cancer stage, education, years from cancer diagnosis to FFQ, physical | | | age range: 50-
79 years, post-
menopausal | range: 50- median 13.3 years, until | | | Breast cancer-
specific mortality
(n=212) | | 0.96 (0.62-
1.49)
P trend=0.96 | | | | 100%, race:
mostly White | | | | Cardiovascular
disease mortality
(n=103) | | 0.44 (0.24-
0.82)
P
trend=0.005 | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | | |--|--|--
---|---|---|--------------------------------------|--|---|--| | | | | | | | | | activity, total
energy intake,
BMI, hormone
replacement
therapy use | | | Wang
2020 ¹⁴ , | 0014, analysis of clinical trials (n=1064), age range: 55-74 years, race: mostly White | | Invasive breast FFQ, self-
cancer in situ administered | All-cause mortality (n=296) | -4.1 vs -7.8 | 0.75 (0.55-
0.99) | Age, BMI, diabetes, | | | | PLCO, USA | | 20.1%, stage I
50.3%, II
26.6%, III
2.8%, ER+
84.6%, PR+ | | Cancer specific mortality (n=100) (Competing risk regression) | | 0.68 (0.41-
1.12) | energy intake,
ER status,
hormone
therapy,
income, | | | | | | | 75.2% | | All-cause mortality (n=296) | Per 1 unit | 0.94 (0.88-
1.00) | marital status, physical activity, PR status, race, smoking, stage, study arm, years from cancer diagnosis to FFQ | | | | | | | | Cancer specific mortality (n=100) (Competing risk regression) | | 0.91 (0.82-
1.00) | | | | Healthy Eating Index (HEI) 2015 | | | | | | | | | | | Wang
2020 ²¹ ,
SBCS, China | cohort of cancer 2002-2006, | Stage I-IV | Semi-
quantitative
FFQ, 93 | Overall survival
(n=374) | 65.8 vs 38 points | 0.79 (0.57-
1.10)
P trend=0.19 | Age, BMI,
chemotherapy,
comorbidity, | | | | | | 25-70 | | items, diet
during the 12
months | Breast cancer-
specific mortality
(n=252) | | 0.86 (0.58-
1.27)
P trend=0.31 | education,
energy intake,
er status, her2 | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|--|--|---|-------------------|--|---| | | post-
menopausal,
race: Chinese | | | preceding a
5-year post-
diagnosis
survey | Recurrence (n=228) Overall survival (n=374) | Per 5 points | 0.89 (0.59-
1.33)
P trend=0.23
0.94 (0.85-
1.03) | status, immunotherap y, income, marital status, menopausal status, other factors, physical activity, pr | | | | | | | Breast cancer-
specific mortality
(n=252) | | 0.94 (0.83-
1.06) | | | | | | | | Recurrence (n=228) | | 0.92 (0.81-
1.05) | status,
radiotherapy,
stage | | Ergas ¹⁶
2021,
Pathways
Study, USA | Prospective
cohort of cancer
survivors
(n=3660), age
range: 24-94
years, race:
White, Black
and Other | Diagnosis:
2005-2013,
follow-up:
40888
person-
years, until
2018 | Stage I 54.9%,
II 34.3%, III
9.5%, IV 1.5%.
ER+ 83.9%,
ER- 16.0%.
PR+ 64.1%,
PR- 35.7%.
HER2+ 12.9%,
HER2- 83.2% | FFQ, diet at
an average
2.3 months
post-
diagnosis | Overall survival (n=621) | 80 vs 42.1 points | 0.81 (0.62-
1.06)
P trend=0.12 | Age, BMI, chemotherapy, education, er status, ethnicity, her2 status, hormonal therapy, menopausal status, physical activity, pr status, race, radiotherapy, smoking, stage, surgery, total energy intake | | | | | | | Cancer specific mortality (n=312) | | 0.84 (0.56-
1.27)
P trend=0.44 | Age,
education, ER
status, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|------------------------------------|---------------------|-----------------------------------|-------------|--|---| | | | | | | Recurrence (n=449) | | 1.24 (0.88-
1.75)
P trend=0.30 | ethnicity,
HER2 status,
Menopausal | | | | | | | Other causes of death (n=322) | | 0.67 (0.48-
0.94)
P
trend=0.006 | status, Physical activity, PR status, Race, Smoking, stage, total energy intake | | | | | | | Overall survival (n=621) | Per 1 point | 0.99
P trend=0.12 | Age, BMI, chemotherapy, education, er status, ethnicity, her2 status, hormonal therapy, menopausal status, physical activity, pr status, race, radiotherapy, smoking, stage, surgery, total energy intake | | | | | | | Cancer specific mortality (n=312) | | 0.99
P trend=0.44 | Age, education, ER | | | | | | | Recurrence (n=449) | | 1.01
P trend=0.30 | status,
ethnicity, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|---|------------------------------------|--|---|---|--------------------------------------|---| | | | | | | Other causes of death (n=322) | | 0.98
P trend=0.06 | HER2 status, Menopausal status, Physical activity, PR status, Race, Smoking, stage, total energy intake | | | | | | | ER positive Overall survival (n=502) | 80 vs 42.1 points | 0.80 (0.60-
1.06)
P trend=0.03 | Age,
education, ER
status, | | | | | | | ER negative Overall survival (n=132) | | 0.73 (0.38-
1.40)
P trend=0.99 | ethnicity, HER2 status, menopausal | | | | | | | ER positive Overall survival (n=502) | Per 1 point | 0.99
P trend=0.03 | status,
physical | | Hoolthy Fating | g Index (HEI) 2010 | | | | ER negative Overall survival (n=132) | | 1.00
P trend=0.99 | activity, PR
status, race,
smoking,
stage, total
energy intake | | Sun ²⁰ | Population- | Recruitment: | Invasive breast | FFQ, 122 | All-cause mortality | HEI 2010 | 1.00 (0.81- | Age at | | 2018(a),
WHI, USA | based cohort
study (n=2295),
post-
menopausal | 1993-1998,
follow-up: 12
years, until
2015 | cancer | items, self-
administered
at an
average 1.8 | (n=763) Breast cancer- specific mortality (n=242) | score
increase
(≥15%) vs. no
change or | 1.23)
0.98 (0.67-
1.44) | diagnosis, pre-
diagnosis HEI-
2010 score,
pre-diagnosis | | | 100%, race:
mostly White | | | years post-
diagnosis | Non-breast-cancer-
related death
(n=521) | stable (+/-
14.9%) | 0.96 (0.74-
1.23) | total energy
intake, change
in total energy | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|------------------------------------|---------------------|---|--|--|--| | | | | | | All-cause mortality (n=75) Breast cancer- specific mortality (n=27) Non-breast-cancer related death (n=48) All-cause mortality (n=763) Breast cancer- specific mortality (n=242) Non-breast cancer- related death (n=521) | HEI 2010
score
decrease
(≥15%) vs. no
change or
stable (+/-
14.9%)
Q4 vs Q1 | 1.26 (0.99-
1.62)
1.67 (1.10-
2.54)
1.19 (0.87-
1.62)
0.82 (0.66-
1.02)
0.97 (0.66-
1.43)
0.72 (0.55-
0.94) | intake, race, ethnicity, education, income, cancer stage, oestrogen receptor status, progesterone receptor status, time from diagnosis to dietary intake assessment, pre-diagnosis smoking status, post-diagnosis smoking status, pre-diagnosis physical activity, pre-diagnosis alcohol intake, pre-diagnosis BMI, physical
activity, use of postmenopaus al hormone therapy, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|---|------------------------------------|---|---|-----------------|--|---| | | | | | | | | | alcohol intake,
BMI | | | g Index (HEI) 2005 | | | | | | | | | George ¹⁸
2014(a),
WHI, USA | Population-
based cohort
study (n=2317),
age range: 50- | Recruitment
1993-1998,
follow-up:
median 9.6 | Invasive breast cancer | FFQ, 122
items, self-
administered,
assessment | All-cause mortality (n=415) | 91 vs 34 points | 0.74 (0.55-
0.99)
P
trend=0.043 | Age at screening visit, WHI components, | | | 79 years, post-
menopausal
100%, race:
mostly White | years, 415
deaths, 188
from breast
cancer, 227 | | at on
average 1.5
years post-
diagnosis | Breast cancer-
specific mortality
(n=188) | | 0.91 (0.60-
1.40)
P
trend=0.627 | ethnicity,
income,
education,
stage, | | | · | from any
other cause | | - | Non-breast-cancer-
related death
(n=227) | | 0.58 (0.38-
0.87)
P
trend=0.011 | oestrogen receptor status, progesterone receptor status, time | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|---|---------------------------------|------------------------------------|---------------------|-----------------------------|----------------------|----------------------|--| | Karavasilogl
o ¹⁹ 2019, | Retrospective cohort of cancer | Follow-up:
median 16 | | 24-Hour
Recall | All-cause mortality (n=121) | 5-9 vs 0-4
points | 0.49 (0.25-
0.97) | since diagnosis, energy intake, physical activity, alcohol intake, use of postmenopaus al hormone therapy Age, BMI, Energy intake, | | NHANES III,
USA | survivors
(n=110), mean
age: 53.7 years,
race: mostly
non-Hispanic
White | years | | rvecali | (11–121) | Per 1 point | 0.97 (0.95-
0.99) | Marital status, Menopausal hormone therapy use, other factors, Physical activity, Race, Smoking, Socioeconomi | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|---|--|--|---|-----------------|--|---| | | | | | | | | | between
cancer
diagnosis and
exposure
assessment | | George ¹⁷
2011, HEAL,
USA | Prospective cohort of cancer survivors (n=670), postmenopausal 61%, race: White, Black and Other | Diagnosis:
1995-1999,
follow-up:
average 6
years, 62
deaths, 24
from breast
cancer | Invasive, localized 71.3%, regional 28.6%, ER+ 77.6% ER-, 22.3%. Surgery 23.8%, radiation 35.8%, chemotherapy1 2.2%, radiation and chemotherapy2 8%, tamoxifen 51.5% | FFQ, 122
items, self-
administered
at 30 months
post-
diagnosis | All-cause mortality
(n=62)
Breast cancer-
specific mortality
(n=24) | 87 vs 35 points | 0.40 (0.17-
0.94)
0.12 (0.02-
0.99) | Energy intake,
Physical
activity,
ethnicity,
tumour stage,
tamoxifen use,
BMI | | Alternative Holling Izano ²³ | ealthy Eating Index Population- | x (AHEI) 2010
Diagnosis: | Stage I–III | FFQ, 116 | Breast cancer- | Q5 vs Q1 | 1.07 (0.77- | Time since | | 2013, NHS,
USA | based cohort
study (n=4013), | 1980-2003,
follow-up: | Cago i iii | items, at
least 12 | specific mortality
(n=453) | score | 1.49)
P trend=0.82 | diagnosis, age at diagnosis, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|------------------------------------|--|---|----------|---|---| | | mixed mean
age: 60 years,
race: mostly
White | median 112
months, until
2010 | | months post-
diagnosis
and updated
during follow-
up, data
beginning in
1984 | Non-breast-cancer-
related death
(n=528) | | 0.57 (0.42-
0.77)
P
trend<.0001 | energy intake,
BMI, BMI
change, age at
first birth,
parity, oral
contraceptive,
menopausal
status, HRT,
smoking, stage
of disease,
radiation
therapy,
chemotherapy,
hormonal
therapy,
physical
activity | | Kim ²² 2011,
NHS, USA | Population-
based cohort
study (n=2377),
post-
menopausal
100%, race:
mostly White | Diagnosis:
1978-1998,
follow-up:
until 2004,
572 deaths,
302 from
breast
cancer, 139
from CVD,
131 from
other causes | Stage I-III | FFQ, 116
items, at
least 12
months post-
diagnosis | All-cause mortality (n=572) Breast cancerrelated death (n=302) Non-breast-cancerrelated death (n=270) | Q5 vs Q1 | 0.85 (0.63 -
1.17)
P trend=0.46
1.53 (0.98-
2.39)
P trend=0.08
0.52 (0.32-
0.83)
P trend=0.09 | Time from diagnosis to exposure assessment, age, energy, BMI, oral contraceptive, smoking, physical activity, stage, categories of treatment, age at first birth, parity, menopausal status, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|------------------------------------|-----------------------------|--|--------------------------------------|---|--| | | | | | | | | | postmenopaus
al hormone
use | | | | | | All-cause mortality (n=572) | Diet Quality
Index Revised
(DQIR) | 0.78 (0.58-
1.07)
P trend=0.18 | Time from diagnosis to exposure | | | | | | | | Breast cancer-
related death
(n=302) | Q5 vs Q1 | 0.81 (0.53-
1.24)
P trend=0.98 | assessment,
age, energy,
BMI, oral
contraceptive,
smoking,
physical | | | | | | | Non-breast-cancer-
related death
(n=270) | | 0.85 (0.54-
1.34)
P trend=0.24 | | | | | | | All-cause mortality (n=572) | Recommende
d Food Score
(RFS) Q5 vs
Q1 | 1.03 (0.74-
1.42)
P trend=0.85 | activity, stage, categories of treatment, age at first birth, parity, menopausal status, postmenopaus al hormone use, multivitamins | | | | | | | | Breast cancer-
related death
(n=302)
Non-breast-cancer-
related death
(n=270) | | 1.54 (0.95-
2.47)
P trend=0.02
0.86 (0.54-
1.37)
P trend=0.31 | Time from
diagnosis to
exposure
assessment,
age, energy,
BMI, oral | | | | | | | Distant breast cancer recurrence | | 1.45 (0.94-
2.23)
P
trend=0.001 | contraceptive,
smoking,
physical
activity, stage, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--
---|---|------------------------------------|---|---|----------|--|---| | | angelog to Stop Hy | portonoion (DA | RU\ Dia4 | | | | | categories of
treatment, age
at first birth,
parity,
menopausal
status,
postmenopaus
al hormone
use,
multivitamins,
alcohol intake | | lzano ²³
2013, NHS,
USA | Population-
based cohort
study (n=7717),
mixed mean
age: 60 years,
race: mostly
White | Diagnosis:
1980-2003,
follow-up:
median 112
months, until
2010 | Stage I–III | FFQ, 116 items, at least 12 months after diagnosis and updated during follow- up, diet data beginning in 1984 | Breast cancer-
specific mortality
(n=453)
Non-breast-cancer-
related death
(n=528) | Q5 vs Q1 | 0.85 (0.61-
1.19)
P trend=0.93
0.72 (0.53-
0.99)
P trend=0.03 | Time since diagnosis, age at diagnosis, age at diagnosis, energy intake, BMI, BMI change, age at first birth, parity, oral contraceptive, menopausal status, HRT, smoking, stage of disease, radiation therapy, chemotherapy, hormonal therapy, physical activity | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|---|---|--|--------------------------------------|--|---| | Wang ²¹
2020, SBCS,
China | Prospective
cohort of cancer
survivors
(n=3450), age
range: 25-70
years, pre- and | Diagnosis:
2002-2006,
follow-up:
until 2017 | quantitative FFQ, 93 items, assessment of diet during the 12 months preceding a 5-year post- diagnosis survey | quantitative (n=374) FFQ, 93 items, Breast can specific mode of diet during (n=252) | Breast cancer-
specific mortality | 49.3 vs 8.3 points | 0.66 (0.49-
0.91)
P trend=0.01
0.63 (0.44-
0.92)
P trend=0.01 | Age, BMI,
chemotherapy,
comorbidity,
education,
energy intake,
er status, | | | post-
menopausal,
race: Chinese | | | Recurrence (n=228) | | 0.60 (0.40-
0.90)
P trend=0.01 | HER2 status, immunotherap y, income, | | | | | | | diagnosis | Overall survival (n=374) | Per 5 points | 0.93 (0.87-
0.98) | marital status, menopausal status, other factors, physical activity, PR status, radiotherapy, stage | | | | | | Curvey | Breast cancer-
specific mortality
(n=252) | | 0.91 (0.85-
0.98) | | | | | | | | Recurrence (n=228) | | 0.92 (0.85-
0.99) | | | | | | | | TNM I-II Overall survival (n=295) | - | 0.91 (0.85-
0.97) | | | | | | | | TNM III-IV Overall survival (n=59 | - | 1.04 (0.87-
1.24) | | | | | | | | TNM I-II Breast cancer-specific mortality (n=194) | | 0.88 (0.81-
0.96) | | | | | | | | TNM III-IV Breast cancer-specific mortality (n=44) | | 1.08 (0.86-
1.34) | | | | | | | | TNM I-II Recurrence (n=185) | | 0.92 (0.82-
1.02) | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|---|--|--|-----------------------------------|-----------------------------------|-----------------|--|---| | | | | | | TNM III-IV
Recurrence (n=106) | | 0.92 (0.82-
1.05) | | | Ergas ¹⁶
2021,
Pathways
Study, USA | Prospective
cohort of cancer
survivors
(n=3660), age
range: 24-94
years race:
White, Black
and Other | Diagnosis:
2005-2013,
follow-up:
40888
person-
years, until
2018 | Stage I 54.9%,
II 34.3%, III
9.5%, IV 1.5%.
ER+ 83.9%,
ER- 16.0%.
PR+ 64.1%,
PR- 35.7%.
HER2+ 12.9%,
HER2- 83.2% | FFQ, at 2.3 months post-diagnosis | Overall survival (n=621) | 28 vs 10 points | 0.80 (0.61-
1.05)
P trend=0.10 | Age, BMI, chemotherapy, education, er status, ethnicity, her2 status, hormonal therapy, menopausal status, physical activity, pr status, race, radiotherapy, smoking, stage, surgery, total energy intake | | | | | | | Cancer specific mortality (n=312) | | 0.93 (0.63-
1.39) | Age, education, ER | | | | | | | mortality (II=312) | | P trend=0.68 | status, | | | | | | | Recurrence (n=449) | | 1.02 (0.73-
1.41)
P trend=0.95 | ethnicity,
HER2 status,
Menopausal
status, | | | | | | | Other causes of death (n=322) | | 0.55 (0.38-
0.79)
P
trend=0.002 | Physical
activity, PR
status, Race,
Smoking,
stage, total
energy intake | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|------------------------------------|---------------------|-----------------------------------|-------------|----------------------|---| | | | | | | Overall survival (n=621) | Per 1 point | 0.98
P trend=0.10 | Age, BMI, chemotherapy, education, er status, ethnicity, her2 status, hormonal therapy, menopausal status, physical activity, pr status, race, radiotherapy, smoking, stage, surgery, total energy intake | | | | | | | Cancer specific mortality (n=312) | | 0.99
P trend=0.68 | Age, education, ER | | | | | | | Recurrence (n=449) | - | 1.0
P trend=0.95 | status,
ethnicity,
HER2 status, | | | | | | | Other causes of death (n=322) | | 0.96
P trend=0.02 | Menopausal
status,
Physical
activity, PR
status, Race,
Smoking,
stage, total
energy intake | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|---|--|--|-------------------------------------|--------------------------------------|-----------------|--------------------------------------|--| | | | | | | ER positive Overall survival (n=502) | 28 vs 10 points | 0.70 (0.52-
0.95)
P trend=0.02 | Age,
education, er
status, | | | | | | | ER negative Overall survival (n=132) | | 1.25 (0.64-
2.43)
P trend=0.55 | ethnicity, her2
status,
menopausal
status, | | | | | | | ER positive Overall survival (n=502) | Per 1 point | 0.98
P trend=0.02 | physical activity, pr | | | | | | | ER negative Overall survival (n=132) | | 1.01
P trend=0.55 | status, race,
smoking,
stage, total
energy intake | | High-Fat Diet | | | | | | | | | | Mohseny ²⁷
2019, Iran | Retrospective
cohort of cancer
survivors
(n=1276) | Diagnosis:
2004-2015,
follow-up:
maximum 10
years, until
2015 | Stage I-IV | | Overall survival | Yes vs no | 2.73 (1.06-
7.03) | Age,
education, ER
status, other
factors, PR
status, stage,
tumour size | | Baghestani ²⁸
2015, Iran | Retrospective
cohort of cancer
survivors
(n=366), age
range: 17-84
years | | Stage I 24.9%,
II 47.0%, III
28.1%, HER2-
75.4%, HER2+
24.6% | | Breast cancer
mortality | Yes vs no | 2.83
P
trend=0.033 | | | | Reduction Diet | | | | | | | | | Wang ²⁴
2021, NHS I
and II, USA | Population-
based cohort
study (n=8482), | Diagnosis:
1980-2020,
1991-2015, | Stage I-III | Semi-
quantitative
FFQ, first | Overall
survival
(n=2600) | 33 vs 19 points | 0.66 (0.58-
0.76)
P trend=0.02 | Age, age at menarche, alcohol intake, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|---|------------------------------------|---|--|-------------------------|--------------------------------------|---| | | pre- and post-
menopausal,
race: mostly
White | follow-up:
median 14
years, until
2016, 2017 | | assessment
at median 3
years post-
diagnosis
and every 4
years | Cancer specific mortality (n=1042) | | 0.80 (0.65-
0.97)
P trend=0.02 | aspirin use,
BMI,
chemotherapy,
er status,
family history
of breast | | | | | | thereafter | Overall survival (n=2467) | High/high vs
low/low | 0.87 (0.79-
0.96) | cancer,
hormonal | | | | | | | (n=2467) low/low Cancer specific mortality (n=986) | | 0.94 (0.81-
1.10) | therapy,
menopausal
hormone
therapy use,
menopausal
status, oral | | | | | | | Premenopausal
Cancer specific
mortality (n=301) | Q5 vs Q1 | 0.68 (0.47-
0.99)
P trend=0.10 | | | | | | | | Postmenopausal
Cancer specific
mortality (n=678) | | 0.81 (0.63-
1.04)
P trend=0.02 | contraceptive,
personal
history of
benign breast | | | | | | | Stage I Cancer
specific mortality
(n=294) | | 0.85 (0.58-
1.26)
P trend=0.02 | disease, parity,
physical
activity, pre- | | | | | | | Stage II Cancer specific mortality (n=406) | | 0.76 (0.55-
1.05)
P trend=0.02 | diagnosis BMI,
radiotherapy,
smoking,
stage, total
energy intake,
year of
diagnosis | | | | | | | Stage III Cancer specific mortality (n=342) | 1. | 0.77 (0.53-
1.11)
P trend=0.02 | | | Potential Ren | al Acid Load (PRA | ÅL) | | | , | | | J | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|---|------------------------------------|--|--|----------|--------------------------------------|---| | Wu ²⁹ , 2020,
WHEL, USA | Secondary
analysis of
clinical trials
(n=3081) | Diagnosis:
1991-1996,
follow-up:
average 7.3
years, until
2006 | Stage I-IIIA | 24-h dietary recalls collected by telephone | Recurrence (n=517) (Competing risk regression) | Q4 vs Q1 | 0.86 (0.67-
1.12)
P trend=0.41 | Age at diagnosis, race, education, intervention group, menopausal status at baseline, total calorie intake, alcohol intake, smoking status, packyears, physical activity, BMI, tumor stage, tumor size, ER status, PR status,tamoxife n use, radiotherapy, chemotherapy | | Wu ²⁶ , 2020,
WHEL, USA | Secondary
analysis of
clinical trials
(n=2950), post-
menopausal | Diagnosis:
1991-1996,
follow-up:
average 7.3
years, until
2006 | Stage I-IIIA | 24-h dietary
recalls
collected by
telephone | Total mortality
(n=295) | Q4 vs Q1 | 0.77 (0.52-
1.15)
P trend=0.09 | Age, alcohol intake, BMI, chemotherapy, education, ER and PR status, intervention | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|------------------------------------|--|--|----------|--------------------------------------|--| | | >79%, race:
mostly White | | | | Breast cancer-
specific mortality
(n=249)
(Competing risk
regression) | | 0.79 (0.52-
1.20)
P trend=0.09 | group, menopausal status, number of comorbidities, pack years, | | | | | | | Recurrence
(n=490)
(Competing risk
regression. Results
superseded by Wu ²⁹
2020) | | 0.92 (0.70,
1.20)
P trend=0.5 | physical activity, race/ethnicity, radiotherapy, tamoxifen use, total caloric intake, tumour size, tumour stage | | | ous Acid Production | | | | | | | _ | | Wu ²⁹ , 2020,
WHEL, USA | Secondary
analysis of
clinical trials
(n=3081) | Diagnosis:
1991-1996,
follow-up:
average 7.3
years, until
2006 | Stage I-IIIA | 24-h dietary
recalls
collected by
telephone | Recurrence
(n=517)
(Competing risk
regression) | Q4 vs Q1 | 0.84 (0.65-
1.10)
P trend=0.25 | Age at diagnosis, race, education, intervention group, menopausal status at baseline, total calorie intake, alcohol intake, smoking status, packyears, physical activity, BMI, tumor stage, tumor size, ER | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | | | |--|---|---|------------------------------------|--|--|----------|--------------------------------------|--|--|--| | | | | | | | | | status, PR
status,tamoxife
n use,
radiotherapy,
chemotherapy | | | | Wu ²⁶ 2020,
WHEL, USA | Secondary
analysis of
clinical trials
(n=1950), post-
menopausal
>79%, race:
mostly White | Diagnosis:
1991-1996,
follow-up:
average 7.3
years, until
2006 | Stage I-IIIA | Interview,
self-reported
questionnaire | Total mortality
(n=295) | | 0.65 (0.44-
0.96)
P trend=0.03 | Age, alcohol intake, BMI, chemotherapy, education, ER and PR status, intervention group, | | | | | mostly White | | | | Breast cancer-
specific mortality
(n=249)
(Competing risk
regression) | Q4 vs Q1 | 0.66 (0.43-
0.99)
P trend=0.04 | menopausal
status, number
of
comorbidities,
pack years,
physical
activity, | | | | | | | | | Recurrence
(n=490)
(<u>Competing risk</u>
<u>regression</u> . Results
superseded by Wu ²⁹
2020) | | 0.87 (0.67-
1.14)
P trend=0.4 | race/ethnicity,
radiotherapy,
tamoxifen use,
total caloric
intake, tumour
size, tumour
stage | | | | | Alternative Mediterranean Diet (aMED) | | | | | | | | | | | Kim ²² 2011,
NHS, USA | Population-
based cohort
study (n=2377), | Diagnosis:
1978-1998, | Stage I-III | FFQ, at least
12 months | All-cause mortality (n=572) | Q5 vs Q1 | 0.87 (0.64-
1.17)
P trend=0.34 | Time from diagnosis to exposure | | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|---|---------------------------------|--|---------------------|---|-----------------|--|---| | | mean age 23.77 years, post- menopausal 100%, race: mostly White | follow-up:
until 2004 | | after diagnosis | Breast cancer- related death (n=302) Non-breast-cancer- related death (n=270) | | 1.15 (0.74-
1.77)
P trend=0.21
0.80 (0.50-
1.26)
P trend=0.10 | assessment, age, energy, BMI, oral contraceptive, smoking, physical activity, stage, categories of treatment, age at first birth, parity, menopausal status, postmenopaus al hormone use, multivitamins | | Ergas
¹⁶
2021,
Pathways
Study, USA | Prospective
cohort of cancer
survivors
(n=3660), mean
age: 59.7 years,
race: White,
Black and Other | Diagnosis: 2005-2013 | Stage I 54.9%,
II 34.3%, III
9.5%, IV 1.5%,
ER+ 83.9%,
ER- 16.0%.
PR+ 64.1%,
PR- 35.7%.
HER2+ 12.9%,
HER2- 83.2% | FFQ, 139 items | Overall survival (n=621) | 6-9 vs 0 points | 0.87 (0.66-
1.14)
P trend=0.27 | Age, BMI, chemotherapy, education, ER status, ethnicity, HER2 status, hormonal therapy, menopausal status, physical activity, PR status, race, radiation delivery, smoking, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|------------------------------------|---------------------|-----------------------------------|-------------|---|---| | | | | | | | | | stage, surgery,
total energy
intake | | | | | | | Cancer specific mortality (n=312) | | 0.79 (0.57-
1.16)
P trend=0.25 | Age, education, menopausal | | | | | | | Recurrence (n=449) | | 1.08 (0.79-
1.47)
P trend=0.46 | status, ER
status, HER2
status, | | | | | | | Other causes of death (n=322) | | 0.73 (0.50-
1.05) ac
P trend=0.08 sta
an
sm
en | physical
activity, PR
status, race
and ethnicity,
smoking, total
energy, tumor
stage | | | | | | | Overall survival (n=621.0) | Per 1 point | 0.97
P trend=0.27 | Age, BMI, chemotherapy, education, ER status, ethnicity, HER2 status, hormonal therapy, menopausal status, physical activity, PR status, race, radiation delivery, smoking, stage, surgery, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|------------------------------------|---------------------|--|-----------------|--------------------------------------|---| | | | | | | | | | total energy intake | | | | | | | Cancer specific mortality (n=312) | | 0.96
P trend=0.25
1.02 | Age, education, | | | | | | | Recurrence (n=449) | | P trend=0.46 | menopausal status, ER | | | | | | | Other causes of death (n=322) | | 0.94
P trend=0.08 | status, HER2
status,
physical
activity, PR
status, race
and ethnicity,
smoking, total
energy, tumor
stage | | | | | | | ER positive Overall survival (n=502.0) | 6-9 vs 0 points | 0.75 (0.55-
1.01)
P trend=0.08 | Age, BMI,
chemotherapy,
education, ER | | | | | | | ER negative Overall survival (n=132.0) | | 0.92 (0.49-
1.71)
P trend=0.72 | status,
ethnicity,
HER2 status,
hormonal | | | | | | | ER positive Overall survival (n=502.0) | Per 1 point | 0.95
P trend=0.08 | therapy,
menopausal | | | | | | | ER negative Overall survival (n=502.0) | | 1.02
P trend=0.63 | status,
physical
activity, PR
status, race,
radiation
delivery,
smoking,
stage, surgery, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|-----------------------------------|------------------------------------|---------------------|-----------------------------------|--------------|----------------------|--| | | | | | | | | | total energy intake | | Trichonoulou | Mediterranean Di | et (ModiMed) | | | | | | IIIIake | | Karavasilogl | Retrospective | Recruitment: | | 24-Hour Diet | All-cause mortality | 5-9 vs 0-4 | 0.78 (0.47- | Age, BMI, | | ou ¹⁹ , 2019,
NHANES III, | cohort of cancer survivors | 1988-1995,
follow-up: | | Recall | 7 iii Gadge Mortality | points | 1.32) | energy intake,
marital status, | | USA | (n=110), mean
age: 53.7 years,
race: mostly
White | median 16
years, until
2011 | | | | Per 1 point | 0.97 (0.82-
1.16) | menopausal hormone therapy use, Other factors, physical activity, race, smoking, socioeconomic status, time between cancer diagnosis and exposure assessment | | | Dietary Index (PDI) | | | | | | | | | Anyene ²⁵ 2021, | Prospective cohort of cancer | Diagnosis: 2005-2013, | Stage I 55%, II 34%, III 9.5%, | FFQ, 139 items | All-cause mortality (n=653) | Per 10 units | 0.96 (0.82-
1.11) | Age at baseline, | | Pathways
Study, USA | survivors
(n=3646), mean | follow-up:
median 9.2 | IV 1.5%, ER+
84%, ER-16%, | | Cancer specific mortality (n=323) | | 1.17 (0.98-
1.39) | education, er status, | | | age: 60 years, | years, until | HER2+ 13%, | | Recurrence (n=461) | _ | 1.17 (0.98- | menopausal | | | post-
menopausal | 2018 | HER2- 83% | | , , | | 1.39) | status,
physical | | | 71%, race:
White, Black
and Other | | | | Other causes of death (n=330) | | 0.90 (0.73-
1.11) | activity, race,
smoking,
stage, total
energy intake | | Healthy Plant | -Based Dietary Inc | lex (hPDI) | | | | | | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | | | | |--|---|--|--|--|---|--------------------------------------|--|--|--|--|--| | Anyene ²⁵
2021,
Pathways
Study, USA | Prospective cohort of cancer survivors (n=3646), mean age: 60 years, postmenopausal 71%, race: White, Black and Other | Diagnosis:
2005-2013,
follow-up:
median 9.2
years, until
2018 | Stage I 55%, II
34%, III 9.5%,
IV 1.5%, ER+
84%, ER-16%,
HER2+ 13%,
HER2- 83% | FFQ, 139 items | All-cause mortality (n=653) Cancer specific mortality (n=323) Recurrence (n=461) Other causes of death (n=330) | Per 10 units | 0.93 (0.83-
1.05)
1.07 (0.91-
1.25)
1.11 (0.97-
1.26)
0.83 (0.71-
0.96) | Age at baseline, education, er status, menopausal status, physical activity, race, smoking, stage, total energy intake | | | | | Unhealthy Pla | Unhealthy Plant-Based Dietary Index (uPDI) | | | | | | | | | | | | Anyene ²⁵
2021,
Pathways
Study, USA | Prospective cohort of cancer survivors (n=3646), mean age: 60 years, postmenopausal 71%, race: White, Black and Other | Diagnosis:
2005-2013,
follow-up:
median 9.2
years, until
2018 | Stage I 55%, II
34%, III 9.5%,
IV 1.5%, ER+
84%, ER-16%,
HER2+ 13%,
HER2- 83% | FFQ, 139 items | All-cause mortality (n=653) Cancer specific mortality (n=323) Recurrence (n=461) Other causes of death (n=330) | Per 10 units | 1.07 (0.96-
1.20)
0.94 (0.80-
1.10)
0.90 (0.79-
1.03)
1.2 (1.02-
1.41) | Age at baseline, education, er status, menopausal status, physical activity, race, smoking, stage, total energy intake | | | | | | Recommendations | | | | | | | | | | | | Inoue-Choi ¹⁰
2013, IWHS,
USA | Population-
based cohort
study (n=938), | Diagnosis:
1986-2002,
follow-up: | Invasive breast cancer | FFQ, 127 items, assessment | All-cause mortality (n=203) | Adherence
summary
Q4 vs Q1 | 0.61 (0.39-
0.96)
P trend=0.01 | Age, total
number of
comorbid | | | | | | age range: 72-
99 years, post-
menopausal until 2009 | | at an
average 8.6 | Breast cancer-
specific mortality
(n=75) | | 0.88 (0.41-
1.91)
P trend=0.65 | conditions,
perceived
general health, | | | | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|---|--|--|--------------------------------------|--------------------------------------|--| | | 100%, race:
mostly
White | | | years post-
diagnosis | Cardiovascular
disease specific
mortality (n=66) | | 0.67 (0.33-
1.37)
P trend=0.10 | current smoking, cancer stage, cancer type, cancer treatment, subsequent cancer diagnosis before 2004, current cancer treatment, and person-years since cancer diagnosis | | American Car | ncer Society (ACS) | Guidelines Die | et Score | | | | | J | | McCullough ¹ ⁵ 2016, CPS- II, USA | Population-
based cohort
study (n=2152), | Diagnosis:
1992-2011,
follow-up: | Local 77.3%,
regional
22.7%, grade | FFQ, self-
administered
at a minimum | Total mortality (n=640) | 6-9 vs 0-2 points | 0.93 (0.73-
1.18)
P trend=0.26 | Age at diagnosis, diagnosis year, | | | age range: 40-
93 years, race: | mean 9.9
years, 640 | well differentiated | of 1 year
after | | Per 2 points | 0.96 (0.88-
1.03) | tumour stage,
tumour grade, | | | mostly White | deaths,192
from breast
cancer, 129
from CVD | 22.6%,
moderately
differentiated
39.0%, poorly | diagnosis | Breast cancer-
specific mortality
(n=192) | 6-9 vs. 0-2 points | 1.44 (0.90-
2.30)
P trend=0.22 | oestrogen and progesterone receptor status, initial | | | | HOIT CVD | or unknown 23.7%, | | | Per 2 points | 1.09 (0.95-
1.26) | delivered
treatment, | | | | ER+:79.5%;
ER-:9.7%;
PR+:57.2%; | | Cardiovascular
disease (n=129) | 6-9 vs 0-2 points | 0.81 (0.47-
1.39)
P trend=0.55 | BMI, smoking
status,
physical | | | | | | PR-:21.1% | | | Per 2 points | 0.95 (0.79-
1.14) | activity, energy intake | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|------------------------------------|---------------------|---|---------------------------------------|--------------------------------------|---| | | | | | | Other causes (n=319) | 6-9 vs 0-2 points | 0.78 (0.56-
1.07)
P trend=0.03 | | | | | | | | | Per 2 points | 0.88 (0.79-
0.99) | | | | | | | | Total mortality (n=640) | Component score: % of total whole | 1.09 (0.86-
1.38)
P trend=0.75 | Age at diagnosis, diagnosis year, | | | | | | | Breast cancer-
specific mortality
(n=192) | grain, Q4 vs
Q1 | 1.24 (0.81-
1.88)
P trend=0.39 | tumour stage,
tumour grade,
oestrogen and | | | | | | | Cardiovascular disease mortality (n=129) | | 1.43 (0.82-
2.50)
P trend=0.44 | progesterone receptor status, initial | | | | | | | Other causes (n=319) | | 0.91 (0.64-
1.29)
P trend=0.57 | delivered
treatment,
BMI, smoking | | | | | | | Total mortality (n=640) | Component score: Fruit and | 1.03 (0.80-
1.33)
P trend=0.55 | status,
physical
activity, energy | | | | | | | Breast cancer-
specific mortality
(n=192) | vegetable
intake, 3 vs 0
points | 1.31 (0.83-
2.06)
P trend=0.19 | intake, fruit
and vegetable
consumption, | | | | | | | Cardiovascular disease mortality (n=129) | | 0.80 (0.45-
1.44)
P trend=0.85 | red and processed meat intake | | | | | | | Other causes (n=319) | | 0.93 (0.65-
1.34)
P trend=0.73 | | | | | | | | Total mortality (n=640) | Component score: Red and processed | 0.64 (0.49,
0.84)
P trend=0.01 | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristic
s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|---------------------------------|--|---------------------|---|--------------------------|--|---| | | | | | | Breast cancer- specific mortality (n=192) Cardiovascular disease mortality (n=129) Other causes (n=319) | meat intake,
Q1 vs Q4 | 0.88 (0.54,
1.43)
P trend=0.60
0.52 (0.27,
0.98)
P trend=0.11
0.57 (0.39,
0.82)
P trend=0.02 | | | Ergas ¹⁶
2021,
Pathways
Study, USA | Prospective
cohort of cancer
survivors
(n=3660), mean
age:59.7 years,
race: White,
Black and Other | Diagnosis: 2005-2013 | Stage I 54.9%, II 34.3%, III 9.5%, IV 1.5%, ER+ 83.9%, ER- 16.0%. PR+ 64.1%, PR- 35.7%, HER2+ 12.9%, HER2- 83.2% | FFQ | Overall survival
(n=621) | 7-9 vs 0 points | 0.77 (0.59-
1.01)
P trend=0.07 | Age, BMI, chemotherapy, education, ER status, ethnicity, HER2 status, hormonal therapy, menopausal status, physical activity, PR status, race, radiation delivery, smoking, stage, surgery, total energy intake | | | | | | | Cancer specific
mortality (n=312) | | 0.75 (0.52-
1.09)
P trend=0.29 | Age,
education, ER
status,
ethnicity, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|------------------------------------|---------------------|-----------------------------------|-------------|--------------------------------------|---| | | | | | | Recurrence (n=449) | | 1.19 (0.89-
1.57)
P trend=0.55 | HER2 status,
menopausal
status,
physical | | | | | | | Other causes of death (n=322) | | 0.69 (0.48-
0.98)
P trend=0.03 | activity, PR
status, race,
smoking,
stage, total
energy intake | | | | | | | Overall survival (n=621) | Per 1 point | 0.96
P trend=0.07 | Age, BMI, chemotherapy, education, ER status, ethnicity, HER2 status, hormonal therapy, menopausal status, physical activity, PR status, race, radiation delivery, smoking, stage, surgery, total energy intake | | | | | | | Cancer specific mortality (n=312) | | 0.97
P trend=0.29 | Age,
education, ER
status, | | | | | | | Recurrence (n=449) | | 1.01
P trend=0.55 | ethnicity,
HER2 status, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|---|---------------------------------|------------------------------------|------------------------------|---|---------------------|--------------------------------------|--| | | | | | | Other causes of death (n=322) | | 1.00
P trend=0.03 | menopausal
status,
physical | | | | | | | ER positive Overall survival (n=502) | 7-9 vs 0 points | 0.68 (0.51-
0.91)
P trend=0.01 | activity, PR
status, race,
smoking, | | | | | | | ER negative Overall survival (n=132) | | 1.05 (0.59-
1.89)
P trend=0.63 | stage, total
energy intake | | | | | | | ER positive Overall survival (n=502) | Per 1 point | 0.94
P trend=0.01 | | | | | | | | ER negative Overall survival (n=502) | | 1.02
P trend=0.63 | | | Chinese Food | d Pagoda (CHFP) 2 | 007 Score | | | | | | | | Wang ²¹
2020, SBCS,
China | Prospective cohort of cancer survivors | Diagnosis: 2002-2006 | | Semi-
quantitative
FFQ | Overall survival (n=374) | 39.2 vs 14.5 points | 0.66 (0.48-
0.89)
P trend=0.01 | Age, BMI, chemotherapy, comorbidity, | | | (n=3450), age
range: 25-70
years, race: | | | | Breast cancer-
specific mortality
(n=252) | | 0.58 (0.40-
0.84)
P trend=0.01 | education,
energy intake,
ER status, | | | Chinese | | | | Recurrence (n=228) | | 0.64 (0.44-
0.93)
P trend=0.01 | HER2 status,
immunotherap
y, income, | | | | | | | Overall survival (n=252) | Per 5 points | 0.87 (0.79-
0.96) | marital status,
menopausal | | | | | | | Breast cancer-
specific mortality
(n=252) | | 0.86 (0.76-
0.97) | status, other factors, physical | | | | | | | Recurrence (n=228) | | 0.84 (0.74-
0.95) | activity, PR
status, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|---|---------------------------------|------------------------------------|------------------------------|--|---------------------|--------------------------------------|--| | | | | | | TNM I-II Overall
survival (n=295) | | 0.87 (0.78-
0.98) | radiotherapy,
stage | | | | | | | TNM III-IV Overall survival (n=59) | | 0.89 (0.66-
1.21)
| | | | | | | | TNM I-II Breast cancer-specific mortality (n=194) | | 0.84 (0.73-
0.96) | | | | | | | | TNM III-IV Breast cancer-specific mortality (n=44) | | 0.93 (0.63-
0.96) | | | | | | | | TNM I-II Recurrence
(n=185) | | 0.81 (0.70-
0.93) | | | | | | | | TNM III-IV
Recurrence (n=29) | | 1.23 (0.73-
2.09) | | | Chinese Food | d Pagoda (CHFP) 2 | 016 Score | | | | | | | | Wang ²¹
2020, SBCS,
China | Prospective cohort of cancer survivors | Diagnosis: 2002-2006 | | Semi-
quantitative
FFQ | Overall survival (n=374.0) | 35.7 vs 13.2 points | 0.75 (0.55-
1.01) P
trend=0.01 | Age, BMI,
chemotherapy,
comorbidity, | | | (n=3450), age
range: 25-70
years, race: | | | | Breast cancer-
specific mortality
(n=252.0) | | 0.70 (0.48-
1.01)
P trend=0.01 | education,
energy intake,
ER status, | | | Chinese | | | | Recurrence (n=228.0) | 35.7 vs 14 points | 0.67 (0.45-
0.99)
P trend=0.01 | HER2 status, immunotherap y, income, | | | | | | | Overall survival (n=374) | Per 5 points | 0.87 (0.79-
0.96) | marital status,
menopausal | | | | | | | Breast cancer-
specific mortality
(n=252) | | 0.85 (0.76-
0.96) | status, other factors, physical | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristic
s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|--|--|---|---|--------------------------------------|---| | | | | | | Recurrence (n=228.0) | | 0.84 (0.74-
0.95) | activity, PR
status,
radiotherapy,
stage | | Fasting | | | | | | | | | | Marinac ³⁰
2016,
WHEL, USA | Secondary
analysis of
clinical trials (n= | Recruitment:
1995-2007,
follow-up: | Stage I 37.8%, II
46.2%, III 16%,
well | 24-hour recall. At baseline, | All-cause mortality (n=420) | Eating episodes per day | 0.99 (0.89-
1.10)
P trend=0.86 | Age, race, education, comorbidity, | | | 2413), age range: 27-70 years, post- | mean 7.3
years | differentiated
16.1%,
moderately | year 1, and
year 4,
collected by | Breast cancer-
specific mortality
(n=329) | Per additional daily eating episode | 1.00 (0.89-
1.13)
P trend=0.96 | tumour stage,
grade,
radiotherapy, | | | menopausal 40.5%, poorly 82%, race: 36.8%, unspecified | telephone
on random
days during | Breast cancer recurrence (n=390) | | 0.97 (0.87-
1.08)
P trend=0.60 | tamoxifen use,
calories,
menopausal | | | | | · | | 6.6%, no current or planned chemotherapy | a 3-week period, stratified for | All-cause mortality (n=420) | Eating after
8pm, yes vs
no | 0.97 (0.76-
1.24)
P trend=0.80 | status, study
site,
intervention | | | | | | weekend vs
weekdays | Breast cancer-
specific mortality
(n=329) | | 0.98 (0.74-
1.28)
P trend=0.86 | group | | | | | | | Breast cancer recurrence (n=390) | - | 0.97 (0.76-
1.24)
P trend=0.81 | | | | | | | | All-cause mortality (n=420) | Nightly fasting,
<13 vs ≥13
hours/night | 1.22 (0.95-
1.56)
P trend=0.12 | | | | | | | | Breast cancer-
specific mortality
(n=329) | _ | 1.21 (0.91-
1.60)
P trend=0.19 | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristic
s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|---|--|---|--------------------------------------|--|---| | | | | | | Breast cancer recurrence (n=390) | | 1.36 (1.05-
1.76)
P trend=0.02 | | | Prudent Diet | | | | | | | | | | Kwan ⁸
2009,
LACE, USA | Prospective cohort of cancer survivors | Diagnosis: 1997
2000, follow-up:
mean 4.2 years, | Stage I
48%, IIA
32.7%, IIB
16.3%, IIIA
3%,
ER+/PR+ | Semi-
quantitative
FFQ, 122 | All-cause mortality (n=213) | Q4 vs Q1 | 0.57 (0.36-
0.90)
P trend=0.02 | Age at diagnosis, energy intake, | | | (n=1901), age
range: 18-79
years, post- | 226 deaths, 128 from breast cancer, 29 from | | items, self-
administere
d, diet over | Breast cancer-
specific mortality
(n=121) | | 0.79 (0.43-
1.43)
P trend=0.57 | race, BMI,
physical
activity, | | | menopausal
65%, race:
mostly White | cardiovascular
disease, 69 from
other causes | 68.1%,
ER+/PR-
14.6%, ER-
/PR+ 1.9%,
ER-/PR- | the last 12
months
assessed
at 11- and
39-months
post-
diagnosis | Additional breast cancer events (n=256) | | 0.95 (0.63-
1.43)
P trend=0.94 | smoking, menopausal status, weight change, tumour stage, hormone receptor status, treatment | | | | | 15.5%,
treatment
completed
except for
adjuvant
hormonal
therapy | | Non-breast-cancer-
related death (n=92) | | 0.35 (0.17-
0.73)
P trend=0.03 | | | Kroenke ⁷
2005(a),
NHS | Population-
based cohort
study (n=2619), | Diagnosis: 1982
1998, follow-up:
median 9 years, | - Invasive breast cancer | FFQ, diet measured closest to | All-cause mortality (n=414) | Q5 vs Q1 | 0.78 (0.54-
1.12)
P trend=0.25 | Age, BMI,
energy intake,
smoking, | | | age range: 30- 55 years, race: 414 deaths, 242 from breast | | and at least
12 months
after breast | Breast cancer-
specific mortality
(n=242) | | 1.07 (0.66-
1.73)
P trend=0.57 | physical
activity, age of
menarche, oral | | | | | cancer, 172 fron
other causes | 1 | cancer
diagnosis | Non-breast-cancer-
related death(n=172) | | 0.54 (0.31-
0.95)
P trend=0.03 | contraceptive,
menopausal
status,
hormonal
therapy, | | Author,
year, study
name,
country,
WCRF Code | Study
description | diagnosis | Disease
characteristic
s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|-------------------------------------|--|---|---------------------|--|----------|--------------------------------------|---| | | | | | | | | | tamoxifen use,
chemotherapy,
birth index,
age at
menopause,
tumour stage | | Lei ⁹ 2021,
HKBCSS,
China | Prospective cohort cancer survivors | Diagnosis:2011-
2014, follow-up:
median 54.1 | Stage I
31.6%, II
48.2%, III | FFQ | Overall mortality (n=98.0) | Q3 vs Q1 | 1.45 (0.82-
2.56)
P trend=0.20 | Age at follow-
up interview,
BMI, | | (n=1226), mea
age: 52.3 year
post-
menopausal
48.5%, race: | menopausal 48.5%, race: | e: 52.3 years, st-enopausal .5%, race: | 19.7%, ER+
73.6%, PR +
56.4%,
HER2+
27.2% | | Breast cancer-
specific mortality
(n=88.0) | | 1.37 (0.76-
2.49)
P trend=0.30 | chemotherapy,
comorbidity,
ER status,
HER2 status,
histology, | | | Chinese | | | | Recurrence (n=165.0) | | 1.01 (0.64-
1.59)
P trend=0.99 | hormonal
therapy,
menopausal | | | | | | | HR+ Overall mortality (n=70.0) | | 1.31 (0.68-
2.54)
P trend=0.42 | status,
physical
activity, PR | | | | | | | HR- Overall mortality (n=26.0) | | 1.89 (0.54-
6.64)
P trend=0.32 | status,
radiotherapy,
total energy
intake, tumour
stage | | | | | | | HR+ Breast cancer-
specific mortality
(n=64.0) | | 1.36 (0.68-
2.73)
P trend=0.39 | | | | | | | | HR- Breast cancer-
specific mortality
(n=22.0) | | 1.79 (0.44-
7.35)
P trend=0.45 | | | | | | | | HR+ Recurrence (n=117.0) | | 1.17 (0.71-
1.94)
P trend=0.53 | | | Author,
year, study
name,
country,
WCRF Code | Study
description | diagnosis | Disease
characteristic
s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|---|--|--|--------------------------------------|--|---| | | | | | | HR- Recurrence (n=45.0) | | 0.81 (0.32-
2.05)
P trend=0.51 | | | Western die | tary pattern | | | | | | | | | Kwan ⁸
2009,
LACE, USA | Prospective cohort of cancer survivors | Diagnosis: 1997-
2000, follow-up:
mean 4.2 years | Stage I
48%, IIA
32.7%, IIB | Semi-
quantitative
FFQ, 122 | Overall death (n=226) | Q4 vs Q1 | 1.53 (0.93-
2.54)
P trend=0.05 | Age at diagnosis, energy intake, | | | (n=1901), age
range: 18-79
years, post- | 226 deaths, 128
breast
cancer
mortality, 29 | 16.3%, IIIA
3%
68.1%, | items, self-
administere
d, diet over | Breast cancer-
specific mortality
(n=128) | | 1.20 (0.62-
2.32)
P trend=0.60 | race, BMI,
physical
activity, | | | menopausal deaths from ER+/PR-65%, race: cardiovascular 14.6%, mostly White disease, 69 other ER+/PR- | ER+/PR-, | , the last 12 months | Recurrence (n=268) | | 0.98 (0.62-
1.54)
P trend=0.94 | smoking,
menopausal
status, weight | | | | | causes of deaths | 1.9%, ER-
/PR+,
15.5%, ER-
/PR- | at 11 and
39 months
post-
diagnosis | Non-breast-cancer-
related death (n=69) | | 2.15 (0.97-
4.77)
P trend=0.02 | change,
tumour stage,
hormone
receptor
status,
treatment | | Lei ⁹ 2021,
HKBCSS,
China | Prospective cohort of cancer survivors (n=1226), mean | Diagnosis:2011-
2014, follow-up:
median 54.1
months, loss to | Stage I
31.6%, II
48.2%, III
19.7%, ER + | FFQ | Overall mortality (n=98.0) | Q3 vs Q1 | 0.79 (0.41-
1.52)
P trend=0.48 | Age at follow-
up interview,
BMI,
chemotherapy, | | | age: 52.3 years,
post-
menopausal
48.5%, race:
Chinese | follow-up: 10.4% | 73.6%, PR+
56.4%,
HER2+
27.2% | | Breast cancer-
specific mortality
(n=88.0) | | 0.90 (0.45-
1.77)
P trend=0.75 | comorbidity,
ER status,
HER2 status,
histology,
hormonal | | | | | | | Recurrence (n=165.0) | | 1.03 (0.61-
1.75)
P trend=0.89 | therapy,
Menopausal
status, | | Author,
year, study
name,
country,
WCRF Code | Study
description | diagnosis | Disease
characteristic
s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|---|--|--|---|---|----------|--|---| | | | | | | HR+ Overall mortality (n=70.0) HR- Overall mortality (n=26.0) HR+ Breast cancerspecific mortality (n=64.0) HR- Breast cancerspecific mortality (n=22.0) HR+ Recurrence (n=117.0) HR- Recurrence (n=45.0) | | 0.75 (0.35- 1.60) P trend=0.46 0.65 (0.16-2.65) P trend=0.55 0.87 (0.39- 1.95) P trend=0.77 0.93 (0.20- 4.26) 1.21 (0.67- 2.17) P trend=0.50 0.65 (0.22- 1.93) P trend=0.43 | physical
activity, PR
status,
radiotherapy,
total energy
intake, tumour
stage | | Kroenke ⁷
2005(a),
NHS, USA | Population-
based cohort
study (n=2619),
age range: 30-
55 years, race:
mostly White | Diagnosis: 1982-
1998, follow-up:
median 9 years,
until 2002, 414
deaths, 242 from
breast cancer,
172 from other
causes | Invasive
breast
cancer | FFQ, diet
measured
closest to
and at least
12 months
after breast
cancer
diagnosis | All-cause mortality (n=414) Breast cancer- specific mortality (n=242) Non-breast-cancer- related death (n=172) | Q5 vs Q1 | 1.53 (1.03-
2.29)
P trend=0.08
1.01 (0.60-
1.70)
P trend=0.99
2.31 (1.23-
4.32)
P trend=0.04 | Age, BMI, energy intake, smoking, physical activity, age of menarche, oral contraceptive, menopausal status, hormonal therapy, tamoxifen use, chemotherapy, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristic
s treatment | Exposure assessment | Outcome (Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|---|--|--------------------------|---|----------------------|--| | | | | | | | | | birth index,
age at
menopause,
tumour stage | | Healthy Patt | ern | | | | | | | | | Pierce ¹¹
2007(b),
WHEL,
USA | Secondary
analysis of
clinical trials (n=
1490), mean
age: 50 years,
pre- and post-
menopausal,
race: mostly
White | Diagnosis: 1991-
2000, follow-up:
average 6.7
years, until 2005
135 deaths, 118
from breast
cancer, 10 from
other cancers, 7
from non-cancer
causes | 40%, II 45%,
III 15%,
grade I
15.9%, II
39.8%, III
35.8%,
unknown | 24-hour
recall, at an
average 20
months
post-
diagnosis | Overall morality (n=135) | Healthy pattern (fruit and vegetables, physical activity), high/high vs low/low | 0.56 (0.31-
0.98) | Age, alcohol intake, receptor status, time from diagnosis to randomization | Abbreviations: CPS-II, Cancer Prevention Study II Nutrition Cohort; HEAL, Health, Eating, Activity, and Lifestyle Study; IWHS, Iowa Women's Health Study; LACE, Life After Cancer Epidemiology; NHS, Nurses' Health Study; WHI, Women's Health Initiative; WHEL; Women's Healthy Eating and Living, ## Supplementary Table S8. Descriptive table of the included observational studies of post-diagnosis fruit and vegetable intake and breast cancer prognosis | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|-------------------------------------|--|---|--|--|--|---| | Fruit and veg | etables | | | | | | | | | Farvid ³¹ MS, Population-
2020, NHS based cohort
and NHSII, (n=8927) | Diagnosed:
1980-2010
(NHS) and
1991-2011
(NHSII); follow | Invasive breast cancer. Stage I-III | FFQ 1980-2010
to 2014 (NHS)
and 1991-2011
to 2015 (NHSII) | All-cause
mortality
(n=2521.0) | 7.4 vs 2.2
serving/ day | 0.82 (0.71-
0.94)
P
trend=0.004 | Age at diagnosis, age at menopause, alcohol | | | | | Up: Median
11.5 years | | | Cancer
specific
mortality
(n=1070.0) | | 0.88 (0.71-
1.09)
P trend=0.55
0.93 (0.88-
0.98) | intake, aspirin use, BMI change, calendar year, chemotherap y, diagnosis | | | | | | | All-cause
mortality
(n=2521) | Per 2
serving day | | | | | | | | FFQ 1980-2010
to 2014 (NHS)
and 1991-2011 | Cancer
specific
mortality
(n=1070.0) | | 0.98 (0.90-
1.06) | year, er/pr
status,
hormonal
therapy, | | | | | | | Cardiovascul
ar disease
mortality
(n=301.0) | 7.4 vs 2.2
serving/ day | 0.96 (0.63-
1.45)
P trend=0.48 | menopausal
status, oral
contraceptiv
e, physical | | | | | | | ER positive
All-cause
mortality
(n=1847) | Per 2
serving day | 0.92 (0.87-
0.98) | activity, prediagnosis BMI, race, radiotherapy, smoking, stage, study, time between | | | | | | | ER negative
All-cause
mortality
(n=445) | | 0.88 (0.77-
1.00) | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|---|----------|----------------------|--| | | | | | | Stage I
All-cause
mortality
(n=1279) | | 0.88 (0.82-
0.95) | cancer
diagnosis
and
exposure | | | | | | | Stage II
All-cause
mortality
(n=794) | | 0.91 (0.83-
1.00) | assessment | | | | | | | Stage III All-cause mortality (n=448) | _ | 1.02 (0.89-
1.15) | - | | | | | | | ER positive
Cancer
specific
mortality
(n=769) | | 0.99 (0.90-
1.08) | | | | | | | | ER negative
Cancer
specific
mortality
(n=212) | | 0.95 (0.79-
1.13) | | | | | | | | Stage I Cancer specific mortality (n=339) | | 0.93 (0.80-
1.07) | | | | | | | | Stage II Cancer specific mortality (n=397) | | 0.91 (0.79-
1.03) | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95%
CI) | Covariates | |---|---|--|---|---|---|--|--|---| | | | | | | Stage III Cancer specific mortality (n=334) | | 1.05 (0.91-
1.21) | | | McCullough ¹ ⁵ ML, 2016, CPS-II Nutrition Cohort, USA | Population-
based cohort,
(n= 2152)
mean age:70.7
years | Recruitment
between
baseline (1992-
1993) and June
2011 Follow
up= 19 years | Locally and regionally staged breast cancer ER+ 79.5%; ER- 9.7%; PR+ 57.2%; PR- 21.1%, local: 77.3%, regional: 22.7% grade at diagnosis: well differentiated 22.6%, moderately differentiated: 39.0%; poorly or undifferentiated: 23.7%, surgery: 86.1%, chemotherapy: 22.9%, radiation: 56.0%, targeted therapy: 62.4% | 68-item block FFQ with baseline survey in 1992 (12 months post- diagnosis to allow for completion of active treatment) and modified 152-item Harvard FFQ with follow-up surveys between 1999- 2003 The mean SD time between 1992 baseline to diagnosis was 8.4 ± 4.8 years and from breast cancer diagnosis to post-diagnostic diet assessment was 3.3 ± 1.5 years. | (n=334) All-cause mortality (n=640) Breast cancer-specific mortality (n=192) Mortality not including breast cancer or CVD (n=319) Cardiovascul ar disease mortality (n=129) | Combination of meeting "five a day" and consuming a variety of fruits and vegetables 3 vs. 0 score | 1.03 (0.80-
1.33) P trend=0.55 1.31 (0.83-
2.06) P trend=0.19 0.93 (0.65-
1.34) P trend=0.73 0.80 (0.45-
1.44) P trend=0.85 | Age at diagnosis, diagnosis year, tumour stage, grade, oestrogen and progesterone receptor status, initial treatment, BMI, smoking status, physical activity, energy intake, total grain, red and processed meat intake | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|---|--|---|--|--|--|--| | Pierce ¹¹ JP,
2007(b),
WHEL | Follow-up study of 1490 women age ≤70 years, average age, 50 years Randomly assigned to the control group in a dietary trial within 48 months of diagnosis (average, 24 months) between 1995 and 2000. Enrolment was an average of 2 years postdiagnosis all have completed primary treatments | Diagnosed: 1991-2000 Follow up= 6.7 years, until 2005. 135 total deaths, 118 breast cancer mortality, 10 deaths from other cancers, 7 non-cancer deaths, 236 breast cancer events Lost-to-follow up n=7 | Early stage breast cancer 40% stage I (≥1cm), 45% stage III, 15% stage III, 15.9%. 63.1% ER+/PR+, 10.8% ER+/PR-, 5.1%ER-/PR-, Grade I 39.8%, grade II 35.8%, grade III 8.3%, unknown 31.4%, none-chemotherapy, 25.7% nonanthracycline, 42.8% anthracycline; 42% adjuvant tamoxifen | At baseline four 24-hr dietary recalls on random days during a 3-week period telephone-based dietary assessment Use plasma carotenoid concentrations to validate reported fruit and vegetables intake | Mortality
(n=135) | 6.94-19.96
vs. 0.33-3.43
serving/day | 0.63 P categorical =0.02 | Univariate (age) stage, grade, BMI, physical activity, were not statistically significant in initial multivariate models | | Fruits Farvid ³¹ MS, 2020, NHS and NHSII, USA | Population-
based cohort
(n=8927) | Diagnosed:
1980-2010
(NHS) and
1991-2011
(NHSII) follow
Up: Median
11.5 years | Invasive breast
cancer, Stage I-III | FFQ 1980-2010
to 2014 (NHS)
and 1991-2011
to 2015 (NHSII) | All-cause
mortality
(n=2521.0)
Cancer
specific | 2.8 vs 0.5
serving/ day | 0.93 (0.81-
1.07)
P trend=0.18
1.03 (0.83-
1.26) | Age at diagnosis, age at menopause, alcohol intake, aspirin use, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|--|----------------------------|--------------------------------------|---| | | | | | | mortality
(n=1070.0) | | P trend=0.93 | BMI change, calendar | | | | | | | All-cause
mortality
(n=2521) | Per 2
serving day | 0.93 (0.83-
1.03) | year,
chemotherap
y, diagnosis | | | | | | | Cancer
specific
mortality
(n=1070.0) | | 1.01 (0.85-
1.19) | year, er/pr
status,
hormonal
therapy, | | | | | | | Cardiovascul
ar disease
mortality
(n=311.0) | 2.8 vs 0.5
serving/ day | 1.27 (0.85-
1.88)
P trend=0.39 | menopausal
status, oral
contraceptiv
e, physical | | | | | | | ER positive
All-cause
mortality
(n=1847) | Per 2
serving day | 0.94 (0.83-
1.07) | activity,
prediagnosis
BMI, race,
radiotherapy, | | | | | | | ER negative
All-cause
mortality
(n=445) | | 0.82 (0.62-
1.08) | smoking,
stage, study,
time
between | | | | | | | Stage I
All-cause
mortality
(n=1279) | | 0.79 (0.68-
0.93) | cancer
diagnosis
and
exposure | | | | | | | Stage II All-cause mortality (n=794) | | 1.00 (0.82-
1.23) | assessment | | | | | | | ER positive
Cancer
specific | | 1.02 (0.84-
1.24) | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|--|-----------------------------------|---|---|--------------------|-------------------------|--| | | | | | | mortality (n=769) ER negative Cancer specific mortality (n=212) | - | 0.93 (0.64-
1.36) | | | | | | | | Stage I
Cancer
specific
mortality
(n=339) | | 0.87 (0.61-1.16) | | | | | | | | Stage II Cancer specific mortality (n=397) Stage III | | 0.94 (0.72-1.24) | | | | | | | | Cancer
specific
mortality
(n=334) | | 1.65) | | | Williams ³²
PT, 2014,
NRWHS,
United
States | Prospective cohort (n= 986) breast cancer survivors identified through the baseline questionnaires of the National Runners' and Walkers' | Follow up= 9.1
years (9.08 ±
0.83 years), 46
died from
breast cancer | No specific information provided | Self-reported information on diet using a baseline questionnaire mean 7.9± 7.3 years after diagnosis questions on intake of meat, fruit, correlations | Breast
cancer-
specific
mortality
(n=46) | Per 1
piece/day |
1.104 (0.866-
1.346) | Age, race,
exercise
(runner vs.
Walker) | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|--|--|--|----------------------------|---|---| | | Health Surveys, survivors diagnosed 7.9 years before baseline | | | for these diets
were obtained
from a 4-day
diet records
from 100 men
(r=0.46 for red
meat and r=0.38
for fruit) | | | | | | Beasley ³³ JM, 2011, CWLS, United States | Follow up of cases of population-based case-control studies (n= 4441) age range: 20-79 years, 73.3% postmenopaus al | Diagnosed:
1987-1999,
follow up= 5.5
years, until
2005, 525
deaths, 137
from breast
cancer, 132
from
cardiovascular
disease | Primary invasive breast cancer, 72.8% local, 27.2% regional, surgery 97.9%, radiotherapy 49.8%, hormonal therapy 57.8%, chemotherapy 31.9% | Validated 126-
item FFQ of
post-diagnosis
behaviour from
1998-2001 | All-cause survival (n = 525) Breast cancer survival (n=137) | 2.5 vs. 0.1
serving/day | 1.38 (0.80 -
1.30) P trend=0.67 1.39 (0.64-
2.99) P trend=0.16 | Age, residence, menopausal status, smoking, tumour stage, alcohol intake, history of hormonal replacement therapy, interval between diagnosis and diet assessment, BMI, physical activity, breast cancer treatment, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|--|--------------------------------------|---|-----------------------------|-----------|---------------------------------------|---| | | | | | | | | | energy
intake | | Holmes ³⁴ MD, 1999, NHS, United States (superseded by Farvid ³¹ , 2020) | Cancer
survivors of
population-
based
prospective
cohort study
(n= 1982) pre-
and post-
menopausal.
Mean age: 54
years | Diagnosed: 1976-1990, mean follow up=157 months, until 1994, 378 deaths, 326 breast cancer mortality | Invasive breast carcinoma, grade 1-3 | Validated FFQ's in 1980, 1984, 1986, and 1990 Intakes of total calories, alcohol and 83 nutrients were assessed, mean interval between diagnosis of breast carcinoma and diet assessment was 24 months (SD=18 months) | All-cause mortality (n=378) | Q4 vs. Q1 | 1.07 (0.77 -
1.49)
P trend=0.40 | Age, time between exposure assessment and cancer diagnosis, calendar year of diagnosis, oral contraceptive use, postmenopa usal hormone therapy use, smoking, age at first birth and parity, number of metastatic lymph nodes, tumour size, BMI, menopausal status, energy intake | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|--|---|--|--|--|--|--| | | | | | | | | | | | Farvid ³¹ ,
2020, NHS
and NHSII,
USA | Population-
based cohort
(n=8927) | Diagnosed:1980
-2010 (NHS)
and 1991-2011
(NHSII) follow
Up: Median | Invasive breast cancer. Stage I-III | FFQ 1980-2010
to 2014 (NHS)
and 1991-2011
to 2015 (NHSII) | All-cause
mortality
(n=2521.0) | 5.1 vs 1.4
serving/ day | 0.84 (0.72-
0.97)
P
trend=0.001 | Age at diagnosis, age at menopause, alcohol | | | | 11.5 years | | | Cancer
specific
mortality
(n=1070.0 | Per 2 serving day | 0.89 (0.82-
0.95)
0.94 (0.84-
1.05) | intake, aspirin use, BMI change, calendar year, | | | | | | | Cardiovascul
ar disease
mortality
(n=311.0)
ER positive
All-cause | 5.1 vs 1.4
serving/ day Per 2 serving
day | 0.76 (0.49-
1.16)
P trend=0.08
0.88 (0.81-
0.96) | chemotherap
y, diagnosis
year, ER/PR
status,
hormonal
therapy, | | | | | | | mortality
(n=1847)
ER negative
All-cause
mortality
(n=445) | | 0.84 (0.70-
1.01) | menopausal
status, oral
contraceptiv
e, physical
activity,
prediagnosis | | | | | | | Stage I
All-cause
mortality
(n=1279) | | 0.89 (0.77-
0.95) | BMI, race,
radiotherapy,
smoking,
stage, study, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|---|----------|----------------------|--| | | | | | | Stage II All-
cause
mortality
(n=794) | | 0.86 (0.75-
0.98) | time
between
cancer
diagnosis | | | | | | | Stage III All-
cause
mortality
(n=448) | _ | 0.92 (0.77-
1.09) | and exposure assessment | | | | | | | ER positive
Cancer
specific
mortality
(n=769) | | 0.95 (0.83-
1.08) | | | | | | | | ER negative
Cancer
specific
mortality
(n=212) | | 0.95 (0.74-
1.22) | | | | | | | | Stage I
Cancer
specific
mortality
(n=339) | | 0.96 (0.79-
1.17) | | | | | | | | Stage II
Cancer
specific
mortality
(n=397) | | 0.84 (0.70-
1.01) | | | | | | | | Stage III Cancer specific mortality (n=334) | | 0.96 (0.79-
1.16) | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|-----------------------------------|--|--|---|--|---| | Nechuta ³⁵ S,
2013,
ABCPP | Pooled
analysis of 4
cohorts: LACE,
WHEL, NHS,
SBCSS (n=
11390), mean
age: 56.9 years | Diagnosed
between 1990-
2006, mean
follow up= 9
years, 1725
deaths 1421
recurrences | Invasive breast cancer | FFQ, mean of 22 months post-diagnosis, validated for major nutrients and/or food groups or based on a validated questionnaire SBCSS 29 items, WHEL Arizona Food Frequency Questionnaire 153-items, LACE >100 items | Total mortality ER-positive Total mortality ER-positive Total mortality ER-negative Total mortality Stage I-II Total
mortality Stage III Total mortality Sage III | egetables ≥78 vs. <39 g/ day Q4 vs Q1 Q4 vs Q1 ≥78 vs. <39 g/day | 1.03 (0.88- 1.20) P trend=0.82 0.93 (0.79- 1.09) P trend=0.35 1.11 (0.84- 1.45) P trend=0.13 P- interaction= 0.53 1.02 (0.87- 1.20) P trend=0.60 0.94 (0.73- 1.22) P trend=0.72 P interaction= 0.76 0.91 (0.76- 1.10) P trend=0.30 1.04 (0.74- 1.47) | Age at diagnosis, ER/PR status, TNM stage, chemotherap y, surgery, radiotherapy, hormonal therapy, smoking, BMI, exercise, menopausal status, race/ethnicity, education | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|---|----------|---|------------| | | | | | | Breast cancer mortality Breast cancer recurrence (n=1421) Breast cancer recurrence (n=1421) Breast cancer recurrence (n=1421) Breast cancer recurrence ER-positive | | P trend=0.87 P interaction= 0.28 1.09 (0.92– 1.30) P trend=0.72 1.05 (0.89- 1.24) P trend=0.60 1.05 (0.89- 1.24) P trend=0.60 1.05 (0.88- 1.25) P trend= 0.65 1.26 (0.92- | | | | | | | | cancer recurrence ER-negative Breast cancer recurrence Stage I-II | | 1.72) P trend=0.27 P interaction= 0.77 1.14 (0.95- 1.36) P trend=0.28 | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|--|--|--|--|--|---| | | | | | | Breast
cancer
recurrence
Stage III | | 1.05 (0.79-
1.39)
P trend=0.82
P
interaction=
0.44 | | | | | | | | Breast cancer recurrence Tamoxifen Breast cancer recurrence No tamoxifen | | 1.02 (0.84-
1.24)
P trend=0.76
1.19 (0.80-
1.75)
P trend=0.78 | | | | | | | | Non-breast
cancer
related
mortality | - | interaction=
0.53
0.86 (0.69–
1.08)
P trend=
0.77 | | | Beasley ³³
JM, 2011,
CWLS,
United | Follow up of cases of population-based case- | Diagnosed:
1987-1999,
42% of women
completed the | Primary invasive
breast cancer
72.8% local, 27.2%
regional, surgery | Using a
validated 126-
item FFQ of
post-diagnosis | Cruciferous v
All-cause
survival | egetables
0.7 vs. 0.1
serving/ day | 1.02 (0.8 -
1.3) | Age,
residence,
menopausal
status, | | States | control study
(n= 4441), age
range: 20-79 | FFQ Follow up=
5.5 years, until
2005, 525 | 97.9%,
radiotherapy
49.8%, hormonal | behaviour from
1998-2001 | Breast cancer- | | P trend=0.35
0.95 (0.59-
1.54) | smoking,
tumour
stage, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|---|---|---|-----------------------------|--|---| | | years, post-
menopausal
(73.3%) | deaths, 137
from breast
cancer, 132 | therapy 57.8%,
chemotherapy
31.9% | | specific
mortality | | P trend=0.86 | alcohol
intake,
history of | | | | from | | | Vegetables | hormonal | | | | | | cardiovascular
disease | | | All-cause
survival | 2.5 vs. 0.4
serving/ day | 1.44 (0.91-
2.27) | replacement
therapy,
interval | | | | | | | | | P trend=0.35 | between | | | | | | | Breast cancer-specific | | 0.96 (0.38-
2.45) | diagnosis
and diet
assessment, | | | | | | | mortality | | P trend=0.43 | BMI,
physical
activity,
breast
cancer
treatment,
energy
intake | | Thomson ³⁶ | Patients in the | Clinical trial | Invasive breast | Pre-scheduled | Cruciferous | | | Time from | | CA, 2011,
WHEL | control arms of
a randomised
controlled trial
of the effect of | conducted:
1995-2006,
follow up = 7.3
years | cancer 74.2% ER+,
24.5% ER-, 1.3%
not done/unknown.
AJCC stages: | 24 hours recall,
questionnaire
collected via
telephone from | Breast
cancer
recurrence
(n=487) | T3 vs. T1 | 0.85 (0.69-
1.06) | diagnosis to
study entry,
menopausal
status, | | | plant-based
dietary patterns
(n= 3080),
Peri-, pre-, and
postmenopaus
al, mean age: | | 12.5% IIB, 12.1% IIIA, 3.7% IIIC. Chemotherapy 70%, radiotherapy 61.5%, current | study-trained
dietary
assessors over
a 3-week period
including
weekday and | Breast
cancer
recurrence
Tamoxifen
users
(N=257) | | 0.65 (0.47-
0.89) | intervention
status,
cancer
stage,
oestrogen
receptor | | | 51.2 years,
enrolled on
average 23.5 | | tamoxifen use: 59.5% | weekends | Breast
cancer
recurrence | | 1.08 (0.79-
1.47)
P interaction= | status,
chemotherap
y, BMI, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|-----------------------------------|--|---|------------------------------------|--|--| | | months post-
diagnosis,
completed | | | | Non-users of tamoxifen (n=230) | | 0.005 | physical
activity,
clinical site, | | | treatment for | | | | Vegetables | ' | ' | tamoxifen | | | Stage I, II or III
(AJCC VI
classification) | | | | Breast
cancer
recurrence
(n=487) | T3 vs. T1 | 0.69 (0.55-
0.87) | use | | | | | | | Breast
cancer
recurrence
Tamoxifen
users
(N=257) | | 0.56 (0.41-
0.77) | | | | | | | | Breast
cancer
recurrence
Non-users of | | 0.77 (0.56-
1.08)
P interaction= | | | | | | | | tamoxifen (n=230) | | 0.04 | | | Holmes ³⁴
MD, 1999, | Cancer
survivors of | Diagnosed:
1976-1990, | Invasive breast carcinoma; grade | Validated Food frequency | Vegetables | 1 | ' | Age, time
between | | NHS, United
States | population-
based
prospective
cohort study | follow up= 157
months, until
1994, 378
deaths, 326 | 1-3 | questionnaires
in 1980, 1984,
1986, and 1990
Intakes of total | All-cause
mortality
(n=378) | >4.20 vs.
≤2.12
servings/day | 0.81
(0.59-1.11)
P trend=0.07 | exposure
assessment
and cancer
diagnosis, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|---|--|---|-------------------------|--|--| | (superseded
by Farvid ³¹ ,
2020) | (n= 1982) pre-
and post-
menopausal,
mean age: 54
years | breast cancer mortality | | calories, alcohol
and 83 nutrients
were assessed,
mean interval
between
diagnosis of
breast
carcinoma and
diet assessment
was 24 months
(SD=18 months) | All-cause mortality With metastasis (N=250) All-cause mortality Without metastasis (N=128) | Q4
vs Q1 | 0.90
(0.60-1.33)
P trend=0.53
0.62
(0.36-1.07)
P trend=0.02 | calendar year of diagnosis, oral contraceptiv e use, postmenopa usal hormone therapy use, smoking, age at first birth and parity, number of metastatic lymph nodes, tumour size, BMI, menopausal status, energy intake | | Hebert ³⁷ J,
1998,
MSKCC,
United
States | Prospective cohort of breast cancer survivors (n=95) preand postmenopausal, | Diagnosed:
1982-1984,
follow up= 10
years, until
1991, 109 had a
recurrence of
their diseases,
87 total death, | Early-stage breast
cancer, 57.1%
ER+. TNM, 39.7%,
stage I, 40.6%
stage II, 19.7%
stage III | 34-item semi-
quantitative FFQ
at cancer
diagnosis and
after two years
when women
were free from
cancer | Vegetable's change Breast cancer-specific mortality Post-menopausal | 1 piece
increase/day | 0.31
P=0.08 | Tumour
stage, age,
vegetables,
nbmis (proxy
of total
energy
intake) | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|-------------------------|---------------------------------|---|---------------------|---|----------|----------------|------------| | | mean age:
52.2 years | 73 breast cancer mortality | | | Breast
cancer
recurrence
Post-
menopausal | | 0.46
P=0.08 | | Abbreviations: ABCPP, After Breast Cancer Pooling Project; BCFR; Breast Cancer Family Registry; CWLS, Collaborative Women's Longevity Study; LACE, Life After Cancer Epidemiology; NHS, Nurses' Health Study; SBCCS, Shanghai Breast Cancer Genetics Study; WHEL; Women's Healthy Eating and Living ## Supplementary Table S9. Descriptive table of the included observational studies of post-diagnosis wholegrain intake and breast cancer prognosis | Publication
, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |--|---|---|---|--|--|---------------------------------------|---|--| | Dairy Foods | | · | | | | | | | | Andersen ³⁸
2020, DCH | Population-
based cohort
study (n=977)
Mean age: 66 | Diagnosis year
1993 – 2013
Follow up = 7
years | ER positive 78%,
negative 16%,
missing 6% | FFQ, at baseline, 5 years after diagnosis | All-cause
mortality
(n=175) | Continuous
per 50g/day
increase | 0.99 (0.88-
1.12) | Age at diagnosis, year at diagnosis, time of follow-up | | | years | 175 total deaths,
121 breast cancer
deaths, 152 | | ulagriosis | Breast cancer mortality (n=121) | , | since diagnosis,
alcohol, smoking,
physical activity, | | | | | recurrences | | | Recurrence
(n=152) | | 0.98 (0.83-
1.13) | BMI, education
tumour size, nodal
status, ER status | | | | | | mortality diagnosi | Pre- to post-
diagnosis
changes | 0.94 90.84-
1.06) | Age at diagnosis, year at diagnosis, time of follow-up | | | | | | | | Breast cancer
mortality
(n=121) | 50g/day | 0.96 (0.84-
1.11) | since diagnosis, alcohol, smoking, physical activity, | | | | | | | Recurrence
(n=152) | | 0.92 (0.79-
1.07) | BMI, education | | McCullough ¹⁵ 2016, CPS-II, USA | Population-
based cohort
study (n=2152),
age range: 40- | Diagnosis: 1992-
2011, follow-up:
mean 9.9 years,
640 deaths,192 | Local 77.3%,
regional 22.7%,
grade well
differentiated | FFQ, self-
administered
at a
minimum of | All-cause
mortality
(n=640) | Q4 vs Q1 | 1.09 (0.86-
1.38) | age at diagnosis,
diagnosis year,
tumor stage, tumor | | JOA | 93 years, race: mostly White from breast cancer, 129 from CVD additis, 132 from differentiated 22.6%, moderately differentiated diagnosis | Breast cancer
mortality
(n=192) | | 1.24 (0.81-
1.88) | grade, ER status, PR status, treatment, BMI, smoking status, | | | | | Publication
, WCRF
Code | Study description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |---|---|---|---|---|--|-------------------|--------------------------------------|--| | | | | 39.0%, poorly or
unknown 23.7%,
ER+:79.5%; ER-
:9.7%;
PR+:57.2%; PR- | | Cardiovascular disease mortality (n=129) | | 1.43 (0.82-
2.5) | physical activity,
energy intake, fruit
and vegetable intake,
red and processed | | | | | :21.1% | | Other causes of death | | 0.91 (0.64-
1.29) | meat | | Beasley ³³ ,
2011,
CWLS,
United
States | 2011, cases of CWLS, (population-based) case- | Diagnosis year:
1998-2001
Follow up= 5.5
years | Primary invasive
breast cancer;
Stages: 72.8%
local, 27.2%
regional, Surgery: | Validated
FFQ (126
items), 1-16
years after
diagnosis | All-cause
mortality
(n=525) | 57 vs 7 g/
day | 0.79 (0.59-
1.08)
P trend=0.20 | Age, residence, menopausal status, smoking, stage, alcohol intake, hormonal therapy, interval between diagnosis and baseline interview, BMI, physical activity, breast cancer treatment, energy intake | | | (n=4441)
Age range: 20-
79 years,
73% Post-
menopausal
99% White | | 97.9%;
Radiotherapy:
49.8%; Hormonal
therapy: 57.8%;
Chemotherapy:31
.9% | (42% within 5 years) | Breast cancer
mortality
(n=137) | | 0.83 (0.46-
1.48)
P trend=0.30 | | Abbreviations: CPS-II, Cancer Prevention Study-II Nutrition Cohort; CWLS, Collaborative Women's Longevity Study; DCH, Diet Cancer and Health study. # Supplementary Table S10. Descriptive table of the included observational studies of post-diagnosis meat intake and breast cancer prognosis | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|---------------------------------|--|---|------------------------------------|---------------------------------------|--|--| | Holmes ³⁹
MD, 2017,
NHS | Prospective cohort (n= 6348) | Follow up = 16 years | Radiation
therapy 54.6%,
tamoxifen use | FFQ. Diet over the past year, | All-cause
mortality | Red meat
Q5 vs. Q1 | 1.13 (0.96 -
1.33)
P trend =0.28 | Age, time since diagnosis, | | | Mixed age range: 30-55 years. Patients | | 69%, chemo
35.8%
At baseline: ER | assessed in baseline and follow-up | Breast cancer mortality | | 1.08 (0.86 -
1.37)
P trend=0.84 | energy
intake, BMI,
weight | | | were observed
until death or
June 1st, 2010, | | +ve 81% | questionnaires
at least 12
months post- | Distant recurrence | - | 1.03 (0.83 -
1.29)
P trend=0.93 | change, age
at first birth,
parity, oral | | | whichever occurred first | | | diagnosis | All-cause
mortality | Processed
meat
Q5 vs. Q1 | 0.99 (0.84 -
1.16)
P trend=0.6 | contraceptive,
menopausal
status, | | | | | | | Breast cancer mortality | | 0.91 (0.73 -
1.14)
P trend=0.83 | hormone
therapy,
aspirin use, | | | | | | | Distant recurrence | - | 0.97 (0.79 -
1.20)
P trend=0.8 | tumour stage,
radiation
therapy, | | | | | | | All-cause
mortality | Meat
Q5 vs. Q1 | 0.94 (0.79 -
1.11)
P trend=0.31 | treatment,
calendar year | | | | | | | Breast cancer mortality | - | 0.90 (0.70 -
1.15)
P trend=0.18 | | | | | | | | Distant recurrence | | 0.87 (0.69 -
1.09)
P trend=0.1 | | | | | | | | All-cause
mortality
(n=1847) | Poultry
Q5 vs. Q1
servings/ day | 0.93 (0.79 -
1.08)
P trend=0.48 | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of
diagnosis
and follow-
up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|--
---|---|---|---|--|--| | | | | | | Breast cancer mortality (n=919) Distant recurrence (n=1046) All-cause mortality (n=1847) Breast cancer mortality (n=919) All-cause mortality (n=1847) Breast cancer mortality (n=1847) | Poultry (with skin) Q5 vs. Q1 servings/ day Poultry (without skin) Q5 vs. Q1 servings/ day | 0.88 (0.70 - 1.10) P trend=0.76 0.85 (0.69 - 1.05) P trend=0.39 0.87 (0.74 - 1.01) P trend=0.06 0.73 (0.59 - 0.91) P trend=0.02 1.06 (0.91 - 1.23) P trend=0.08 1.16 (0.93 - 1.43) P trend=0.06 | | | Parada ⁴⁰ H
Jr, 2017,
LIBCSP,
USA | Population-
based
prospective
study (n= 1508)
Pre- and post-
menopausal
Mean age: 58.8
years. Until
2014 | 1996-1997
Follow up=
17.6 years
597 deaths of
which 237
were breast
cancer related | In situ: 235 Invasive: 1273 ≤2cm 75.5% >2cm 24.5% Radiation 60.9% Chemotherapy 41.4% Hormone therapy 61.1% ER- 26.7%, ER+ 73.3% | Interview and questionnaire. Consumption of grilled, barbecued and smoked meat; pre- and post-diagnosis changes in intake | All-cause mortality (n=428) Breast cancer mortality (n=126) All-cause mortality (n=428) | Total grilled, barbecued, and smoked meat intake High/high vs. low/low intake (pre/post-diagnosis) Grilled, barbecued beef, lamb and pork intake | 1.31 (0.96 -
1.78)
1.08 (0.63 -
1.83)
1.14 (0.87 -
1.51) | Age at diagnosis, marital status, Income, alcohol intake, BMI, physical activity, tumour size, lymph node involvement, oestrogen | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--------------------------------------|---|---|---|--|---|---|---| | | | | | | Breast cancer
mortality
(n=126) | High/high vs.
low/low intake
(pre/post-
diagnosis) | 1.24 (0.76 -
2.03) | receptor
status | | | | | | | All-cause
mortality
(n=428) | Smoked beef,
lamb, and
pork intake | 1.20 (0.91 -
1.59) | | | | | | | | Breast cancer
mortality
(n=126) | High/high vs.
low/low intake
(pre/post-
diagnosis) | 1.19 (0.71 -
1.99) | | | | | | | | All-cause
mortality
(n=428) | Grilled,
barbecued
poultry and | 1.06 (0.79-
1.43) | | | | | | | | Breast cancer
mortality
(n=126) | fish intake
High/high vs.
low/low intake | 1.11 (0.66-
1.88) | | | | | | | | All-cause
mortality
(n=428) | Smoked poultry and fish | 0.88 (0.64-
1.20) | | | | | | | | Breast cancer
mortality
(n=126) | Any/any vs.
none/none
intake | 0.55 (0.31 –
0.97) | | | McCullough ¹⁵
ML, 2016,
CPS-II
Nutrition
Cohort, USA | (n= 2152)
Mean age: 70.7
years | Follow up= 19 years. Among the 4,452 women included in the analytic cohort, 1,204 | Local: 77.3%,
regional: 22.7%
Grade at
diagnosis: well
differentiated
22.6%,
moderately | FFQ – Block
On average
8.4 years
before
diagnosis
Minimum of 1 | All-cause
mortality
(n=640)
Breast cancer
mortality
(n=192) | Red and processed meat intake <2.24 vs. ≥5.11 servings/week | 0.64 (0.49 - 0.84) P trend=0.01 0.88 (0.54 - 1.43) P trend=0.6 | Age at diagnosis, diagnosis year, tumour stage, tumour grade, oestrogen | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|--|---|--|-----------------------------------|--|--| | | | deaths occurred, 398 specifically due to breast cancer, and 233 due to CVD. In the analytic cohort of 2,152 women with post- diagnostic diet information, there were 640 deaths during follow- up, 192 breast cancer specific deaths, and 129 CVD | 28.5%
Targeted
therapy: yes
62.4%; no 3.7% | year after diagnosis | Cardiovascular
disease
(n=129)
Mortality not
including
breast cancer
or CVD
(n=319) | | 0.52 (0.27 -
0.98)
P trend=0.11
0.57 (0.39 -
0.82)
P trend=0.02 | and progesterone receptor status, initial delivered treatment, BMI, smoking status, physical activity, energy intake, fruit and vegetable consumption, total grain | | Williams ³²
PT, 2014,
NRWHS | (n= 986) | Follow up=
9.1 years.
46 women
died from
breast cancer | | Questionnaire
average 7.9
years post
diagnosis | Breast cancer
mortality
(n=46) | Meat
Per 1
serving/day | 0.53 (0.17 -
1.41) | Age, race, exercise | | Beasley ³³ JM, 2011, CWLS, United States | Follow up of cases of population-based case-control studies (n= 4441) | Follow up= 5.5 years 525 deaths, 137 breast cancer deaths, 132 deaths from | In situ: 0
Invasive: 4441
Stages: 72.8%
local, 27.2%
regional
Surgery: 97.9%
yes | FFQ within 5 years (range: 1–16 years) of diagnosis' | All-cause
survival | Meat
Q4 vs. Q1
serving/ day | 1.12 (0.83 -
1.51)
P trend=0.46 | Age,
residence,
menopausal
status,
smoking,
stage, alcohol
intake, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|---|---|--|--|---|---|--| | | Mixed age
range: 20-79
years
1998-2001 until
2005 | cardiovascular
disease | Radiotherapy:
49.8% yes
Hormonal
therapy: 57.8%
yes
Chemotherapy:
31.9% yes | | Breast cancer
mortality
(n=137) | | 0.89 (0.50 -
1.60)
P trend=0.94 | hormonal
therapy,
interval
between
diagnosis and
baseline
interview,
BMI, physical
activity,
breast cancer
treatment,
energy intake | | Hebert ³⁷ J,
1998,
MSKCC,
United States | Prospective
cohort study of
cancer survivors
(n= 469)
Pre- (47.3%)
and | 1982-1984 Follow up= 10 years max 87 deaths 73 breast cancer deaths | Early-stage
invasive breast
cancer
TNM stage I
39.7%
II 40.6%, IIIa | Measured at diagnosis and 2 years post-diagnosis | Breast cancer
recurrence
(n=109) | Meat (all red
meat
including
liver and
bacon) | 1.12 (0.66 –
1.89) P
trend=0.67
Premenopausal
1.93 (0.89 –
4.15) P | Stage,
estrogen
receptor, age,
BMI, butter/
margarine/
lard, beer, | | | postmenopausal
Mean age:52.2
years
White 86.8% | | 19.7%
ER+ 57.1% | | Breast cancer
mortality (n =
73) | | trend=0.09
1.43 (0.74 –
2.79) P
trend=0.29
Premenopausal
2.60 (0.96 –
7.03) P
trend=0.06 | menopausal
status | Abbreviations: CPS-II, Cancer Prevention Study II Nutrition Cohort; CWLS, Collaborative Women's Longevity Study; LIBCSP, Long Island Breast Cancer Study Project; NHS, Nurses' Health Study; NRWHS,
National Runner's and Walker's Health study ## Supplementary Table S11. Descriptive table of the included observational studies of post-diagnosis fish intake and breast cancer prognosis | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95%
CI) | Covariates | |--|---|---|--|---|---|---|--|--| | Holmes ³⁹
MD, 2017,
NHS,
USA | Prospective cohort (n= 6348) Mixed age range: 30-55years. Patients were observed until death or June 1st 2010, whichever occurred first | Follow up=
16 years | At baseline: ER
+ve 81%
Radiation therapy
54.6%, tamoxifen
use 69%, chemo
35.8% | FFQ, diet over the past year, assessed in baseline and follow-up questionnaires at least 12 months post-diagnosis | All-cause mortality (n=1847) Breast cancer mortality (n=919) | Fish
Q5 vs. Q1
servings/
day | 0.96 (0.82
- 1.13)
P
trend=0.82
0.99 (0.80
- 1.24)
P
trend=0.64 | Age, time since diagnosis, energy intake, BMI, weight change, age at first birth, parity, oral contraceptive, menopausal status, hormone therapy, aspirin use, tumour stage, radiation | | D 140 | | 1000 1007 | | | Distant
recurrence
(n=1046) | | 0.93 (0.76
- 1.15)
P
trend=0.87 | therapy, treatment, calendar year | | Parada ⁴⁰
H Jr,
2017, | Population-
based
prospective | 1996-1997
Follow up =
17.6 years | In situ: 235
Invasive: 1273
≤2cm 75.5% >2cm | Interview and questionnaire. Consumption of | All-cause
mortality
(n=428) | Grilled,
barbecued
poultry, and | 1.06 (0.79
- 1.43) | Age at diagnosis,
marital status,
income, alcohol | | LIBCSP, Since the second secon | study (n= 1508) Pre and post- menopausal Mean age: 58.8 years. Until 2014 | y (n= 1508) 597 deaths 24.5% and post-opausal 237 were breast 41.4% Hormo | Radiation 60.9%
Chemotherapy
41.4% Hormone
therapy 61.1% | grilled, barbecued
and smoked meat;
pre- and post-
diagnosis changes
in intake | Breast
cancer
mortality
(n=126) | fish intake High/high vs. low-low (pre/post- diagnosis) | 1.11 (0.66
- 1.88) | intake, BMI, physical activity, tumour size, lymph node involvement, and oestrogen receptor | | | | related | ER- 26.7%, ER+
73.3% | | All- cause
mortality
(n=428) | Smoked poultry and fish intake | 0.88 (0.64
- 1.20) | status | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of
diagnosis
and follow-
up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95%
CI) | Covariates | |--|----------------------|---|---|---------------------|--|--|-----------------------|------------| | | | | | | Breast
cancer
mortality
(n=126) | Any/any vs.
none/none
(pre/post-
diagnosis) | 0.55 (0.31
- 0.97) | | Abbreviations: LIBCSP, Long Island Breast Cancer Study Project; NHS, Nurses' Health Study ## Supplementary Table S12. Descriptive table of the included observational studies of post-diagnosis milk and dairy product intake and breast cancer prognosis | Publication
, WCRF
Code | Study description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |--|--|--|---|---|--|---|---|---| | Dairy Foods | | • | | | | | | | | Andersen ³⁸
2020, DCH | Population-
based cohort
study (n=977)
Mean age: 66 | Diagnosis year
1993 – 2013
Follow up = 7
years | ER positive 78%,
negative 16%,
missing 6% | FFQ, at
baseline, 5
years after
diagnosis | All-cause
mortality
(n=175) | Continuous
per 200g/day
increase | 0.99 (0.90-
1.09) | Age at diagnosis, year at diagnosis, time of follow-up | | | years | 175 total deaths,
121 breast cancer
deaths, 152 | | diagnosis | Breast cancer 0.99 (0.87-mortality 1.12) | | since diagnosis, alcohol, smoking, physical activity, | | | | recurrences | | | | Recurrence
(n=152) | | 0.93 (0.80-
1.07) | BMI, education
tumour size, nodal
status, ER status | | | | | | All-cause
mortality
(n=175) | Pre- to post-
diagnosis
changes | 0.97 (0.87-
1.07) | Age at diagnosis, year at diagnosis, time of follow-up | | | | | | Breast cancer
mortality
(n=121) | 200g/day | 0.99 (0.88-
1.13) | since diagnosis,
alcohol, smoking,
physical activity, | | | | | | | | | Recurrence
(n=152) | | 0.95 (0.82-
1.10) | BMI, education | | Holmes ³⁹ ,
2017, NHS,
United
States | Prospective cohort (n= 6348) Age range: 30-55 | Diagnosis year:
1976 - 2004
Follow up= 16
years
1847 total deaths. | Stage: I to III | Validated
semiquantitat
ive FFQ (61
to 116
items), at | All-cause
mortality
(n=1847) | Q5 vs. Q1 | 1.01 (0.86 -
1.19)
P trend=0.46 | Age at diagnosis,
time since diagnosis,
energy intake, BMI,
weight change, age | | Superseded
by Holmes
1999 for the
linear dose- | eded Pre- and postmenopausa deaths, 1046 months diagnos | | least 12
months post-
diagnosis | Breast cancer
mortality
(n=919) | | 1.01 (0.8 -
1.28)
P trend=0.87 | at first birth, parity,
oral contraceptive
use, menopausal
status, hormone | | | Publication
, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |---|--|---|--|--|---|-----------------------------
---|---| | response
meta-
analysis | | | | | Distant
recurrence
(n=1046) | | 0.91 (0.73 -
1.14)
P trend=0.45 | therapy use, aspirin use, alcohol, smoking, physical activity, tumour stage, radiation treatment, other treatment, calendar year | | Kroenke ⁴¹ ,
2013,
LACE,
United
States | Prospective cohort (n= 1893) Age range: 18-70 75% postmenopausa I Mostly white | Diagnosis year:
2000-2002
Follow up = 11.8
years 349
recurrences, 372
total deaths, 189
breast cancer
deaths | AJCC stage I-IIIa invasive breast cancer Completed breast cancer treatment, except adjuvant hormonal therapy | Validated semi- quantitative FFQ (120 items), baseline FFQ at 11-39 months and follow-up FFQ at 6 years post- diagnosis for diet in previous 12 months | All-cause mortality (n=372) Breast cancer mortality (n=189) Breast cancer recurrence (n=349) Non-breast cancer mortality (n=183) | ≥2.0 vs. <1
servings/day | 1.39 (1.02 - 1.90) P trend=0.05 1.26 (0.81 - 1.95) P trend=0.32 1.13 (0.83 - 1.54) P trend=0.38 1.54 (0.99 - 2.39) P trend=0.07 | Age at diagnosis, time from diagnosis to exposure assessment, age, race, education, tumour stage, tumour size, her-2/neu, nodal status, ER status, chemotherapy, radiotherapy, radiotherapy, tamoxifen use, menopausal status, smoking, BMI, physical activity, energy intake, alcohol intake, fibre, fruit, comorbidity, red meat intake | | Publication
, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |--|---|--|--|--|--|------------------------------------|---|---| | Beasley ³³ ,
2011,
CWLS,
United
States | Follow up of cases of (population-based) case-control study (n=4441) Age range: 20-79 years, 73% Post-menopausal 99% White | Diagnosis year:
1998-2001
Follow up= 5.5
years | Primary invasive
breast cancer;
Stages: 72.8%
local, 27.2%
regional, Surgery:
97.9%;
Radiotherapy:
49.8%; Hormonal
therapy: 57.8%;
Chemotherapy:31
.9% | Validated
FFQ (126
items), 1-16
years after
diagnosis
(42% within
5 years) | All-cause mortality (n=525) Breast cancer mortality (n=137) | 4 vs. 0.7
servings/ day | 1.18 (0.9 -
1.54)
P trend=0.27
0.94 (0.56 -
1.59)
P trend=0.99 | Age, residence, menopausal status, smoking, stage, alcohol intake, hormonal therapy, interval between diagnosis and baseline interview, BMI, physical activity, breast cancer treatment, energy intake | | Holmes ³⁴ MD, 1999, NHS, United States, Superseded by Holmes ³⁹ , 2017 for the high vs low forest plot | Population-
based
prospective
cohort study
(n= 1982)
Pre- and
postmenopausa
I
Mean age: 54
years | Diagnosis year:
1976-1990
Follow up= 157
months | Invasive breast
carcinoma
62% no lymph
node metastases | FFQ (up to 2 years after diagnosis) | All- cause
mortality
(n=378) | ≥2.15 vs.
≤0.92
servings/day | 0.72 (0.52 –
1.00)
P trend=0.04 | Age, time between exposure assessment and cancer diagnosis, year of diagnosis, oral contraceptive, hormonal therapy, smoking, age at first birth, nodal status, tumour size, BMI, menopausal status, energy intake, dietary factors | | Publication
, WCRF
Code | Study description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |---|--|---|--|--|--|----------------------------|--|--| | Holmes ³⁹ ,
2017, NHS,
United
States | Prospective cohort (n= 6348) Age range: 30-55 Pre- and postmenopausa I | Diagnosis year:
1976 - 2004
Follow up= 16
years | Stage: I to III | Validated
semiquantitat
ive FFQ (61
to 116
items), at
least 12
months post-
diagnosis | All-cause mortality (n=1847) Breast cancer mortality (n=919) Distant recurrence (n=1046) | 2.49 vs. 0.33 servings/day | 1.12 (0.96 -
1.31)
P trend=0.32
1.24 (0.98 -
1.56)
P trend=0.05
1.09 (0.88 -
1.35)
P trend=0.3 | Age at diagnosis, time since diagnosis, energy intake, BMI, weight change, age at first birth, parity, oral contraceptive use, menopausal status, hormone therapy use, aspirin use, alcohol, smoking, physical activity, tumour stage, radiation treatment, other treatment, calendar year | | Kroenke ⁴¹ ,
2013,
LACE,
United
States | Prospective
cohort (n=
1893) Age
range: 18-70
75%
postmenopausa | Diagnosis year:
2000-2002
Follow up = 11.8
years | AJCC stage I-IIIa
invasive breast
cancer Completed
breast cancer
treatment, except
adjuvant | Validated
semi-
quantitative
FFQ (120
items),
baseline | All-cause
mortality
(n=372) | ≥1.0 vs. <0.5 servings/day | 1.64 (1.24 -
2.17)
P
trend≤0.001 | Age at diagnosis, time from diagnosis to exposure assessment, race, education, tumour | | į į | Mostly white | · h | hormonal therapy | FFQ at 11-39
months and
follow-up
FFQ at 6
years post- | Breast cancer
mortality
(n=189) | | 1.49 (1.00 -
2.24)
P trend=0.05 | stage, tumour size,
her-2/neu, nodal
status, ER status,
chemotherapy,
radiotherapy, | | Publication
, WCRF
Code | Study description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |--|---|--|-----------------------------------|--|--|-------------------------------|--|--| | | | | | diagnosis for
diet in
previous 12
months | Breast cancer recurrence (n=349) Non-breast cancer mortality (n=183) | | 1.22 (0.91 -
1.65)
P trend=0.18
1.67 (1.13 -
2.47)
P trend=
0.007 | tamoxifen use,
menopausal status,
smoking, BMI,
physical activity,
energy intake,
alcohol intake, fibre,
fruit, comorbidity, red
meat intake, low-fat
dairy | | Low Fat Dair | У | | | | | | | | | Holmes ³⁹ ,
2017, NHS,
United
States | Prospective
cohort (n=
6348)
Age range: 30-
55
Pre- and
postmenopausa | Diagnosis year:
1976 - 2004
Follow up= 16
years | Stage: I to III | Validated
semiquantitat
ive FFQ (61
to 116 items)
at least 12
months post-
diagnosis | All-cause mortality (n=1847) Breast cancer mortality (n=919) Distant recurrence (n=1046) | 2.15 vs. 0.14
servings/day | 0.92 (0.79 - 1.07) P trend=0.1 0.83 (0.67 - 1.04) P trend=0.03 0.84 (0.69 - 1.04) P trend=0.04 | Age at diagnosis, time since diagnosis, energy intake, BMI, weight change, age at first birth, parity, oral contraceptive use, menopausal status, hormone therapy use, aspirin use, alcohol, smoking, physical activity, tumour stage, radiation treatment, other treatment, calendar year | | Publication
, WCRF
Code | Study description | Time of diagnosis and
follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |---|---|---|--|--|---|----------------------------|---|--| | Kroenke ⁴¹ ,
2013,
LACE,
United
States | Prospective
cohort (n=
1893) Age
range: 18-70
75%
postmenopausa
I
Mostly white | Diagnosis year:
2000-2002
Follow up = 11.8
years | AJCC stage I-IIIa invasive breast cancer Completed breast cancer treatment, except adjuvant hormonal therapy | Validated semi- quantitative FFQ (120 items), baseline FFQ at 11-39 months and follow-up FFQ at 6 years post- diagnosis for diet in previous 12 months | All- cause mortality (n=372) Breast cancer mortality (n=189) Breast cancer recurrence (n=349) | ≥1.0 vs. <0.5 servings/day | 1.05 (0.80 -
1.36)
P trend=0.76
1.03 (0.71 -
1.49)
P trend=0.89
1.01 (0.78 -
1.32)
P trend=0.85 | Age at diagnosis, time from diagnosis to exposure assessment, race, education, tumour stage, tumour size, Her-2/neu, nodal status, ER status, chemotherapy, radiotherapy, tamoxifen use, menopausal status, smoking, BMI, physical activity, | | | | | | | Non-breast
cancer mortality
(n=183) | | 1.05 (0.71 –
1.55)
P trend=
0.83 | energy intake,
alcohol intake, fibre,
fruit, comorbidity, red
meat intake, high-fat
dairy | Abbreviations: CWLS, Collaborative Women's Longevity Study; DCH, Diet, Cancer and Health cohort; LACE, Life After Cancer Epidemiology; NHS, Nurses' Health Study ## Supplementary Table S13. Descriptive table of the included observational studies of post-diagnosis soy and isoflavone intake and breast cancer prognosis | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of
diagnosis
and follow-
up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |--|--|---|--|---|---|-------------------------------------|--|--| | Isoflavone | s | | | | | | | | | Zhang ⁴²
FF,
2017(a),
BCFR,
USA | Follow-up study of cancer survivors cohort (n= 6235 of which n= 1466 reported the exposure postdiagnosis) pre- and postmenop ausal mean age:51.8 years | Recruitment
period: 1996-
2011, follow
up= 9.4
years 1224
deaths | First primary invasive breast cancer 52.3% ER+, 22.4% ER-, 1.9% unclassified, 23.4% unknown; 47.1% PR+, 26.9% PR-, 1.8% unclassified, 24.2% unknown ER+ 52.3%, ER- 22.4%, undetermined 1.9%, missing/unknown 23.4% PR+ 47.1%, PR- 26.9%, undetermined 1.8%, missing/unknown 24.2%; 86.3% surgery, 58.3% radiation therapy, 52.5% chemotherapy, 45.9% hormone therapy | Self-administered FFQ about usual dietary intake of 108 food items. Validity was assessed against repeated 24-hour recalls and women reporting untrue intakes were excluded, 1,466 women reported their dietary intake within 5 years after diagnosis | All-cause mortality (n=261) only women who reported post-diagnosis diet All-cause mortality pre-menopausal (n=3056) All-cause mortality post-menopausal (n=3176) All-cause mortality normal weight (<25 kg/m²) (n=2991) All-cause mortality overweight (25-29.9 kg/m²) (n=1723) All-cause mortality obese (□ 30 kg/m²) (n=1336) | ≥ 1.494
vs. <
0.342
mg/day | 0.65
(0.41 –
1.00)
P
trend=0.02
0.93
(0.68-1.27)
P
trend=0.46
0.78
(0.59-1.05)
P
trend=0.09
0.74
(0.54-1.01)
P
trend=0.05
0.97
(0.66-1.41)
P
trend=0.75
0.76 (0.48-1.19)
P
trend=0.13 | Age, study site, total caloric intake, race/ethnicity, education, total intake, healthy eating index, treatment type, recreational physical activity, BMI, alcohol use, smoking status, pack years | | Author, year, study name, country, WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |--|---|--|-----------------------------------|---|--|----------------------------------|--|---| | | | | | | All-cause
mortality
ER+PR+,
ER+PR-ER-PR+
(N=3348)
All-cause | | 0.90
(0.69-1.19)
P
trend=0.41 | | | | | | | | mortality ER-PR- (n=1167) All-cause | | (0.29-0.83)
P
trend=0.005
0.90 | | | | | | | | mortality
received
hormone
therapy
(n=2862) | | (0.66-1.22)
P
trend=0.19 | | | | | | | | All-cause
mortality
did not received
hormone
therapy
(n=3373) | | 0.68 (0.51-
0.91)
P
trend=0.02 | | | Nechuta ⁴³
SJ, 2012,
ABCPP
(LACE,
WHEL, | Follow-up of prospective cohort studies in | Diagnosed:
1991 and
2006
Follow up=
7.4 years n= | Invasive breast cancer | Soy food
intake was
assessed
with a
validated | All-cause
mortality
(n=1171) | ≥ 10.0
vs.
< 4.0
mg/day | 0.87
(0.70 -
1.07) | Age at diagnosis, oestrogen receptor status, | | SBCSS),
USA and
China | the pooling
project
(n= 9514)
pre- and | 1171 deaths
(881 from
breast
cancer) n= | | FFQ. Soy
food intake
assessed
within a | All-cause
mortality
(n=419)
premenopausal
All-cause | | 1.11
(0.77-1.60)
P
trend=0.59
0.84 | progesterone
receptor
status, TNM
stage, | | Author, year, study name, country, WCRF | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |---|----------------------|---------------------------------|-----------------------------------|--|--|--------------|---|--| | | postmenop ausal | 1348 recurrences | | mean of 2 years after diagnosis Participants completed a baseline FFQ, multiple 24-h recalls twice per month consecutivel y for 12 months and a second FFQ at the end of the study | mortality (n=706) postmenopausal All-cause mortality ER-positive All-cause mortality ER-negative All-cause mortality among ER-positive tamoxifen use All-cause mortality among
ER-positive tamoxifen use All-cause mortality among ER-positive no tamoxifen use Breast cancer- specific mortality (n=881) Breast cancer- specific mortality (n=382) premenopausal Breast cancer- specific mortality (n=467) postmenopausal | | (0.61 -1.14) P trend=0.26 0.91 (0.69-1.20) P trend=0.54 0.81 (0.54-1.23) P trend= <0.01 0.74 (0.52-1.07) 0.98 (0.65-1.47) 0.83 (0.64-1.07) 0.97 (0.66-1.43) P trend=0.59 0.78 (0.54-1.14) P trend=0.16 | chemotherapy, radiotherapy, hormonal therapy, smoking, BMI, exercise, cruciferous vegetables intake, parity, menopausal status, study, race/ethnicity, education | | Author, year, study name, country, WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|---|--------------|---|------------| | | | | | | Breast cancer-
specific mortality
ER-positive | - | 0.93
(0.67-1.28)
P
trend=0.69
0.67 | | | | | | | | specific mortality
ER-negative | | (0.43-1.05)
P
trend=0.07 | - | | | | | | | Breast cancer-
specific mortality
ER-positive
tamoxifen use | | 0.84
(0.54-1.31) | | | | | | | | Breast cancer-
specific mortality
ER-positive no
tamoxifen use | | 1.16
(0.71-1.90) | | | | | | | | Breast cancer recurrence (n=1348) | | 0.75
(0.61-0.92) | | | | | | | | Breast cancer recurrence (n=589) premenopausal | | 0.93
(0.69-1.26)
P
trend=0.64 | | | | | | | | Breast cancer recurrence (n=695) | | 0.64
(0.48-0.87)
P trend= | | | | | | | | postmenopausal Breast cancer recurrence ER-positive | | <0.01
0.81
(0.63-1.04)
P
trend=0.11 | - | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |--|---|--|---|----------------------------------|---|--------------------|--|---------------------------------------| | | | | | | Breast cancer recurrence ER-negative | | 0.64
(0.44-0.94)
P
trend=0.02 | | | | | | | | Breast cancer recurrence ER-positive tamoxifen use | | 0.63
(0.46-0.87) | | | | | | | | Breast cancer recurrence ER-positive no tamoxifen use | | 0.79
(0.55-1.14) | | | Zhang ⁴⁴ Y, | Prospective | Recruitment | 61.4% ER+,38.6% ER-, 81.3% | Soy food | Soy Protein | | | Age, | | 2012,
China | study of breast | period: 2004-
2006, follow | stage I-II, 18.7% stage III-IV chemotherapy: 86.7%; | intake was assessed by | Total mortality | >13.03
vs. < | 0.71
(0.52-0.98) | education, smoking, | | | cancer
patients
(n=616) | up= 52.1
months
(range: 9-60 | radiotherapy: 64.9%; hormone therapy:7.6%; tamoxifen use: 56.8% | a
quantitative
FFQ (median | Total mortality ER-positive | 2.12
g/day | 0.66
(0.44-0.93) | alcohol
intake, family
history, | | | Pre-, post-
or
perimenopa | months), until
2011, 79
total deaths, | | 69 days post-diagnosis). | Total mortality
ER-negative | | 0.77
(0.53-1.00) | tamoxifen
use, TNM
stage, | | | usal, mean | 9 subjects | | Soy food intake was | Isoflavone | | | chemotherap | | | age 45.7 ± were lost to 6.2 years follow up | estimated based on the intake of six foods or food groups. Soy | Total mortality | >28.83
vs.
<7.56
mg/day | 0.62
(0.42 - 0.9) | y,
radiotherapy | | | | Author, year, study name, country, WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |--|---|---|--|--|--|--|---|---| | | | | | isoflavones
was defined
as the sum
of three
individual
isoflavones:
daidzein,
genistein
and glycitein | Total mortality ER-positive Total mortality ER-negative | | 0.59
(0.40-0.93)
0.78
(0.47-0.98) | | | Caan ⁴⁵ B, | Randomise | Diagnosed: | Early stage breast cancer, 79.7% | FFQ, soy | Isoflavone | | | Stage, grade, | | 2011,
WHEL,
United
States
(supersede
d by
Nechuta ⁴³ ,
2012) | d controlled
trial of
dietary
intervention
trial, | 1991-2000;
follow up=
7.3 years,
until 2006,
271 deaths | ER+ or PR+, 20.3% ER-/PR-,
AJCC stages: 38.9% I, 45.8% II,
15.3% III Tamoxifen: 60.8%
current, 32.7% never, 6.4% past
user | intake was measured at study entry post-diagnosis (median 2 years, range: 2 months to 4 years) using the Arizona Food Frequency Questionnair e (AFFQ) a 153-item semi quantitative | Additional breast cancer events (n=448) (* includes an invasive breast cancer recurrence or a new invasive primary cancer) | 16.33-
86.9 vs.
0-0.07
mg/day | 0.46
(0.2 - 1.05)
P
trend=0.02
0.78
(0.46-1.31)
P
trend=0.47 | ER/PR status, menopausal status, chemotherap y treatment, radiation, age, education, race, soy supplement intervention group, presence of hot flash symptoms and their interaction, | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |---|---|--|---|--|---|------------------------------------|--|---| | | | | | questionnair
e | | | | tamoxifen
use | | Guha ⁴⁶ N,
2009,
LACE,
United
States,
(supersede
d by
Nechuta,
2012) | (n= 1954)
age range:
18-79
years, pre-
and
postmenop
ausal
women | Recruitment period: between January 2000 and April 2002, follow up= 6.31 years, until 2008, 282 breast cancer recurrences, | Primary breast cancer within 39 months of enrolment | A Fred Hutchinson Cancer Research Center (FHCRC) semi- quantitative FFQ with > 100 foods and beverages | Daidzein Breast cancer recurrence (n=266) Breast cancer recurrence (n=54) pre- menopausal Breast cancer recurrence (n=171) post- menopausal | ≥
9,596.5
5 vs. 0
µg/day | 0.96
(0.52-1.76)
1.74
(0.63-4.76)
0.7
(0.27-1.77) | Age, race, soy supplement use, BMI 1 year before diagnosis, menopausal status, tobacco pack-years, tumour stage, ER status, | | | | mean time
from
enrolment to
recurrence
was 3.31
years | | and a
separate soy
FFQ with 14
items,
assessed
post
diagnosis | Genistein Breast cancer recurrence (n=266) Breast cancer recurrence (n=54) premenopausal | ≥
13,025.
88 vs. 0
µg/day | 0.95
(0.52-1.75)
1.75
(0.65-4.76) | Energy intake | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras | RR (95%
CI) | Covariates | |--|---|---|---|---|--|-----------------------------|--
--| | | | | | (Assessed
on average
23 months
post
diagnosis but | Breast cancer recurrence (n=171) post-menopausal | | 0.69
(0.27-1.75) | | | | | | | intake | Glycetin | | | | | | | | | referred to
the 12
months prior | Breast cancer recurrence (n=266) | ≥
795.40
vs. 0 | 0.8
(0.42-1.5) | | | | | | | diagnosis) | Breast cancer recurrence (n=54) premenopausal | μg/day | 1.6
(0.54-4.72) | | | | | | | | Breast cancer recurrence (n=54) post-menopausal | | 0.51
(0.18-1.38) | | | Shu ⁴⁷ , | Prospective | Diagnosed: | Primary breast cancer, 63.2% ER+, | 6.5 months | Isoflavone | | | Age at | | 2009,
SBCSS,
China
(supersede
d by
Nechuta ⁴³ ,
2012) | cohort of
breast
cancer
survivors
(n= 5042)
pre- and
postmenop
ausal age
range: 20- | 2002-2006,
follow up=
3.9 years,
until 2008,
444 deaths
and 534
recurrences
or breast
cancer— | 35.2% ER-; 57.5% PR+, 40.6% PR-, TNM stages: 85.8% 0-II, 9.8% III-IV, radical mastectomy: 92.6%; radiotherapy: 32.1%; chemotherapy: 91.2%; tamoxifen: 52.1% | after diagnosis Habitual dietary intake was assessed using a validated FFQ over the | Total mortality (n=444) (Result superseded by Nechuta, 2012, SBR00559) Total mortality (n=186) premenopausal | >62.68
vs. ≤20
mg/day | 0.79
(0.61-1.03)
0.78
(0.52-1.16) | diagnosis, TNM stage, chemotherap y, radiotherapy, surgery type, BMI, menopausal status, | | | 75 years | related
deaths | | preceding 6
months for
the baseline | Total mortality (n=258) postmenopausal | | 0.81
(0.57-1.16) | receptor
status,
tamoxifen | | Author, year, study name, country, WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---|--|--------------|-----------------------------|--| | | | | | survey, 12
months for
the 18-month
survey and
the
preceding 18
months for | Total mortality
(n=202)
ER-positive
(Result
superseded by
Nechuta, 2012,
SBR00559) | | 0.78
(0.53-1.16) | use,
education,
income,
cruciferous
vegetables,
meat intake,
supplements | | | | | | the 36-month
survey | Total mortality
(n=224)
ER-negative
(Result
superseded by
Nechuta, 2012,
SBR00559) | | 0.85
(0.58-1.24) | use, tea
consumption,
physical
activity | | | | | | | Total mortality
(n=427)
Stage 0-IV | | 0.81
(0.62-1.06)
0.96 | | | | | | | | Total mortality
(n=56)
Stage 0 and I | | (0.44-2.10) | | | | | | | | Total mortality
(n=224)
Stage II | | 1.02
(0.69-1.49) | | | | | | | | Total mortality
(n=147)
Stage III and IV | | 0.54 (0.34-
0.87) | | | | | | | | Total mortality
(n=125)
Tamoxifen use | | 0.74
(0.42-1.29) | | | | | | | | Total mortality (n=76) | | 0.74
(0.38-1.43) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|--|---------|--|------------| | | | | | | No tamoxifen | | | | | | | | | | use
Additional breast | | 0.77 | _ | | | | | | | cancer events (recurrence/brea st cancer mortality combined) (n=534) (Result superseded by Nechuta, 2012, SBR00559) | | (0.60 -
0.98) | | | | | | | | Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=242) premenopausal | | 0.77
(0.55-1.09) | | | | | | | | Additional breast cancer events(recurrenc e/breast cancer mortality combined) (n=292) postmenopausal Additional breast | | 0.78
(0.55-1.08)
0.77
(0.54-1.09) | | | Author, year, study name, country, WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|---|---------|--|------------| | | | | | | (recurrence/brea st cancer mortality combined) (n=255) (Result superseded by Nechuta, 2012, SBR00559) ER-positive Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=267) (Result superseded by Nechuta, 2012, SBR00559) ER-negative Additional breast cancer events | | 0.88
(0.62-1.25)
0.78
(0.61-0.99) | | | | | | | | (recurrence/brea
st cancer
mortality
combined)
(n=517)
Stage 0-IV | | (3.3. 3.33) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|---|--------------|----------------------|------------| | | | | | | Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=71) Stage 0 and I | | 0.84 (0.43-
1.67) | | | | | | | | Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=277) Stage II | | 0.77
(0.55-1.09) | | | | | | | | Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=169) Stage III-IV | | 0.75
(0.49-1.15) | | | | | | | | Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=158) | | 0.73
(0.44-1.19) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|--|----------------|---------------------|------------| | | | | | | Tamoxifen use Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=96) No tamoxifen use | | 0.71
(0.39-1.28) | | | | | | | | Soy protein Total mortality (n= 444) | > 15.31
vs. | 0.71
(0.54-0.92) | | | | | | | | Total mortality (n=186) premenopausal | ≤5.31
g/day | 0.69 (0.46-1.04) | - | | | | | | | Total mortality (n=258) postmenopausal | | 0.72
(0.51-1.03) | | | | | | | | Total mortality (n=202) ER-positive | | 0.67
(0.45-1.00) | | | | | | | | Total mortality
(n=224)
ER-negative | | 0.78
(0.54-1.14) | | | | | | | | Total mortality
(n=427)
Stage 0-IV | | 0.73
(0.56-0.96) | | | | | | | | Total mortality (n=56) Stage 0 and I | | 0.78
(0.37-1.65) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|---|--------------|---------------------|------------| | | | | | | Total mortality
(n=224)
Stage II | | 0.97
(0.65-1.45) | | | | | | | | Total mortality
(n=147)
Stage III and IV | | 0.48
(0.31-0.76) | | | | | | | | Total mortality
(n=125)
Tamoxifen use | | 0.61
(0.34-1.08) | | | | | | | | Total mortality
(n=76)
No tamoxifen
use | | 0.65
(0.33-1.29) | | | | | | | | Additional breast cancer events (recurrence/brea st cancer mortality combined) (n= 534) | | 0.68
(0.54-0.87) | | | | | | | | Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=242) | | 0.69
(0.49-0.98) | | | | | | | | premenopausal Additional breast cancer events (recurrence/brea | | 0.69 (0.49-0.96) | _ | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------
--|--------------|--|------------| | | | | | | st cancer
mortality
combined)
(n=292)
postmenopausal
Additional breast
cancer events
(recurrence/brea
st cancer
mortality
combined)
(n=255) | | 0.69
(0.50-0.98) | | | | | | | | ER-positive Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=267) ER-negative | | 0.77
(0.54-1.09) | | | | | | | | Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=517) Stage 0-IV Additional breast cancer events | | 0.71
(0.56-0.90)
0.79
(0.40-1.55) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|---|---------|---------------------|------------| | | | | | | (recurrence/brea
st cancer
mortality
combined)
(n=71) | | | | | | | | | | Stage 0 and I Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=277) Stage II | | 0.73
(0.52-1.04) | | | | | | | | Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=169) Stage III-IV | | 0.63
(0.41-0.95) | | | | | | | | Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=158) Tamoxifen use | | 0.66
(0.40-1.09) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of
diagnosis
and follow-
up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contras
t | RR (95%
CI) | Covariates | |--|----------------------|---|-----------------------------------|---------------------|--|--------------|---------------------|------------| | | | | | | Additional breast cancer events (recurrence/brea st cancer mortality combined) (n=96) No tamoxifen use | | 0.65
(0.36-1.17) | | Abbreviations: ABCPP, After Breast Cancer Pooling Project; BCFR; Breast Cancer Family Registry; LACE, Life After Cancer Epidemiology; SBCCS, Shanghai Breast Cancer Genetics Study; WHEL; Women's Healthy Eating and Living # Supplementary Table S14. Descriptive table of the included observational studies of post-diagnosis carbohydrate intake and breast cancer prognosis | Publication | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95%
CI) | Covariates | |---|---|--|-----------------------------------|--|--------------------------------------|-------------------------|--|--| | Farvid ⁴⁸ ,
2021, NHS I
and NHSII,
USA, | Population based
cohort (n=8932),
Age range: 30-55
years | Diagnosed:1980
to 2010 NHS
and 1991 to
2011 NHSII | Stage I-III | FFQ 1980-2010
to 2014 in NHS
and 1991-2011
to 2015 in NHSII | All-cause
mortality
(n=2523.0) | 252.8 vs 171.2
g/day | 1.20 (1.04-
1.38)
P
trend=0.009 | Age at diagnosis, age at menopause, alcohol intake, aspirin use, | | | | | | | Cancer specific mortality (n=1071.0) | | 1.24 (1.01-
1.52)
P
trend=0.06 | BMI change, calendar year, chemotherapy, energy intake, er/pr status, hormonal therapy, menopausal status, physical activity, prediagnosis BMI, race, radiotherapy, smoking, stage, study, time between cancer diagnosis and exposure assessment | | | | | | | All-cause
mortality
(n=2523.0) | 55.5 vs 14.2
g/day | 0.97(0.85-
1.11)
P
trend=0.42 | Age at diagnosis, age at menopause, alcohol intake, aspirin use, | | Publication | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95%
CI) | Covariates | |-------------|----------------------|---------------------------------|-----------------------------------|---------------------|---------------------|-----------------------|--|---| | | | | | | | 23.3 vs 0.9
g/day | 1.15 (1.01-
1.30)
P
trend=0.008 | BMI change,
calendar year,
chemotherapy,
er/pr status,
hormonal | | | | | | | | 23.9 vs 8 g/day | 0.86 (0.75-
0.97)
P
trend=0.01 | therapy,
menopausal
status, oral
contraceptive,
physical | | | | | | | | 38.3 vs 5.7
g/day | 0.92 (0.80-
1.05)
P
trend=0.13 | activity, pre-
diagnosis BMI,
race,
radiotherapy,
smoking, | | | | | | | | 10.5 vs 2.1
g/day | 0.99 (0.88-
1.13)
P
trend=0.47 | stage, study,
time between
exposure
assessment
and cancer | | | | | | | | 24 vs 4 g/day | 1.13 (0.99-
1.28)
P
trend=0.14 | diagnosis, total
energy intake | | | | | | | | 55.5 vs 14.2
g/day | 1.02 (0.83-
1.25) | | | | | | | | | 23.3 vs 0.9
g/day | trend=0.99
1.24 (1.02-
1.50) | | | Publication | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95%
CI) | Covariates | |-------------------------------------|---|--|-----------------------------------|--|---|---|---|--| | | | | | | | | P
trend=0.008 | | | | | | | | | 23.9 vs 8 g/day | 0.84 (0.69-
1.02) | | | | | | | | | | P
trend=0.14 | | | | | | | | Cancer
specific
mortality
(n=1071.0) | 38.3 vs 5.7
g/day | 1.12 (0.91-
1.37)
P
trend=0.36 | | | | | | | | | 64.7 vs 25.7
g/day | 0.96 (0.79-
1.18)
P
trend=0.50 | | | | | | | | | 10.5 vs 2.1
g/day | 1.12 (0.92-
1.36)
P
trend=0.44 | | | | | | | | | 24 vs 4 g/day | 1.25 (1.02-
1.52)
P
trend=0.11 | | | Farvid ⁴⁹
2021, NHS I | Population based
cohort (n=8932),
Age range: 30-55
years | Diagnosed:1980
to 2010 NHS
and 1991 to
2011 NHSII | Stage I-III | FFQ 1980-2010
to 2014 in NHS
and 1991-2011
to 2015 in NHSII | All-cause
mortality
(n=2523) | Carbohydrates
from fruits
55.5 vs 14.2
g/day | 0.97 (0.85-
1.11)
P
trend=0.42 | Study, age at diagnosis, calendar year, time between | | Publication | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95%
CI) | Covariates | |--------------------|----------------------|--|-----------------------------------|--|---------------------|--|---|--| | and NHSII,
USA, | | | | | | Carbohydrates from juices | 1.15 (1.01-
1.30) | cancer
diagnosis and | | | | | | | | 23.3 vs 0.9
g/day | P
trend=0.008 | exposure
assessment,
pre-diagnosis
BMI, BMI
changes,
smoking, | | | | | | | | Carbohydrates from vegetables | 0.86 (0.75-
0.97) | | | | | | | | | 23.9 vs 8.0
g/day | P
trend=0.01 | physical activity, oral | | | fro
gr | Carbohydrates
from whole
grains
38.3 vs 5.7 | 0.92 (0.80-
1.05) | contraceptive
alcohol intake
total energy
intake,
menopausal | | | | | | | | | | | | g/day Carbohydrates from refined grains 64.7 vs 25.7 g/day | 1.16 (1.02-
1.32)
P
trend=0.06 | status, age a
menopause,
aspirin use,
race, stage,
ER/PR status
radiotherapy, | | | | | | | | Carbohydrates from legumes | 0.99 (0.88-
1.13) | chemotherap
hormonal
therapy | | | | | | | | g/day | P
trend=0.47 | _ | | | | | | | | Carbohydrates from potatoes | 1.13 (0.99-
1.28) | | | | | | | | | 24 vs 4 g/day | P
trend=0.14 | | | Publication | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95%
CI) | Covariates | |-------------|----------------------|---------------------------------|-----------------------------------|---------------------|---
--|---|------------| | | | | | | Breast cancer-specific mortality (n=1071) | Carbohydrates from fruits 55.5 vs 14.2 g/day Carbohydrates from juices 23.3 vs 0.9 g/day Carbohydrates from vegetables 23.9 vs 8.0 g/day Carbohydrates from whole grains 38.3 vs 5.7 g/day Carbohydrates from refined grains 64.7 vs 25.7 g/day Carbohydrates from legumes 10.5 vs 2.1 g/day | 1.02 (0.83-
1.25)
P
trend=0.99
1.24 (1.02-
1.50)
P
trend=0.008
0.84 (0.69-
1.02)
P
trend=0.14
1.12 (0.91-
1.37)
P
trend=0.36
0.96 (0.79-
1.18)
P
trend=0.50
1.12 (0.92-
1.36)
P
trend=0.44 | | | Publication | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95%
CI) | Covariates | |---|---|--|---|---|---|---|--|---| | | | | | | | Carbohydrates
from potatoes
24 vs 4 g/day | 1.25 (1.02-
1.52)
P
trend=0.11 | | | Emond ⁵⁰ JA,
2014,
WHEL,
United
States | Follow up of a
nested case-
control study
(n=265)
Mean age: 57
Postmenopausal,
84% non-
Hispanic White | Follow up:7.3 years | Stage of primary cancer: I: 24.9%, II: 66.0%, III A: 9.1% Chemotherapy:70.1% Radiation therapy: 63.4% Ever tamoxifen use: 75.1% | 24-hour diet recall, change in carbohydrate intake baseline (mean of 1.9 years after diagnosis) to 1 year | Breast
cancer
recurrence | Stable/increase
d vs. decreased | 2.0 (1.3 –
5) | Carbohydrate
and energy
intake at
baseline as
well as change
in post-
diagnosis
energy and
fiber intake | | Beasley ³³ JM, 2011, CWLS, United States | Follow up of cases of population-based case-control study (n=4441), age range: 20-79 years, 73% Postmenopausal 99% White | Diagnosis year:
1998-2001,
Follow up: 5.5
years | Primary invasive breast cancer; Stages: 72.8% local, 27.2% regional, Surgery: 97.9%; Radiotherapy: 49.8%; Hormonal therapy: 57.8%; Chemotherapy:31.9% | Validated FFQ
(126 items), 1-
16 years after
diagnosis (42%
within 5 years) | All- cause mortality (n=525) Breast cancer mortality (n=137) | 63 vs. 42 %
kcal/ day | 0.97 (0.72 -
1.3)
P
trend=0.80
0.93 (0.54-
1.62)
P
trend=0.87 | Age, residence, menopausal status, smoking, stage, alcohol intake, hormonal therapy, interval between diagnosis and diet assessment, BMI, physical activity, breast cancer treatment, energy intake | | Publication | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95%
CI) | Covariates | |---|--|---|--|---|--|---------------------------|--|---| | Belle ⁵¹ F,
2011, HEAL,
United
States | Prospective cohort (n= 688), mean age: 55.3 60.9% postmenopausal, | Diagnosis
year:1995-1999,
follow up: 6.7
years | In situ to IIIA breast cancer | FFQ (122 items)
on average 31.5
months post-
diagnosis | All-cause
mortality
(n=106) | >175.7 vs. 137.5
g/day | 0.7 (0.38 -
1.29)
P
trend=0.35 | Energy intake,
folate intake,
tumour stage,
tamoxifen use,
treatment, fibre | | | 57.7% non-
Hispanic white,
28.5% African
American, 11.9%
Hispanic, 1.9% | | | | Breast
cancer
mortality
(n=83) | | 0.59 (0.3 -
1.17)
P
trend=0.21 | | | | other | | | | Nonfatal or
new
recurrence
(n=82) | | 0.62 (0.31 -
1.23)
P
trend=0.26 | | | Borugian M,
2004, VCC-
CCA,
Canada | Prospective cohort of breast cancer survivors (n=603) mean age:54.5, 39% premenopausal, 61% postmenopausal | Follow Up: 10
years average | Tumor grades: 7.6% well differentiated, 46.4% moderately differentiated, 46% poorly differentiated Systemic treatment: Tamoxifen only: 21.9%; | Semi-
quantitative FFQ
Questionnaire of
during diagnosis
Recruitment
1991-1992 | Post-
menopausal
Breast
cancer-
specific
mortality
(n=112) | ≥ 224 vs ≤
146g/day | 1.50 (0.70-
3.40)
P
trend=0.69 | Age, energy intake, tumor stage | | | | | Chemotherapy only: 14.7%; Chemotherapy and tamoxifen: 21.4%; Other hormone 1.9%; None 40.1%. Local treatment: lumpectomy alone: 4.6%; Lumpectomy + RT: 14.6%; Complete | | Breast
cancer-
specific
mortality
(n=112) | Per 1 % Energy | 1.00 (0.99-
1.03) | | | Publication | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95%
CI) | Covariates | |---|---|--|--|--|---|------------------------|--|---| | | | | mastectomy alone: 59.6%; Complete | | Pre-
menopausal
Breast
cancer-
specific | ≥ 224 vs ≤
146g/day | 1.30 (0.30-
5.10)
P
trend=0.73 | | | | | | | | mortality | Per 1 % Energy | 1.00 (0.97-
1.04) | - | | | | | | | Post-
menopausal
Breast
cancer- | ≥ 224 vs ≤
146g/day | 2.00 (0.70-
5.70) | | | | | | | | specific
mortality | Per 1 % Energy | trend=0.47
1.02 (0.99-
1.05) | _ | | Holmes ³⁴ MD, 1999, NHS, United States (superseded by Farvid ⁴⁸ , 2021) | Population-
based
prospective
cohort study (n=
1982), mean
age: 54
Pre- and post-
menopausal | Diagnosis 1976-
1990,
follow up: 157
months | Invasive breast carcinoma 62% no lymph node metastases | FFQ (up to 2 years after diagnosis) on average 24 months post-diagnosis. | All-cause
mortality
(n=378) | Q5 vs. Q1 | 0.91 (0.65 -
1.26)
P
trend=0.79 | Age, diet interval, year of diagnosis, oral contraceptive, hormonal therapy, smoking, age at first birth and parity, nodal status, tumour size, BMI, menopausal status, energy intake | | Rohan ⁵² T
1993,
SACCR
follow-up,
Australia | Follow-up of cases of population-based case-control (n=412), mean | Follow up: 5.5
years median | Invasive primary
breast cancer, any
stage | Self-
administered
FFQ (179
dietary items) on
average 4.8 | Breast
cancer-
specific
mortality
(n=112) | ≥256 vs
<144g/day | 0.61 (0.31-
1.22)
P = 0.13 | Energy intake,
age of
menarche,
quetelet index | | Publication | Study
description | Time of
diagnosis and
follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95%
CI) | Covariates | |-------------|--|---------------------------------------|-----------------------------------|----------------------------|---------------------|------------|----------------|------------| | | age: 55.1, pre-
and post-
menopausal | | | months post-
diagnosis. | | | | | Abbreviations: CWLS, Collaborative Women's Longevity Study; HEAL, Health, Eating, Activity, and Lifestyle Study; NHS, Nurses' Health Study; SACCR, South Australian Central Cancer Registry; WHEL; Women's Healthy Eating and Living # Supplementary Table S15. Descriptive table of the included observational studies of post-diagnosis protein intake and breast cancer prognosis | Publication, WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) |
Covariates | |--|---|--|-----------------------------------|---|--|------------------------|--|---| | Total Protein | | | | | | | | | | Farvid ⁴⁸ MS,
2021, NHS
and NHSII,
USA | Population
based cohort
(n=8932), Age
range: 30-55
years | Diagnosed:
1980 to 2010
NHS and
1991 to 2011
NHSII | Stage I-III | FFQ 1980-
2010 to 2014
in NHS and
1991-2011 to
2015 in | All-cause
mortality
(n=2523.0) | 89 vs 57.4
g/day | 0.80 (0.70-
0.91)
P
trend=0.0009 | Age at diagnosis, age at menopause, alcohol intake, aspirin use, BMI change, calendar | | | | | | NHSII | Cancer specific mortality (n=1071.0) | | 0.68 (0.56-
0.83)
P
trend=0.0002 | year, chemotherapy, energy intake, er/pr status, hormonal therapy, menopausal status, physical activity, prediagnosis BMI, race, radiotherapy, smoking, stage, study, time between cancer diagnosis and exposure assessment | | Holmes ³⁹
MD, 2017,
NHS, United
States | Prospective cohort of cancer survivors (n= 6348), Age range: 30-55, Pre- and postmenopausal | Diagnosis
year:1976 –
2004,
Follow up:16
years | Stage I to III | Validated
semiquantitat
ive FFQ (61
to 116 items),
at least 12
months post-
diagnosis | All- cause mortality (n=1847) Breast cancer mortality | 88.3 vs. 61.5
g/day | 0.98 (0.85 -
1.14)
P trend=0.5
(superseded
by Farvid ⁴⁸ ,
2021)
0.95 (0.77 -
1.17) | Age, time since diagnosis, energy intake, BMI, weight change, age at first birth, parity, oral contraceptive, menopausal status, hormone therapy, aspirin use, alcohol, smoking, physical activity, tumour | | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |--|--|--|--|--|---|---
---| | | | | | | | (superseded
by Farvid ⁴⁸ ,
2021) | therapy, treatment, calendar year | | | | | | Distant
recurrence
(n=1046) | | 0.84 (0.69 -
1.03) | | | Follow up of cases of population-based case-control study (n=4441), Age range: 20-79 years, 73% Postmenopausal, 99% White | Diagnosis
year: 1998-
2001,
Follow up:
5.5 years | Primary invasive
breast cancer; Stages:
72.8% local, 27.2%
regional, Surgery:
97.9%; Radiotherapy:
49.8%; Hormonal
therapy: 57.8%;
Chemotherapy: 31.9% | Validated
FFQ (126
items), 1-16
years after
diagnosis
(42% within 5
years) | All- cause
mortality
(n=525)
Breast
cancer
mortality
(n=137) | 21 vs. 13 %
kcal/ day | P trend=0.02 0.98 (0.73 - 1.31) P trend=0.72 1.19 (0.66 - 2.14) P trend=0.49 | Age, residence, menopausal status, smoking, stage, alcohol intake, hormonal therapy, interval between diagnosis and baseline interview, BMI, physical activity, breast cancer treatment, energy intake | | Prospective
cohort of 603
breast cancer
survivors, mean
age:54.5, 39%
premenopausal,
61%
postmenopausal | Follow Up:
Average 10
years | Tumor grades: 7.6% well differentiated, 46.4% moderately differentiated, 46% poorly differentiated Systemic treatment: Tamoxifen only: 21.9%; Chemotherapy only: 14.7%; Chemotherapy and tamoxifen: 21.4%; Other hormone 1.9%; None 40.1%. Local | Semi-
quantitative
FFQ
Questionnair
e of during
diagnosis
Recruitment
1991-1992 | cancer- specific mortality (n=112) Breast cancer- specific mortality (n=112) Pre- menopausal Breast | ≥83 vs ≤52
g/day Per 1 % Energy ≥83 vs ≤52
g/day | 0.4 (0.20-0.80) P trend=0.07 0.87 (0.82- 0.93) P trend ≤0.0001 0.20 (0.10- 0.90) | Age, energy intake, tumor stage | | | Follow up of cases of population-based case-control study (n=4441), Age range: 20-79 years, 73% Post-menopausal, 99% White Prospective cohort of 603 breast cancer survivors, mean age:54.5, 39% premenopausal, 61% | Follow up of cases of population-based case-control study (n=4441), Age range: 20-79 years, 73% Post-menopausal, 99% White Prospective cohort of 603 breast cancer survivors, mean age:54.5, 39% premenopausal, 61% Diagnosis year: 1998-2001, Follow up: 5.5 years Follow Up: Average 10 years | Follow up of cases of population-based case-control study (n=4441), Age range: 20-79 years, 73% Post-menopausal, 99% White Prospective cohort of 603 breast cancer survivors, mean age:54.5, 39% premenopausal, 61% postmenopausal 61% postmenopausal Miagnosis treatment Diagnosis year: 1998-2001, Follow up: 72.8% local, 27.2% regional, Surgery: 97.9%; Radiotherapy: 49.8%; Hormonal therapy: 57.8%; Chemotherapy: 31.9% Tumor grades: 7.6% well differentiated, 46.4% moderately differentiated, 46.4% moderately differentiated, 46.4% moderately differentiated, 46% poorly differentiated Systemic treatment: Tamoxifen only: 21.9%; Chemotherapy and tamoxifen: 21.4%; Other hormone 1.9%; | Follow up of cases of population-based case-control study (n=4441), Age range: 20-79 years, 73% Postmenopausal, 99% White Prospective cohort of 603 breast cancer survivors, mean age: 54.5, 39% premenopausal, 61% postmenopausal postmenopausal postmenopausal postmenopausal postmenopausal, 61% postmenopausal postmenopausa | Cancer specific mortality (n=137) Cancer specific mortality (n=112) | Control study (n=4441), Age range: 20-79 years, 73% Post-menopausal, 99% White Prospective cohort of 603 breast cancer survivors, mean age: 54.5, 39% postmenopausal 81% 82% postmenopa | Characteristics Assessment Company Characteristics Assessment Company Characteristics | | Publication,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |-------------------------------------|----------------------|---------------------------------|--|---------------------|--|------------------------|--|--| | | | | lumpectomy alone:
4.6%; Lumpectomy +
RT: 14.6%; Complete
mastectomy alone:
59.6%; Complete | | specific
mortality | Per 1 %
Energy | 0.81 (0.73-
0.90)
P trend
≤0.0001 | | | | | | | | Post-
menopausal
Breast
cancer-
specific | ≥83 vs ≤52
g/day | 0.60 (0.20-
1.60)
P trend=0.12 | | | | | | | | mortality | Per 1 %
Energy | 0.91 (0.84-
0.99)
P trend=0.03 | | | Holmes ³⁴ ,
1999, NHS | | | | | All-cause
mortality
(n=378) | ≥81.6 vs
≤60.9g/day | 0.65 (0.47-
0.88)
P trend<0.001
(superseded
by Farvid ⁴⁸ ,
2021) | Age, time between exposure assessment and diagnosis, year of diagnosis, oral contraceptive, hrmonal therapy, | | | | | | | Nonmetastati
c
All-cause
mortality
(n=128) | | 0.49 (0.28-
0.84)
P trend=0.006 | smoking, age at first
birth, nodal status,
tumor size, BMI,
menopausal status,
energy intake | | | | | | | Metastatic
All-cause
mortality | | 0.71 (0.48-
1.05)
P trend=0.02 | | | Publication, WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |--|---|--|---|---|---|-----------------------|---|---| | | | | | | (n=250) | | | | | Rohan ⁵² T
1993,
SACCR
follow-up,
Australia | Follow-up of cases of population-based case-control study of 412 pre- and postmenopausal Mean age: 55.1 | Follow up:
5.5 years
median | Invasive primary
breast cancer, any
stage | Self-
administered
FFQ (179
dietary items)
on average
4.8 months
post-
diagnosis | Breast
cancer-
specific
mortality
(n=112) | ≥103 vs
≤59g/day | 0.74 (0.34-
1.66)
P = 0.573 | Energy intake, age of menarche, quetelet index | | Animal Protei | | | | | | | | | | Farvid MS,
2021 ⁴⁸ , NHS
and NHSII,
USA | Population
based cohort
(n=8932), Age
range: 30-55
years | Diagnosed:1
980 to 2010
NHS and
1991 to 2011
NHSII | Stage I-III | FFQ at least
12 months
post-
diagnosis | All-cause
mortality
(n=2523.0)
Cancer
specific
mortality
(n=1071.0) | 65.9 vs 33.7
g/day | 0.92 (0.8-1.04) P trend=0.12 0.73 (0.60- 0.89) P trend=0.001 | Age at diagnosis, age at menopause, alcohol intake, aspirin use, BMI change, calendar year, chemotherapy, energy intake, ER/PR status, hormonal therapy, menopausal status, physical activity, prediagnosis BMI, race, radiotherapy, smoking, stage, study, time between cancer diagnosis and exposure assessment | | Publication, WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment |
Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |---|---|--|-----------------------------------|---|---|------------------------|--|---| | Holmes ³⁹ MD, 2017, NHS, USA (superseded by Farvid ⁴⁸ , 2021) | Prospective
cohort of cancer
survivors (n=
6348), Age
range: 30-55,
Pre- and
postmenopausal | Diagnosis
year: 1976 –
2004,
Follow up: 16
years | Stage I to III | Validated
semiquantitat
ive FFQ (61
to 116 items),
at least 12
months post-
diagnosis | All- cause mortality (n=1847) Breast cancer mortality (n=919) Distant recurrence (n=1046) | 68.5 vs. 41.5
g/day | 0.99 (0.85 -
1.15)
P trend=0.6
0.85 (0.68 -
1.05)
P trend=0.044
0.78 (0.63 -
0.95)
P trend=0.003 | Age, time since diagnosis, energy intake, BMI, weight change, age at first birth, parity, oral contraceptive, menopausal status, hormone therapy, aspirin use, alcohol, smoking, physical activity, tumour stage, radiation therapy, treatment, calendar year, vegetable protein | | Vegetable Pro | | | | | | | | | | Farvid ⁴⁸ ,
2021, NHS
and NHSII,
USA | Population
based cohort
(n=8932), Age
range: 30-55
years | Diagnosed:1
980 to 2010
NHS and
1991 to 2011
NHSII | Stage I-III | FFQ 1980-
2010 to 2014
in NHS and
1991-2011 to
2015 in
NHSII | All-cause mortality (n=2523.0) Cancer specific mortality (n=1071.0) | 29.8 vs 175
g/day | 0.86 (0.75-
0.98) P trend=0.03 0.96 (0.78-
1.17) P trend=0.87 | Age at diagnosis, age at menopause, alcohol intake, aspirin use, BMI change, calendar year, chemotherapy, energy intake, er/pr status, hormonal therapy, menopausal status, physical activity, prediagnosis BMI, race, radiotherapy, smoking, stage, study, time between cancer diagnosis | | Publication,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Comparison | RR (95% CI) | Covariates | |--|---|---|-----------------------------------|---|--|----------------------|---------------------------------------|---| | | | | | | | | | and exposure assessment | | Holmes ³⁹
MD, 2017,
NHS, USA
(superseded | Prospective cohort of cancer survivors (n= 6348), age | Diagnosis
year: 1976 -
2004
Follow up= | Stage: I to III | Validated
semiquantitat
ive FFQ (61
to 116 items), | All- cause
mortality
(n=1847) | 25 vs. 14.3
g/day | 0.97 (0.83 -
1.14)
P trend=0.59 | Age, time since
diagnosis, energy
intake, BMI, weight
change, age at first | | by Farvid ⁴⁸ ,
2021) | range: 30-55
Pre- and
postmenopausal | 16 years | | at least 12
months post-
diagnosis | Breast
cancer
mortality
(n=919) | | 1.09 (0.87 -
1.37)
P trend=0.44 | birth, parity, oral contraceptive, menopausal status, hormone therapy, | | | | | | | Distant
recurrence
(n=1046) | | 1.20 (0.97 -
1.49) | aspirin use, alcohol,
smoking, physical
activity, tumour | | | | | | | (11–1040) | | P trend=0.08 | stage, radiation
therapy, treatment,
calendar year,
animal protein | Abbreviations: CWLS, Collaborative Women's Longevity Study; NHS, Nurses' Health Study; SACCR, South Australian Central Cancer Registry; VCC-BCCA, Vancouver Cancer Centre of the British Columbia Cancer Agency # Supplementary Table S16. Descriptive table of the included observational studies of post-diagnosis fat intake and breast cancer prognosis | Publication,
WCRF
Code | Study description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Compariso
n | RR (95% CI) | Covariates | |---|---|--|--|--|--|---------------------------|---|--| | Total Fats | | | | N | A.II | 000/ | 4.07.40.70 | | | Beasley ³³ 2011, CWLS, United States | Follow up of cases of cases of case-control study (n=4441), age range: 20-79 years, post-menopausal 73%, race: mostly White | Diagnosis:
1998-2001,
follow-up: 5.5
years, 525
deaths, 137
from breast
cancer, 132
from
cardiovascular
disease | Primary invasive
breast cancer, local
72.8%, regional
27.2%, surgery
97.9%,
chemotherapy
31.9%, radiotherapy
49.8%, hormonal
therapy 57.8% | Validated
FFQ, 126
items, at 1-16
years after
diagnosis
(42% within 5
years) | All-cause mortality (n=525) Breast cancer mortality (n=137) | 39% vs
23%
kcal/day | 1.05 (0.79 -
1.39)
P trend=0.98
0.92 (0.53 -
1.6)
P trend=0.39 | Age, residence, menopausal status, smoking, stage, alcohol intake, hormonal therapy, interval between diagnosis and baseline interview, BMI, physical activity, breast cancer treatment, energy intake | | Borugian ⁵³
2004,
VCCBCCA,
Canada | Prospective
cohort study
(n=603), mean
age: 54.5 years,
post-menopausal
61% | Recruitment:
1991-1992,
follow-up: 10
years | Tumour grade well
differentiated 7.6%,
moderately
differentiated
46.4%, poorly
differentiated 46%, | Semi-
quantitative
FFQ, self-
administered,
at 2 months
after surgery | Breast cancer
mortality
(n=112) | ≥76 vs <43
g/day | 1.80 (0.90 –
4.80)
P trend=0.35 | Age, total caloric intake, stage at diagnosis | | | | | complete mastectomy alone 59.6%, lumpectomy alone 4.6%, lumpectomy + RT 14.6%, chemotherapy only 14.7%, tamoxifen only 21.9%, chemotherapy and tamoxifen 21.4%, other hormone 1.9%, none 40.1% | but before the start of adjuvant treatment | Breast cancer mortality, premenopausal Breast cancer mortality, postmenopausal | | 4.80 (1.3-
18.10)
P trend 0.08
0.7 (0.2-
2.20)
P trend=
0.49 | | |---|---|--|--|---|---|---------------------|--|---| | Holmes ³⁴
1999, NHS,
USA | Population-
based cohort
study (n= 1982),
mean age: 54
years,
postmenopausal
64.9%, race:
mostly White | Diagnosis:
1976-1990,
follow-up: 157
months, until
1994, 378
deaths, 326
from breast
cancer | Invasive breast carcinoma, grade 1-3 | FFQ, 85 items, at up to 2 years after diagnosis | All- cause mortality (n=378) (superseded by Farvid ⁴⁸ , 2021) Breast cancer mortality (n=326) | 69.7 vs 53
g/day | 1.21 (0.78 -
1.90)
P trend=0.72
1.44 (1.01 -
2.04)
P trend=0.25 | Age, diet interval, year of diagnosis, oral contraceptive, postmenopausal hormone use, smoking, age at first birth, number of metastatic lymph nodes, tumour size, BMI, menopausal status, energy | | | | | | | (superseded by Farvid ⁴⁸ , 2021) | | i uciu-o.23 | intake, caloric
intake | | Ewertz ⁵⁴
1991,
DBCCG,
Denmark | Prospective
cohort study
(n=2445), age
maximum: 70
years, pre- and
post-menopausal | Diagnosis:
1983-1984,
follow-up: 7
years, 805
deaths | Primary invasive breast cancer | Semi-
quantitative
FFQ | All- cause
mortality
(n=805) | Q4 vs Q1 | 0.96 (0.75 -
1.22) | Age, tumour
size, nodal
status, tumour
grade, skin
invasion,
area of
residence | |--|---|--|---|--|--|--|---|--| | Farvid ⁴⁸
2021, NHS I
and II, USA | Population-
based cohort
study (n=8932),
age range: 30-55
years | Diagnosis:
1980-2021,
1991-2011 | Stage I-III | FFQ at least
12 months
post-diagnosis | All-cause mortality (n=2523) Cancer-specific mortality | 70.5 vs 41
g/day
70.5 vs 41
g/day | 0.85 (0.74-
0.97)
P trend=0.02
0.94 (0.76-
1.15) | Age at diagnosis, age at menopause, alcohol intake, aspirin use, BMI change, calendar year, chemotherapy, energy intake, er/pr status, hormonal therapy, menopausal status, physical | | | | | | | (n=1071) | <i>3</i> ,, | P trend=0.69 | activity,
prediagnosis
BMI, race,
radiotherapy,
smoking, stage,
study, time
between cancer
diagnosis and
exposure
assessment | | Nomura ⁵⁵
1991,
HCJFS,
USA | Prospective
cohort study
(n=343), age
range: 45-74
years, race:
White and Asian | Diagnosis:
1975 and
1980, follow-
up: 12.5 years | In situ 5%, localized 56%, regional 36%, distant 3% | Structured interview, 43 items, at on average 2.2 months after diagnosis | All-cause
mortality (n=34) All-cause
mortality (n=25) | High vs low | Caucasian
subgroup
3.17 (1.17-
8.55)
Japanese
subgroup | Stage of disease, menopausal status, obesity index, estrogen use | | | | | | | | | 0.66 (0.25-
1.76) | | |--|---|--|--|--|--|--|--------------------------------------|---| | Pierce
2007 ¹¹ ,
WHEL, USA | Randomised controlled trial (n= 1490), mean age: 50 years, pre- and post-menopausal, race: mostly White | Diagnosis:
1991-2000,
follow-up: 6.7
years, until
2005 | Stage I 40%, II 45%, III 15%, grade I 15.9%, II 39.8%, III 35.8%, unknown 8.3%, ER+/PR+ 63.1%, ER+/PR- 10.8%, ER-/PR+ 5.1%, ER-/PR- 20.8%, no chemotherapy 31.4%, non- anthracycline 25.7%, anthracycline 42.8%, adjuvant tamoxifen 42%, no adjuvant tamoxifen 58% | 24-hr food
recall and
questionnaire,
at on average
20 months
post-diagnosis | All-cause
mortality
(n=135) | 33-59% vs
9-24%
energy from
fat | 1.39
P trend=0.10 | | | Rohan ⁵²
1993,
SACCR
follow-up,
Australia | Follow-up of population-based case-control study (n= 412), mean age: 55.1 years, pre- and post-menopausal | Diagnosis:
1982-1984,
follow-up: 5.5
years, until
1989 | Stage I-IV | FFQ | Breast cancer-
specific
mortality
(n=112) | ≥108 vs
<56 g/day | 1.40 (0.66-
2.96)
P trend=0.52 | Energy intake,
Age of
menarche,
Quetelet Index | | Newman ⁵⁶
1986,
Canada | Prospective
cohort of cancer
survivors
(n=298), age
range: 35-74
years, pre- and
postmenopausal | Diagnosis:
1973-1975,
follow-up:
maximum 7
years | Nonmetastatic
disease | Measured 3-5
months after
surgery | Breast cancer-
specific
mortality (n=72) | ≥77.7 vs
≤77.7 g/day | 0.91
P trend=0.69 | Body weight | Saturated Fats | Beasley ³³
2011,
CWLS, USA | Follow up of case-control study (n=4441), age range: 20-79 years, post-menopausal 73%, race: White | Diagnosis:
1998-2001,
follow-up: 5.5
years, until
2015, 525
deaths, 137
from breast
cancer, 132
from
cardiovascular
disease | Primary invasive
breast cancer, local
72.8%, regional
27.2%, surgery
97.9%,
chemotherapy
31.9%, radiotherapy
49.8%, hormonal
therapy 57.8% | Validated
FFQ, 126
items, at 1-16
years after
diagnosis
(42% within 5
years) | All- cause mortality (n=525) Breast cancer mortality (n=137) | 13 vs. 7 %
kcal/ day | 1.41 (1.06-
1.87) P trend=0.03 1.55 (0.88-
2.75) P trend=0.50 | Age, residence, menopausal status, smoking, stage, alcohol intake, hormonal therapy, interval between diagnosis and baseline interview, BMI, physical activity, breast cancer treatment, energy intake | |---|--|---|---|---|--|-------------------------|--|--| | Borugian ⁵³
2004,
VCCBCCA,
Canada | Prospective cohort study (n=603), mean age: 54.5 years, post-menopausal 61% | Recruitment:
1991-1992,
follow-up: 10
years | Tumour grade well differentiated 7.6%, moderately differentiated 46.4%, poorly differentiated 46%, complete mastectomy alone 59.6%, lumpectomy alone 4.6%, lumpectomy + RT 14.6%, chemotherapy only 14.7%, tamoxifen only 21.9%, chemotherapy and tamoxifen 21.4%, other hormone 1.9%, none 40.1% | Semi-
quantitative
FFQ, self-
administered,
at 2 months
after surgery
but before the
start of
adjuvant
treatment | Breast cancer mortality (n=112) Breast cancer mortality, premenopausal Breast cancer mortality, postmenopausal | Q4 vs Q1 | 2.50 (1.20 - 5.30) P trend=0.07 4.90 (1.40-17.00) P trend=0.06 1.50 (0.50-4.00) P trend=0.54 | Age, total caloric intake, stage at diagnosis | | Rohan ⁵² 1993, Diet and Breast Cancer in Australia Follow-up Study, Australia | Follow-up of case-control study (n= 412), mean age: 55.1 years, pre- and post-menopausal | Diagnosis:
1982-1984,
follow-up: 5.5
years, until
1989 | Primary breast cancer, stage I-IVE | FFQ | Breast cancer-
specific
mortality(n=112) | ≥45 vs <20
g/day | 1.65 (0.73-
3.75)
P trend=0.62 | Energy intake,
Age of
menarche,
Quetelet Index | |--|--|---|--|--|--|-----------------------|--------------------------------------|--| | Holmes ³⁴
1999, NHS,
United
States | Population-
based cohort
study (n= 1982),
mean age: 54
years, pre- and
postmenopausal | Diagnosis:
1976-1990,
follow-up: 157
months, 378
deaths, 326
from breast
cancer | Invasive breast carcinoma | FFQ, 85 items,
up to 2 years
after diagnosis | All- cause
mortality
(n=378) | Q5 vs Q1 | 1.23 (0.89-
1.69)
P trend=0.29 | Age, diet interval, year of diagnosis, oral contraceptive, postmenopausal hormone use, smoking, age at first birth, number of metastatic lymph nodes, tumour size, BMI, menopausal status, energy intake, caloric intake | | Monounsatu | rated Fats | | | | | | | | | Beasley ³³
2011,
CWLS, USA | Follow up of case-control study (n=4441), age range: 20-79 years, postmenopausal 73%, race: White | Diagnosis:
1998-2001,
follow-up: 5.5
years, 525
deaths, 137
from breast
cancer, 132
from | Primary invasive
breast cancer, local
72.8%, regional
27.2%, surgery
97.9%,
chemotherapy
31.9%, radiotherapy | FFQ,126
items, at 1-16
years after
diagnosis
(42% within 5
years) | All- cause
mortality
(n=525) | 15% vs 8%
kcal/day | 1.14 (0.86-
1.52)
P trend=0.93 | Age, residence,
menopausal
status, smoking,
stage,
alcohol
intake, hormonal
therapy, interval
between
diagnosis and | | | | cardiovascular
disease | 49.8%, hormonal therapy 57.8% | | Breast cancer
mortality
(n=137) | | 0.89 (0.49-
1.6)
P trend=0.25 | baseline
interview, BMI,
physical activity,
breast cancer
treatment,
energy intake | |--|--|---|-----------------------------------|--|--|---------------------|--------------------------------------|--| | Holmes ³⁴
1999, NHS,
United
States | Population-
based cohort
study (n= 1982),
mean age: 54
years, pre- and
postmenopausal | Diagnosis:
1976-1990,
follow-up: 157
months, 378
deaths, 326
from breast
cancer | Invasive breast carcinoma | FFQ, 85 items, up to 2 years after diagnosis | All-cause
mortality
(n=378) | Q5 vs Q1 | 1.34 (0.96-
1.86)
P trend=0.60 | Age, diet interval, year of diagnosis, oral contraceptive, postmenopausal hormone use, smoking, age at first birth, number of metastatic lymph nodes, tumour size, BMI, menopausal status, energy intake, caloric intake | | Rohan ⁵² 1993, Diet and Breast Cancer in Australia Follow-up Study, Australia | Follow-up of case-control study (n= 412), mean age: 55.1 years, pre- and postmenopausal | Diagnosis:
1982-1984,
follow-up: 5.5
years, until
1989 | Primary breast cancer, any stages | FFQ | Breast cancer-
specific
mortality
(n=112) | ≥37 vs ≤17
g/day | 1.33 (0.56-
3.13)
P trend=0.64 | Energy intake,
Age of
menarche,
Quetelet Index | Polyunsaturated Fat | Beasley ³³ ,
2011,
CWLS, USA | Follow up of case-control study (n=4441), age range: 20-79 years, post-menopausal 73%, race: White | Diagnosis:
1998-2001,
follow-up: 5.5
years, 525
deaths, 137
from breast
cancer, 132
from
cardiovascular
disease | Primary invasive
breast cancer, local
72.8%, regional
27.2%, surgery
97.9%,
chemotherapy
31.9%, radiotherapy
49.8%, hormonal
therapy 57.8% | FFQ, 126
items, at 1-16
years after
diagnosis
(42% within 5
years) | All-cause mortality (n=525) Breast cancer mortality (n=137) | 8% vs 4%
kcal/day | 0.91 (0.70-
1.19)
P trend=0.41
0.90 (0.52 -
1.55)
P trend=0.33 | Age, residence, menopausal status, smoking, stage, alcohol intake, hormonal therapy, interval between diagnosis and baseline interview, BMI, physical activity, breast cancer treatment, energy intake | |---|--|--|--|---|--|----------------------|---|--| | Holmes ³⁴
1999, NHS,
USA | Population-
based cohort
study (n= 1982),
mean age: 54
years, pre- and
postmenopausal | Diagnosis:
1976-1990,
follow-up: 157
months, 378
deaths, 326
from breast
cancer | Invasive breast carcinoma | FFQ, 85 items, at up to 2 years after diagnosis | All-cause mortality (n=378) | Q5 vs Q1 | 1.05 (0.77-
1.43)
P trend=0.57 | Age, diet interval, year of diagnosis, oral contraceptive, postmenopausal hormone use, smoking, age at first birth, number of metastatic lymph nodes, tumour size, BMI, menopausal status, energy intake, caloric intake | | Nomura ⁵⁵
1991,
HCJFS,
USA | Prospective
cohort of cancer
survivors
(n=182), age
range: 45-74
years, race:
White | Diagnosis:
1975 and
1980, follow-
up: 12.5 years | In situ 5%, localized 56%, regional 36%, distant 3% | Structured interview, 43 items, at on average 2.2 months after diagnosis | All-cause
mortality | High vs low | 1.72 (0.74-
4.00) | Stage of
disease,
menopausal
status, obesity
index, estrogen
use | |--|---|--|---|--|--|--------------------|--------------------------------------|---| | Rohan ⁵²
1993,
SACCR
follow-up,
Australia | Follow-up of case-control study (n= 412), mean age: 55.1 years, pre- and postmenopausal | Diagnosis:
1982-1984,
follow-up: 5.5
years, until
1989 | Primary breast
cancer, stage I-IV | FFQ | Breast cancer-
specific
mortality
(n=112) | ≥20 vs <7
g/day | 1.57 (0.78-
3.14)
P trend=0.31 | Energy intake,
Age of
menarche,
Quetelet Index | | Trans fatty a Beasley ³³ | cids
Follow up of | Diagnosis: | Primary invasive | FFQ, 126 | All-cause | 1.6% vs | 1.78 (1.35- | Age, residence, | | 2011,
CWLS, USA | case-control
study (n=4441),
age range: 20-79
years, post- | 1998-2001,
follow-up: 5.5
years, 525
deaths, 137 | breast cancer, local
72.8%, regional
27.2%, surgery
97.9%, | items, at 1-16
years after
diagnosis
(42% within 5 | mortality
(n=525) | 0.7% kcal/
day | 2.32) P trend=0.01 | menopausal
status, smoking,
stage, alcohol
intake, hormonal | | | menopausal
73%, race: White | from breast
cancer, 132
from | chemotherapy
31.9%, radiotherapy
49.8%, hormonal | years) | Breast cancer mortality | _ | 1.42 (0.80-
2.52) | therapy, interval
between
diagnosis and | | | | cardiovascular
disease | therapy 57.8% | | (n=137) | | P trend=0.34 | baseline
interview, BMI,
physical activity,
breast cancer | | | | | | | | | | treatment,
energy intake | |--|--|---|--|---|-----------------------------------|-----------------------------|--|--| | Holmes ³⁴
1999, NHS,
United
States | Population-
based cohort
study (n= 1982,
mean age: 54
years, pre- and
postmenopausal | Diagnosis:
1976-1990,
follow-up: 157
months, 378
deaths, 326
from breast
cancer | Invasive breast carcinoma | FFQ, 85 items, at up to 2 years after diagnosis | All-cause
mortality
(n=378) | Q5 vs Q1 | 1.16 (0.84-
1.57)
P trend=0.49 | Age, diet interval, year of diagnosis, oral contraceptive, postmenopausal hormone use, smoking, age at first birth, number of metastatic lymph nodes, tumour size, BMI, menopausal status, energy intake, caloric intake | | EPA DHA | | | | | , | | , | | | Patterson ⁵⁷
2011,
WHEL, USA | Secondary
analysis of
clinical trials
(n=3081), mean
age: 52.7 years,
race: mostly
White | Diagnosis:
1995-2000,
follow-up: 7.3
years, 314
deaths, 261
from breast
cancer, 27
from other
cancers, 7
from heart
disease, 19 | Stage I 38.6%, IIA
5%, ER+ 74.2%,
tamoxifen use
59.6% | 24-hour recall | All-cause
mortality
(n=314) | ≥153 vs ≤
36.7
mg/day | 0.60 (0.44-
0.83)
P
trend=0.007 | Tumour stage,
time from
diagnosis to
randomization,
supplements
use, tumour
grade | | | | from other causes | | | Recurrence | | 0.72 (0.57-
0.90)
P trend=0.06 | | |--|--|---|---------------------------|--|-----------------------------------|----------|--------------------------------------|--| | EPA
Holmes ³⁴
1999, NHS,
USA | Population-
based cohort
study (n= 1982),
mean age: 54
years, pre- and
postmenopausal |
Diagnosis:
1976-1990,
follow-up: 157
months, 378
deaths, 326
from breast
cancer | Invasive breast carcinoma | FFQ, 85 items, at up to 2 years after diagnosis | All-cause
mortality
(n=378) | Q5 vs Q1 | 0.71 (0.49-
1.00)
P trend=0.08 | Age, diet interval, year of diagnosis, oral contraceptive, postmenopausal hormone use, smoking, age at first birth, number of metastatic lymph nodes, tumour size, BMI, menopausal status, energy intake, caloric intake | | DHA Holmes ³⁴ 1999, NHS, USA | Population-
based cohort
study (n= 1982),
mean age: 54
years, pre- and
postmenopausal | Diagnosis:
1976-1990,
follow-up: 157
months, 378
deaths, 326
from breast
cancer | Invasive breast carcinoma | FFQ, 85 items,
at up to 2
years after
diagnosis | All-cause
mortality
(n=378) | Q5 vs Q1 | 0.7 (0.5-
0.97)
P trend=0.02 | Age, diet interval, year of diagnosis, oral contraceptive, postmenopausal hormone use, smoking, age at first birth, number of metastatic lymph nodes, tumour size, BMI, | | | | | | | | | | menopausal
status, energy
intake, caloric
intake | |---|--|---|---------------------------|---|------------------------------------|-----------|---|--| | Holmes ³⁴
1999, NHS,
USA | Population-
based cohort
study (n= 1982),
mean age: 54
years, pre- and
postmenopausal | Diagnosis:
1976-1990,
follow-up: 157
months, 378
deaths, 326
from breast
cancer | Invasive breast carcinoma | FFQ, 85 items, at up to 2 years after diagnosis | All- cause
mortality
(n=378) | Q5 vs. Q1 | 20:1 fatty
acid
(eicosanoic)
0.78 (0.57 -
1.07)
P
trend=0.007 | Age, diet interval, year of diagnosis, oral contraceptive, postmenopausal hormone use, smoking, age at first birth, number of metastatic lymph nodes, tumour | | | | | | | | | 22:5 fatty
acid (DPA)
0.7 (0.50-
0.97)
P trend=
0.02 | size, BMI,
menopausal
status, energy
intake, caloric
intake | Abbreviations: CWLS, Collaborative Women's Longevity Study; DBCCG, Danish Breast Cancer Cooperative Group; HCJFS; Hawaiian Caucasian, Japanese Follow-up Study; NHS, Nurses' Health Study; SACCR, South Australian Central Cancer Registry; SACCR, South Australian Central Cancer Registry; WHEL; Women's Healthy Eating and Living # Supplementary Table S17. Descriptive table of the included observational studies of post-diagnosis fibre intake and breast cancer prognosis | Author, year,
study name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|--|---|---|-----------------------------------|------------------------------|--------------------------------------|--| | Pierce ¹¹ 2007,
WHEL, USA | Randomised
controlled trial
(n= 1490), mean
age 50 years,
pre- and post-
menopausal | Diagnosis: 1991-
2000, follow-up:
6.7 years, until
2005 | Stage I 40%, II 45%, III 15%, grade I 15.9%, II 39.8%, III 35.8%, unknown 8.3%, ER+/PR+63.1%, ER+/PR-10.8%, ER-/PR+5.1%, ER-/PR-20.8%, none-chemotherapy 31.4%, non-anthracycline 25.7%, anthracycline 42.8%, adjuvant tamoxifen 42%, no adjuvant tamoxifen 58% | 24-hr food
recall,
questionnaire, at
on average 20
months post-
diagnosis | All-cause
mortality
(n=135) | 23.5-59.7 vs
5.1-15.6 g/d | 0.61
P trend=0.12 | Unadjusted | | Beasley ³³
2011, CWLS,
USA | Follow up of cases of case-control study (n=4441), age range: 20-79 years, postmenopausal 73%, race: | Diagnosis: 1998-
2001, follow-up:
5.5 years | Primary invasive
breast cancer, local
72.8%, regional
27.2%, surgery
97.9%,
chemotherapy
31.9%, radiotherapy
49.8%, hormonal | Validated FFQ,
126 items, at 1-
16 years after
diagnosis (42%
within 5 years) | All-cause
mortality
(n=525) | 30 vs 11 g/d | 0.75 (0.52-
1.09)
P trend=0.17 | Age, residence,
menopausal status,
smoking, stage,
alcohol intake,
hormonal therapy,
interval between
diagnosis and
baseline interview, | | | mostly White | | therapy 57.8% | | specific
mortality
(n=137) | | 1.49) P trend=0.24 | BMI, physical activity, breast cancer treatment, energy intake | | Belle ⁵¹ 2011,
HEAL, USA | Prospective cohort of cancer survivors | Diagnosis: 1995-
1998, follow-up:
6.7 years, until
2004 | Invasive, stage 0-IIIA | FFQ,122 items | All-cause
mortality
(n=106) | >16.3 vs
<10.3 g/d | 0.75 (0.43-
1.31)
P trend=0.94 | Energy intake,
folate intake,
physical activity,
tumour stage, | | Author, year,
study name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|---|-----------------------------------|--------------------------------|--|----------|---|---| | | (n=688), mean
age: 55.3 years | | | | Breast cancer-
specific
mortality
(n=83)
Recurrence
(n=82) | | 0.85 (0.46-
1.59)
P trend=0.55
0.84 (0.45-
1.57
P trend=0.53 | treatment,
tamoxifen use | | Holmes ⁵⁸ 2009
NHS, USA | Population-
based cohort
study (n=3846),
age range: 30-
55 years, pre-
and post-
menopausal | Diagnosis: 1976-
2001, follow-up:
321 months, until
2006 | Stage I-III | FFQ, at 2 years post-diagnosis | All-cause mortality, cereal fibre Breast cancer mortality, cereal fibre (n=446) Breast cancer mortality, ER+ Breast cancer mortality, ER- | Q5 vs Q1 | 0.71 (0.53-
0.96)
P trend=0.03
1.00 (0.71-
1.40)
P trend=0.59
1.04 (0.70-
1.55)
P
trend=0.98
0.59 (0.17-
2.05)
P trend=0.35 | Age, time between exposure assessment and cancer diagnosis, year of diagnosis oral contraceptive hormonal therapy, smoking, age at first birth, nodal status, tumor size, BMI, menopausal status, energy intake, dietary factors, BMI change, age at first birth and parity, stage of disease, radiation treatment, chemotherapy and hormonal treatment, date of diagnosis, physical activity | | Author, year,
study name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|---|--|---|---|-----------------------|--|---| | Borugian ⁵³
2004,
VCCBCCA,
Canada | Prospective cohort of breast cancer survivors (n= 603), mean age: 54.5 years | Recruitment:
1991-1992,
follow-up: 10
years, 146
deaths, 112 from | Well differentiated 7.6%, moderately differentiated 46.4%, poorly differentiated 46% FR+ 76.4% | Questionnaire,
self-
administered,
after surgery
and before | Breast cancer-
specific
mortality
(n=112) | Q4 vs Q1 | 0.7 (0.4-1.3)
P trend=0.34 | Age, total caloric intake, and stage at diagnosis | | | breast cancer chemotherapy only 14.7%, tamoxifen only 21.9%, chemotherapy and | Breast cancer-
specific
mortality,
pre-
menopausal
(n=235) | | 0.7 (0.2-1.6)
P trend=0.26 | | | | | | | | | tamoxifen 21.4%,
other hormone 1.9%,
none 40.1% | | Breast cancer-
specific
mortality, post-
menopausal
(n=368) | | 0.8 (0.3-1.8)
P trend=0.74 | | | Farvid ⁴⁸ 2021,
NHS I and II,
USA | Population-
based cohort
study (n=8932),
age range: 30-
55 years | Diagnosis: 1980-
2010, 1991-2011 | Stage I-III | FFQ | All-cause
mortality
(n=2523) | 27.3 vs 13.7
g/day | 0.85 (0.75-
0.97)
P
trend=0.004 | Age at diagnosis, age at menopause, alcohol intake, aspirin use, BMI change, calendar | | | | | | | Cancer specific mortality (n=1071) | | 0.95 (0.78-
1.16)
P trend=0.52 | year, chemotherapy, energy intake, er/pr status, hormonal therapy, menopausal status, physical activity, prediagnosis BMI, race, radiotherapy, smoking, stage, study, time between cancer diagnosis and exposure assessment | | Author, year,
study name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|---|---|--|---|---------------------|--|--| | Holmes ³⁴
1999, NHS,
USA | Population-
based cohort
study (n=1982),
mean age 54
years, pre- and
postmenopausal | Diagnosis: 1976-
1990, follow-up:
157 months, until
1994 | Invasive, grade 1-3 | Validated FFQ in 1980, 1984, 1986, and 1990 | All-cause
mortality
(n=238)
(Result
superseded by
Farvid ⁴⁸ , 2021) | >20 vs ≤12.5
g/d | 0.77 (0.47-
1.25)
P trend=0.37 | Age, time between exposure assessment and cancer diagnosis, year of diagnosis, oral contraceptive, hormonal therapy, family history, smoking, age at first birth and parity, | | | | | | | Nonmetastatic
All-cause
mortality
(n=128) | | 0.59 90.33-
1.08)
P trend=0.04 | age at menarche, nodal status, tumour size, tumour grade, number of metastatic lymph nodes, BMI, menopausal status, energy intake, dietary factors, nulliparous, | | | | | | | Metastatic All-
cause
mortality
(n=250) | | 0.69 (0.45-
1.05)
P trend=0.13 | oestrogen receptor
(positive vs
negative)
Progesterone
receptor (positive
vs negative) | | Rohan ⁵² 1993,
SACCR follow-
up, Australia | Follow-up of case-control study (n=412), mean age 55.1 years, pre- and postmenopausal | Follow up=5.5
years median | Invasive primary
breast cancer, any
stage | Interview by trained interviewer at home. Average interval between diagnosis and | Breast cancer-
specific
mortality
(n=112) | ≥27 vs. ≤13
g/d | 0.87 (0.45-
1.68)
P
trend=0.812 | Energy intake, age of menarche, quetelet index | | Author, year,
study name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|----------------------|---------------------------------|-----------------------------------|---|---------------------|----------|-------------|------------| | | | | | interview was 4.8 months. Usual dietary intake was collected with a self- administered quantitative validated FFQ that assessed 179 specified dietary items | | | | | Abbreviations: CWLS, Collaborative Women's Longevity Study; HEAL, Health, Eating, Activity, and Lifestyle Study; NHS, Nurses' Health Study; SACCR, South Australian Central Cancer Registry; WHEL; Women's Healthy Eating and Living # Supplementary Table S18. Descriptive table of the included observational studies of post-diagnosis alcohol intake and breast cancer prognosis | Author, year,
study name,
country, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|---|--|--|--------------------------|---|--|---| | Schmidt ⁵⁹ G,
2020, Germany, | Female (n=197),
premenopausal
29.4%,
postmenopausal
70.6% | Follow Up:
Median 41.43
months | Triple-negative breast cancer. Grade G1 1%, G2 29.5%, G3 66.5%. Neoadjuvant chemotherapy 42.7%, pcr after neoadjuvant chemotherapy 40.5%, adjuvant chemotherapy 44.1%, no chemotherapy 13.2% | Registry
database of
during
diagnosis | Overall survival | Consumption vs No consumption | Log rank test P value =0.65 | NULL | | | | | | | Disease free
survival | Consumption vs No consumption | Log rank test
p-value = 0.75 | NULL | | Furrer ⁶⁰ D, 2018,
CMSDF, Canada, | | IFollow Up: Median 7.4 years, Six patients died from causes other than breast cancer 66 (28.0%) of 236 patients experienced disease recurrence. | GRADE: grade
I/II= 86; grade
III=149;
unknown=1
STAGE: stage
I=60; stage
II=106; stage
III=70
Radiotherapy
no=35; yes=201 | Self-
administered
Questionnaire
before
diagnosis, at
and during
trastuzumab
treatment of
during
diagnosis July
2005 to
August 2016 | Disease-free (n=34) | >2 vs 0-2 drinks/week >2 vs 0-2 drinks/week of wine >2 vs 0-2 drinks/week of beer | 0.68 (0.30-
1.56)
0.55 (0.23-
1.23) | Adjuvant endocrine
therapy, age at
diagnosis, BMI,
radiotherapy, stage | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|--|--|--|--|--|-----------------------|--| | | | | | (end of study
period) | | | 1.98 (0.53-
7.33) | | | Knight ⁶¹ , 2017,
WECARE, USA | Population-
based case-
control study
Female (n=3431)
mean age:46,
Cancer
Diagnosis: 1985-
2008, Mostly
White | 5-2008 | Invasive breast
cancer stage I-III | Interview | Contralateral
breast cancer
(n=1521) | Any drinking - Yes vs
Any drinking - No | 1.15 (0.98-1.34) | Age at diagnosis, age at menarche, BMI at diagnosis, chemotherapy, er status, family history, histology, hormonal therapy, number of full-term pregnancies, radiotherapy, smoking, tumor stage | | Veal ⁶² , 2017
WISC
USA | Cohort of women with an incident primary DCIS diagnosis reported to the Wisconsin Cancer Reporting System (n= 1925) | diagnosis
1997-2006
Follow up= 6.7 | DCIS | Interview,
Baseline
questionnaire
collected
median 1.3
years after
DCIS
diagnosis | All-cause
mortality
(n=196) | ≥7 vs. 0 drinks/ week | 1.03 (0.47 -
2.27) | Age at diagnosis, family history of breast cancer, education, surgical treatment type, year of diagnosis, post-treatment endocrine therapy use, comorbidity, post-menopausal hormone use, remaining exposures as time-varying covariates, prediagnosis exposure level as static covariates | | Nakamura ⁶³ ,
2017
Biobank Japan | of cancer | 2003-2008
Follow up= 7.8
years
Total death
(n=218) | - In situ:226
-Invasive:1414
75.8% | Questionnaire
, 90 days
after the
diagnosis | | Ever (current/former) vs. never | 1.06 (0.75 -
1.52) | Age at study entry, entry year | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--
---------------------------------|---|---------------------|---|-----------------------|---|---| | | Mean age:55.3
Calendar year:
2003-2008 until
2014 | | -ER+, 24.2% ER-, 62.1%; PR+, 37.9% PR10.9% stage 0, 47.9% stage IIA, 5.8% stage IIB, 1.4% stage IIIB, 0.3% stage IIIC, 0.8% stage IV, 0.5% unclassified | | | | | | | Wu ⁶⁴ , 2017
UTS (UTMDACC)
USA | Postmenopausal, premenopausal, | ,7.95 years | | J | All-cause
mortality
(n=711)
Recurrence
(n=730) | Yes vs. no | 0.75 (0.65 -
0.87)
0.71 (0.62 -
0.83) | | | Lowry ⁶⁵ , 2016
WHI
USA | Cohort of postmenopausal women (n= 7835) | Follow up= 7.9 years | | | Breast cancer
mortality(n=270)
ER- breast
cancer
ER+ breast
cancer | ≥7 vs. 0 drinks/ week | 0.93 (0.40 -
2.14)
0.49 (0.25-
0.98)
0.86 (0.48-
1.54) | Age, Income, Race,
study, family history of
breast cancer, smoking
status, Menopausal
Hormone therapy use,
BMI | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of
diagnosis and
follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|--|---|---------------------|---|--|---|---| | | Calendar year:
Recruitment
1991 | | | | All-cause
mortality(n=606)
ER- breast
cancer
ER+ breast
cancer | | 0.54(0.32-0.91)
0.54(0.32-0.89)
0.89(0.65-1.22) | | | | (prospective cohort) (n= 6596) Mixed age range:20-83 calendar year: 1976 and 2004 Year of diagnosis, range: 1990–2004 | years 49% of
deaths=due to
breast cancer,
17%=other
cancers,
13%=CVD and
21%=other
causes Total
deaths=1,427;
Total | Women diagnosed with invasive breast cancer Chemotherapy, n (%) = 3,046 (46.2); Radiotherapy, n (%) =4,063 (61.6); Mastectomy, n (%) =3,203 (48.6); Hormonal therapy, n (%) =5,689 (86.3) | FFQ | late recurrence
(≥5 years)
(n=593) ER
positive | ≥12 (>1 drinks/day) vs.
non-drinker (0 to 0.36)
g/ day | 1.62) P trend=0.06 | Age at diagnosis, TNM stage, PR status, chemotherapy, radiotherapy, Surgery, Hormonal therapy, race/ethnicity, menopausal status, Comorbidity, time between exposure measurement and 5-year post-diagnosis date, stratified by study, pre-diagnosis BMI, Exercise, Weight change, smoking | | | | | | | Early recurrence
(n=396) | | 0.87 (0.62-
1.23)
P trend=0.73 | | | Author, year,
study name,
country, WCRF
Code | | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | ĺ | Contrast | RR (95% CI) | Covariates | |---|-------------------------------|---------------------------------------|---|--|---|------------------------------|-----------------------|--| | | | | | | late all-cause
mortality (≥5
years) (n=593)
ER positive (n=1
163) | | 0.93 (0.75-
1.17) | | | Larsen ⁶⁷ , 2015
DCHS Denmark | Postmenopausal | 1997
Follow up= 9.6
years | - Stage: 1: 496 (40%); Stage 2: 612 (50%); Stage 3: 19 (2%); Missing: 102 (8%) -Tumour Size (mm): ≤ 20: 740 (60%); 21-50: 361 (29%); ≥51: 104 (8%) -Oestrogen receptor status: +ve: 928 (76%); ve: 196 (16%); Missing: 105 (9%) -Malignancy grade: 1: 333 (27%); 2: 358 (29%); 3: 178 (14%); Nonclassified/nonductal: 236 (19%); Missing: 124 (10%) | FFQ | All-cause
mortality
(number of death
is not reported) | > 14 vs. 1-14
drinks/week | 1.03(0.71-1.50) | Age,
Charlson Comorbidity
Index | | Simonsson ⁶⁸ ,
2014
Swedish Cohort | Prospective cohort (n= 1 045) | Follow up=3
years 76
deaths, 65 | -In situ:0
-Invasive:255 | Questionnaire
, 1045
patients were | Recurrence
(n=100) | > 10 vs. 0 drinks/week | 0.70 (0.21 -
2.32) | Age at diagnosis,
Tumour size, lymph
node involvement, | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|---|---|--|-----------------------------------|---------------------------------|--|---| | Sweden | Mean age:60.9 Calendar year: October 2002- December 2011, | distant
metastases,
100 breast
cancer events | - ER+ 813, PgR+
656, ER + PgR+
650, ER + PgR-
163, ER-PgR-
113, ER-PgR+
6
-Tumour size 1
(n=679), 2
(n=238), 3
(n=15), 4 (n=2),
invasive
(n=255)
-No preoperative
treatment
(n=934) | the study at
the time of
diagnosis,
and were
followed until
December
31st 2012 | | | | Tumour grade, ER
status, BMI, current
smoking, Treatment, | | Williams ³² , 2014,
NRWHS,
USA | Cohort of breast
cancer survivors
FROM the
National
Runners' and
Walkers' Health
Surveys (n=
986) | | | Questionnaire | Breast cancer
mortality (n=46) | Per g/day | 0.98(0.94-
1.01) | Age, race, exercise | | Ali ⁶⁹ , 2014
SEARCH
Multi-country | Pooled analysis of prospective case-cohort studies (n= 29 239), of which only SEARCH cohort included Postmenopausal, premenopausal, perimenopausal | Follow up= 6
years, 55,684
person-years. | | self-
administered
questionnaire | , | 1 unit/week >14 vs. 0 unit/week | 0.93(0.85-1.01)
0.86(0.63-
1.18)
0.81(0.69-0.96)
0.98(0.89-1.09) | | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|---------------------------------|---|---------------------|--|---------------------|--|---| | | | | | | ER+ breast
cancer
All-cause
mortality
(n=945)
ER- | >14 vs. 0 unit/week | 0.77 (0.58-
1.03)
0.77 (0.66-
0.90)
0.95 (0.87-
1.04) | | | Kwan ⁷⁰ , 2013,
ABCPP,
Multi-country | Pooling study of
3 prospective
cohort studies in
US
(n= 9329)
Mean age:58.8 | Follow up=10.3 years | -AJCC stage: I: 51.3%, II: 37.1%; III: 11.6% -Hormone receptor status: ER+/PR+: 65.2%; ER-/PR+: 3.1%; ER+/PR-: 14.8%; ER-/PR-: 16.9% -Chemotherapy: No: 47.9%; Yes: 52.1% -Radiation therapy: No: 38.9%; Yes: 61.1% -Hormonal therapy: No: 26.2%; Yes: 73.8% -Surgery type: none: 0.2%; lumpectomy: | | All-cause mortality (n=1542) Breast cancer mortality (n=911) Recurrence (n=1487) | ≥24 vs <0.36 g/day | 0.79 (0.63-
1.00)
P trend=0.06
0.80 (0.59 -
1.09)
P
trend=0.29
1.04(0.84-1.31) | Age at diagnosis, AJCC stage, race/ethnicity, education, menopausal status at diagnosis, Hormone receptor status, Surgery, Treatment, smoking, Physical activity, prediagnosis BMI, Comorbidity Included in high vs. low analysis only | | Author, year,
study name,
country, WCRF
Code | Study
description | follow-up | treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|----------------------------------|--------------------------|---|---------------------|--------------------------------|---------------------------------------|------------------------|--| | | | | 50.6%;
mastectomy:
49.2% | | | | | | | Newcomb ⁷¹ , 2013 | A survivorship cohort of The | Follow up=11.3 years | | | | ≥10 vs 0 drinks/week of total alcohol | | Age at diagnosis, stage of disease at diagnosis, | | Collaborative | Collaborative | | | | (n=276) | ≥7 vs 0 drinks/week of | 1.45 (0.77- | state of residence at | | Women's
Longevity Study | | 3484 breast cancer death | | | | wine
≥7 vs 0 drinks/week of | 2.73)
0.94 (0.37- | diagnosis, study phase, family history of breast | | (CWLS) | population-based case-control | | | | | beer
≥7 vs 0 drinks/week of | 2.39) | cancer, age at first birth, menopausal status, | | USA | study of risk
factors | | | | | spirit | 1.62) | hormone therapy use,
BMI, weight change,
smoking status,
education
mammography | | Beasley ³³ , 2011
CWLS, | Follow up of
cases of | Follow up= 5.5 years | Invasive:4441 | FFQ | All-cause
mortality | 15 vs. 0% E from alcohol | 0.78(0.60-1.01) | Age, residence, menopausal status, | | USA | population-based
case-control | | Primary invasive breast cancer; | | (n=525) | | 1.27 (0.76– | smoking, stage, alcohol intake, Hormonal | | (Included in the | studies (n= | | Stages: 72.8% | | | | 2.14) | therapy, interval | | analysis) | 4441) | | local, 27.2%
Regional | | Breast cancer mortality(n=137) | | | between diagnosis and baseline interview, BMI, | | (Results | Mixed age range:20-79 | | Surgery: 97.9% yes; | | | ≥10 vs. 0 g | 0.86 (0.51 - | Physical activity, breast cancer treatment, | | superseded by
Newcomb ⁷¹ ,
2013,) | years | | Radiotherapy:
49.8% yes;
Hormonal | | mortality(n=112) | | 1.47)
P trend=0.458 | Energy intake | | | Calendar
year:1998-2001 | | therapy: 57.8% yes; | | | | | | | | until 2005 | | y 03, | | | | | | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|---|--|--|-----------------------------------|--------------------------------------|--------------------------------------|---| | | | | Chemotherapy: 31.9% yes | | | | | | | Allin ⁷² , 2011,
Denmark | (n= 2910)
Age range:26-
99 | 2002-2009 | | self-
administered
questionnaire | , | >168 vs. ≤ 168 g of alcohol per week | 0.79 (0.53-
1.19) | | | Kwan ⁷³ M, 2010
LACE
(Superseded by
Kwan ⁷⁰ 2013) | Prospective cohort of breast cancer survivors (n=1897) Mixed age range: 1870 calendar year:2000-2002 | 24 to other
cancers, 32 to
cardiovascular
causes
63 to other
causes, | Among those with data:15.6% ER-ve/PR-ve, 1.86% ER-ve/PR+ve, 14.7% ER+ve/PR-ve, 67.7% ER+ve/PR+ve Invasive breast cancer; among those with data: 47.7% stage I, 32.6% stage IIA, 16.6% stage IIB, 3.06% stage IIIA, Surgery: 50.1% conserving, 49.8% mastectomy; None treatment: 17.4%; Chemotherapy only: 19.5%; Radiation only: 25.9%; Both radian and chemotherapy: 37.1%; | FFQ | All-cause
mortality
(n=273) | ≥6 vs. none g/ day | 1.19 (0.87-
1.62)
P trend=0.23 | Age at diagnosis, BMI, Folate intake, Tumour stage, Receptor status, Tamoxifen use, Treatment, Nodal status | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|---|---|---------------------|---|--|--|---| | | | | Tamoxifen use: 77.8% | | | | | | | | | | | | Recurrence
(n=268) | | 1.35 (1.00-
1.83)
P trend=0.04 | | | | | | | | Breast cancer
mortality
(n=144) | | 1.51 (1.00-
2.29)
P trend=0.05 | | | Flatt ⁷⁴ , 2010,
WHEL
USA
(Superseded by
Kwan 2013) | Prospective cohort of breast cancer survivors (n= 3088) Pre- and postmenopausal mean age:52 calendar year:1995-2000 until 2006 | 1991-2000
Follow up= 7.3
years | Invasive: 3088
24.8% ER-ve,
75.1% ER+ve
38.5% stage I
(=1 cm), 45.5%
stage II, 15.9%
stage III;
15.7% grade 1,
40.1% grade2,
35.9% grade 3,
8.2%
unspecified | 24h Recall +
FFQ | Mortality Additional breast cancer events (n=518) | moderate/heavy vs.
minimal g/ month | 0.69 (0.49-
0.97)
0.91 (0.71-
1.18) | Tumour stage, Tumour grade, weight, years btw diagnosis and study entry, parity, Physical activity, ethnicity, smoking, education | | Li ⁷⁵ , 2009, Seattle
Puget Sound
Region Nested
Case-Control
Study, United
States | - Female Population- based nested case-control study (n=1091) Pre- and postmenopausal age range: 40-79 years, Cancer | Up: Average 17
years, 365
contralateral
breast cancers | AJCC stages:
67.4% I, 32.6% II
or III; Tumor size
(cm): 33.4%
<=1.0, 41.7% | | Contralateral
breast cancer
(n=263)
Never smokers
(n=212) | >=7 vs none drinks/
week | 1.90 (1.10-
3.20)
0.90 (0.50-
1.80) | Age, BMI,
chemotherapy, county,
hormonal therapy, race,
survival time, tumor
stage, year of diagnosis | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of
diagnosis and
follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|---------------------------------------|--|-----------------------------|--|------------------------|----------------------|------------| | | Diagnosis: 1990-
2005 | | 73.9% no;
Radiotherapy:
65.4% yes,
34.6% no, 0.1%
missing;
Adjuvant
hormone
therapy: 66.8%
yes, 33.2% no | | Current smokers
(n=51) | | 3.70 (1.40-
9.80) | | | Knight ⁷⁶ , 2009,
WECARE, USA | | 5-2000 | Invasive breast
cancer stage I-III | Interview | Contralateral
breast cancer
(n=1521) | Ever drank - Yes vs No | 1.2
(0.90-1.50) | Age | | Barnett ⁷⁷ , 2008
SEARCH
UK
(superseded by
Ali ⁶⁹ 2014) | | 1991-2005
Follow up=
6.82 years | In situ:0 - Invasive:4560 18.7% ER-ve, 81.2% ER+ve Invasive breast cancer; 73% incident and 27% prevalent | questionnaire Recruited at | All-cause
mortality(n=564) | | 0.78 (0.64-
0.95) | NULL | | | postmenopausal Mean age:51.5 Calendar year:1996 until 2005 | | 49.7% stage I,
45.8% stage II,
3.3% stage III,
1.1% stage IV;
24.1% grade 1,
47.2% grade 2,
28.6% grade 3 | diagnosis | | | | | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|--|--|---------------------------
----------------------------|--|---| | Brewster ⁷⁸ , 2007
UTS (UTMDACC)
USA
(superseded by
Wu ⁶⁴ 2017, could
be included in the
high vs low only) | Cohort
(n= 2327)
Mean age:55
Calendar
year:1985-2000 | Follow up= 5
years | Early stage
breast cancer
-Tumour size: ≤2
(n=1603)/ >2
(n=57)
-Node negative:
n=1558 -Node
Positive: n=765
Missing: n=4 | Medical
records | Recurrence
(n=332) | Heavy vs. Never/rare | 0.98 (0.54 -
1.80)
P trend=0.98 | Treatment,
stage | | Trentham-Dietz ⁷⁹ , 2007, Wisconsin Follow-up Study of Women with Invasive Breast Cancer, United States | up of cases of f case-control studies (n=10953) Preand postmenopausal | Up: Average
7.1 years, 1188
second
cancers: 488
second breast
cancers, 132
colorectal | local, 28.9%
regional, 2.3% | Interview interviewed regarding their pre- diagnosis risk factors conducted approximately 1 year after diagnosis. 1987-2002 until 2002 | Colorectal cancer (n=237) | >7 vs none drinks/
week | 1.09 (0.78-
1.53)
P trend=0.91
1.92 (1.07-
3.43)
P trend=0.01
0.84 (0.42-
1.69)
P trend=0.47
0.55 (0.18-
1.72) | Age, alcohol intake,
BMI, family history, hrt,
menopausal status,
parity, smoking, tumor
stage, year of diagnosis | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|---------------------------------|---|--|--------------------------------|---|-----------------------|-------------------------------------| | | | | | | | | P trend=0.87 | | | Cancer Centre of
the British
Columbia Cancer | cancer survivors
(n= 603) mean
age:54.5 | years | 76.4% ER+ Tumour grades: 7.6% well differentiated, 46.4% moderately differentiated, 46% poorly differentiated Systemic treatment: Tamoxifen only: 21.9%; Chemotherapy only: 14.7%; Chemotherapy and tamoxifen: 21.4%; Other hormone 1.9%; None 40.1%. Local treatment: lumpectomy alone: 4.6%; Lumpectomy + RT: 14.6%; Complete mastectomy alone: 59.6%; Complete | semi-
quantitative
FFQ,
Questionnaire | | Per 1 % / increase of energy from alcohol | 0.99 (0.94 - 1.04) | Age, Tumour stage,
Energy intake | | | | | | | Breast cancer mortality: (N of | | 0.96 (0.90 -
1.04) | | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | | Contrast | RR (95% CI) | Covariates | |---|------------------------------------|---|--|---------------------|--|------------------|--|---| | | | | | | cases is not
reported. N of
total pre-
menopausal
women= 235) | | | | | | | | | | Breast cancer
mortality:
(N of cases is not
reported. N of
total post-
menopausal
women=368) | | 1.00 (0.93 -
1.07) | | | Holmes ³⁴ , 1999 NHS United States | based prospective cohort study (n= | Follow up= 157
months 378
deaths, 326 | In situ:0
Invasive:1982
Invasive breast
carcinoma;
Grade 1-3 | FFQ | Breast cancer
mortality: (N of
cases is not
reported. N of
total pre-
menopausal
women= 235) | > 15 vs 0 g/ day | 0.96 (0.90 -
1.04) | Age, Time between exposure assessment and cancer diagnosis, year of diagnosis, oral contraceptive, Hormonal therapy, smoking, Age at first birth, Nodal status, Tumour size, BMI, menopausal status | | | | | | | All-cause
mortality | | 0.92(0.66-1.27) | | | Tominaga ⁸⁰ ,
1998
Tochigi Cancer
Center Hospital,
Japan | | Follow up= 48 breast cancer mortality | 29.1% I, 52.3%
II, 15.3% III, | Medical
records | All-cause
mortality (n=98) | Yes vs. no | 0.10 (0.01 -
0.72)
P trend=0.023 | Age at diagnosis, TNM stage, Curability | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of
diagnosis and
follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|--|---|---|-----------------------------------|-----------------|-----------------------|--| | | | | -Chemotherapy: 65% yes, 35% no; -Hormone therapy: 44% yes, 56% no -Radiation therapy: 13% yes, 87% no | | | | | | | Ewertz ⁸¹ , 1993,
DBCCG, Denmark
(Superseded by
Ewertz 1991) | up of cases of a
population based
case-control
study (n=2445)
Pre- and
postmenopausal, | 3-1984 follow
Up: Maximum 7
years, Loss to
Follow-up: 3
patients | Primary invasive
breast cancer;
'44.8% grade I,
42.3% grade II,
12.8% grade III
Adjuvant therapy | quantitative
Ffq Data
collected a
year after | Total mortality
(n=805) | High vs low | 1.30 (0.10-1.75) | NULL | | Rohan, 1993, Diet
and Breast Cance
in Australia
Follow-up Study,
Australia,
SBR00120 | rcases of population-based | 1982-1984
Follow up= 5.5
years | Primary breast
cancer, any
stages | FFQ | Breast cancer
mortality(n=412) | ≥10 vs. 0 g/day | 0.86 (0.51 –
1.47) | Energy intake, Age of
menarche, Quetelet
Index | | | Author, year,
study name,
country, WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|---------------------------------|--|---------------------|---------------------|-------------------|-------------|---| | DBCCG, Denmark (n= 2445) years Invasive:2445 quantitative mortality Pre- and Primary Invasive FFQ (n=485) Nodal status, Tu | Ewertz ⁵⁴ , 1991
DBCCG, Denmark | Pre- and postmenopausal Calendar year: 1983-1984 until 1990 Death | · • | Invasive:2445
Primary Invasive
breast cancer;
44.8%Grade I,
42.3% Grade II,
12.8% Grade III | quantitative | mortality | >121 vs. 0 g/week | | Age, Tumour size,
Nodal status, Tumour
grade, Skin invasion,
Area of residence | Abbreviations: ABCPP, After Breast Cancer Pooling Project; CWLS, Collaborative Women's Longevity Study; DBCCG, Danish Breast Cancer Cooperative Group; DCHS, Danish Diet, Cancer and Health Cohort; LACE, Life After Cancer Epidemiology; LIBCSP, Long Island Breast Cancer Study Project; NHS, Nurses' Health Study; NRWHS, National Runner's and Walker's Health study; SEARCH, Studies of Epidemiology and Risk Factors in Cancer Heredity Breast Cancer Study; VCCBCC, Vancouver Cancer Centre of the British Columbia Cancer Agency; WHI, Women's Health Initiative; WHEL; Women's Healthy Eating and Living; WISC, Wisconsin In Situ Cohort Study ## Supplementary Table S19. Descriptive table of the included observational studies of post-diagnosis multivitamin use and breast cancer prognosis | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95%
CI) | Covariates | |--|---|---|---|---
--|--|--|--| | Nechuta ⁸² 2011, SBCSS, China | Population-
based cohort
study
(n=4877),
pre- and post-
menopausal,
age range:
20-75 years,
race: Chinese | Diagnosis:
2002-2006,
follow-up:
mean 4.1
years, 444
total deaths,
389 from
breast
cancer, 55
from other
causes | Stage I 34.5%, II 50.9%, III-IV 10.1%, missing 4.6%, ER+/PR+ 50.05%, ER+/PR+ 7.4%, ER-/PR+ 27.7%, unknown 1.9%, chemotherapy 92.2%, radiotherapy 32.8%, tamoxifen use 51.7% | Interview, by
trained
professional, at
on average 6.5
months post-
diagnosis | All-cause mortality (n=333) Breast cancer-specific mortality (n=290) Recurrence (n=398) All-cause mortality (n=333) Breast cancer-specific mortality (n=290) Recurrence (n=398) | Multivitamin supplement use, yes vs never Multivitamin supplement use, duration of use ≤3 months vs never | 0.82 (0.57-
1.17)
0.77 (0.52-
1.15)
0.74 (0.53-
1.03)
1.01 (0.63-
1.64)
0.88 (0.51-
1.52) | Receptor status, TNM stage, chemotherapy, radiotherapy, tamoxifen use, education, income, BMI, tea consumption, exercise, cruciferous vegetables, soy protein, vitamin E, antioxidants | | | | | | | All-cause
mortality (n=333) | Multivitamin supplement use, | 0.69 (0.42-
1.11) | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95%
CI) | Covariates | |--|--|---|--|---|--|--|--|--| | | | | | | Breast cancer-
specific mortality
(n=290) Recurrence
(n=398) | duration of use >3
months vs never | 0.69 (0.41-
1.18)
0.77 (0.51-
1.16) | | | Ambrosone ⁸³
2020,
DELCaP,
USA | Secondary
analysis of
clinical trials
(n=1134), age
range: 23-80 | Diagnosis:
2003-2010,
follow-up:
median 8.1
years | Stage II-III,
ER+ or PR+
65%, ER- or
PR- 35%,
HER2+ 21%, | Questionnaire,
self-
administered,
at 6 months
post-diagnosis | Overall survival (n=181) | Multivitamin supplement use, during treatment vs no use | 0.91 (0.54-
1.55) | Age, alcohol
intake, BMI, er
status, her2
status, lymph
node status, | | | years, pre-
menopausal
47%, post-
menopausal | years | radical
mastectomy or
local excision of
all tumours plus | post diagnosis | | Multivitamin
supplement use,
before treatment
vs no use | 1.35 (0.87-
2.09) | physical activity,
pr status,
smoking, toxicity,
treatment arm, | | | 52%, race:
mostly White | | axillary node
dissection or
sentinel node
resection | | | Multivitamin
supplement use,
before and during
treatment vs no
use | 1.31 (0.92-
1.88) | tumor size | | | | | | | Disease-free
survival (n=432) | Multivitamin
supplement use,
during treatment
vs no use | 1.02 (0.67-
1.56) | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95%
CI) | Covariates | |--|--|--|--|---|--------------------------------------|--|----------------------|--| | | | | | | | Multivitamin
supplement use,
before treatment
vs no use | 1.27 (0.88-
1.84) | | | | | | | | | Multivitamin
supplement use,
before and during
treatment vs no
use | 1.21 (0.90-
1.64) | | | Jung ⁸⁴ 2019,
MARIE,
Germany | Prospective cohort of cancer survivors (n=2223), age | Diagnosis:
2002-2005,
follow-up:
median 6
years, until | Stage I-IV,
grade low
19.6%,
moderate
49.3%, high | Interview, at
median 5.8
years post-
diagnosis | Overall survival
(n=328) | Multivitamin
supplement use,
yes vs no | 1.13 (0.86-
1.50) | Age, alcohol intake, BMI, cardiovascular disease, chemotherapy, | | | range: 58-66
years, post-
menopausal | 2015 | 21.9%,
ER+/PR+
60.7%, ER+ or
PR+ 16.8%,
ER-/PR-
13.5%, HER2+ | | Cancer specific
mortality (n=180) | | 0.97 (0.68-
1.37) | detection type, diabetes, education, hormone receptor status, menopausal | | | | | 15.4%, HER2-
68.0%,
mastectomy
26.1%, breast-
conserving
therapy 73.7%, | | Recurrence
(n=515) | | 1.10 (0.88-
1.38) | hormone therapy
use, nodal status,
other factors,
physical activity,
radiotherapy, | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95%
CI) | Covariates | |--|--|--|---|--|---|---|--|---| | | | | chemotherapy
45.8%,
radiation
therapy 70.9%,
hormone
therapy 80.7% | | | | | smoking, tumor
grade, tumor size | | Kwan ⁸⁵
2011, LACE,
USA | Prospective cohort of cancer survivors (n=2236), age range: 18-79 years, preand postmenopausal, race: mostly White | Diagnosis:
1997-2000,
follow-up:
average
8.33 years,
until 2011 | Stage I-IIIA,
treatment
completed
except for
adjuvant
chemotherapy | FFQ, self-
administered,
at on average
1.91 years
post-diagnosis | All-cause mortality (n=311) Breast cancer-specific mortality (n=167) Recurrence (n=312) | Multivitamin
supplement use
with or without
minerals, yes vs
no | 0.92 (0.71-
1.19) P trend=0.51 0.87 (0.60-
1.24) P trend=0.43 0.92 (0.71-
1.20) P trend=0.56 | Age at diagnosis, education, fruit and vegetable consumption, hormone receptor status, nonsedentary physical activity, other antioxidant use, positive lymph nodes, prediagnosis BMI, race/ethnicity, smoking, stage, treatment | | | | | | | All-cause
mortality (n=266) | Multivitamin supplement use | 0.93 (0.71-
1.22) | _ | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|---|--|---|------------| | | | | | | Breast cancer-
specific mortality
(n=141) | with minerals, yes
vs no | P
trend=0.60
0.87 (0.6-
1.27)
P
trend=0.48 | | | | | | | | Recurrence
(n=265) | | 0.89 (0.67-
1.17)
P
trend=0.39 | | | | | | | | All-cause
mortality (n=266) | Multivitamin
supplement use
without minerals,
yes vs no | 0.87 (0.5-
1.51)
P
trend=0.61 | | | | | | | | Breast cancer-
specific mortality
(n=141) | | 0.82 (0.39-
1.73)
P
trend=0.60 | | | | | | | | Recurrence (n=265) | - | 0.83 (0.49-
1.42) | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------
---|---------------------|--|---|--|------------| | | | | | | All-cause mortality (n=306) Breast cancerspecific mortality (n=164) Recurrence (n=307) | Multivitamin
supplement use
with or without
minerals, 6-7
days/week vs
never | P trend=0.50 0.92 (0.70-1.20) P trend=0.55 0.88 (0.61-1.28) P trend=0.56 0.90 (0.69-1.19) P trend=0.44 | | | | | | | | All-cause
mortality (n=261) | Multivitamin
supplement use
with or without
minerals before
and after | 0.79 (0.56-
1.12)
P
trend=0.18 | | | Author,
year, study
name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95%
CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|---|--|---|------------| | | | | | | Breast cancer-
specific mortality
(n=145) | diagnosis 3-5
days/week vs
never | 0.70 (0.44-
1.11)
P
trend=0.12 | | | | | | | | Recurrence
(n=261) | | 0.76 (0.54-
1.06)
P
trend=0.11 | | Abbreviations: SBCCS, Shanghai Breast Cancer Genetics Study ## Supplementary Table S20. Descriptive table of the included observational studies of post-diagnosis antioxidants use and breast cancer prognosis | Author, year,
study name,
country,
WCRF Code | Study
description | Time of diagnosis and follow-up | Disease characteristic s treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|--|------------------------------------|--|---------------------------------------|--|----------------------|---| | Poole ⁸⁶ 2013,
ABCPP, China
and USA | Consortium of four prospective cohort studies (n=12,019), age | Diagnosis:
1976-2006,
follow-up:
mean 8.4 | Stage I-III | In-person interview or mailed questionnaire, | Total mortality (n=1298) | Antioxidant supplement use, yes vs no | 0.84 (0.72-
0.99) | Age at diagnosis, exercise, stage, treatment, BMI, menopausal status, | | | range: 20-83
years, pre- and
post-
menopausal, | years | | at loadt i your | 0.88 (0.74-
1.03) | smoking status,
Vitamin A, B, C, D, E | | | | | race: mostly
Asian and White | | | | Recurrence
(n=1325) | | 0.94 (0.83-
1.07) | | | | | | | recurrence 1.10)` (n=703) | | | 0.95 (0.82-
1.10) | | | | | | | | (n=703) | | | | | | | | | | 0.87 (0.67-
1.12) | | | | | | | | | | Total mortality (n=1298) | Number of antioxidant | 0.79 (0.66-
0.95) | | | | | | | | Breast cancer
mortality
(n=849) | supplement use, 3 vs 0 | 0.85 (0.67-
1.07) | | | | | | | | Recurrence (n=1325) | | 0.88 (0.74-
1.05) | | | | | | | | ER-positive,
recurrence
(n=181) | | 0.93 (0.77-
1.13) | | | | | | | | ER-negative,
recurrence
(n=45) | | 0.73 (0.51-
1.07) | | |--|---|---|---|--|---|------------------------------------|--|---| | Nechuta ⁸²
2011, SBCSS,
China | cohort study (n=4877), pre-
and post- 2002-2006, II 50.9%, III-IV
follow-up: 10.1%, missing 4.6%, | Stage I 34.5%,
II 50.9%, III-IV
10.1%,
missing 4.6%, | Interview, by trained professional, at on average | Total mortality
(n=404) (Result
superseded by
Poole 2013) | Antioxidant supplement use, yes vs never | 0.82 (0.65-
1.02) | Receptor status, TNM stage, chemotherapy, radiotherapy, tamoxifen use, | | | | menopausal, age
range: 20-75
years, race:
Chinese | years, 444
total deaths,
389 from
breast
cancer, 55
from other | ER+/PR+ | speci (n=38 supe Poole Breas recur (n=48 supe | Breast cancer-
specific mortality
(n=352) (Result
superseded by
Poole 2013) | | 0.79 (0.62-
1.01) | education, Income,
BMI, Tea
consumption,
exercise, cruciferous
vegetables, soy
protein, multivitamins, | | | | causes | | | Breast cancer
recurrence
(n=486) (Result
superseded by
Poole 2013) | | 0.78 (0.63-
0.95) | vitamin E, vitamin C | | | | | | | Total mortality (n=404) | Duration of antioxidant supplement | oxidant 1.50) | | | | | | | | Breast cancer use, ≤3 1.05 | 1.05 (0.77-
1.43) | | | | | | | | | Recurrence (n=486) | | 0.92 (0.70–
1.21) | | | | | | | | Total mortality (n=404) | Duration of antioxidant supplement | 0.60 (0.44-
0.82) | | | | | | | | Breast cancer mortality (n=352) | use, >3
months vs
never | 0.60 (0.43-
0.85) | | | | | | | | Recurrence (n=486) | | 0.67 (0.51-
0.88) | | |---|---|--|--|--|--------------------------------------|---|--------------------------------------|---| | Fleischauer ⁸⁷
2003,
FASTCAB,
USA | (n= 385), mean
age: 62.1 years,
post-menopausal | Diagnosis:
1986-1988,
follow-up: 14
years, until
1999 | Invasive
primary breast
cancer | FFQ and
questionnaire,
self-
administered,
124 items | Disease-free
survival (n=58) | Antioxidant
supplement
use, yes vs
no | 0.54 (0.27-
1.04) | Age at diagnosis, age at menopause, tumour stage, tamoxifen use, radiotherapy, hormonal therapy, smoking, physical activity, dietary factors | | Jung ⁸⁴ 2019,
MARIE,
Germany | Prospective
cohort of cancer
survivors
(n=2223), age
range: 58-66
years, post-
menopausal | Diagnosis:
2002-2005,
follow-up:
median 6
years, until
2015 | Stage I-IV,
grade low
19.6%,
moderate
49.3%, high
21.9%,
ER+/PR+ | Interview, at
median 5.8
years post-
diagnosis | All-cause
mortality
(n=278) | Antioxidant
supplement
use, yes vs
no | 1.02 (0.75-
1.39)
P trend=0.91 | Age, alcohol intake,
BMI, cardiovascular
disease,
chemotherapy,
detection type,
diabetes, education,
hormone receptor
status, menopausal | | | 60.7%, ER+ or PR+ 16.8%, ER-/PR- 13.5%, HER2+ 15.4%, HER2- 68.0%, mastectomy 26.1%, breast- conserving | | Cancer specific
mortality
(n=161) | | 1.34 (0.91-
1.97)
P trend=0.14 | hormone therapy use, nodal status, other factors, physical activity, radiotherapy, smoking, tumor grade, tumor size | | | | | | | therapy 73.7%, chemotherapy 45.8%, radiation therapy 70.9%, hormone | | Recurrence
(n=440) | | 1.14 (0.89-
1.45)
P trend=0.31 | | | | | | therapy 80.7% | | Chemotherapy and/or radiation, | Antioxidant supplement | 1.64 (1.01-
2.66) | | | mortality ac
(n=217) tre | se during
djuvant
eatment, | P trend=0.04 | | |---|----------------------------------|----------------------|--| | Chemotherapy, All-cause mortality | es vs no | 1.80 (0.96-
3.40) | | | (n=150) | | P trend=0.07 | | | Radiation, All-
cause mortality | | 1.18 (0.74-
1.87) | | | (n=195) | | P trend=0.49 | | | Chemotherapy and/or radiation, | | 1.80 (0.97-
3.35) | | | cancer specific
mortality
(n=128) | | P trend=0.06 | | | Chemotherapy,
Cancer specific | | 1.99 (0.94-
4.20) | | | mortality (n=134) | | P trend=0.07 | | | Radiation,
Cancer specific | | 1.73 (0.87-
3.44) | | | mortality
(n=114) | | P trend=0.12 | | | Chemotherapy and/or radiation, | | 1.84 (1.26-
2.68) | | | Recurrence (n=330) | | P trend=0.002 | | | Chemotherapy,
Recurrence | | 2.24 (1.39-
3.63) | | | (n=373) | | P trend=0.001 | | | Radiation,
Recurrence
(n=294) | | 1.63 (1.07-
2.48) | | | | | | | | | | P trend=0.02 | | |---|---|---|--|---|-----------------------------------|--
----------------------|---| | 2020, analy clinica (n=11 range years meno 47%, meno 52%, | Secondary
analysis of
clinical trials
(n=1134), age
range: 23-80
years, pre-
menopausal
47%, post-
menopausal
52%, race: | Diagnosis:
2003-2010,
follow-up:
median 8.1
years | Stage II-III,
ER+/PR+
65%, ER-/PR-
35%, HER2+
21%, radical | Questionnaire,
self-
administered,
at 6 months
post-diagnosis | All-cause
mortality
(n=181) | Antioxidant supplement use, during treatment vs no use | 1.03 (0.53-
1.98) | Age, alcohol intake,
BMI, er status, her2
status, lymph node
status, multivitamins,
physical activity, pr | | | | opausal
, post-
opausal | mastectomy or local excision of all tumours plus axillary node | | | Antioxidant
supplement
use, before
treatment vs
no use | 1.19 (0.81-
1.76) | status, smoking,
toxicity, treatment arm
tumor size | | | mostly write | | dissection or
sentinel node
resection | | | Antioxidant supplement use, before and during treatment vs no use | 1.40 (0.90-
2.18) | | | | | | | | Disease-free
survival (n=432) | Antioxidant supplement use, during treatment vs no use | 0.92 (0.52-
1.64) | | | | | | | | | Antioxidant supplement use, before treatment vs no use | 1.04 (0.74-
1.47) | | | | | | | | | Antioxidant supplement use, before and during treatment vs no use | 1.41 (0.98-
2.04) | | Abbreviations: ABCPP, After Breast Cancer Pooling Project; LACE, Life After Cancer Epidemiology; NHS, Nurses' Health Study; SBCCS, Shanghai Breast Cancer Genetics Study; WHEL; Women's Healthy Eating and Living ## Supplementary Table S21. Descriptive table of the included observational studies of post-diagnosis any vitamin or mineral use and breast cancer prognosis | Author, year, study name, country, WCRF | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|---|--|--|---|--|----------------------|------------| | Saquib ⁸⁸
2012,
WHEL,
USA | Secondary
analysis of
clinical trials
(n= 177), age
range: 18-70
years | Diagnosis:
1991-1996,
follow-up:
average 7.3
years, until
2006 | Stage I-IIIA | 24h recall, at
baseline | Breast cancer recurrence (n=34), women did not receive systemic treatment (n=177) | Number of
supplement
use, ≥3 vs ≤2 | 1.10 (0.56-
2.26) | | | | | | | | Breast cancer
recurrence,
women who
received systemic
treatment
(n=2909) | | 1.03 (0.86-
1.23) | | | Nechuta ⁸²
2011, | Population-
based cohort
study (n=4877), | Diagnosis:
2002-2006,
follow-up: | Stage I 34.5%, II 50.9%, III-IV 10.1%, missing | Interview, by trained professional, at | Total mortality (n=444) | Vitamin supplement use, yes vs | 0.88 (0.72-
1.08) | | | SBCSS,
China | pre- and post-
menopausal,
age range: 20- | 4.1 years, | 4.6%, ER+/PR+
50.05%,
ER+/PR- 13%, | on average 6.5 | Total mortality
(n=53) ER/PR-
positive | never | 0.98 (0.69-
1.38) | | | • | Study
Jescription | Time of
diagnosis
and follow-
up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---------------------------|---|--|-----------------------|--|----------|--|------------| | | 5 years, race:
Chinese | 444 total
deaths, 389
from breast
cancer, 55
from other
causes | ER-/PR+ 7.4%,
ER-/PR- 27.7%,
unknown 1.9%,
chemotherapy
92.2%,
radiotherapy
32.8%,
tamoxifen use
51.7% | months post-diagnosis | Total mortality (n=62) ER/PR- negative Total mortality (n=95) Stage I or II Total mortality (n=48) Stage III or IV Total mortality (n=79) radiotherapy Total mortality (n=169) no radiotherapy Total mortality (n=135) chemotherapy | | 0.84 (0.61-
1.16)
0.86 (0.67-
1.10)
0.87 (0.60-
1.27)
1.03 (0.77-
1.38)
0.75 (0.56-
1.00) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|---|----------|----------------------|------------| | | | | | | Total mortality | | 0.79 (0.52- | | | | | | | | (n=23) no
chemotherapy | | 1.22) | | | | | | | | Total mortality (n=68) used tamoxifen | _ | 0.90 (0.66-
1.25) | | | | | | | | Total mortality (n=79) did not use tamoxifen | | 0.89 (0.68-
1.18) | | | | | | | | Breast cancer-
specific mortality
(n=389) | | 0.88 (0.71-
1.09) | | | | | | | | Recurrence (n=532) | _ | 0.84 (0.7-1.01) | _ | | | | | | | Recurrence
(n=66) ER/PR-
positive | | 0.95 (0.70-
1.29) | | | | | | | | Recurrence
(n=71) ER/PR-
negative | _ | 0.78 (0.58-
1.05) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|---|----------|----------------------|------------| | | | | | | Recurrence
(n=116) Stage I or
II | | 0.82 (0.65-
1.03) | | | | | | | | Recurrence
(n=56) Stage III or
IV | | 0.80 (0.57-
1.14) | | | | | | | | Recurrence
(n=96)
radiotherapy | | 1.02 (0.78-
1.33) | | | | | | | | Recurrence
(n=79) no
radiotherapy | | 0.72 (0.55-
0.94) | | | | | | | | Recurrence
(n=170)
chemotherapy | | 0.87 (0.72-
1.06) | | | | | | | | Breast cancer
recurrence (n=24)
no chemotherapy | | 0.66 (0.43-
1.00) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|---|------------------------------------|----------------------|------------| | | | | | | Recurrence
(n=79) used
tamoxifen | | 0.77 (0.58-
1.02) | | | | | | | | Recurrence
(n=96) did not use
tamoxifen | | 0.89 (0.69-
1.15) | | | | | | | | Total mortality (n=444) | Duration of any vitamin supplement | 1.09 (0.81-
1.45) | | | | | | | | Breast cancer-
specific mortality
(n=389) | use, ≤3
months vs
never | 1.04 (0.76-
1.43) | | | | | | | | Recurrence (n=532) | | 0.90 (0.69-
1.19) | | | | | | | | Total mortality (n=444) | Duration of any vitamin supplement | 0.79 (0.62-
1.00) | | | | | | | | Breast cancer-
specific mortality
(n=389) | use, >3 | 0.80 (0.62-
1.03) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|---------------------|--------------------|----------------------|------------| | | | | | | Recurrence (n=532) | months vs
never | 0.81 (0.65-
1.00) | | Abbreviations: SBCCS, Shanghai Breast Cancer Genetics Study; WHEL; Women's Healthy Eating and Living ## Supplementary Table S22. Descriptive table of the included observational studies of post-diagnosis single vitamin supplementation and breast cancer prognosis | Author, year, study name, country, WCRF | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|---|---
------------------------------------|--|--|---| | Madden ⁸⁹
2018,
Ireland | Retrospective
cohort of
cancer
survivors (n=
5417), age
range: 50-80
years, race:
White | Diagnosis:
2001-2011,
follow-up: until
2012 | Stage I-III, ER+ 148.4%, ER- 31.6%, unspecified 19.9%, PR- 49.9%, PR+ 104.6%, unspecified 46.8%, HER2+ 23.8%, HER2- | Pharmacy
claims
database, new
vitamin D
prescriptions
dispensed post-
diagnosis | All-cause
mortality
(n=1394) | Vitamin D supplementation, yes vs no Vitamin D supplementation initiation, <180 days post- diagnosis vs no | 0.86 (0.72-
1.01)
P trend<0.05
0.58 (0.44-
0.76) | Age at diagnosis, smoking status, comorbidity, tumour stage, tumour grade, ER status, PR status, HER2 status, bisphosphonate, chemotherapy, anti-oestrogen use, | | | | | 123.7%,
unspecified
52.4% | | | Vitamin D supplementation initiation, ≥180 days post- diagnosis vs no Vitamin D supplementation duration, 1-12 months vs no | 0.95 (0.78-
1.16)
0.80 (0.68-
0.93)
P trend<0.05 | statins, NSAID use,
anti-diabetic
medication use | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|-----------------------------------|---|--------------------------------------|------------| | | | | | | | Vitamin D
supplementation
duration, >12
months vs no | 0.36 (0.30-
0.42)
P trend<0.05 | | | | | | | | | Vitamin D
supplementation,
>400 IU/day vs 1-
400 IU/ day | 0.82 (0.69-
0.99)
P trend<0.05 | | | | | | | | Cancer specific mortality (n=806) | Vitamin D
supplementation,
yes vs no | 0.80 (0.64-
0.99)
P trend<0.05 | | | | | | | | | Vitamin D
supplementation
initiation, <180
days post-
diagnosis vs no | 0.51 (0.34-
0.74) | | | | | | | | | Vitamin D supplementation initiation, ≥180 | 0.91 (0.70-
1.18) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|---|--|--|------------------------|---|--|---| | | | | | | | days post-diagnosis vs no Vitamin D supplementation duration, 1-12 months vs. no Vitamin D supplementation duration, >12 months vs no Vitamin D supplementation, >400 IU/day vs 1-400 IU/day | 0.73 (0.60-
0.91)
P trend<0.05
0.33 (0.26-
0.41)
P trend<0.05
0.79 (0.62-
1.01) | | | Inoue-
Choi ⁹⁰
2014, Iowa
Women's
Health
Study, USA | Prospective
cohort of
cancer
survivors (n=
969), age | Diagnosis:
1986-2002,
follow-up: 6.1
years | No information specific to breast cancer | FFQ, self-report,
more than 1
year | All-cause
mortality | Vitamin D supplementation, yes vs never Vitamin C supplementation, yes vs never | 0.75
(0.47-1.19)
0.79
(0.58-1.08) | Age, energy intake,
BMI, physical
activity, smoking,
comorbidity index,
perceived general
health, history of
diabetes, history of | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|-----------------------|---------------------------------|---|---------------------|---------------------|---|----------------------|--| | | range: 55-69
years | | | | | Vitamin E
supplementation,
yes vs never | 0.80 (0.60-1.08) | high blood
pressure, cancer
stage, surgery, | | | | | | | | Vitamin A supplementation, yes vs never | 0.82 (0.43-1.57) | chemotherapy,
number of cancers,
current cancer
treatment, years | | | | | | | | B complex vitamin supplementation, yes vs never | 0.70 (0.41-1.18) | since cancer
diagnosis, protein
intake, total
vegetable and fruit | | | | | | | | Vitamin B6 supplementation, yes vs never | 0.94 (0.58-1.51) | intake, whole grain intake | | | | | | | | Beta carotene supplementation, yes vs never | 1.05 (0.46-
2.41) | | | | | | | | | Folic acid supplementation, yes vs never | 1.01 (0.60-
1.70) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|---------------------|--|-----------------------|------------| | | | | | | | Calcium
supplementation,
yes vs never | 0.83 (0.64-
1.09) | | | | | | | | | Iron supplementation, yes vs never | 1.60 (1.11-
2.31) | | | | | | | | | Magnesium supplementation, yes vs never | 1.01 (0.57-
1.8) | | | | | | | | | Selenium
supplementation,
yes vs never | 0.74 (0.34-
1.58) | - | | | | | | | | Zinc
supplementation,
yes vs never | 0.85 (0.50-
1.44) | | | | | | | | | Copper supplementation, yes vs never | 2.50 (0.59-
10.65) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|---|---|--|--|--|---| | Harris ⁹¹
2013,
Swedish
Mammogra | Population-
based cohort
study (n=
3405), mean | Diagnosis:
1987-2010,
follow-up: 7.8
years, 1055 | Invasive breast cancer, stage I-IV | 67-item FFQ at baseline and a 96-item FFQ in 1997 dietary | Total mortality (n=228) | Vitamin C
supplementation,
yes vs no | 0.81 (0.53-
1.26) | Age, energy intake, education, marital status, menopausal status, RMI | | phy Cohort,
Sweden | age: 65 years,
pre- and post-
menopausal | deaths, 416
from breast
cancer | | assessment occurred a mean of 4.6 years after breast cancer diagnosis range (1 year to 10 year) | Breast cancer-
specific mortality
(n=66) | yes vs no | 1.06 (0.52-
2.17) | status, BMI, alcohol intake, year of diagnosis, tumour stage, tumour grade, radiotherapy, treatment | | Poole ⁸⁶
2013,
ABCPP,
China and | Consortium of four prospective cohort studies | Diagnosis:
1976-2006,
follow-up:
mean 8.4 | Stage I-III | In-person interview or mailed questionnaire, | Total mortality (n=1298) | Vitamin A supplementation, yes vs no | 1.06 (0.82-
1.36) | Age at diagnosis, exercise, stage, treatment, BMI, menopausal status, | | USA | (n=12,019),
age range: 20-
83 years, pre- | years | questionnaire,
self-reported, at
least 1 year
post-diagnosis | | Vitamin B supplementation, yes vs no | 0.96 (0.81-
1.15) | smoking status | | | | and post-
menopausal,
race: mostly | | | | . 0 | | Vitamin C
supplementation,
yes vs no | 0.87 (0.76-
1.01) | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|--|--|----------------------|------------| | | Asian and
White | | | | | Vitamin D
supplementation,
yes vs no | 0.95 (0.72-
1.24) | | | | | | | | |
Vitamin E
supplementation,
yes vs no | 0.92 (0.79-
1.07) | - | | | | | | | Breast cancer
specific mortality
(n=849) | Vitamin A supplementation, yes vs no | 0.95 (0.68-
1.34) | - | | | | | | | | Vitamin B supplementation, yes vs no | 0.98 (0.80-
1.21) | | | | | | | | | Vitamin C
supplementation,
yes vs no | 0.94 (0.79-
1.12) | | | | | | | | | Vitamin D supplementation, yes vs no | 0.97 (0.68-
1.38) | | | Author, year, study name, country, WCRF | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|----------------------|---------------------------------|---|---------------------|---------------------------------------|--|----------------------|------------| | | | | | | | Vitamin E
supplementation,
yes vs no | 0.89 (0.72-
1.10) | | | | | | | | Recurrence (n=1325) | Vitamin A supplementation, yes vs no | 1.16 (0.80-
1.70) | | | | | | | | Recurrence,
ER-positive
(n=79) | | 1.12 (0.88-
1.43) | | | | | | | | Recurrence,
ER-negative
(n=18) | | 1.36 (0.82-
2.24) | | | | | | | | Recurrence (n=1325) | Vitamin B supplementation, yes vs no | 0.94 (0.79-
1.11) | | | | | | | | Recurrence,
ER-positive
(n=135) | ,50 10 | 0.81 (0.68-
0.98) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|---------------------------------------|--------------------------------------|----------------------|------------| | | | | | | Recurrence,
ER-negative
(n=50) | | 1.03 (0.76-
1.40) | | | | | | | | Recurrence (n=1325) | Vitamin C supplementation, yes vs no | 0.98 (0.85-
1.12) | | | | | | | | Recurrence,
ER-positive
(n=331) | yes vs no | 0.92 (0.80-
1.05) | | | | | | | | Recurrence,
ER-negative
(n=99) | | 0.87 (0.68-
1.11) | | | | | | | | Recurrence (n=1325) | Vitamin D supplementation, | 0.92 (0.62-
1.35) | | | | | | | | Recurrence,
ER-positive
(n=44) | yes vs no | 0.64 (0.47-
0.87) | | | | | | | | Recurrence,
ER-negative
(n=22) | | 1.25 (0.78-
1.98) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|---|--|---|--|--|-------------------------------------|--| | | | | | | Recurrence
(n=1325) | Vitamin E supplementation, | 0.90 (0.78-
1.03) | | | | | | | | Recurrence,
ER-positive
(n=367) | yes vs no | 0.89 (0.78-
1.02) | | | | | | | | Recurrence,
ER-negative
(n=101) | | 0.90 (0.70-
1.15) | | | Greenlee
H ⁹² , 2012,
LACE,
United | Prospective cohort of cancer survivors (n= | 1997-2000
Follow up= 10
years, until
2010 393 | Early-stage primary breast cancer among those with | Questionnaire,
self-
administered, at
on average 1.9 | Total mortality (n=314) | Carotenoid supplementation, frequent vs no | 1.63 (1.06-
2.5)
P trend=0.04 | Age at diagnosis,
ethnicity, stage of
disease, number of
positive lymph | | States | 2264), mean
age: 58.3
years, pre-
and post- | deaths, 214
breast cancer
mortality, 375
breast cancer | data: 84.4% ER+
and/or PR+,
15.6% ER- | years post-
diagnosis | Total mortality,
chemotherapy
(n=51) | | 2.09 (1.21-
3.61) | nodes, hormone receptor status, chemotherapy, radiotherapy, | | | menopausal | recurrence | and/PR-AJCC;
80.3% stage I or
IIA 57.2%
chemotherapy, | | Total mortality,
radiotherapy
(n=14) | | 2.14 (1.20-
3.82) | hormonal therapy,
BMI, smoking,
alcohol intake,
physical activity, | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|--|---------------------|---|----------|--------------------------------------|--------------------------------| | | | | 63% radiation
therapy, 80.4%
hormone therapy | | Total mortality,
hormonal
therapy (n=18) | | 1.66 (1.00-
2.73) | fruit, vegetables, comorbidity | | | | | | | Breast mortality (n=166) | | 1.93 (1.14-
3.28)
P trend=0.03 | | | | | | | | Breast cancer
mortality,
chemotherapy
(n=13) | _ | 2.54 (1.37-
4.70) | | | | | | | | Breast cancer
mortality,
radiotherapy
(n=10) | | 2.54 (1.28-
5.05) | | | | | | | | Breast cancer
mortality,
hormonal
therapy (n=12) | | 2.14 (1.16-
3.97) | | | | | | | | Recurrence (n=311) | _ | 1.23 (0.76-
1.96) | - | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|---|---|--------------------------------------|------------| | | | | | | | | P trend=0.52 | | | | | | | | Recurrence,
chemotherapy
(n=15) | | 1.66 (0.96-
2.88) | - | | | | | | | Recurrence, radiotherapy (n=11) | | 1.37 (0.73-
2.57) | | | | | | | | Recurrence,
hormonal
therapy (n=14) | | 1.31 (0.75-
2.27) | - | | | | | | | Total mortality (n=315) | Beta carotene supplementation, frequent vs no | 1.18 (0.71-
1.97)
P trend=0.41 | - | | | | | | | Breast cancer
mortality
(n=169) | | 1.33 (0.69-
2.55)
P trend=0.34 | - | | | | | | | Recurrence (n=314) | | 0.89 (0.50-
1.60) | | | | | | | | | | P trend=0.90 | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|--|---|--------------------------------------|------------| | | | | | | Total mortality (n=314) (Result superseded by Poole, 2013, ABCPP, SBR00601) | Vitamin E
supplementation,
frequent vs no | 0.75 (0.59-
0.96)
P trend=0.02 | | | | | | | | Breast cancer
mortality
(n=168)
(Result
superseded by
Poole, 2013,
ABCPP,
SBR00601) | | 0.85 (0.64-
1.18)
P trend=0.34 | | | | | | | | Recurrence (n=312) (Result superseded by Poole, 2013, | | 0.70 (0.54-
0.90)
P trend<0.01 | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|---|--|--------------------------------------|------------| | | | | | | ABCPP,
SBR00601) | | | | | | | | | | Recurrence,
chemotherapy
(n=65) | | 0.79 (0.56-
1.12) | | | | | | | | Recurrence,
radiotherapy
(n=63) | | 0.70 (0.49-
0.98) | | | | | | | | Recurrence,
hormonal
therapy (n=81) | | 0.70 (0.51-
0.96) | | | | | | | | Total mortality (n=316) | Lycopene supplementation, frequent vs no | 1.38 (0.41-
4.61)
P trend=0.46 | | | | | | | | Breast cancer
mortality
(n=169) | | 2.09 (0.59-
7.43)
P trend=0.15 | | | | | | | | Recurrence (n=313) | | 1.17 (0.35-
3.89) | - | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|---------------------------------------|--|--------------------------------------|------------| | | | | | | | | P trend=0.67 | | | | | | | | Total mortality (n=318) | Selenium supplementation, frequent vs no | 0.80
(0.45-
1.41)
P trend=0.65 | | | | | | | | Breast cancer
mortality
(n=169) | | 0.90 (0.45-
1.79)
P trend=0.87 | | | | | | | | Recurrence (n=314) | | 0.89 (0.53-
1.49)
P trend=0.75 | | | | | | | | Total mortality (n=317) | Zinc
supplementation,
frequent vs no | 0.75 (0.46-
1.21)
P trend=0.29 | | | | | | | | Breast cancer
mortality
(n=168) | | 0.82 (0.44-
1.53)
P trend=0.29 | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|---------------------------------|---|--|--|---|---|--| | | | | | | Recurrence
(n=312) | | 0.79 (0.49-
1.28)
P trend=0.26 | | | Jacobs ⁹³
2011,
WHEL,
USA | Nested case-
control study
within a
prospective
cohort
(n=3085),
mean age:
51.6 years | Follow-up:
mean 7.3
years | Invasive breast cancer, stage I 21.1%, II 48.1%, III 30.9% III, chemotherapy 80.3%, radiotherapy 62.7%, antioestrogen use 54.9%, Chemotherapy: 80.7% yes; Radiotherapy: 63.1% yes; Antioestrogen use: 64.5% yes, among controls | FFQ, at
approximately 2
years post-
diagnosis | Breast cancer recurrence (Result superseded by Poole, 2013, ABCPP, SBR00601) Breast cancer recurrence Pre-menopausal women Breast cancer recurrence Post-menopausal women | Vitamin D
supplementation,
no vs 538.7 IU/d | 1.08 (0.87-
1.34) P trend=0.47 0.96 (0.61-
1.52) P trend=0.84 1.11 (0.86-
1.41) P trend=0.44 | Age, ethnicity, BMI, intervention group, energy intake, stage of baseline cancer, and years between diagnosis and study entry. | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|---|---|--|--|---|--------------------------------------|--| | | | | | | Breast cancer
recurrence
(Result
superseded by
Poole, 2013,
ABCPP,
SBR00601) | Vitamin D
supplementation,
no vs yes | 1.07 (0.88-
1.29)
P trend=0.49 | | | | | | | | Breast cancer recurrence Pre-menopausal women | | 0.94 (0.65-
1.37)
P trend=0.76 | | | | | | | | Breast cancer recurrence Post-menopausal women | | 1.10 (0.88-
1.38)
P trend=0.38 | | | Nechuta
S ⁸² , 2011,
SBCSS | Prospective cohort (population-based) of | Diagnosed:
2002-2006
Follow up= 4.1
years, 444 | Invasive breast
cancer 50.05%
ER+/PR+, 13%
ER+/PR-, 7.4% | Interviews
conducted by
trained
interviewer | Total mortality (n=358) (Results superseded by | Vitamin C
supplementation,
yes vs never | 0.81 (0.61-
1.07)
P trend=0.13 | Receptor status,
TNM stage,
chemotherapy,
radiotherapy, | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|--|---|--|----------|--|--| | | breast cancer
survivors (n=
4877) Pre- and
postmenopaus
al
age range: 20-
75 years | total deaths,
389 breast
cancer
mortality, 55
death from
other causes | ER-/PR+, 27.7% ER-/PR-, 1.9% unknown TNM; 34.5% stage I, 50.9% stage IIA/IIB, 10.1% stage III–IV, 4.6% missing chemotherapy 92.2%, radiotherapy 32.8%, tamoxifen use 51.7% | within 6 months post-diagnosis, (on average 6.5 months after diagnosis) | Poole, 2013, ABCPP, SBR00601) Breast cancerspecific mortality (n=316) (Results superseded by Poole, 2013, ABCPP, SBR00601) Breast cancer recurrence (n=435) (Results superseded by Poole, 2013, ABCPP, SBR00601) | | 0.82 (0.61-
1.10)
0.81 (0.63-
1.03)
P trend=0.09 | tamoxifen use, education, income, BMI, tea consumption, exercise, cruciferous vegetables, soy protein, vitamin E, antioxidants | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|--------------------------|---|--|------------| | | | | | | Total mortality | Duration of vitamin C supplementation, | 1.08 (0.77-
1.52) | | | | | | | | Breast cancer mortality | ≤3 months vs
never | 1.11 (0.78-
1.58) | | | | | | | | Breast cancer recurrence | | 1.00 (0.74-
1.37) | | | | | | | | Total mortality (n=435) | Duration of vitamin C supplementation, >3 months vs never | 0.56 (0.37-
0.87)
P
trend=0.009 | | | | | | | | Breast cancer mortality | | 0.56 (0.35-
0.88) | | | | | | | | Breast cancer recurrence | | 0.62 (0.43-
0.90) | | | | | | | | | | P trend=0.01 | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|--|---|--------------------------------------|------------| | | | | | | Total mortality
(n=319) (Results
superseded by
Poole, 2013,
ABCPP,
SBR00601) | Vitamin E
supplementation,
yes vs never | 0.71 (0.46-
1.11)
P trend=0.13 | | | | | | | | Breast cancer-
specific mortality
(n=278) (Results
superseded by
Poole, 2013,
ABCPP,
SBR00601) | | 0.63 (0.38-
1.04) | | | | | | | | Breast cancer
recurrence
(n=382) (Results
superseded by
Poole, 2013,
ABCPP,
SBR00601) | | 0.65 (0.43-
0.97)
P trend=0.04 | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|--------------------------|---|--------------------------------------|------------| | | | | | | Total mortality | Duration of vitamin E supplementation, ≤3 months vs | 0.97 (0.55-
1.70)
P trend=0.90 | | | | | | | | Breast cancer mortality | never | 0.76 (0.39-
1.49) | | | | | | | | Breast cancer recurrence | | 0.74 (0.42-
1.29)
P trend=0.29 | | | | | | | | Total mortality | Duration of vitamin E supplementation, >3 months vs | 0.52 (0.27-
1.01)
P trend=0.05 | | | | | | | | Breast cancer mortality | never | 0.53 (0.26-
1.07) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--
--|---|---|--|----------------------------------|--|--------------------------------------|--| | | | | | | Breast cancer recurrence | | 0.57 (0.32-
1.01)
P trend=0.05 | | | Bruemme ⁹⁴ , 2003,
Fred
Hutchinson | Prospective cohort of cancer survivors | Recruited:
1994-1997
Follow up= 2
years, until 2 | | Questionnaire
was conducted
approximately
two weeks | Non-relapse
mortality | Vitamin C supplementation, ≥500mg/day vs | 0.80 (0.27-
2.41)
P trend=0.58 | Age, tumour stage | | Cancer
Research
Center
Nutritional | (n=99) | years after
transplant | | before initiation of the radiation and/or chemotherapy | Relapse-free recurrence | no | 0.11 (0.02-
0.89)
P trend=0.03 | | | Supplemen
t Follow-up
study, USA | | | | regimen | Mortality or recurrence | | 0.41 (0.17-
1.02)
P trend=0.04 | | | Fleischauer
AT ⁸⁷ , 2003,
FASTCAB,
United | (n= 385) Post-
menopausal,
mean age:
62.1 years | Diagnosed:
1986-1988
Follow up= 14
years, until | Invasive breast cancer | Questionnaire,
self-
administered | Disease-free
survival (n=220) | Vitamin C
supplementation,
yes vs no | 0.64 (0.32-
1.27) | Age at diagnosis, age at menopause, tumour stage, tamoxifen use, | | States | | 1999 | | | | Vitamin C supplementation | 0.90 (0.35-
2.23) | radiotherapy,
hormonal therapy,
smoking, physical | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|---------------------|--|----------------------|---------------------------| | | | | | | | post-diagnosis,
yes vs no | | activity, dietary factors | | | | | | | | Duration of vitamin C supplementation, >4 years vs no | 0.34 (0.11-
0.97) | | | | | | | | | Vitamin E supplementation, yes vs no | 0.55 (0.28-
1.08) | | | | | | | | | Vitamin E
supplementation
post-diagnosis,
yes vs no | 0.75 (0.34-
1.76) | | | | | | | | | Duration of vitamin E supplementation, >3 years vs no | 0.33 (0.10-
1.07) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|---|---------------------|---|--|--|--| | Zeichner ⁹⁵
2015, USA | Retrospective cohort of cancer survivors (n=134), mean age: 54 years, race: Hispanic and Non-Hispanic White | Diagnosis:
2006-2012,
follow-up:
median 29.5
months | Nonmetastatic, grade low/intermediate 39.7%, high 60.3%, HER2+ 100%, ER+ 63.6%, PR+ 53.0%, neoadjuvant chemotherapy 100%, mastectomy 60.6%, lumpectomy 34.9%, no surgery 4.6%, radiation 88%, hormone therapy 58.1% | Medical records | Overall survival (n=21) Disease-free survival (n=89) | Vitamin D
supplementation
during
chemotherapy,
yes vs no | 0.30 (0.07-
1.37)
P trend=0.12
0.36 (0.15-
0.88)
P trend=0.26 | Age at diagnosis,
BMI, er status,
histological grade,
lymph node
metastasis, tumor
size | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|--|---|--|--|--|--| | Jung ⁸⁴
2019,
MARIE,
Germany | Prospective
cohort of
cancer
survivors
(n=2223), age
range: 58-66
years, post- | Diagnosis:
2002-2005,
follow-up:
median 6
years, until
2015 | Stage I-IV, grade low 19.6%, moderate 49.3%, high 21.9%, ER+/PR¬+ 60.7%, ER+ or PR+ 16.8%, ER- | Interview, at
median 5.8
years post-
diagnosis | All-cause mortality (n=278) Cancer specific mortality (n=154) | Magnesium
supplementation,
yes vs no | 1.02 (0.73-
1.42)
0.97 (0.60-
1.55) | Age, alcohol intake, BMI, cardiovascular disease, chemotherapy, detection type, diabetes, | | | menopausal | | /PR- 13.5%,
HER2+ 15.4%,
HER2- 68.0%,
mastectomy
26.1%, breast-
conserving | | Recurrence
(n=428)
All-cause
mortality | Calcium supplementation, | 0.97 (0.60-
1.55)
0.99 (0.74-
1.33)
0.79 (0.54-
1.14)
0.74 (0.44-
1.24)
0.87 (0.65-
1.16) | education, hormone receptor status, menopausal hormone therapy use, nodal status, other factors, physical activity, radiotherapy, smoking, tumor grade, tumor size | | | | | therapy 73.7%, chemotherapy 45.8%, radiation therapy 70.9%, hormone therapy | | (n=270) Cancer specific mortality (n=150) | yes vs no | , | | | | | | 80.7% | | Recurrence (n=423) | | 1.16) | | | | | | | | All-cause
mortality
(n=296) | Magnesium or calcium | 0.92 (0.69-
1.24) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|--|---|---|-----------------------------------|---|----------------------|--| | | | | | | Cancer specific mortality (n=163) | supplementation, yes vs no | 0.86 (0.57-
1.29) | | | | | | | | Recurrence (n=460) | | 0.92 (0.73-
1.17) | | | Ambrosone 83 2020, DELCaP, | Secondary
analysis of
clinical trials | Diagnosis:
2003-2010,
follow-up: | Stage II-III, ER+
or PR+ 65%, ER-
or PR- 35%, | Questionnaire,
self-
administered, at | All-cause
mortality | Vitamin C
supplementation,
during treatment | 1.15 (0.58-
2.31) | Age, alcohol intake, BMI, er status, her2 status, | | USA | (n=1134), age
range: 23-80 | median 8.1
years | HER2+ 21%, radical | 6 months post-
diagnosis | Disease-free
survival | vs no | 1.14 (0.64-
2.03) | lymph node status, multivitamins, | | | years, pre-
menopausal
47%, post- | | mastectomy or local excision of all tumours plus | | All-cause
mortality | Vitamin C supplementation, before treatment | 1.27 (0.83-
1.93) | physical activity,
PR status,
smoking, toxicity, | | | menopausal
52%, race:
mostly White | | axillary node dissection or sentinel node | | Disease-free
survival | vs no | 1.04 (0.72-
1.52) | treatment arm,
tumor size | | | | | resection | | All-cause
mortality | Vitamin C supplementation, before and during | 1.37 (0.80-
2.34) | | | | | | | | Disease-free survival | treatment vs no | 1.31 (0.83-
2.08) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|------------------------|--|-----------------------|------------| | | | | | | All-cause mortality | Vitamin A supplementation, | 1.25 (0.45-
3.49) | | | | | | | | Disease-free survival | during treatment vs no | 1.51 (0.70-
3.29) | | | | | | | | All-cause mortality | Vitamin A supplementation, | 0.66 (0.24-
1.83) | | | | | | | | Disease-free survival | before treatment vs no | 0.71 (0.31-
1.63) | - | | | | | | | All-cause
mortality | Vitamin A supplementation, before and during | 3.20 (0.93-
10.99) | | | | | | | |
Disease-free survival | treatment vs no | 4.06 (1.26-
13.16) | | | | | | | | All-cause
mortality | Vitamin E supplementation, | 1.19 (0.55-
2.58) | | | | | | | | Disease-free survival | during treatment vs no | 1.13 (0.59-
2.16) | - | | | | | | | All-cause
mortality | Vitamin E supplementation, | 1.04 (0.66-
1.62) | - | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|------------------------|---|----------------------|------------| | | | | | | Disease-free survival | before treatment vs no | 0.98 (0.67-
1.44) | | | | | | | | All-cause
mortality | Vitamin E supplementation, | 1.39 (0.68-
2.82) | - | | | | | | | Disease-free survival | before and during treatment vs no | 1.38 (0.75-
2.54) | _ | | | | | | | All-cause
mortality | Coenzyme Q10 supplementation, | 1.34 (0.49-
3.67) | _ | | | | | | | Disease-free survival | during treatment vs no | 1.35 (0.59-
3.06) | - | | | | | | | All-cause
mortality | Coenzyme Q10 supplementation, before treatment | 1.08 (0.47-
2.48) | - | | | | | | | Disease-free survival | vs no | 1.28 (0.65-
2.51) | - | | | | | | | All-cause
mortality | Coenzyme Q10 supplementation, during and before | 1.88 (0.75-
4.76) | - | | | | | | | Disease-free survival | treatment vs no | 1.68 (0.73-
3.89) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|------------------------|---|-----------------------|------------| | | | | | | All-cause
mortality | Carotenoid supplementation, | 3.21 (0.97-
10.61) | | | | | | | | Disease-free survival | during treatment vs no | 3.20 (1.16-
8.87) | | | | | | | | All-cause
mortality | Carotenoid supplementation, before treatment | 0.74 (0.18-
3.04) | | | | | | | | Disease-free survival | vs no | 0.99 (0.36-
2.70) | _ | | | | | | | All-cause
mortality | Carotenoid supplementation, before and during | 1.50 (0.35-
6.55) | | | | | | | | Disease-free survival | treatment vs no | 2.24 (0.68-
7.37) | | | | | | | | All-cause
mortality | Vitamin D supplementation, during treatment | 1.05 (0.66-
1.65) | | | | | | | | Disease-free survival | vs no | 1.19 (0.81-
1.74) | | | | | | | | All-cause
mortality | Vitamin D supplementation, | 1.07 (0.65-
1.77) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|--------------------------|---|----------------------|------------| | | | | | | Disease-free
survival | before treatment vs no | 0.96 (0.62-
1.48) | | | | | | | | All-cause
mortality | Vitamin D supplementation, before and during | 1.11 (0.67-
1.82) | | | | | | | | Disease-free survival | treatment vs no | 1.22 (0.81-
1.84) | _ | | | | | | | All-cause
mortality | Vitamin B6 supplementation, | 0.97 (0.64-
1.47) | _ | | | | | | | Disease-free survival | during treatment vs no | 0.89 (0.63-
1.27) | _ | | | | | | | All-cause
mortality | Vitamin B6 supplementation, before treatment | 0.79 (0.39-
1.60) | - | | | | | | | Disease-free survival | vs no | 0.65 (0.35-
1.22) | - | | | | | | | All-cause
mortality | Vitamin B6 supplementation, before and during | 1.13 (0.56-
2.29) | | | | | | | | Disease-free survival | treatment vs no | 1.07 (0.58-
1.96) | - | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|------------------------|--|----------------------|------------| | | | | | | All-cause
mortality | Vitamin B12 supplementation, | 0.85 (0.44-
1.64) | | | | | | | | Disease-free survival | during treatment vs no | 1.08 (0.66-
1.77) | - | | | | | | | All-cause
mortality | Vitamin B12 supplementation, before treatment | 0.70 (0.36-
1.36) | | | | | | | | Disease-free survival | vs no | 0.80 (0.47-
1.36) | | | | | | | | All-cause
mortality | Vitamin B12 supplementation, before and during | 1.91 (1.13-
3.22) | - | | | | | | | Disease-free survival | treatment vs no | 1.77 (1.10-
2.84) | | | | | | | | All-cause
mortality | Iron supplementation, | 1.67 (1.02-
2.72) | - | | | | | | | Disease-free survival | during treatment vs no | 1.79 (1.18-
2.70) | - | | | | | | | All-cause
mortality | Iron supplementation, | 0.50 (0.20-
1.26) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|------------------------|---|----------------------|------------| | | | | | | Disease-free survival | before treatment vs no | 0.58 (0.28-
1.19) | | | | | | | | All-cause
mortality | Iron supplementation, before and during | 1.80 (0.85-
3.84) | _ | | | | | | | Disease-free survival | treatment vs no | 1.88 (0.96-
3.67) | _ | | | | | | | All-cause
mortality | Folic acid supplementation, | 1.11 (0.58-
2.16) | _ | | | | | | | Disease-free survival | during treatment vs no | 1.21 (0.72-
2.04) | - | | | | | | | All-cause
mortality | Folic acid supplementation, before treatment | 0.63 (0.32-
1.22) | | | | | | | | Disease-free survival | vs no | 0.72 (0.42-
1.21) | - | | | | | | | All-cause
mortality | Folic acid supplementation, before and during | 1.70 (0.84-
3.43) | - | | | | | | | Disease-free survival | treatment vs no | 1.32 (0.68-
2.54) | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|---|---------------------|--------------------------|--|----------------------|------------| | | | | | | All-cause
mortality | Calcium supplementation, | 0.96 (0.55-
1.66) | | | | | | | | Disease-free survival | during treatment vs no | 1.17 (0.76-
1.80) | | | | | | | | All-cause
mortality | Calcium supplementation, before treatment | 1.49 (0.99-
2.24) | | | | | | | | Disease-free survival | vs no | 1.24 (0.87-
1.78) | - | | | | | | | All-cause
mortality | Calcium supplementation, before and during | 1.19 (0.77-
1.84) | | | | | | | | Disease-free
survival | treatment vs no | 1.20 (0.84-
1.74) | | Abbreviations: ABCPP, After Breast Cancer Pooling Project; LACE, Life After Cancer Epidemiology; NHS, Nurses' Health Study; SBCCS, Shanghai Breast Cancer Genetics Study; WHEL; Women's Healthy Eating and Living ## Supplementary Table S23. Descriptive table of the included observational studies of post-diagnosis vitamin D from diet and/or supplements and breast cancer prognosis | Author,
year, study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
Events | Contrast | RR (95% CI) | Covariates | |---|--|--|---|---------------------|--|--|--|---| | Zeichner ⁹⁵
2015, USA | Retrospective
cohort of
cancer
survivors
(n=134), mean
age: 54 years,
race: Hispanic
and Non-
Hispanic White | Diagnosis:
2006-2012,
follow-up:
median
29.5
months | Nonmetastatic, grade low/intermediate 39.7%,
high 60.3%, HER2+ 100%, ER+ 63.6%, PR+ 53.0%, neoadjuvant chemotherapy 100%, mastectomy 60.6%, lumpectomy 34.9%, no surgery 4.6%, radiation 88%, hormone therapy 58.1% | Medical
records | All-cause mortality (n=21) Disease-free survival (n=89) | From supplements Use vs non-use | 0.30 (0.07-
1.37)
P trend=0.12
0.36 (0.15-
0.88)
P trend=0.26 | Age at diagnosis,
Tumour size, Lymph
node metastasis,
Histological grade,
ER status, BMI | | Beasley ³³
2011,
CWLS, USA | Follow up of
4441 pre- and
post-
menopausal
women
diagnosed with | Diagnosed
between
1987 and
1999 | Primary invasive
breast cancer;
Stages: 72.8% local,
27.2% regional
Surgery: 97.9%;
Radiotherapy: 49.8%;
Hormonal therapy: | Validated
FFQ | All-cause
mortality
(n=525) | Q5 vs. Q1
mg/day
(from diet
and
supplements-
total) | 0.86 (0.64-
1.16)
P trend=0.35 | Age, state of residence, menopausal status, smoking, breast cancer stage, alcohol, history of hormone | | | invasive breast
cancer Age range: 20-79 | Mean
follow
up=5.5
years | 57.8%;
Chemotherapy:
31.9% | | Breast cancermortality (n=137) | Q5 vs. Q1
mg/day
(from diet
and
supplements-
total) | 1.02 (0.58-
1.79)
P trend=0.90 | replacement therapy), interval between diagnosis and diet assessment, energy intake, breast cancer treatment, body mass index, and physical activity | |--|--|-----------------------------------|--|------------------------|---|---|--|--| | Saquib ⁹⁶
2011,
WHEL, USA | Prospective
cohort of 3081
pre- and post-
menopausal
women
diagnosed with
invasive breast
cancer Age: 18–70
years | Median
follow up=9
years | Primary invasive breast cancer, stages I(>=1cm), II (56.4%), or IIIA Chemotherapy: 70% | 24 Hour Diet
Recall | All-cause
mortality
(n=388) | above UL vs.
adequate
intake mcg
(from diet
and
supplements-
total) | 0.9 (0.13-7.11) | Age at randomization, tumor stage, tumor grade, time since diagnosis, BMI, smoking, randomisation group, Hot flashes, Group by hot flashes interaction and physical health | | Jacobs ⁹³
2011,
WHEL, USA | Matched case-
control study
(of 512
matched pairs)
Mean (SD)
age: 51.6 +/-
9.5 years | Mean
follow
up=7.3
years | Invasive:512 69.5%
ER+, 29.3% ER-
among cases; 73.4%
ER+, 25.4% ER-
among controls
Stages: 21.1% I,
48.1% II, 30.9% III
among cases and
controls; Tumour | FFQ | Breast cancer recurrence All participants Premenopausal | Lowest vs. highest tertile (from diet and supplements- total) | 1.07 (0.85-
1.34)
P trend=0.57
1.17 (0.73-
1.89) | Age, ethnicity, BMI, intervention group, energy intake, stage of baseline cancer, and years between diagnosis and study entry | | | | | grades: 8.4% I, 37.9% II, 45.1% III among cases, 11.1% Chemotherapy: 80.3% yes; Radiotherapy 62.7% yes; Anti-oestrogen use 54.9% yes, among cases; Chemotherapy: | | Postmenopausal | | P trend=0.49 1.01 (0.78- 1.32) P trend=0.92 | | |---|---|----------------------------------|--|------------------|---|--|---|---| | | | | 80.7% yes;
Radiotherapy: 63.1%
yes; Anti-oestrogen
use: 64.5% yes,
among controls | | Breast cancer recurrence All participants | Lowest vs.
highest tertile
(from diet
only) | 1.17 (0.93-
1.49)
P trend=0.18 | | | | | | | | Premenopausal | | 1.72 (1.08-
2.74) | | | | | | | | Postmenopausal | | P trend=0.02
1.04 (0.79-
1.37) | | | | | | | | | | P trend=0.77 | | | Holmes ³⁴ ,
1999, NHS,
USA | Population-
based
prospective
cohort of 1982 | Mean
follow
up=13
years | Invasive breast carcinoma; Grade 1-3 | Validated
FFQ | All-cause
mortality
(n=378) | Q5 vs. Q1 | 0.86 (0.62-
1.17)
P trend=0.21 | Age, Time between exposure assessment and cancer diagnosis, | | mer
wor
diag | - and post-
nopausal
men
gnosed with | (157
months) | | All-cause | (from diet
and
supplements) | 0.73 (0.53- | Year of diagnosis,
Oral contraceptive,
Hormonal therapy,
Smoking, Age at first | |--------------------|---|-----------------|--|-------------------|-----------------------------------|--------------------|---| | can | asive breast | | | mortality (n=326) | (from diet only) | 1.02) P trend=0.05 | birth, Nodal status,
Tumor size, BMI,
Menopausal status,
Energy intake | Abbreviations: CWLS, Collaborative Women's Longevity Study; NHS, Nurses' Health Study; WHEL; Women's Healthy Eating and Living ## Supplementary Table S24. Descriptive table of the included observational studies of post-diagnosis serum 25(OH)D and breast cancer prognosis | Author, year, study name, country, WCRF | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|--|---|---|-----------------------------------|--------------------------|---------------------------------------|---| | Tokunaga ⁹⁷
2022,
Japan | Retrospective
cohort of cancer
survivors
(n=250), mean
age: 59 years,
post-
menopausal
46%, race:
Asian | Diagnosis: 2009-2019 | Stage I 2.4%, II
64.8%, III
32.8%, ER+
69.9%, PR+
48.0%, HER2+
39.2%,
neoadjuvant
chemotherapy
and definitive
surgery 100% | Measured from
serum by enzyme-
linked
immunosorbent
assay, before
neoadjuvant
therapy | Recurrence | ≥19 vs <29
ng/ml | 2.28 (1.12-
5.03)
P trend=0.023 | Pathological
complete
response,
tumor stage | | Kanstrup ⁹⁸
2020,
Denmark | Prospective cohort of cancer survivors (n=2981), mean | Diagnosis:
2008-2013,
follow-up:
median | Invasive cancer,
grade I 21%, II
46.7%, III
26.1%, HER2- | Measured from serum by isotope dilution liquid chromatograph- | Overall
survival
(n=427) | <52 vs <76-
99 nmol/l | 1.31 (0.98-
1.74)
P trend=0.01 | Age, BMI, er
status, her2
status, other
factors, tumor | | | age: 62 years,
post-
menopausal | 4.69 years | 86%, HER2+
13.7% | tandem mass
spectrometry,
before adjuvant | | ≥99 vs <52
nmol/L | 0.88 (0.67-
1.15) | grade, tumor
size, tumor
type | | 74 | 74.9% | 74.9% | | | Event free
survival
(n=447) | <52 vs 76-
99 nmol/l | 1.63 (1.21-
2.19)
P trend=<0.01 | | | | | | | | | ≥99 vs <52
nmol/L | 0.84 (0.63-
1.12) | | | Author, year, study name, country, WCRF | Study
description | Time of
diagnosis
and follow-
up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|---|--|---|--|-----------------------------|---------------------------------------|--| | Lim ⁹⁹ 2020,
South
Korea | Retrospective
cohort of cancer
survivors
(n=455), mean
age: 52 years,
race: Asian | Diagnosis:
2004-2012,
follow-up:
median 103
months,
until 2019 | Stage I-III, HR+
100%, adjuvant
endocrine
therapy | Measured from serum, after adjuvant therapy | Recurrence-
free survival
(n=48) | <=19.99 vs
20 ng/ml | 2.28 (1.16-
4.52)
P trend=0.018 | Age,
histological
grade, human
epidermal
growth factor
receptor 2, ki-
67 expression, | | | | | | | | ≥49.9 vs
<49.9
nmol/L | 0.44 (0.22-
0.87) | lymphatic invasion, number of axillary invaded nodes, p53 mutation, surgery, tumor size, vascular invasion | | Huang ¹⁰⁰
2019,
China | Prospective cohort of cancer survivors | Diagnosis:
2009-2012,
follow-up: | | Measured from fasting serum by enzyme-linked |
All-cause
mortality | <21.3 vs
≥21.3 ng/ml | 1.65 (1.05-
2.70)
P trend=0.034 | Lymph node
metastasis,
molecular | | | (n=206), mean
age: 46 years,
race: Asian | maximum 5
years, until
2017 | | immunosorbent
assay, before
surgery | | ≥52.5 vs
52.5 nmol/L | 0.61 (0.37-
0.96) | phenotype,
other factors,
radiotherapy | | 1 2019, the ba
Janus stu
cohort, me | Population
based-cohort
study (n=270),
mean age: 55 | Diagnosis
1970s-2012 | | Measured from serum by competitive radioimmunoassay | All-cause
mortality
(n=68) | 51-67 vs
≤50 nmol/L | 0.40 (0.19-
0.81) | Age, season,
serum storage
time | | | mean age: 55
years | 5 | | (DiaSorin,
Stillwater, MN) | | 51-67 vs
≤50 nmol/L | 0.44 (0.22-
0.87) | | | Author, year, study name, country, WCRF | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|---------------------------------|--|--|--|------------------------|--|---| | (Supersede
d by
Tretli ¹⁰²) | | | | | | 68-86 vs
≤50 nmol/L | 0.32 (0.15-
0.67) | | | Thanasitthi
chai ¹⁰³
2019,
Thailand | Retrospective
cohort of cancer
survivors
(n=303), mean
age: 50.8 years,
race: Asian | Diagnosis:
2011-2012 | Stage I-II
69.5%, III-IV
30.5%, ER+
64.9%, ER-
35.1%, HER2+
19.2%, HER2-
60.4%,
equivocal 20.4% | Measured from
serum by high-
performance liquid
chromatography,
before and after
adjuvant therapy | Overall survival, stratified by age Overall survival, stratified by BMI Overall survival, stratified by stage Overall survival, stratified by stage Toverall survival, stratified by HER2 status | ≥16 vs <16
ngl/ml | 2.47 (1.08-
5.64)
P trend=0.031
2.70 (1.16-
6.27)
P trend=0.021
2.43 (1.15-
5.14)
P trend=0.02
2.50 (1.10-
5.70)
P trend=0.03 | Er status, her2
status, lymph
node
involvement
Age, er status,
lymph node
involvement | | | | | | | Overall survival, stratified by lymph node involvement Overall survival, stratified by PR status | _ | 2.49 (1.09-
5.70)
P trend=0.03
2.56 (1.11-
5.88)
P trend=0.027 | Age, er status, her2 status Age, er status, her2 status, lymph node involvement | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of
diagnosis
and follow-
up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|---|---|--|--------------------------|--|--| | Bouvard ¹⁰⁴ | Prospective | Diagnosis: | Stage I 23.1%, II | Measured from | Overall survival, stratified by P53 status Overall survival, stratified by ER status Overall survival, stratified by Ki- 67 status All-cause | ≥25 vs <25 | 2.52 (1.10-
5.77) P trend=0.029 2.97 (1.40-
6.29) P trend=0.005 2.46 (1.05-
5.77) P trend=0.038 1.85 (1.01- | Age, her2 status, lymph node involvement Lymph node involvement, p53 Age, | | 2018,
France | cohort of cancer
survivors
(n=450), mean
age: 60.7 years,
post-
menopausal | 2004-2006,
follow-up:
median 5.2
years | 50.2%, III
22.0%, unknown
4.7%, PR+
81.8%, PR-
16.9%, unknown
1.3%,
chemotherapy
55.8%,
radiotherapy
93.1% | fasting serum by
chemiluminescence
protein-binding
assay, before
adjuvant therapy | mortality (n=67) Cancer specific mortality (n=41) Recurrence (n=65) | nmol/l | 3.38)
P trend=0.34
2.01 (0.90-
4.51)
P trend=0.34
1.37 (0.69-
2.73)
P trend=0.34 | bisphosphonat
e, nodal
involvement, pr
status, tumor
size, vitamin d | | Mizrak ¹⁰⁵
2018,
Turkey | Prospective cohort of cancer survivors | Diagnosis:
2007-2013,
follow-up: | T stage T1
33.5%, T2
57.8%, T3 8.7%, | Measured from serum, after | All-cause
mortality
(n=30) | Deficiency
(<10ng/ml) | P log rank
test=0.32 | HER2 status,
hormone
receptor status, | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|---|--|---|--------------------------|---|-------------------------------------|--| | | (n=186), age
range: 22-89
years, pre- and
post-
menopausal | median 64
months | N stage N0
45%, N1 31.3%,
N2 13.4%, N3
10.3%, HER2+
22%, surgery
100% | surgery and before adjuvant therapy | Recurrence
(n= 35) | Insufficienc
y
(10 to 25
ng/ml)
Sufficiency
(>25ng/ml) | P log rank
test=0.38 | nodal status,
tumor grade,
tumor stage | | Kim
2018 ¹⁰⁶ ,
South
Korea | Retrospective
cohort of cancer
survivors
(n=374), mean
age: 48.7 years,
pre- and post-
menopausal,
race: Asian | Diagnosis:
2010-2013,
follow-up:
mean 53.2
months | Stage I-IV,
surgery 100% | Measured from serum by radioimmunoassay, before and after neoadjuvant therapy | All-cause
mortality | Both deficient at baseline and after neo- adjuvant therapy, <20ng/ml | P log rank
test=0.95 | | | | | | | | Disease-free
survival | Either sufficient at baseline or after neo-adjuvant therapy, ≥20ng/ml | P log rank
test=0.58 | | | Viala ¹⁰⁷
2018,
France and
USA | Retrospective cohort of cancer survivors | Diagnosis:
2005-2015,
follow-up: | Stage I-II 63%,
III 27%, HER-
/HER2+ 14.7%,
HR+/HER2+ | Measured from serum by electrogenerated chemiluminescence | Overall
survival | ≥20 vs <20
ng/ml | 1.03 (0.60-
1.80)
P trend=0.9 | Age, other factors, sbr grade of the | | Author, year, study name, country, WCRF | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|--|--|--|---|-----------------------------|---|--| | | (n=327), mean
age: 50 years | median 5.3
years | 13.8%,
HER+/HER2-
43.9%, TNBC
27.6%,
neoadjuvant
chemotherapy
100% | immunoassay and
multiplex flow
immunoassay,
before adjuvant
therapy | Progression-
free survival | | 1.00 (0.60-
1.50)
P trend=0.8 | tumor, stage,
tumor subtype | | Yao ¹⁰⁸ 2017, the Pathways study, USA | Case-cohort
study (n=1666),
pre- and post-
menopausal,
race: White,
Black, Asian,
Hispanic | Diagnosis:
2006-2013,
follow-up:
median 7
years, until
2014 | Stage I 49.5%, II 36.4%, III 12.1%, IV 2.0%, ER+ 73.6%, HER2-enriched 6.8%, triplenegative 19.4% | Measured from serum by immunochemilumin ometric assay, median 69 days post-diagnosis | All-cause mortality (n=250) All-cause
mortality, premenopausal (n=59) All-cause mortality, postmenopausal (n=191) Breast cancerspecific mortality (n=133) Breast cancer, premenopausal (n=42) Breast cancer specific mortality, postmenopausal (n=91) | ≥62.7 vs
<41.8
nmol/l | 0.72 (0.54-
0.98)
P trend=0.03
0.45 (0.21-
0.96)
P trend=0.04
0.79 (0.56-1.2)
P trend=0.19
0.85 (0.55-
1.33)
P trend=0.53
0.37 (0.15-
0.93)
P trend=0.03
1.27 (0.74-
2.17)
P trend=0.39 | Age at diagnosis, race/ethnicity, BMI, season blood drawn, tumour stage, tumour grade, tumour subtype, treatment | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|--|----------|--------------------------------------|------------| | | | | | | Recurrence-
free (n=200) | | 1.13 (0.82-
1.58)
P trend=0.47 | | | | | | | | Recurrence
free survival,
post-
menopausal
(n=130) | | 1.48 (0.97-
2.27)
P trend=0.05 | | | | | | | | Invasive
disease-free
survival
(n=372) | | 0.85 (0.6-1.2)
P trend=0.36 | | | | | | | | Invasive
disease-free
survival, pre-
menopausal
(n=100) | | 0.58 (0.34-
1.01)
P trend=0.04 | | | | | | | | Invasive
disease-free
survival, post-
menopausal
(n=271) | | 0.98 (0.73-1.3)
P trend=0.89 | | | | | | | | Second
primary
cancers (n=96) | | 0.84 (0.51-
1.39)
P trend=0.49 | | | | | | | | Second
primary
cancers, pre-
menopausal
(n=18) | | 1.53 (0.46-
5.05)
P trend=0.82 | | | Author, year, study name, country, WCRF | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|--|--|---|--|---|---------------------|--|--| | | | | | | Second
primary
cancers, post-
menopausal
(n=78) | | 0.81 (0.46-
1.41)
P trend=0.40 | | | Wu ¹⁰⁹
2017, USA | Nested case-
cohort study
(n=243), age
range: 28-80
years, pre- and
post-
menopausal,
race: Black and
Hispanic | | Stage I-II
60.1%, III-IV
25.9%,
ER+/PR+
48.6%, ER-/PR-
40.7%, HER2+
18.9%, HER2-
70.3% | Measured from serum by liquid chromatography/ta ndem mass spectrometry, before any treatment | All-cause
mortality
Disease-free
survival | <12 vs ≥24
ng/ml | 1.9 (0.7–3.8)
P trend=0.26
4.4 (0.9-22.7)
P trend=0.28 | Age at time of diagnosis, ethnicity, tumour size, node stage, oestrogen receptor, progesterone receptor and HER2 receptor status, BMI and season of blood draw | | Lim ¹¹⁰
2015,
South
Korea | Retrospective
cohort of cancer
survivors
(n=469), mean
age: 49.6 years,
race: Asian | Diagnosis:
2000-2008,
follow-up:
median
85.8
months | Stage I 32.4%, II 50.3%, III 17.3%, PR+ 52%, PR- 48%. HER2+ 12.6%, HER2- 86.8%, chemotherapy 64.2%, radiotherapy 58.2%, hormone therapy 75.3% | Measured from serum by chemiluminescent microparticle immunoassay, after surgery | Overall survival Cancer specific mortality Disease-free survival | ≥20 vs <20
ng/ml | 0.46 (0.19-
1.12)
0.46 (0.17-
1.30)
0.45 (0.25-
0.82) | Age, BMI, chemotherapy, er status, her2 status, lymphatic invasion, pr status, stage | | Author, year, study name, country, WCRF | Study
description | Time of
diagnosis
and follow-
up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|--|---|---|--|---|--|---| | Lohmann ¹¹¹
2015,
Canada | Correlative
study nested in
a randomized
controlled trial
(n=934), mean
age: 47.8 years,
pre- and post-
menopausal | Diagnosis:
2000-2005,
follow-up:
9.2 years
(OS) and
8.0 years
(RFS), until
2013 (OS)
and 2012
(RFS) | T stage T1 36%,
T2-4 64%, ER-
39%, ER+ 61%,
partial
mastectomy
48%, total
mastectomy
52% | Measured from fasting serum by radioimmunoassay, post-surgery and before chemotherapy | All-cause
mortality
Breast cancer
mortality
Relapse-free
survival | ≥125 vs
<40 nmol/l | 0.5 (0.14-
1.77)
0.65 (0.18-
2.37)
0.65
(0.21-2.00) | Treatment, number of positive lymph nodes, type of surgery, oestrogen receptor status, age, race, tumour size, nodal status, menopausal status, HER2 status, ECOG performance | | Vrieling ¹¹²
2014,
MARIE,
Germany | Prospective
cohort of cancer
survivors
(n=2177), age
range: 50-74
years, post- | Follow-up:
5.3 years | Stage I-IIA
86.9%, IIIB-IV
7.9%, ER+
78.3%, ER-
19.6%, PR+
66.1%, PR- | Measured from
serum by enzyme
immunoassay,
majority before
therapy, median
116 days post | All-cause
mortality
(n=274) | <35 vs ≥55
nmol/l
≥55 vs 35
nmol/l | 0.8
(0.57-1.14)
0.73 (0.53-
1.00) | Age at diagnosis, study centre, season, tumour size, nodal status, | | | menopausal 31.8%,
ER+/PR+
60.6%, ER-/PR-
15.0%, HER2+
18.5%, HER2-
70.0%,
chemotherapy | ER+/PR+
60.6%, ER-/PR-
15.0%, HER2+
18.5%, HER2-
70.0%, | diagnosis | All-cause
mortality
(n=274) | Per 10
nmol/I
decrement
Per 10
nmol/I
increment | 1.07
(1.00-1.13)
0.93 (0.88-
1.00) | metastasis, tumour grade, ER/PR status, diabetes, cardiovascular disease, mode of detection, | | | | | | 45%,
radiotherapy
79.9%,
tamoxifen/arom | | Breast cancer-
specific
mortality
(n=197) | <35 vs ≥55
nmol/l | 0.75
(0.5-1.15) | smoking,
hormone
replacement
therapy (HRT) | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|-----------------------------------|---------------------|--|-------------------------------|----------------------|---------------------| | | | | atase inhibitor
80.6% | | | ≥55 vs 35
nmol/l | 0.79 (0.54-
1.16) | use at
diagnosis | | | | | | | Breast cancer-
related death
(n=197) | Per 10
nmol/l
decrement | 1.04
(0.97-1.12) | | | | | | | | | Per 10
nmol/l
increment | 0.96 (0.89-
1.03) | | | | | | | | Recurrence (n=201) | <35 vs ≥55
nmol/l | 1.35
(0.92-1.97) | | | | | | | | | ≥55 vs 35
nmol/l | 0.70 (0.48-
1.03) | | | | | | | | Recurrence
(n=201) | Per 10
nmol/l
decrement | 1.07
(0.99-1.14) | | | | | | | | Distant
disease free | <35 vs ≥55
nmol/l | 1.17
(0.81-1.68) | | | | | | | | (n=235) | ≥55 vs 35
nmol/l | 0.59 (0.40-
0.81) | | | Author, year, study name, country, WCRF | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|---|---|---|---|--|---|---| | | | | | | Distant
disease free
(n=235) | Per 10
nmol/l
decrement | 1.12
(1.04-1.19) | | | | | | | | Non-breast
cancer
related
death (n=77) | <34.9 vs
≥55 nmol/L | 0.9
(0.46-1.74) | | | | | | | | Non-breast
cancer related
death (n=77) | Per 10
nmol/l
decrement | 1.15
(1.02-1.28) | | | Villaseñor ¹¹ ³ 2013, HEAL, USA | Prospective
cohort of cancer
survivors
(n=585), mean
age: 55.8 years,
pre- and post-
menopausal | Median
follow-up:
median 9.2
years | ER+ and/or PR+
71.5%, ER-/PR-
19.3%, unknown
9.2%, surgery
only 23.4%,
surgery and
radiation 36.9%,
surgery and
chemotherapy
12.5%, surgery, | Measured from
fasting serum by
radioimmunosorben
t assay, after
treatment, 36
months post
diagnosis | All-cause
mortality
(n=110) | >30 vs <20
ng/ml
Per 10
ng/ml | 0.9
(0.5-1.61)
0.85
(0.68-1.09) | Age at diagnosis, tumour stage, BMI, race/ethnicity, study site, tamoxifen use, season blood drawn, treatment | | | | | chemotherapy,
and radiation
27.2%,
tamoxifen
52.1% | | Breast cancer-
specific
mortality
(n=48) | >30 vs <20
ng/ml
Per 10
ng/ml | 1.21
(0.52-2.8)
1.08
(0.75-1.54) | Age at diagnosis, tumour stage, BMI, race/ethnicity, study site, tamoxifen use, season blood drawn, | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of
diagnosis
and follow-
up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|--|--|---|---|----------------------|--|--| | | | | | | | | | treatment,
physical
activity,
smoking status | | Tretli ¹⁰²
2012, the
Janus | Population based-cohort study (n=251), | Diagnosis:
1984-2004,
follow-up: | Local 26.7%,
regional 29.5%,
distant 9.6%, | Measured from serum by competitive | All-cause
mortality
(n=98) | ≥81 vs <46
nmol/l | 0.37
(0.21-0.67)
P trend<0.01 | Sex, age at diagnosis, season blood | | cohort,
Norway | age range: 36-
75 years, race:
White | until 2008 | unknown 34.3% | radioimmunoassay,
within 90 days of
cancer diagnosis | Breast cancer-
specific
mortality
(n=82) | ≥81 vs <46
nmol/l | 0.42
(0.21-0.82)
P trend=0.01 | drawn | | Hatse ¹¹⁴
2012,
Belgium | Prospective cohort of cancer survivors (n=1800), mean | Diagnosis:
2003-2010,
follow-up:
median 4.7 | Non-metastatic, invasive | Measured from
serum by
radioimmunoassay
(DiaSorin), before | All-cause
mortality
(n=134) | Per 10
ng/ml | 0.79
(0.65–0.95)
P
trend=0.0104 | Age, BMI,
lymph nodes,
tumour size,
ER, grade | | | age 57.7 years | years | | treatment | | ≥30 vs <30
ng/ml | 0.53
(0.33–0.86)
P trend=0.01 | | | | | | | | Breast cancer specific mortality | Per 10
ng/ml | 0.79
(0.62-1.00)
P trend=0.05 | Age, BMI,
tumour size,
pN, grade, and | | | | | | | (n=64) | ≥30 vs <30
ng/ml | 0.49
(0.27–0.89)
P trend=0.02 | ER | | | | | | | Post-
menopausal | ≥30 vs <30
ng/ml | 0.15
(0.03–0.63)
P trend=0.01 | | | | | | | | Pre-
menopausal | ≥30 vs <30
ng/ml | 0.93
(0.43–2.02)
P trend=0.85 | | | Author, year, study name, country, WCRF | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|---|--|--|--|--|--|---------------------------------------|--| | Kim ¹¹⁵
2011,
South | Retrospective cohort of cancer survivors | Diagnosis: 2006, follow-up: | T stage T0-T3 | Measured from serum by radioimmunoassay, | Disease-free
survival | <20 vs 30-
150 ng/ml | 3.97 (1.77-
8.91)
P trend=0.001 | Age, er status, lymph node status, tumor | | Korea | (n=310), mean
age: 48.7 years,
race: Asian | median 23
months | | before surgery | | 74.9-374.4
vs <49.9
nmol/L | 0.25 (0.11-
0.56) | size | | Pritchard ¹¹⁶
2011,
Canada
and USA | Randomized
control trial
(n=667), mean
age: 60.1 years,
post-
menopausal,
race: mostly
White | Follow-up:
median 7.9
years | T stage T1 58%,
T2 38%, T3A
2%, T4 1%,
mastectomy
100%,
adjuvant
chemotherapy
34% | Measured from
serum, before
therapy | Event free
survival
(n=220) | Continuous
baseline
25-OH
vitamin D | P = 0.43 | | | Vrieling ¹¹⁷
2011,
Germany | Prospective
cohort of cancer
survivors
(n=1295), mean
age 63.4 years,
postmenopausal | Diagnosis:
2002-2005,
follow-up:
5.8 years,
until 2009 | Stage I-IV,
invasive, in situ,
ER+ 76.6%, ER-
23.4% | Measured from
serum by OCTEIA
enzyme
immunoassay, 83
days after
diagnosis | All-cause
mortality
(n=174)
(superseded
by Vrieling
2014) | <34.9 vs
≥55 nmol/l | 1.55 (1.00-
2.39) | Age at diagnosis, season blood drawn, tumour size, nodal status, metastasis, | | | | | | | All-cause
mortality
(n=174)
(superseded
by Vrieling
2014) | Per 10
mmol/l | 1.08
(1.00-1.17) | tumour grade,
hormone
receptor status,
diabetes, mode
of detection | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of
diagnosis
and follow-
up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|--|---|---|--|------------------------------------|-----------------------------|--------------------------------------|--| | | | Distant
disease free
(n=135) | disease free | <35 vs ≥55
nmol/l | 2.09
(1.29-3.41) | | | | | | | | | | | ≥55 vs 35
nmol/l | 0.48 (0.29-
0.78) | - | | | | | | | Distant
disease free
(n=135) | Per 10
mmol/l | 1.14
(1.05-1.24) | | | Jacobs ⁹³
2011,
WHEL,
USA | Matched case-
control study
(n=1024), mean
age: 51.6 years,
pre- and post-
menopausal,
race: mostly
White | Diagnosis:
1991-2000,
follow-up:
mean 7.3
years | Stage I 21.1%, II
48.0%, IIIA
41.7%, ER+
71.5%, ER-
27.3%,
chemotherapy
80.5%, radiation
62.9%, hormone
therapy 59.7% | Measured from serum by chemiluminescent immunoassay, 2 years after diagnosis | All-cause
mortality
(n=250) | <20 vs ≥20
ng/ml | 1.13 (0.72-
1.79)
P value=0.59 | BMI, ethnicity, intervention group, calcium intake, tumour grade | | | | | | | | ≥49.9 vs
<49.9
nmol/l | 0.88 (0.56-
1.39) | | | | | | | | Local
recurrence
(n=62) | <20 vs ≥20
ng/ml | 1.48 (0.47-
4.65)
P value=0.50 | | | | | | | | | ≥49.9 vs
<49.9
nmol/l | 0.68 (0.22-
2.13) | | | | | | | | Regional
recurrence
(n=19) | <20 vs ≥20
ng/ml | 1.13 (0.20-
6.44)
P value=0.89 | | | | | | | | | ≥49.9 vs
<49.9
nmol/l | 1.13 (0.20-
6.44) | | | Author, year, study name, country, WCRF | Study
description | Time of diagnosis and follow-up | Disease characteristics treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |---|---|---------------------------------------|---|--|---|-----------------------------|--------------------------------------|---| | | | | | | Distant
recurrence
(n=346) | <20 vs ≥20
ng/ml | 1.00 (0.68-
1.48)
P value=0.99 | | | | | | | | | ≥49.9 vs
<49.9
nmol/l | 1.00 (0.68-
1.47) | | | | | | | | Recurrence,
all cases and
controls, pre-
menopausal
(n=512) | <10 vs ≥30
ng/ml | 1.14 (0.57-
2.31)
P trend=0.85 | | | | | | | | Recurrence-
free, pre-
menopausal
(n=59) | | 0.17 (0.01-
3.07)
P trend=0.61 | | | | | | | | Recurrence-
free, post-
menopausal
(n=346) | | 1.45 (0.62-
3.37)
P trend=0.49 | | | Goodwin ¹¹⁸
2009,
Canada | cohort of cancer
survivors (n=512), mean | 1989-1996, follow-up: mean 11.6 years | Stage I 56.2%, II 32.0%, III 4.7%, unknown 7.0%, ER+ 77.7%, ER-22.3%, mastectomy 22.7%, lumpectomy 77.3%, adjuvant chemotherapy | Measured from fasting serum by radioimmunoassay,
before adjuvant therapy | All-cause
mortality
(n=106) | <50 vs ≥72
nmol/l | 1.6 (0.96-2.64)
P trend=0.05 | Age, tumour stage, nodal status, oestrogen receptor level, tumour grade | | | | | | | | ≥72 vs <50
nmol/l | 0.63 (0.38-
1.04) | | | | | | | | Distant
disease free
(n=116) | <50 vs ≥72
nmol/l | 1.71 (1.02-
2.86)
P trend=0.09 | | | Author,
year,
study
name,
country,
WCRF
Code | Study
description | Time of diagnosis and follow-up | Disease
characteristics
treatment | Exposure assessment | Outcome
(Events) | Contrast | RR (95% CI) | Covariates | |--|----------------------|---------------------------------|--|---------------------|---------------------|----------------------|----------------------|------------| | | | | 38.9% adjuvant
tamoxifen
therapy 39.1% | | | ≥72 vs <50
nmol/l | 0.58 (0.35-
0.98) | | HEAL, Health, Eating, Activity, and Lifestyle Study; MARIE, Mammary carcinoma risk factor Investigation; NCIC CTG, National Cancer Institute of Canada Clinical Trials Group; WHEL; Women's Healthy Eating and Living # Supplementary Figure S1. Forest plot of prognostic outcomes for the highest compared with the lowest level of fruit and vegetable intake after breast cancer diagnosis **Note**: Three additional studies were not included. The National Runners' and Walkers' Health Surveys reported result on breast cancer mortality in relation to each increase of a piece of fruit (HR 1.10, 95% CI 0.86-1.35, P value=0.40) (Williams, 2014). The MSKCC study only reported the risk estimates (HR 0.31 for breast cancer specific mortality and 0.46 for breast cancer recurrence on post-menopausal women) without 95%CI confidence interval (Hebert 1998). The WHEL study comparison group did not report the results from the multivariate analysis for all-cause mortality and fruit and vegetable intake (HR 6.94-19.96 vs. 0.33-3.43 servings/day = 0.63; P trend = 0.08 for univariate analysis) (Pierce, 2007(b)). For cruciferous vegetables, there is some overlapping between Farvid 2021(a) and Nechuta 2013 regarding NHSI. However, Farvid 2021 also includes NHS II that is not used in the ABCPP. The figure should not be interpreted as a quantitative summary. Abbreviations: ABPCC, After Breast Cancer Pooling Project; CPS-II, Cancer Prevention Study II Nutrition Cohort; CVD, Cardiovascular Disease; CWLS, Collaborative Women's Longevity Study; NHS, Nurses' Health Study; Q, quantile; RR, Relative Risk ### Supplementary Figure S2. Forest plot of prognostic outcomes for the highest compared with the lowest level of wholegrains intake after breast cancer diagnosis **Note**: One additional study was not included. The Diet Cancer and Health study reported result on all-cause mortality (HR 0.99, 95% CI 0.88-1.12), breast cancer mortality (HR 1.05, 95% CI 0.92-1.21) and recurrence (HR 0.98, 95% CI 0.83-1.13) in relation to each increase 50g/day of wholegrains (Andersen, 2020). The figure should not be interpreted as a quantitative summary. CPS-II, Cancer Prevention Study II Nutrition Cohort; CWLS, Collaborative Women's Longevity Study. ### Supplementary Figure S3. Forest plot of prognostic outcomes for the highest compared with the lowest level of meat intake after breast cancer diagnosis **Note**: The same study may be represented more than once if different types of meat were investigated. The figure should not be interpreted as a quantitative summary. CPS-II, Cancer Prevention Study II Nutrition Cohort; CWLS, Collaborative Women's Longevity Study; LIBCSP, Long Island Breast Cancer Study Project; MKSCC, Memorial Sloan-Kettering Cancer Centre; NHS, Nurses' Health Study # Supplementary Figure S4. Forest plot of prognostic outcomes for the highest compared with the lowest level of fish intake after breast cancer diagnosis **Note**: The same study may be represented more than once if different types of fish were investigated. The figure should not be interpreted as a quantitative summary. LIBCSP, Long Island Breast Cancer Study Project; MKSCC, Memorial Sloan-Kettering Cancer Centre; NHS, Nurses' Health Study #### Supplementary Figure S5. Forest plot of all-cause mortality for the highest compared with the lowest level of dairy intake after breast cancer diagnosis Note: The figure should not be interpreted as a quantitative summary. One publication (Andersen, 2020) was not included in the forest plot because the point estimate was reported in continuous per each 200g/day increase (HR 1.03, 95% CI 0.96-1.08). CWLS, Collaborative Women's Longevity Study; LACE, Life After Cancer Epidemiology Study; NHS, Nurses' Health Study; Q, quantile; RR, Relative Risk ### Supplementary Figure S6. Forest plot of breast cancer mortality for the highest compared with the lowest level of dairy intake after breast cancer diagnosis Note: The figure should not be interpreted as a quantitative summary. One publication (Andersen, 2020) was not included in the forest plot because the point estimate was reported in continuous per each 200g/day increase (HR 0.98, 95% CI 0.91-1.06). CWLS, Collaborative Women's Longevity Study; LACE, Life After Cancer Epidemiology Study; NHS, Nurses' Health Study; Q, quantile; RR, Relative Risk #### Supplementary Figure S7. Forest plot of breast cancer recurrence for the highest compared with the lowest level of dairy intake after breast cancer diagnosis **Note**: The figure should not be interpreted as a quantitative summary. One publication (Andersen, 2020) was not included in the forest plot because the point estimate was reported in continuous per each 200g/day increase (HR 0.98, 95% CI 0.91-1.06). LACE, Life After Cancer Epidemiology Study; NHS, Nurses' Health Study; Q, quantile; RR, Relative Risk ^{*}Holmes 2017 exclusively included distant breast cancer recurrences. ### Supplementary Figure S8. Forest plot of breast cancer prognosis for the highest compared with the lowest level of carbohydrate intake after breast cancer diagnosis Note: The figure should not be interpreted as a quantitative summary. CWLS, Collaborative Women's Longevity Study; HEAL, Health, Eating, Activity, and Lifestyle Study; NHS, Nurses' Health Study; Q, quantile; RR, Relative Risk; SACCR, South Australian Central Cancer Registry; WHEL, Women's Healthy Eating and Living Study # Supplementary Figure S9. Nonlinear dose-response meta-analysis of post-diagnosis carbohydrate intake and breast cancer-specific mortality Non-linear curve was estimated using restricted cubic spline regression with three knots at 10th, 50th and 90th percentiles of distribution of the exposure and pooled in random-effects meta-analysis. Carbohydrate intake at 130 g/day was chosen as reference. The table shows selected carbohydrate intake values and their corresponding RR (95% CI) estimated in the non-linear dose-response meta-analysis #### Supplementary Figure S10. Forest plot of all-cause mortality for the highest compared with the lowest level of protein intake after breast cancer diagnosis **Note**: The figure should not be interpreted as a quantitative summary. CWLS, Collaborative Women's Longevity Study; NHS, Nurses' Health Study, RR, Relative Risk #### Supplementary Figure S11. Forest plot of breast cancer mortality for the highest compared with the lowest level of protein intake after breast cancer diagnosis Note: The figure should not be interpreted as a quantitative summary. CWLS, Collaborative Women's Longevity Study; HEAL, Health, Eating, Activity, and Lifestyle Study; NHS, Nurses' Health Study; Q, quantile; SACCR, South Australian Central Cancer Registry; RR, Relative risk # Supplementary Figure S12. Forest plot of distant breast cancer recurrence for the highest compared with the lowest level of protein intake after breast cancer diagnosis The figure should not be interpreted as a quantitative summary. NHS, Nurses' Health Study; RR, Relative risk ### Supplementary Figure S13. Forest plot of all-cause mortality for the highest compared with the lowest level of fat intake after breast cancer diagnosis Note: The figure should not be interpreted as a quantitative summary. CWLS, Collaborative Women's Longevity Study; DBCCG, Danish Breast Cancer Cooperative Group; NHS, Nurses' Health Study; RR, Relative Risk; WHEL, Women's Healthy Eating and Living Study ### Supplementary Figure S14. Forest plot of breast cancer mortality for the highest compared with the lowest level of fat intake after breast cancer diagnosis Note: The figure should not be interpreted as a quantitative summary. CWLS, Collaborative Women's Longevity Study; NHS, Nurses' Health Study; Q, quantile; SACCR, South Australian Central Cancer Registry; VCBBCCA, Vancouver Cancer Centre of the British Columbia Cancer Agency; RR, Relative Risk # Supplementary Figure S15. Forest plot of all-cause mortality for the highest compared with the lowest level of fibre intake after breast cancer diagnosis. Note: The figure should not be interpreted as a quantitative summary. CWLS, Collaborative Women's Longevity Study; HEAL, Health, Eating, Activity, and Lifestyle Study; NHS, Nurses' Health Study; RR, Relative Risk ### Supplementary Figure S16. Forest plot of breast cancer mortality for the highest compared with the lowest level of fibre intake after breast cancer diagnosis **Note:** The figure should not be interpreted as a quantitative summary. CWLS, Collaborative Women's Longevity Study; HEAL, Health, Eating, Activity, and Lifestyle Study; SACCR, South Australian Central Cancer Registry; VCBBCCA, Vancouver Cancer Centre of the British Columbia Cancer Agency; RR, Relative Risk ### Supplementary Figure S17. Forest plot of all-cause mortality for the highest compared to the lowest level of alcohol intake after breast cancer diagnosis Note: The figure should not be interpreted as a quantitative summary. ABCPP, After Breast Cancer Pooling Project; DCHS, Danish Diet,
Cancer and Health Cohort; CBCS, California Breast cancer Survivorship consortium; CWLS, Collaborative Women's Longevity Study; DBCCG, Danish Breast Cancer Cooperative Group; SEARCH, Studies of Epidemiology and Risk factors in Cancer Heredity Breast Cancer Study; WHI, Women's Health Initiate; WISC, Wisconsin In Situ Cohort Study; #### Supplementary Figure S18. Forest plot of breast cancer mortality for the highest compared to the lowest level of alcohol intake after breast cancer diagnosis **Note**: The figure should not be interpreted as a quantitative summary. ABCPP, After Breast Cancer Pooling Project; CWLS, Collaborative Women's Longevity Study; RR, Relative Risk; SEARCH, Studies of Epidemiology and Risk factors in Cancer Heredity Breast Cancer Study; WHI, Women's Health Initiate; # Supplementary Figure S19. Forest plot of breast cancer recurrence for the highest compared to the lowest level of alcohol intake after breast cancer diagnosis Note: The figure should not be interpreted as a quantitative summary. ABCPP, After Breast Cancer Pooling Project; CMSDF, Centre des Maladies du Sein Deschênes-Fabia; CWLS, Collaborative Women's Longevity Study; RR, Relative Risk. # Supplementary Figure S20. Forest plot of second cancer for the highest compared to the lowest level of alcohol intake after breast cancer diagnosis **Note**: The figure should not be interpreted as a quantitative summary. RR, Relative Risk; SPSR, Seattle-Puget Sound region; WECARE, Women's Environmental Cancer and Radiation Epidemiology. #### Supplementary Figure S21. Nonlinear dose-response meta-analyses of post-diagnosis alcohol intake and all-cause mortality Non-linear curve was estimated using restricted cubic spline regression with three knots at 10th, 50th and 90th percentiles of distribution of the exposure and pooled in random-effects meta-analysis. Alcohol at 0 g/day was chosen as reference. The table shows selected alcohol intake values and their corresponding RR (95% CI) estimated in the non-linear dose-response meta-analysis ### Supplementary Figure S22. Nonlinear dose-response meta-analyses of post-diagnosis alcohol intake and breast cancer mortality Non-linear curve was estimated using restricted cubic spline regression with three knots at 10th, 50th and 90th percentiles of distribution of the exposure and pooled in random-effects meta-analysis. Alcohol at 0 g/day was chosen as reference. The table shows selected alcohol intake values and their corresponding RR (95% CI) estimated in the non-linear dose-response meta-analysis # Supplementary Figure S23. Forest plot of all-cause for the highest compared to the lowest level of vitamin D intake from diet and/or supplements after breast cancer diagnosis **Note**: The figure should not be interpreted as a quantitative summary. CWLS, Collaborative Women's Longevity Study; NHS, Nurses' Health Study; RR, Relative Risk; WHEL, Women's Healthy Eating and Living Study ### Supplementary Figure S24. Non-linear dose-response meta-analysis of post-diagnosis serum 25-hydroxyvitamin D and all-cause mortality Non-linear curve was estimated using restricted cubic spline regression with three knots at 10th, 50th and 90th percentiles of distribution of the exposure and pooled in random-effects meta-analysis. Serum 25-hydroxyvitamin D at 50 nmol/L (20ng/ml) was chosen as reference. The table shows selected serum 25-hydroxyvitamin D values and their corresponding RR (95% CI) estimated in the non-linear dose-response meta-analysis # Supplementary Figure S25. Meta-analysis for highest compared with the lowest level of post-diagnosis serum 25(OH)D collected before initiation treatment and all-cause mortality Data are expressed as relative risk and 95% confidence interval by using inverse-variance weighted DerSimonian-Laird random-effects model. Diamonds represents the pooled risk estimates. NCIC CTG, National Cancer Institute of Canada Clinical Trials Group; MARIE, Mammary carcinoma risk factor Investigation; # Supplementary Figure S26. Linear dose-response meta-analysis per 10 nmol/L increase of post-diagnosis serum 25(OH)D collected before initiation treatment and all-cause mortality Data are expressed as relative risk and 95% confidence interval by using inverse-variance weighted DerSimonian-Laird random-effects model. Diamonds represents the pooled risk estimates. Abbreviations: MARIE, Mammary carcinoma risk factor Investigation; RR, relative risk. # Supplementary Figure S27. Meta-analysis for highest compared with the lowest level of post-diagnosis serum 25(OH)D collected before initiation treatment and breast cancer mortality Data are expressed as relative risk and 95% confidence interval by using inverse-variance weighted DerSimonian-Laird random-effects model. Diamonds represents the pooled risk estimates. NCIC CTG, National Cancer Institute of Canada Clinical Trials Group; MARIE, Mammary carcinoma risk factor Investigation; ### Supplementary Figure S28. Forest plot of breast cancer recurrence for the highest compared to the lowest level of serum 25(OH)D after breast cancer diagnosis | | | | | | Recurrence | |----------|--|---------------------------|--|-----------------------------------|-------------------------------------| | Author | Year | RR (95% CI) | Study | Comparison | Definition | | Tokunaga | 2021 | 0.44 (0.20, 0.89) | Japan | >=49.9 vs <49.9 nmol/l | Time to distant recurrence | | Kanstrup | 2020 | 0.84 (0.63, 1.12) | Copenhagen | >=99 vs <52 nmol/L | Event-free survival | | Lim | 2020 | 0.44 (0.22, 0.87) | Korea | >=49.9 vs <49.9 nmol/L | Late recurrence risk | | Bouvard | 2018 | 0.73 (0.37, 1.45) | Angers France | >=25 vs <25 nmol/L | Breast cancer relapse | | Viala | 2018 | 0.90 (0.60, 1.50) | lowa and Montpellier registries | >=49.9 vs <49.9 nmol/L | Progression-free-survival | | Wu | 2017 | 0.56 (0.26, 1.43) | South Los Angeles | >=59.9 vs <29.95 nmol/L | Disease free survival | | Yao | 2017 | 0.84 (0.51, 1.39) | Case-Cohort in PATHWAYS | >=62.7 vs <41.8 nmol/L | Second primary cancer-free survival | | Yao | 2017 | 0.85 (0.60, 1.20) | Case-Cohort in PATHWAYS | >=62.7 vs <41.8 nmol/L | Invasive disease-free survival | | Yao | 2017 | 1.13 (0.82, 1.58) | Case-Cohort in PATHWAYS | >=62.7 vs <41.8 nmol/L | Recurrence-free survival | | Lim | 2015 | 0.45 (0.25, 0.82) | Korea | >=49.9 vs <49.9 nmol/L | Disease free survival | | Lohmann | 2015 | 0.65 (0.21, 2.00) | NCIC CTG MA.21 trial | >=125 vs <40 nmol/L | Relapse-free survival | | Vrieling | 2014 | 0.70 (0.48, 1.03) | MARIE study | >=55 vs <34.9 nmol/L | Recurrence | | Vrieling | 2014 | , , , | MARIE study | >=55 vs <34.9 nmol/l | Distant disease-free survival | | | _ | 0.59 (0.40, 0.81) | , | | | | Jacobs | 2011 | 0.68 (0.22, 2.13) | WHEL | >=49.9 vs <49.9 nmol/L | Local recurrence | | Jacobs | 2011 | 1 .13 (0.20, 6.44) | WHEL | >=49.9 vs <49.9 nmol/L | Regional recurrence | | Jacobs | 2011 | 1.00 (0.68, 1.47) | WHEL | >=49.9 vs <49.9 nmol/L | Distant recurrence | | Kim | 2011 | 0.25 (0.11, 0.56) | Korea, Asan Medical Center Breast Cancer Center database | 74.9-374.4 nmol/L vs <49.9 nmol/L | Disease free survival | | Vrieling | 2011 | 0.48 (0.29, 0.78) | MARIE study | >=55 vs <34.9 nmol/L | Distant disease | | Goodwin | 2009 | 0.58 (0.35, 0.98) | Toronto | >=72 vs <50 nmol/L | Distant disease-free survival | | | | | | | | | | - | I | | | | | | .1 1 | 7 | | | | **Note**: The figure should not be interpreted as a quantitative summary. The same study may be represented more than once if different breast cancer recurrence definitions were investigated. The figure should not be interpreted as a quantitative summary. MARIE, Mammary carcinoma risk factor Investigation; NCIC CTG, National Cancer Institute of Canada Clinical Trials Group; RR, Relative Risk; WHEL, Women's Healthy Eating and Living Study #### **APPENDIX 2** #### Material and methods #### **Data extraction** Relevant data were extracted in the CUP Global database at Imperial College London including author's last name, publication year, study name and study type, participants characteristics. Disease characteristics and treatment information. Inclusion, exclusion criteria of the participants in the study, dietary assessment method and if validated or not. Time between exposure assessment and diagnosis, follow-up time and time frame. Exposures and outcome of interest, effect size, 95% confidence intervals (CIs), and p-values and type of variables if they were quantiles, categories or continuous and adjustments. Authors of the reviewed studies were not contacted if there were missing, unclear data. #### **Outcome definition** Breast cancer recurrence was defined differently in the studies. In some studies, the term "recurrence/relapse-free survival" or "breast cancer recurrence" was used; while in others, the terms "disease-free survival", "event-free survival", "progression-free survival", or "additional breast cancer events" were used. In some studies, the events included in the definition of recurrence were local, regional and/or distant recurrence (metastasis). Other studies included second primary breast cancer or any primary cancer, breast cancer-related death, any cause of death, or any combination of these as events under recurrence. All such studies were reviewed under "recurrence", and when more than one "recurrence" outcomes were reported in a study, the outcome with the highest number of events, most often including any death (disease-free survival) was selected. #### Risk of bias assessment The quality of individual studies was not graded using a specific tool. Instead, relevant study characteristics that could be used to explore potential sources of bias were included into the CUP Global database. For all the included studies, information on potential for selection bias, information bias of exposure and outcome assessment, and residual confounding
by cancer stage and treatment was retrieved after identifying the most likely influential sources of bias in cancer survival studies^{119, 120}. Details on how the study authors addressed the potential biases were also included. In the Expert Panel meeting, whether the studies had serious quality issues were discussed when judging the evidence for each exposure-outcome association. When possible, the potential influence of measurement error, length of follow-up and loss to follow-up, and adjustment for confounding factors on results was tested in subgroup meta-analyses and meta-regression analyses. ### Statistical analysis Meta-analysis was conducted when at least three new studies per exposure and outcome (compared to the WCRF/AICR Third Expert Report with evidence up to 30 June 2012) were identified. The linear dose-response meta-analysis 121, 122 was the preferred option to summarize the strength of the associations. The relative risk (RR) and 95% CIs were summarized, using an inverse-variance weighted DerSimonian-Laird random-effects model¹²³. We directly used the dose-response estimate provided in the original studies when available. The generalized least-square for trend estimation method described by Grenland and Longnecker^{121, 124} was used to compute estimates per exposure increment unit in those studies reporting categorical risk estimates. To perform this method, information about risk estimates with their corresponding 95%CI, doses, and the total number of participants or person-years and cases for at least three categories of exposures were required. If directly reported, the mean or median within each exposure category was assigned to the RR. If studies reported ranges, we used the midpoint of each category. For openended extreme categories, the midpoint was estimated assuming its width to be the same as the adjacent category. If person-years or total number of participants per category were not available, we assumed equal size categories and divided the total number of persons or person-years by the number of quantiles. For studies not reporting the serving size, we used 80g as the unit of conversion for fruits. For total dairy products, 177g was used, which is a serving size reported in the US Department of Agriculture Food and Nutrient Database for Dietary Studies as most studies were from the USA. One study³³ on alcohol intake reported exposure as a percentage of energy intake from alcohol. It was converted to grams per day using the energy intake (kcal/day) of each quintile reported in the paper. Subgroup meta-analysis based on exposure timing respective to cancer treatment (before, during, and/or after neoadjuvant/adjuvant treatment) was performed when sufficient studies were available. Leave-one-out analysis was conducted to inspect influence from individual studies on the summary estimate¹²⁵. Potential non-linear dose-response associations were explored using restricted cubic splines with three knots at 10%, 50%, and 90% percentiles of the distribution, which were combines using multivariate meta-analysis^{126, 127}. Non-linearity was tested using the likelihood ratio test and comparing the linear- with the non-linear dose-response meta-analysis. When linear and non-linear dose-response meta-analyses were not possible, we performed a descriptive synthesis, where the findings of the individual studies were systematically gathered, tabulated, and descriptively summarised by type of dietary exposure and outcome analysed. A forest plot for the RR comparing extreme exposure categories was presented to aid results interpretation. Stata 13.1 (StataCorp, College Station, TX, USA) was used. #### References - 1. Reddy G, D T. Dietary fat reduction improves relapse-free survival in postmenopausal women previously treated for early-stage breast cancer: Results from a phase III women's intervention nutrition study. *Clin Breast Cancer Journal Translated Name Clinical Breast Cancer* 2005;**6**: 112-4. - 2. Chlebowski RTB, G. L. Thomson, C. A. Nixon, D. W. Shapiro, A. Hoy, M. K. Goodman, M. T. Giuliano, A. E. Karanja, N. McAndrew, P. Hudis, C. Butler, J. Merkel, D. Kristal, A. Caan, B. Michaelson, R. Vinciguerra, V. Del Prete, S. Winkler, M. Hall, R. Simon, M. Winters, B. L. Elashoff, R. M. Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women's Intervention Nutrition Study. *Journal of the National Cancer Institute* 2006;**98**: 1767-76. - 3. Pierce JPN, L. Caan, B. J. Parker, B. A. Greenberg, E. R. Flatt, S. W. Rock, C. L. Kealey, S. Al-Delaimy, W. K. Bardwell, W. A. Carlson, R. W. Emond, J. A. Faerber, S. Gold, E. B. Hajek, R. A. Hollenbach, K. Jones, L. A. Karanja, N. Madlensky, L. Marshall, J. Newman, V. A. Ritenbaugh, C. Thomson, C. A. Wasserman, L. Stefanick, M. L. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women's Healthy Eating and Living (WHEL) randomized trial. *Jama* 2007;**298**: 289-98. - 4. Gold EBP, J. P. Natarajan, L. Stefanick, M. L. Laughlin, G. A. Caan, B. J. Flatt, S. W. Emond, J. A. Saquib, N. Madlensky, L. Kealey, S. Wasserman, L. Thomson, C. A. Rock, C. L. Parker, B. A. Karanja, N. Jones, V. Hajek, R. A. Pu, M. Mortimer, J. E. Dietary pattern influences breast cancer prognosis in women without hot flashes: the women's healthy eating and living trial. *J Clin Oncol* 2009;**27**: 352-9. - 5. Pierce JPN, L. Caan, B. J. Flatt, S. W. Kealey, S. Gold, E. B. Hajek, R. A. Newman, V. A. Rock, C. L. Pu, M. Saquib, N. Stefanick, M. L. Thomson, C. A. Parker, B. Dietary change and reduced breast cancer events among women without hot flashes after treatment of early-stage breast cancer: subgroup analysis of the Women's Healthy Eating and Living Study. *The American journal of clinical nutrition* 2009;**89**: 1565s-71s. - 6. Rock C, L N, M P, C T, S F, B C, E G, W A-D, V N, R H, M S, J P, et al. Longitudinal biological exposure to carotenoids is associated with breast cancer-free survival in the women's healthy eating and living study. *Cancer Epidemiol Biomarkers Prev* 2009;**18**: 486-94. - 7. Kroenke CHF, T. T. Hu, F. B. Holmes, M. D. Dietary patterns and survival after breast cancer diagnosis. *J Clin Oncol* 2005;**23**: 9295-303. - 8. Kwan MLW, E. Kushi, L. H. Castillo, A. Slattery, M. L. Caan, B. J. Dietary patterns and breast cancer recurrence and survival among women with early-stage breast cancer. *J Clin Oncol* 2009;**27**: 919-26. - 9. Lei Y, Ho SC, Kwok C, Cheng AC, Cheung KL, Lee R, Yeo W. Dietary Pattern at 18-Month Post-Diagnosis and Outcomes of Breast Cancer Among Chinese Women with Early-Stage Breast Cancer. *Cancer Manag Res* 2021;**13**: 4553-65. - 10. Inoue-Choi M RK, Lazovich D. Adherence to the WCRF/AICR guidelines for cancer prevention is associated with lower mortality among older female cancer survivors. *Cancer Epidemiol Biomarkers Prev* 2013;**22**: 792-802. - 11. Pierce JPS, M. L. Flatt, S. W. Natarajan, L. Sternfeld, B. Madlensky, L. Al-Delaimy, W. K. Thomson, C. A. Kealey, S. Hajek, R. Parker, B. A. Newman, V. A. Caan, B. Rock, C. L. Greater survival after breast cancer in physically active women with high vegetable-fruit intake regardless of obesity. *J Clin Oncol* 2007;**25**: 2345-51. - 12. Jang HC, M. S. Kang, S. S. Park, Y. Association between the Dietary Inflammatory Index and Risk for Cancer Recurrence and Mortality among Patients with Breast Cancer. *Nutrients* 2018;**10**: 1095. - 13. Zheng JT, F. K. Zhang, J. Liese, A. D. Shivappa, N. Ockene, J. K. Caan, B. Kroenke, C. H. Hébert, J. R. Steck, S. E. Association between Post-Cancer Diagnosis Dietary Inflammatory Potential and Mortality among Invasive Breast Cancer Survivors in the Women's Health Initiative. *Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2018;**27**: 454-63. - 14. Wang K, Sun JZ, Wu QX, Li ZY, Li DX, Xiong YF, Zhong GC, Shi Y, Li Q, Zheng J, Shivappa N, Hebert JR, et al. Long-term anti-inflammatory diet in relation to improved breast cancer prognosis: a prospective cohort study. *NPJ Breast Cancer* 2020;**6**: 36. - 15. McCullough MLG, S. M. Shah, R. Campbell, P. T. Wang, Y. Doyle, C. Gaudet, M. M. Preand postdiagnostic diet in relation to mortality among breast cancer survivors in the CPS-II Nutrition Cohort. *Cancer causes & control : CCC* 2016;**27**: 1303-14. - 16. Ergas IJ, Cespedes Feliciano EM, Bradshaw PT, Roh JM, Kwan ML, Cadenhead J, Santiago-Torres M, Troeschel AN, Laraia B, Madsen K, Kushi LH. Diet Quality and Breast Cancer Recurrence and Survival: The Pathways Study. *JNCI Cancer Spectr* 2021;**5**: pkab019. - 17. George SMI, M. L. Smith, A. W. Neuhouser, M. L. Reedy, J. McTiernan, A. Alfano, C. M. Bernstein, L. Ulrich, C. M. Baumgartner, K. B. Moore, S. C. Albanes, D. Mayne, S. T. Gail, M. H. Ballard-Barbash, R. Postdiagnosis diet quality, the combination of diet quality and recreational physical activity, and prognosis after early-stage breast cancer. *Cancer causes & control : CCC* 2011;**22**: 589-98. - 18. George SMB-B, R. Shikany, J. M. Caan, B. J. Freudenheim, J. L. Kroenke, C. H. Vitolins, M. Z. Beresford, S. A. Neuhouser, M. L. Better postdiagnosis diet quality is associated with reduced risk of death among postmenopausal women with invasive breast cancer in the women's health initiative. *Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2014;23: 575-83. - 19. Karavasiloglou N, Pestoni G, Faeh D, Rohrmann S. Post-Diagnostic Diet Quality and Mortality in Females with Self-Reported History of Breast or Gynecological Cancers: Results from the Third National Health and Nutrition Examination Survey (NHANES III). *Nutrients* 2019;11. - 20. Sun YB, W. Liu, B. Caan, B. J. Lane, D. S. Millen, A. E. Simon, M. S.
Thomson, C. A. Tinker, L. F. Van Horn, L. V. Vitolins, M. Z. Snetselaar, L. G. Changes in Overall Diet Quality in Relation to Survival in Postmenopausal Women with Breast Cancer: Results from the Women's Health Initiative. *Journal of the Academy of Nutrition and Dietetics* 2018;**118**: 1855-63.e6. - 21. Wang F, Cai H, Gu K, Shi L, Yu D, Zhang M, Zheng W, Zheng Y, Bao P, Shu XO. Adherence to Dietary Recommendations among Long-Term Breast Cancer Survivors and Cancer Outcome Associations. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2020; 29: 386-95. - 22. Kim EHW, W. C. Fung, T. Rosner, B. Holmes, M. D. Diet quality indices and postmenopausal breast cancer survival. *Nutrition and cancer* 2011;**63**: 381-8. - 23. Izano MAF, T. T. Chiuve, S. S. Hu, F. B. Holmes, M. D. Are diet quality scores after breast cancer diagnosis associated with improved breast cancer survival? *Nutrition and cancer* 2013;**65**: 820-6. - 24. Wang T, Farvid MS, Kang JH, Holmes MD, Rosner BA, Tamimi RM, Willett WC, Eliassen AH. Diabetes Risk Reduction Diet and Survival after Breast Cancer Diagnosis. *Cancer Res* 2021;**81**: 4155-62. - 25. Anyene IC, Ergas IJ, Kwan ML, Roh JM, Ambrosone CB, Kushi LH, Cespedes Feliciano EM. Plant-Based Dietary Patterns and Breast Cancer Recurrence and Survival in the Pathways Study. *Nutrients* 2021;**13**. - 26. Wu T, Hsu FC, Pierce JP. Increased Acid-Producing Diet and Past Smoking Intensity Are Associated with Worse Prognoses Among Breast Cancer Survivors: A Prospective Cohort Study. *J Clin Med* 2020;**9**. - 27. Mohseny M, Shekarriz-Foumani R, Amiri P, Vejdani M, Farshidmehr P, Mahmoudabadi HZ, Amanpour F, Mohaghegh P, Tajdini F, Sayarifard A, Davoudi-Monfared E. Assessment of the fitness of Cox and parametric regression models of survival distribution for Iranian breast cancer patients' data. *J Adv Pharm Technol Res* 2019;**10**: 39-44. - 28. Baghestani AR, Shahmirzalou P, Zayeri F, Akbari ME, Hadizadeh M. Prognostic factors for survival in patients with breast cancer referred to Cancer Research Center in Iran. *Asian Pacific journal of cancer prevention : APJCP* 2015;**16**: 5081-4. - 29. Wu T, Hsu FC, Wang S, Luong D, Pierce JP. Hemoglobin A1c Levels Modify Associations between Dietary Acid Load and Breast Cancer Recurrence. *Nutrients* 2020;**12**. - 30. Marinac CRN, S. H. Breen, C. I. Hartman, S. J. Natarajan, L. Pierce, J. P. Flatt, S. W. Sears, D. D. Patterson, R. E. Prolonged Nightly Fasting and Breast Cancer Prognosis. *JAMA oncology* 2016;**2**: 1049-55. - 31. Farvid MS, Holmes MD, Chen WY, Rosner BA, Tamimi RM, Willett WC, Eliassen AH. Postdiagnostic Fruit and Vegetable Consumption and Breast Cancer Survival: Prospective Analyses in the Nurses' Health Studies. *Cancer Res* 2020;**80**: 5134-43. - 32. Williams PT. Significantly greater reduction in breast cancer mortality from post-diagnosis running than walking. *Int J Cancer* 2014;**135**: 1195-202. - 33. Beasley JMN, P. A. Trentham-Dietz, A. Hampton, J. M. Bersch, A. J. Passarelli, M. N. Holick, C. N. Titus-Ernstoff, L. Egan, K. M. Holmes, M. D. Willett, W. C. Post-diagnosis dietary factors and survival after invasive breast cancer. *Breast Cancer Res Treat* 2011;**128**: 229-36. - 34. Holmes MDS, M. J. Colditz, G. A. Rosner, B. Hunter, D. J. Willett, W. C. Dietary factors and the survival of women with breast carcinoma. *Cancer* 1999;**86**: 826-35. - 35. Nechuta SC, B. J. Chen, W. Y. Kwan, M. L. Lu, W. Cai, H. Poole, E. M. Flatt, S. W. Zheng, W. Pierce, J. P. Shu, X. O. Postdiagnosis cruciferous vegetable consumption and breast cancer outcomes: a report from the After Breast Cancer Pooling Project. *Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2013;**22**: 1451-6. - 36. Thomson CAR, C. L. Thompson, P. A. Caan, B. J. Cussler, E. Flatt, S. W. Pierce, J. P. Vegetable intake is associated with reduced breast cancer recurrence in tamoxifen users: a secondary analysis from the Women's Healthy Eating and Living Study. *Breast Cancer Res Treat* 2011;**125**: 519-27. - 37. Hebert JRH, T. G. Ma, Y. The effect of dietary exposures on recurrence and mortality in early stage breast cancer. *Breast Cancer Res Treat* 1998;**51**: 17-28. - 38. Andersen JLM, Hansen L, Thomsen BLR, Christiansen LR, Dragsted LO, Olsen A. Pre- and post-diagnostic intake of whole grain and dairy products and breast cancer prognosis: the Danish Diet, Cancer and Health cohort. *Breast Cancer Res Treat* 2020;**179**: 743-53. - 39. Holmes MDW, J. Hankinson, S. E. Tamimi, R. M. Chen, W. Y. Protein Intake and Breast Cancer Survival in the Nurses' Health Study. *J Clin Oncol* 2017;**35**: 325-33. - 40. Parada H, Jr. Steck, S. E. Bradshaw, P. T. Engel, L. S. Conway, K. Teitelbaum, S. L. Neugut, A. I. Santella, R. M. Gammon, M. D. Grilled, Barbecued, and Smoked Meat Intake and Survival Following Breast Cancer. *Journal of the National Cancer Institute* 2017;**109**. - 41. Kroenke CHK, M. L. Sweeney, C. Castillo, A. Caan, B. J. High- and low-fat dairy intake, recurrence, and mortality after breast cancer diagnosis. *Journal of the National Cancer Institute* 2013;**105**: 616-23. - 42. Zhang FFH, D. E. Terry, M. B. Knight, J. A. Andrulis, I. L. Daly, M. B. Buys, S. S. John, E. M. Dietary isoflavone intake and all-cause mortality in breast cancer survivors: The Breast Cancer Family Registry. *Cancer* 2017;**123**: 2070-9. - 43. Nechuta SJC, B. J. Chen, W. Y. Lu, W. Chen, Z. Kwan, M. L. Flatt, S. W. Zheng, Y. Zheng, W. Pierce, J. P. Shu, X. O. Soy food intake after diagnosis of breast cancer and survival: an in-depth analysis of combined evidence from cohort studies of US and Chinese women. *The American journal of clinical nutrition* 2012;**96**: 123-32. - 44. Zhang YFK, H. B. Li, B. L. Zhang, R. M. Positive effects of soy isoflavone food on survival of breast cancer patients in China. *Asian Pacific journal of cancer prevention : APJCP* 2012;**13**: 479-82. - 45. Caan BJN, L. Parker, B. Gold, E. B. Thomson, C. Newman, V. Rock, C. L. Pu, M. Al-Delaimy, W. Pierce, J. P. Soy food consumption and breast cancer prognosis. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2011;**20**: 854-8. - 46. Guha NK, M. L. Quesenberry, C. P., Jr. Weltzien, E. K. Castillo, A. L. Caan, B. J. Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the Life After Cancer Epidemiology study. *Breast Cancer Res Treat* 2009;**118**: 395-405. - 47. Shu XOZ, Y. Cai, H. Gu, K. Chen, Z. Zheng, W. Lu, W. Soy food intake and breast cancer survival. *Jama* 2009;**302**: 2437-43. - 48. Farvid MS, Tamimi RM, Poole EM, Chen WY, Rosner BA, Willett WC, Holmes MD, Eliassen AH. Postdiagnostic Dietary Glycemic Index, Glycemic Load, Dietary Insulin Index, and Insulin Load and Breast Cancer Survival. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2021;**30**: 335-43. - 49. Farvid MS, Barnett JB, Spence ND, Rosner BA, Holmes MD. Types of carbohydrate intake and breast cancer survival. *European journal of nutrition* 2021;**60**: 4565-77. - 50. Emond JAP, J. P. Natarajan, L. Gapuz, L. R. Nguyen, J. Parker, B. A. Varki, N. M. Patterson, R. E. Risk of breast cancer recurrence associated with carbohydrate intake and tissue expression of IGFI receptor. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2014;**23**: 1273-9. - 51. Belle FNK, E. McTiernan, A. Bernstein, L. Baumgartner, K. Baumgartner, R. Ambs, A. Ballard-Barbash, R. Neuhouser, M. L. Dietary fiber, carbohydrates, glycemic index, and glycemic load in relation to breast cancer prognosis in the HEAL cohort. *Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2011;**20**: 890-9. - 52. Rohan TEH, J. E. McMichael, A. J. Dietary factors and survival from breast cancer. *Nutrition and cancer* 1993;**20**: 167-77. - 53. Borugian MJS, S. B. Kim-Sing, C. Van Patten, C. Potter, J. D. Dunn, B. Gallagher, R. P. Hislop, T. G. Insulin, macronutrient intake, and physical activity: are potential indicators of insulin - resistance associated with mortality from breast cancer? *Cancer epidemiology, biomarkers & prevention*: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2004;**13**: 1163-72. - 54. Ewertz MG, S. Meyer, L. Zedeler, K. Survival of breast cancer patients in relation to factors which affect the risk of developing breast cancer. *Int J Cancer* 1991;**49**: 526-30. - 55. Nomura AMM, L. L. Kolonel, L. N. Hankin, J. H. The effect of dietary fat on breast cancer survival among Caucasian and japanese women in Hawaii. *Breast Cancer Res Treat* 1991;**18 Suppl 1**: S135-41. - 56. Newman SCM, A. B. Howe, G. R. A study of the effect of weight and dietary fat on breast cancer survival time. *American journal of epidemiology* 1986;**123**: 767-74. - 57. Patterson REF, S. W. Newman, V. A. Natarajan, L. Rock, C. L. Thomson, C. A. Caan, B. J. Parker, B. A. Pierce, J. P. Marine fatty acid intake is associated with breast cancer prognosis. *The Journal of nutrition* 2011;**141**: 201-6. - 58. Holmes MDC, W. Y. Hankinson, S. E. Willett, W. C. Physical activity's impact on the association of fat and fiber intake with survival after breast cancer. *American journal of epidemiology* 2009;**170**: 1250-6. - 59. Schmidt G, Schneider C, Gerlinger C, Endrikat J, Gabriel L,
Stroeder R, Mueller C, Juhasz-Boess I, Solomayer EF. Impact of body mass index, smoking habit, alcohol consumption, physical activity and parity on disease course of women with triple-negative breast cancer. *Arch Gynecol Obstet* 2020;**301**: 603-9. - 60. Furrer D, Jacob S, Michaud A, Provencher L, Lemieux J, Diorio C. Association of Tobacco Use, Alcohol Consumption and HER2 Polymorphisms With Response to Trastuzumab in HER2-Positive Breast Cancer Patients. *Clin Breast Cancer Journal Translated Name Clinical Breast Cancer* 2018;**18**: E687-E94. - 61. Knight JA, Fan J, Malone KE, John EM, Lynch CF, Langballe R, Bernstein L, Shore RE, Brooks JD, Reiner AS, Woods M, Liang XL, et al. Alcohol consumption and cigarette smoking in combination: A predictor of contralateral breast cancer risk in the WECARE study. *International Journal of Cancer* 2017;**141**: 916-24. - 62. Veal CTH, V. Lakoski, S. G. Hampton, J. M. Gangnon, R. E. Newcomb, P. A. Higgins, S. T. Trentham-Dietz, A. Sprague, B. L. Health-related behaviors and mortality outcomes in women diagnosed with ductal carcinoma in situ. *Journal of cancer survivorship : research and practice* 2017;**11**: 320-8. - 63. Nakamura KO, E. Ukawa, S. Hirata, M. Nagai, A. Yamagata, Z. Kiyohara, Y. Muto, K. Kamatani, Y. Ninomiya, T. Matsuda, K. Kubo, M. Nakamura, Y. Tamakoshi, A. Characteristics and prognosis of Japanese female breast cancer patients: The BioBank Japan project. *Journal of epidemiology* 2017;27: S58-s64. - 64. Wu XY, Y. Barcenas, C. H. Chow, W. H. Meng, Q. H. Chavez-MacGregor, M. Hildebrandt, M. A. Zhao, H. Gu, X. Deng, Y. Wagar, E. Esteva, F. J. Tripathy, D. Hortobagyi, G. N. Personalized Prognostic Prediction Models for Breast Cancer Recurrence and Survival Incorporating Multidimensional Data. *Journal of the National Cancer Institute* 2017;109. - 65. Lowry SJK, K. Chlebowski, R. Li, C. I. Alcohol Use and Breast Cancer Survival among Participants in the Women's Health Initiative. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2016;**25**: 1268-73. - 66. Nechuta SC, W. Y. Cai, H. Poole, E. M. Kwan, M. L. Flatt, S. W. Patterson, R. E. Pierce, J. P. Caan, B. J. Ou Shu, X. A pooled analysis of post-diagnosis lifestyle factors in association with late estrogen-receptor-positive breast cancer prognosis. *Int J Cancer* 2016;**138**: 2088-97. - 67. Larsen SBK, N. Ibfelt, E. H. Christensen, J. Tjønneland, A. Dalton, S. O. Influence of metabolic indicators, smoking, alcohol and socioeconomic position on mortality after breast cancer. *Acta oncologica (Stockholm, Sweden)* 2015;**54**: 780-8. - 68. Simonsson MM, A. Bendahl, P. O. Rose, C. Ingvar, C. Jernström, H. Pre- and postoperative alcohol consumption in breast cancer patients: impact on early events. *SpringerPlus* 2014;**3**: 261. - 69. Ali AMS, M. K. Bolla, M. K. Wang, Q. Gago-Dominguez, M. Castelao, J. E. Carracedo, A. Garzón, V. M. Bojesen, S. E. Nordestgaard, B. G. Flyger, H. Chang-Claude, J. Vrieling, A. Rudolph, A. Seibold, P. Nevanlinna, H. Muranen, T. A. Aaltonen, K. Blomqvist, C. Matsuo, K. Ito, H. Iwata, H. Horio, A. John, E. M. Sherman, M. Lissowska, J. Figueroa, J. Garcia-Closas, M. Anton-Culver, H. Shah, M. Hopper, J. L. Trichopoulou, A. Bueno-de-Mesquita, B. Krogh, V. Weiderpass, E. Andersson, A. Clavel-Chapelon, F. Dossus, L. Fagherazzi, G. Peeters, P. H. Olsen, A. Wishart, G. C. Easton, D. F. Borgquist, S. Overvad, K. Barricarte, A. González, C. A. Sánchez, M. J. Amiano, P. Riboli, E. Key, T. Pharoah, P. D. Alcohol consumption and survival after a breast cancer diagnosis: a literature-based meta-analysis and collaborative analysis of data for 29,239 cases. *Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2014;23: 934-45. - 70. Kwan MLC, W. Y. Flatt, S. W. Weltzien, E. K. Nechuta, S. J. Poole, E. M. Holmes, M. D. Patterson, R. E. Shu, X. O. Pierce, J. P. Caan, B. J. Postdiagnosis alcohol consumption and breast cancer prognosis in the after breast cancer pooling project. *Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2013;**22**: 32-41. - 71. Newcomb PAK, E. Trentham-Dietz, A. Egan, K. M. Titus, L. J. Baron, J. A. Hampton, J. M. Passarelli, M. N. Willett, W. C. Alcohol consumption before and after breast cancer diagnosis: associations with survival from breast cancer, cardiovascular disease, and other causes. *J Clin Oncol* 2013;**31**: 1939-46. - 72. Allin KHN, B. G. Flyger, H. Bojesen, S. E. Elevated pre-treatment levels of plasma C-reactive protein are associated with poor prognosis after breast cancer: a cohort study. *Breast cancer research: BCR* 2011;**13**: R55. - 73. Kwan MLK, L. H. Weltzien, E. Tam, E. K. Castillo, A. Sweeney, C. Caan, B. J. Alcohol consumption and breast cancer recurrence and survival among women with early-stage breast cancer: the life after cancer epidemiology study. *J Clin Oncol* 2010;**28**: 4410-6. - 74. Flatt SWT, C. A. Gold, E. B. Natarajan, L. Rock, C. L. Al-Delaimy, W. K. Patterson, R. E. Saquib, N. Caan, B. J. Pierce, J. P. Low to moderate alcohol intake is not associated with increased mortality after breast cancer. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2010;**19**: 681-8. - 75. Li CI, Daling JR, Porter PL, Tang MT, Malone KE. Relationship between potentially modifiable lifestyle factors and risk of second primary contralateral breast cancer among women diagnosed with estrogen receptor-positive invasive breast cancer. *J Clin Oncol* 2009;**27**: 5312-8. - 76. Knight JA, Bernstein L, Largent J, Capanu M, Begg CB, Mellemkjaer L, Lynch CF, Malone KE, Reiner AS, Liang XL, Haile RW, Boice JD, et al. Alcohol Intake and Cigarette Smoking and Risk of a Contralateral Breast Cancer. *American journal of epidemiology* 2009;**169**: 962-8. - 77. Barnett GCS, M. Redman, K. Easton, D. F. Ponder, B. A. Pharoah, P. D. Risk factors for the incidence of breast cancer: do they affect survival from the disease? *J Clin Oncol* 2008;**26**: 3310-6. - 78. Brewster AMD, K. A. Thompson, P. A. Hahn, K. M. Sahin, A. A. Cao, Y. Stewart, M. M. Murray, J. L. Hortobagyi, G. N. Bondy, M. L. Relationship between epidemiologic risk factors and breast cancer recurrence. *J Clin Oncol* 2007;**25**: 4438-44. - 79. Trentham-Dietz A, Newcomb PA, Nichols HB, Hampton JM. Breast cancer risk factors and second primary malignancies among women with breast cancer. *Breast Cancer Res Treat* 2007;**105**: 195-207. - 80. Tominaga KA, J. Koyama, Y. Numao, S. Kurokawa, E. Ojima, M. Nagai, M. Family environment, hobbies and habits as psychosocial predictors of survival for surgically treated patients with breast cancer. *Japanese journal of clinical oncology* 1998;**28**: 36-41. - 81. Ewertz M. Breast cancer in Denmark. Incidence, risk factors, and characteristics of survival. *Acta oncologica (Stockholm, Sweden)* 1993;**32**: 595-615. - 82. Nechuta SL, W. Chen, Z. Zheng, Y. Gu, K. Cai, H. Zheng, W. Shu, X. O. Vitamin supplement use during breast cancer treatment and survival: a prospective cohort study. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2011;**20**: 262-71. - 83. Ambrosone CB, Zirpoli GR, Hutson AD, McCann WE, McCann SE, Barlow WE, Kelly KM, Cannioto R, Sucheston-Campbell LE, Hershman DL, Unger JM, Moore HCF, et al. Dietary Supplement Use During Chemotherapy and Survival Outcomes of Patients With Breast Cancer Enrolled in a Cooperative Group Clinical Trial (SWOG S0221). *J Clin Oncol* 2020;**38**: 804-14. - 84. Jung AY, Cai X, Thoene K, Obi N, Jaskulski S, Behrens S, Flesch-Janys D, Chang-Claude J. Antioxidant supplementation and breast cancer prognosis in postmenopausal women undergoing chemotherapy and radiation therapy. *The American journal of clinical nutrition* 2019;**109**: 69-78. - 85. Kwan ML, Greenlee H, Lee VS, Castillo A, Gunderson EP, Habel LA, Kushi LH, Sweeney C, Tam EK, Caan BJ. Multivitamin use and breast cancer outcomes in women with early-stage breast cancer: the Life After Cancer Epidemiology study. *Breast Cancer Res Treat* 2011;**130**: 195-205. - 86. Poole EMS, X. Caan, B. J. Flatt, S. W. Holmes, M. D. Lu, W. Kwan, M. L. Nechuta, S. J. Pierce, J. P. Chen, W. Y. Postdiagnosis supplement use and breast cancer prognosis in the After Breast Cancer Pooling Project. *Breast Cancer Res Treat* 2013;**139**: 529-37. - 87. Fleischauer ATS, N. Arab, L. Antioxidant supplements and risk of breast cancer recurrence and breast cancer-related mortality among postmenopausal women. *Nutrition and cancer* 2003;**46**: 15-22. - 88. Saquib JP, B. A. Natarajan, L. Madlensky, L. Saquib, N. Patterson, R. E. Newman, V. A. Pierce, J. P. Prognosis following the use of complementary and alternative medicine in women diagnosed with breast cancer. *Complementary therapies in medicine* 2012;**20**: 283-90. - 89. Madden JMM, L. Zgaga, L. Bennett, K. De novo vitamin D supplement use post-diagnosis is associated with breast cancer survival. *Breast Cancer Res Treat* 2018;**172**: 179-90. - 90. Inoue-Choi MG, H. Oppeneer, S. J. Robien, K. The association between postdiagnosis dietary supplement use and total mortality differs by diet quality among older female cancer survivors. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2014;**23**: 865-75. - 91. Harris HRB, L. Wolk, A. Vitamin C intake and breast cancer mortality in a cohort of Swedish women. *British journal of
cancer* 2013;**109**: 257-64. - 92. Greenlee HK, M. L. Kushi, L. H. Song, J. Castillo, A. Weltzien, E. Quesenberry, C. P., Jr. Caan, B. J. Antioxidant supplement use after breast cancer diagnosis and mortality in the Life After Cancer Epidemiology (LACE) cohort. *Cancer* 2012;**118**: 2048-58. - 93. Jacobs ETT, C. A. Flatt, S. W. Al-Delaimy, W. K. Hibler, E. A. Jones, L. A. Leroy, E. C. Newman, V. A. Parker, B. A. Rock, C. L. Pierce, J. P. Vitamin D and breast cancer recurrence in the Women's Healthy Eating and Living (WHEL) Study. *The American journal of clinical nutrition* 2011;**93**: 108-17. - 94. Bruemmer BP, R. E. Cheney, C. Aker, S. N. Witherspoon, R. P. The association between vitamin C and vitamin E supplement use before hematopoietic stem cell transplant and outcomes to two years. *Journal of the American Dietetic Association* 2003;**103**: 982-90. - 95. Zeichner SB, Koru-Sengul T, Shah N, Liu Q, Markward NJ, Montero AJ, Gluck S, Silva O, Ahn ER. Improved clinical outcomes associated with vitamin D supplementation during adjuvant chemotherapy in patients with HER2+ nonmetastatic breast cancer. *Clin Breast Cancer* 2015;**15**: e1-11. - 96. Saquib JR, C. L. Natarajan, L. Saquib, N. Newman, V. A. Patterson, R. E. Thomson, C. A. Al-Delaimy, W. K. Pierce, J. P. Dietary intake, supplement use, and survival among women diagnosed with early-stage breast cancer. *Nutrition and cancer* 2011;**63**: 327-33. - 97. Tokunaga E, Masuda T, Ijichi H, Tajiri W, Koga C, Koi Y, Nakamura Y, Ohno S, Taguchi K, Okamoto M. Impact of serum vitamin D on the response and prognosis in breast cancer patients treated with neoadjuvant chemotherapy. *Breast Cancer-Tokyo* 2022;**29**: 156-63. - 98. Kanstrup C, Teilum D, Rejnmark L, Bigaard JV, Eiken P, Kroman N, Tjonneland A, Mejdahl MK. 25-Hydroxyvitamin D at time of breast cancer diagnosis and breast cancer survival. *Breast Cancer Res Tr* 2020;**179**: 699-708. - 99. Lim ST, Jeon YW, Gwak H, Suh YJ. Clinical Implications of Serum 25-Hydroxyvitamin D Status after 5-Year Adjuvant Endocrine Therapy for Late Recurrence of Hormone Receptor-positive Breast Cancer. *Journal of Breast Cancer* 2020;**23**: 498-508. - 100. Huang YQ, Zhou C, Zhao R, Cui YP, Wu XT. The relationship between vitamin D, ratio of neutrophil to lymphocyte, and ratio of lymphocyte to monocyte in preoperative serum and prognosis of patients with breast conserving surgery in breast cancer. *Int J Clin Exp Med* 2019;**12**: 10537-48. - 101. Robsahm TE, Tretli S, Torjesen PA, Babigumira R, Schwartz GG. Serum 25-hydroxyvitamin D levels predict cancer survival: a prospective cohort with measurements prior to and at the time of cancer diagnosis. *Clin Epidemiol* 2019;**11**: 695-705. - 102. Tretli SS, G. G. Torjesen, P. A. Robsahm, T. E. Serum levels of 25-hydroxyvitamin D and survival in Norwegian patients with cancer of breast, colon, lung, and lymphoma: a population-based study. *Cancer causes & control : CCC* 2012;**23**: 363-70. - 103. Thanasitthichai S, Prasitthipayong A, Boonmark K, Purisa W, Guayraksa K. Negative Impact of 25-hydroxyvitamin D Deficiency on Breast Cancer Survival. *Asian Pacific journal of cancer prevention : APJCP* 2019;**20**: 3101-6. - 104. Bouvard B, Chatelais J, Soulie P, Hoppe E, Saulnier P, Capitain O, Mege M, Mesgouez-Nebout N, Jadaud E, Abadie-Lacourtoisie S, Campone M, Legrand E. Osteoporosis treatment and 10 years' oestrogen receptor+ breast cancer outcome in postmenopausal women treated with aromatase inhibitors. *Eur J Cancer* 2018;**101**: 87-94. - 105. Mizrak Kaya DO, B. Kubilay, P. Onur, H. Utkan, G. Cay Senler, F. Alkan, A. Yerlikaya, H. Koksoy, E. B. Karci, E. Demirkazik, A. Akbulut, H. Icli, F. Diagnostic serum vitamin D level is not a reliable prognostic factor for resectable breast cancer. *Future Oncol* 2018;**14**: 1461-7. - 106. Kim JSH, C. C. Kim, J. H. Lim, S. M. Yoon, K. H. Kim, J. Y. Park, H. S. Park, S. Kim, S. I. Cho, Y. U. Park, B. W. Association between Changes in Serum 25-Hydroxyvitamin D Levels and Survival in Patients with Breast Cancer Receiving Neoadjuvant Chemotherapy. *J Breast Cancer* 2018;**21**: 134-41. - 107. Viala M, Chiba A, Thezenas S, Delmond L, Lamy PJ, Mott SL, Schroeder MC, Thomas A, Jacot W. Impact of vitamin D on pathological complete response and survival following neoadjuvant chemotherapy for breast cancer: a retrospective study. *BMC Cancer* 2018;**18**: 770. - 108. Yao SK, M. L. Ergas, I. J. Roh, J. M. Cheng, T. D. Hong, C. C. McCann, S. E. Tang, L. Davis, W. Liu, S. Quesenberry, C. P., Jr. Lee, M. M. Ambrosone, C. B. Kushi, L. H. Association of Serum Level of Vitamin D at Diagnosis With Breast Cancer Survival: A Case-Cohort Analysis in the Pathways Study. *JAMA oncology* 2017;**3**: 351-7. - 109. Wu YS, M. Clayton, S. Chlebowski, R. Vadgama, J. V. Association of Vitamin D3 Level with Breast Cancer Risk and Prognosis in African-American and Hispanic Women. *Cancers (Basel)* 2017;**9**. - 110. Lim ST, Jeon YW, Suh YJ. Association between alterations in the serum 25-hydroxyvitamin d status during follow-up and breast cancer patient prognosis. *Asian Pacific journal of cancer prevention:* APJCP 2015;**16**: 2507-13. - 111. Lohmann AEC, J. A. Burnell, M. J. Levine, M. N. Tsvetkova, E. Pritchard, K. I. Gelmon, K. A. O'Brien, P. Han, L. Rugo, H. S. Albain, K. S. Perez, E. A. Vandenberg, T. A. Chalchal, H. I. Sawhney, R. P. Shepherd, L. E. Goodwin, P. J. Prognostic associations of 25 hydroxy vitamin D in NCIC CTG MA.21, a phase III adjuvant randomized clinical trial of three chemotherapy regimens in high-risk breast cancer. *Breast Cancer Res Treat* 2015;**150**: 605-11. - 112. Vrieling AS, P. Johnson, T. S. Heinz, J. Obi, N. Kaaks, R. Flesch-Janys, D. Chang-Claude, J. Circulating 25-hydroxyvitamin D and postmenopausal breast cancer survival: Influence of tumor characteristics and lifestyle factors? *Int J Cancer* 2014;**134**: 2972-83. - 113. Villaseñor AB-B, R. Ambs, A. Bernstein, L. Baumgartner, K. Baumgartner, R. Ulrich, C. M. Hollis, B. W. McTiernan, A. Neuhouser, M. L. Associations of serum 25-hydroxyvitamin D with overall and breast cancer-specific mortality in a multiethnic cohort of breast cancer survivors. *Cancer causes & control : CCC* 2013;**24**: 759-67. - 114. Hatse SL, D. Verstuyf, A. Smeets, A. Brouwers, B. Vandorpe, T. Brouckaert, O. Peuteman, G. Laenen, A. Verlinden, L. Kriebitzsch, C. Dieudonné, A. S. Paridaens, R. Neven, P. Christiaens, M. R. Bouillon, R. Wildiers, H. Vitamin D status at breast cancer diagnosis: correlation with tumor characteristics, disease outcome, and genetic determinants of vitamin D insufficiency. *Carcinogenesis* 2012;33: 1319-26. - 115. Kim HJ, Lee YM, Ko BS, Lee JW, Yu JH, Son BH, Gong GY, Kim SB, Ahn SH. Vitamin D Deficiency is Correlated with Poor Outcomes in Patients with Luminal-type Breast Cancer. *Ann Surg Oncol* 2011;**18**: 1830-6. - 116. Pritchard KIS, L. E. Chapman, J. A. Norris, B. D. Cantin, J. Goss, P. E. Dent, S. F. Walde, D. Vandenberg, T. A. Findlay, B. O'Reilly, S. E. Wilson, C. F. Han, L. Piura, E. Whelan, T. J. Pollak, M. N. Randomized trial of tamoxifen versus combined tamoxifen and octreotide LAR Therapy in the adjuvant treatment of early-stage breast cancer in postmenopausal women: NCIC CTG MA.14. *J Clin Oncol* 2011;29: 3869-76. - 117. Vrieling AH, R. Abbas, S. Schneeweiss, A. Flesch-Janys, D. Chang-Claude, J. Serum 25-hydroxyvitamin D and postmenopausal breast cancer survival: a prospective patient cohort study. *Breast cancer research: BCR* 2011;**13**: R74. - 118. Goodwin PJE, M. Pritchard, K. I. Koo, J. Hood, N. Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer. *J Clin Oncol* 2009;**27**: 3757-63. - 119. Chubak JB, D. M. Wirtz, H. S. McKnight, B. Weiss, N. S. Threats to validity of nonrandomized studies of postdiagnosis exposures on cancer recurrence and survival. *Journal of the National Cancer Institute* 2013;**105**: 1456-62. - 120. Savitz DAW, G. A. Trikalinos, T. A. The Problem With Mechanistic Risk of Bias Assessments in Evidence Synthesis of Observational Studies and a Practical Alternative: Assessing the Impact of Specific Sources of Potential Bias. *American journal of epidemiology* 2019;**188**: 1581-5. - 121. Orsini NB, R. Greenland, S. Generalized least squares for trend estimation of summarized dose-response data. *Stata J* 2006;**6**: 40-57. - 122. Bekkering GEH, R. J. Thomas, S. Mayer, A. M. Beynon, R. Ness, A. R. Harbord, R. M. Bain, C. Smith, G. D. Sterne, J. A. How much of the data published in observational studies of the association between diet and prostate or bladder cancer is usable for meta-analysis? *American journal of epidemiology* 2008;**167**: 1017-26. - 123. DerSimonian RL, N. Meta-analysis in clinical trials. Control Clin Trials 1986;7: 177-88. - 124. Greenland SL, M. P. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. *American journal of epidemiology* 1992;**135**: 1301-9. - 125. Viechtbauer WC, M. W. Outlier and influence diagnostics for meta-analysis. *Res Synth Methods* 2010;**1**: 112-25. - 126. Orsini NL, R. Wolk, A. Khudyakov, P. Spiegelman, D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. *American journal of epidemiology* 2012;**175**: 66-73. - 127. Jackson DW, I. R. Thompson, S. G. Extending DerSimonian and Laird's methodology to perform multivariate random effects meta-analyses. *Stat Med* 2010;**29**: 1282-97.