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SUPPLEMENTARY INFORMATION

Supplementary Table 1. Enzymatic properties of relevant GCase(-BS) molecules.
Values in parentheses are 95% confidence intervals of the fitted parameters. Source data are

provided as a Source Data file.

Construct Kew [S7]

Imiglucerase (CHO) 0.13
(0.12t0 0.14)

hGCase-NB 0.13
(0.11t0 0.16)

hGCase-hBS 0.32
(0.26 t0 0.42)

mGCase 0.14
(0.13t0 0.16)

mGCase-mBS 0.25
(0.23t0 0.27)

Kv [UM]

138
(112 to 171)

138
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66
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86
(70 to 105)

114
(95 t0138)

kca(/KM [I\/I1 * Sl]
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a 10 pM GicCer 18:0 + 100 nM imiglucerase b 10 pyM GicCer 18:0 + 100 nM hGCase-hBS
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No detection of Cer 18:0, i.e. no chemical degradation. No detection of Sph, i.e. no chemical degradation.

Supplementary Fig. 1. Enzymatic hydrolysis of GlcCer and GlcSph by imiglucerase and
hGCase-BS.

a Chromatogram of reaction of 10 pM of GlcCer 18:0 with 100 nM of imiglucerase. Endpoint
detection of reactant (m/z 728.6 > 284.3 (GlcCer 18:0)) and product (m/z 566.5 > 252.3 (Cer
18:0)) at t = 30 min. b Chromatogram of reaction of 10 uM of GlcCer 18:0 with 100 nM of
hGCase-hBS. Endpoint detection of reactant (m/z 728.6 > 284.3 (GlcCer 18:0)) and product
(m/z 566.5 > 252.3 (Cer 18:0)) at t = 30 min. ¢ Chromatogram of reaction of 10 uM of GlcSph
with 100 nM of imiglucerase. Endpoint detection of reactant (m/z 462.3 > 282.3 (GlcSph) and
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product (m/z 300.3 > 252.3 (Sph)) at t =30 min. d Chromatogram of reaction of 10 pM of
GlcSph with 100 nM of hGCase-hBS. Endpoint detection of reactant (m/z 462.3 > 282.3
(GlcSph) and product (m/z 300.3 > 252.3 (Sph)) at t =30 min. e Chromatogram of control
setup with 10 pM of GlcCer 18:0 without enzyme. No product was detected at m/z
566.5 > 252.3 (Cer 18:0) at t = 30 min. f Chromatogram of control setup with 10 uM of GlcSph
without enzyme. No product was detected at m/z 300.3 > 252.3 (Sph) at t = 30 min.

All reactions were incubated for 30 min. at 37 °C in buffered solution at pH 6.0. Data reflect
gualitative measurements only. Reactant intensity was set to 100% for each reaction. Product
intensity was normalised to overall highest intensity.



ad Lyso-FQ signal in live mouse primary cortical neurons

Gba +/+ Gba D409V/D409V
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Supplementary Fig. 2. Additional in vitro experiments showing lysosomal activity and
sustained efficiency of GCase-BS molecules.

a Lysosomal activity of mGCase vs. mGCase-mBS in primary cortical neurons from Gbal
D409V/D409V mice. n = 2. b Kinetics of GlcSph reduction upon 2 h treatment with mGCase-
mBS in Gba-/- mouse neurons. n = 1. ¢ Kinetics of GlcSph reduction upon 2 h treatment with
hGCase-hBS in GBA-/- H4 cells. n = 1.

Data are represented as mean of technical replicates. n = number of independent
measurements. Source data are provided as a Source Data file.



a iPSC-derived macrophages (n = 3) b iPSC-derived macrophages (n = 3) C iPSC-derived macrophages (n = 5)
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Supplementary Fig. 3. Uptake and lysosomal efficacy of hGCase-hBS in iPSC-derived
macrophages and microglia or ESC-derived dopaminergic neurons.

a Total GCase activity upon 9 days of treatment with hGCase-hBS in iPSC-derived GBA+/+
and GBA N370S/+ macrophages. n = 3. b GlcSph levels upon 9 days treatment with hGCase-
hBS in iPSC-derived GBA+/+ and GBA N370S/+ macrophages. n = 3. ¢ Comparison of GlcSph
reduction efficacy of imiglucerase and hGCase-hBS levels upon 9 days treatment with
hGCase-hBS in iPSC-derived GBA+/+ and GBA N370S/+ macrophages. n = 5. d Total GCase
activity upon 9 days of treatment with hGCase-hBS in iPSC-derived GBA+/+ and GBA
N370S/+ microglia. n = 4. e GlcSph levels upon 9 days treatment with hGCase-hBS in iPSC-
derived GBA+/+ and GBA N370S/+ microglia. n = 2. f GlcSph measurement in ESC-derived
dopaminergic neurons as a measure of efficacy after treatment with 10 nM of hGCase-hBS.
Data was normalised to GBA-/- cells. n = 3.

Bar graphs represent group means + SD. n = number of independent measurements. Data
obtained from macrophage and microglia experiments were analysed by two-way ANOVA
(Tukey’s multiple comparisons test). Data obtained from experiments using dopaminergic
neurons were analysed by one-way ANOVA (Dunnett’s multiple comparisons test). * p < 0.05;
** p < 0.01; *** p < 0.001; *** p < 0.0001. Source data are provided as a Source Data file.
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Supplementary Fig. 4. Confirmation of KO H4 cell lines by Western blot.

a Western Blot analysis to confirm the absence of GCase and TfR protein in double KO H4
line. b Western Blot analysis to confirm the absence of GCase and M6PR-CI or GCase and
M6PR-CD protein in respective H4 KO lines.

10 ug of total protein lysate were loaded per lane. Representative blots of 3 replicates.
Molecular weight is indicated in kilodalton (kDa).



ad Enrichment of bona fide lysosomal proteins in LysolP samples compared to whole cells

LysolP vs Whole cell extract (H4- GBA WT cells)
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Supplementary Fig. 5. Enrichment of bona fide lysosomal proteins in isolated
lysosomes.

a Volcano plot showing enrichment of bona fide lysosomal proteins (red dot) in Lyso-IP sample
(lysosomes) compared to whole-cell extract. n = 3 biological replicates. Source data are
provided as a Source Data file.



a Principal component analysis (PCA) score by cohort (Proteomics)
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Supplementary Fig. 6. Principal component analysis (PCA) shows clear separation
between lysosomal and whole-cell proteome.

a Principal component analysis was performed to visualise data set variance in dependence
on sample groups. Main variance (PC 1) in this data set is explained by the difference between
whole cell extracts (WCE) and lysosomes (LysolP). Secondary variance (PC 2) in this data set
is explained by the difference between wildtype lysosomes (WT_LysolP) and GBA KO
lysosomes (GBA KO_LysolP). n = 3 biological replicates.



d Rescue of dysregulated proteins after hGCase-hBS treatment in whole cell lysates
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b Rescue of dysregulated lysosomal lipids after hGCase-hBS treatment in whole cell lysates
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Supplementary Fig. 7. hGCase-hBS reverts protein and lipid dysregulation in whole-cell
extract from GBA1-/- H4 cells.
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a Rescue of dysregulated proteins upon hGCase-hBS treatment in whole-cell extract. Graph
showing increased or decreased levels of proteins in GBAL-/- whole-cell extract (blue bar) and
its rescue upon hGCase-hBS treatment (yellow bar). The majority of proteins displayed has a
significant fold change (g-value < 0.05) in both contrasts (exceptions are MON1B/PARL/
SGPP). b Rescue of dysregulated lipids upon hGCase-hBS treatment in whole-cell extract.
Graph showing increased or decreased levels of lipid species in GBA1-/- whole-cell extract
(blue bar) and its rescue upon hGCase-hBS treatment (yellow bar). Note: The lipid analysis
performed does not report the number of carbons in the sphingoid base and the acyl chain
(fatty acid chain) separately. Hence, the first number in the nomenclature used refers to the
total number of carbons (sphingoid base + acyl chain). An Excel sheet consisting of each of
the detected lipid species and its corresponding Swisslipids ID is provided in Supplementary
Data File 3.

FDR-corrected p-values are shown (** g-value < 0.01; * g-value < 0.05; n = 3 biological
replicates), calculated for each contrast separately. We are also displaying trends (e.g.
significance found in one contrast only), to highlight potential lipid/protein entities with opposite
fold change in GBA-/- and rescue upon hGCase-hBS treatment. Source data are provided as
a Source Data file.
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Supplementary Fig. 8. PD study in Gba V394L/V394L mice and dose-response study in
4L/PS-NA mice.

a Multi-dose PD study in Gba V394L/V394L mice to compare equimolar doses of mGCase vs.
mGCase-mBS. GlcSph levels were measured in cortex, midbrain and liver. n = 6 mice/group.
b Dose-response study in 4L/PS-NA mice to measure GlcSph levels in cortex, midbrain and
liver samples at 96 h post single injection of 0.2 mg/kg, 1.0 mg/kg or 2.5 mg/kg of mGCase-
mBS. n = 6 mice/group.

Data is represented as group mean +/- SEM. Data was analysed by one-way ANOVA
(Dunnett’'s multiple comparisons test) comparing each treatment group to Gba V394L/V394L
or 4L/PS-NA vehicle. n.s. p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
Schematics created with BioRender.com. Source data are provided as a Source Data file.
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Supplementary Fig. 9. M6PR, TFRC and MRCL1 expression levels in different cell types.

a Dot plot depicting the expression levels of TFRC, M6PR and MRC1 in different cell types of
brain tissue. The white-to-black gradient reflects mean expression levels per group, dot size
reflects fraction of cells per group that express TFRC, M6PR or MRC1. OPC: oligodendrocyte
precursor cells. Source: ROSMAP data set!. b MR protein levels in human neurons, H4 cells
or macrophages normalised to total protein. Error bars represent standard deviation. n = 3
independent measurements. ¢ Dot plot illustrating the expression levels of M6PR and TFRC
in different cell types of liver (turquoise dots) and brain (blue dots) tissue. NFO: newly formed
oligodendrocyte. Source: human frontal cortex single nucleus transcriptome analysis?. Source
data are provided as a Source Data file.
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Supplementary Fig. 10. Uncropped blots of the Lyso-IP samples.

a Uncropped blot image of LAMP2 detection in the Lyso-IP samples of WT, GBA KO and
GCase-BS treated GBA KO cells. b Uncropped blot image of CatD detection in the Lyso-IP
samples of WT, GBA KO and GCase-BS treated GBA KO cells. ¢ Uncropped blot image of
GCase detection in the Lyso-IP samples of WT, GBA KO and GCase-BS treated GBA KO cells

Representative blots of 3 replicates. Molecular weight is indicated in kilodalton (kDa).
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Supplementary Fig. 11. Uncropped blots of the validation of the GBA KO/TfR KO cell
line.

a Uncropped blot image of TfR and GAPDH detection in WT, GBA KO and GBA KO/TfR KO
cell lysates. b Uncropped blot image of GCase detection in WT, GBA KO and GBA KO/TfR
KO cell lysates. ¢ Uncropped image of the GCase blot after stripping and reprobing with
GAPDH.

10 ug of total protein lysate were loaded per lane. Representative blots of 3 replicates.
Molecular weight is indicated in kilodalton (kDa).
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Supplementary Fig. 12. Uncropped blots of the validation of the GBA KO/M6PR KO cell
lines.

a Uncropped blot image of M6PR-CD detection in WT, GBA KO and GBA KO/M6PR-CD KO
and GBA KO/M6PR-CI KO cell lysates. b Uncropped image of the M6PR-CD blot after
stripping and reprobing with GAPDH. ¢ Uncropped blot image of M6PR-CI detection in WT,
GBA KO and GBA KO/M6PR-CD KO and GBA KO/M6PR-CI KO cell lysates. d Uncropped
image of the M6PR-CI blot after reprobing with GAPDH. e Uncropped blot image of GCase
detection in WT, GBA KO and GBA KO/M6PR-CD KO and GBA KO/M6PR-CI KO cell lysates.
f Uncropped image of the GCase blot after stripping and reprobing with GAPDH.

10 ug of total protein lysate were loaded per lane. Representative blots of 3 replicates.
Molecular weight is indicated in kilodalton (kDa).
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