

Supporting Information

Biosynthesis of Nodulisporic Acids: A Multifunctional Monooxygenase Delivers a Complex and Highly Branched Array

A. T. Richardson, R. C. Cameron, L. J. Stevenson, A. J. Singh, Y. Lukito, D. Berry, M. J. Nicholson^{*}, E. J. Parker^{*}

Table of Contents

Table of Contents	2
General	4
Molecular Biology and Fungal Work	5
Table S1: Fungal transformant list	6
Table S2: Components of DNA constructs used in this study	7
Sequences	9
Promoters used in this study	9
Coding sequences used in this study (gDNA)	11
Genes used in this study (cDNA)	16
Terminators used in this study	20
LC-MS Analysis of Fungal Transformants	22
Identification of Nodulisporic Acids by Tandem Mass Spectrometry	43
Figure S1. Proposed fragmentation of nodulisporic acids, NAD4 and NAD4-OMe	43
Table S3: HR-ESI-MS ² analysis of nodulisporic acids	45
Isolation of Nodulisporic Acids	66
Isolation of NAD4	67
Table S4. NMR Data for NAD₄ and NAD₄-OMe, CDCl₃	68
Isolation of NAD & NAD1	69
Table S5: NMR Data for NAD, CDCl _{3.}	70
Table S6: NMR Data for NAD1, CDCl3	71
Isolation of NAD ₂	72
Table S7: NMR Data for 18-23 alkene-NAD ₂ , CDCl ₃	73
Isolation of DH-NAA ₄ & DH-NAC ₄	74
Table S8: NMR Data for DH-NAA4, CDCl3.	75
Table S9: NMR Data of DH-NAC4, CDCl3	76
Isolation of NAC	77
Table S10. NMR Data for NAC, CDCl _{3.}	78
Isolation of NAB4	79
Table S11: NMR Data for NAB4 and its 2'-epimer, CDCl ₃	79
Isolation of NAA ₁ and NAB	80
Table S12: NMR Data for NAA ₁ , CD ₃ OD	81
Table S13: NMR Data for NAB, CDCl ₃	82
Isolation of NAD ₆	83
Table S14: NMR Data for NAD ₆ , (CD ₃) ₂ CO.	84
Isolation of NAD ₅	85
Table S15: NMR Data for NAD ₅ , (CD ₃) ₂ CO	
NMR Spectra	87
NAD NMR Spectra	87
NAD₁ NMR Spectra	91

WILEY-VCH

SUPPORTING INFORMATION

NAD ₄ NMR Spectra	96
NAD₄-OMe NMR Spectra	102
NAD ₂ NMR Spectra	107
NAC NMR Spectra	111
DH-NAC₄ NMR Spectra	115
NAB₄ NMR Spectra	119
DH-NAA₄ NMR Spectra	122
NAA1 NMR Spectra	126
NAB NMR Spectra	131
NAD ₆ NMR Spectra	135
NAD₅ NMR Spectra	139
In Vivo Feeding Studies	143
Table S16. NodJ <i>in vivo</i> feeding studies	143
Figure S58. LC-MS analysis of in vivo feeding studies	144
Figure S59. NAD _{5/1} feeding study	145
Non-enzymatic NAD ₆ elimination	145
Proposed NodJ P450 Monooxygenase Bifurcation Mechanism	146
Figure S60. Proposed mechanism for NodJ	146
Phylogenetic Classification of NodX	147
Figure S61. Phylogenetic classification of NodX	147
Nodulisporic Acid Biosynthesis Scheme	148
Figure S62. Nodulisporic acid biosynthesis	148
Author Contributions	149
References	149

General

NMR spectroscopy was conducted on a JEOL JNM-ECZ600R with a nitrogen cooled 5 mm SuperCOOL cryogenic probe (600 MHz for ¹H nuclei and 150 MHz for ¹³C nuclei). The residual solvent peak was used as an internal reference for ¹H [δ_{H} 3.31, CD₃OD; 7.26, CDCl₃; 2.05, (CD₃)₂CO] and ¹³C [δ_{C} 49.00, CD₃OD; 77.16, CDCl₃; 29.84, (CD₃)₂CO] chemical shifts.

Flash chromatography was carried out on a Buchi Reveleris X2 using Buchi FlashPure 20 µm silica cartridges and a CHCl₃: MeOH gradient (1–100%).

Semi-preparative HPLC was carried out on an Agilent 1260 Infinity II HPLC system with DAD. In all cases the mobile phase was A: H_2O , B: MeCN both containing 0.1% formic acid. Purification was achieved using either a Phenomenex Luna C18 250 × 10 mm 100 Å 5 μ column (column #1), or an Agilent Zorbax SB-C18 50 × 9.4 mm 5 μ m column (column #2).

Preparative HPLC was performed on an Agilent 1260 Infinity II Preparative HPLC system, equipped with multiwavelength and evaporative light-scattering detection, using A: H₂O and B: MeCN as the mobile phases both containing 0.1% formic acid. Purification was performed using Column #1 (see above).

Reversed-Phase Prefractionation HP-20 poly(styrene-divinylbenzene) (Supelco, Sigma) was used for metabolite capture and reversed-phase pre-fractionation. Acetone and MeOH were analytical grade or higher. H₂O was purified by reverse osmosis. Solvent compositions are reported as % v/v unless otherwise stated.

Thin-Layer Chromatography (TLC) was carried out using Merck KGaA Silicagel 60 F_{254} plates and a mobile phase of CHCl₃:MeOH (9:1). Indole diterpenes were identified by staining with Ehrlich's reagent (*p*-dimethylaminobenzaldehyde).

Liquid Chromatography-Mass Spectrometry (LC-MS) was completed on an Agilent 1260 Infinity II LC-MS system with DAD and electrospray ionisation. A Phenomenex C18 Kinetex column (2.6μ , 100 Å, $50 \times 2.1 mm$) equipped with a Phenomenex C18 guard cartridge and maintained at 40 °C was eluted with a mobile phase of A: H₂O and B: MeCN, both containing 0.1% formic acid. An injection volume of 10 µL and flow rate of 0.4 mL/min were used. The gradient was as follows: 0–1 min 40% B, 1–5 min 40–60% B, 5–24 min 60–90% B, 24–25 min 90–100% B, 25–27 min 100% B.

High-resolution mass spectrometric data and MS/MS spectra were obtained with an Agilent 6530 Accurate Mass Q-TOF fitted with an electrospray ion source and equipped with an Agilent 1260 Infinity II LC system. Chromatography was carried out using an Agilent Accucore C18 2.0 μ m 50 × 2.1 mm column eluted with a mobile phase of A: H₂O and B: MeCN, both containing 0.1% formic acid. The flow rate was 0.3 mL/min and injection volume 5 μ L. The gradient used was as follows: 0–1 min 40% B, 1–30 min 40–100% B, 30–35 min 100% B. The mass spec parameters used were: positive ion mode, mass range 100–1000 Da, acquisition rate 2 scans/s, capillary temperature 300 °C, capillary voltage 3500 V, fragmentor voltage 175 V, drying gas flow 8 L/min, sheath gas temp 350 °C, sheath gas flow 11 L/min, and a nebulizer pressure of 35 psi. MS/MS data were acquired for selected masses using CID with an isolation width of *M* 1.6 and collision energy of 30 eV.

Molecular Biology and Fungal Work

The following protocols were completed as described in van Dolleweerd et al 2018.^[1]

- Molecular biology.
- Bacterial and fungal strains.
- Construction of DNA constructs using the MIDAS cloning system.
- Protocols for MIDAS Level-1 module cloning.
- Protocols for MIDAS Level-2 TU assembly.
- Protocols for MIDAS Level-3 multigene assembly.
- Media and reagents used for fungal work.
- Fungal Protocols Protoplast Preparation.
- Fungal Protocols Transformation of P. paxilli.

Synthetic DNA MIDAS Level-1 constructs. MIDAS Level-1 plasmids containing cDNA versions of NOD genes were synthesised, cloned into MIDAS Level-1 vector pML1, and sequence verified by Twist Biosciences.

Indole diterpene production and extraction. Fungal transformants were grown in 25 mL of CDYE medium (recipe below) with trace elements (recipe below) for 7 days at 28 °C in shaker cultures (\geq 200 rpm), in 125 mL Erlenmeyer flasks capped with cotton wool. Mycelia were isolated from fermentation broths by filtration. IDTs were extracted from an 850 mg sample of mycelia via homogenisation with 500 µL EtOAc in a bead beating apparatus (MPBio FastPrep24 5G bead beater grinder and lysis system, 40 s, 6m/s). The extract was recovered by centrifuging the homogenised sample at 17,000 rcf for 10 minutes and solvent removed in vacuo using a speedvac (Labconco Centrivap DNA concentrator). Extracts were resuspended in MeCN (150 µL), filtered using 0.2 µm syringe filters prior to LC-MS analysis

Large scale fungal growths. Fungal transformants were grown in a YEPGA starter culture (25 mL media in a 125 mL Erlenmeyer flask) for 15 h and subsequently used to inoculate (4% v/v) CDYE production cultures (400 mL media in a 2 L Erlenmeyer flask) which were grown for 7 days at 28 °C in shaker cultures (\geq 200 rpm). Mycelia was isolated from the fermentation broths by vacuum filtration.

CDYE media with trace elements prepared as follows: Czapek dox (34 g/L, Oxoid, CM0095), yeast extract (5 g/L, Oxoid LP0021) and trace elements (5 mL/L).

Trace elements prepared as follows: FeSO₄.7H₂O (1.7 mM), ZnSO₄.7H₂O (1.73 mM), MnSO₄.H₂O (0.59 mM), CuSO₄.5H₂O (0.2 mM), CoCl₂.6H₂O (0.17 mM), HCl (0.8 M).

YEPGA media prepared as follows: Yeast extract (10 g/L, Oxoid LP0021), mycological peptone (20 g/L, Oxoid LP0040), glucose (20 g/L, Sigma Aldrich G8270), Agar (4 g/L, Invitrogen 30391-023), trace elements (20 mL/L), and adjusted to pH 6.0 using NaOH.

RNAseg Methodology. Crushed mycelial discs taken from colonies of H. pulicicidum strain MF5954 (ATCC 74245) grown on YM agar (3 g/L yeast extract (Oxoid), 3 g/L malt extract, 10 g/L dextrose, 5 g/L peptone, 20 g/L agar) were used to inoculate a seed culture in a 250 mL Erlenmeyer flask containing 50 mL SL3 medium (50 g/L glucose, 10 g/L L-glutamic acid monosodium salt, 2 g/L Amicase® casein acid hydrolysate (Sigma), 3 g/L NH₄Cl, 1 g/L K₂HPO₄, 2 g/L lactic acid, 20 g/L 2-(*N*-morpholino)ethanesulfonic acid, 0.5 g/L MgSO₄•7H₂O, 1 g/L CaCO₃, and 20 mL/L of a 50× trace element solution (40 mg/L CoCl₂•6H₂O, 50 mg/L CuSO₄•5H₂O, 500 mg/L FeSO₄•7H₂O, 100 mg/L MnSO₄•H₂O, 500 mg/L ZnSO₄•7H₂O)). The seed culture was grown in total darkness on an orbital shaker at 220 RPM for 2 days at 29°C, then a 2 mL aliquot was used to inoculate a 250 mL Erlenmeyer flask containing 50 mL of LSFM medium (18.7 g/L glycerol, 40 g/L glucose, 5 g/L yeast autolysate (Sigma), 2 g/L (NH₄)₂SO₄, 5 g/L soybean meal, 5 g/L tomato paste, 2 g/L sodium citrate, pH adjusted to 7.0) or FFL medium (70 g/L glucose, 100 g/L glycerol, 3 g/L NH₄Cl, 10 g/L L-glutamic acid monosodium salt, 8 g/L Amicase® casein acid hydrolysate (Sigma), 0.7 g/L L-tryptophan, 1 g/L K₂HPO₄, 1 g/L CaCO₃, 0.5 g/L MgSO₄•7H₂O, 20 g/L 2-(N-morpholino)ethanesulfonic acid, 5 mL of 85% lactic acid solution, 20 mL of 50× trace element solution, pH to 6.8). LSFM and FFL cultures were grown in total darkness on an orbital shaker at 220 RPM for 15 days at 29°C. H. pulicicidum cultures were strained through cloth, isolated mycelia were placed in RNAlater® (Sigma-Aldrich), and samples were stored at -80°C. Total RNA was extracted from approximately 100 mg mycelia per sample using the RNeasy Plant Mini Kit (Qiagen), including the optional RLC buffer and on-column digestion with RNase-free DNase (Qiagen), as per the manufacturer's instructions. Sample RNA integrity was confirmed by analysis on a LabChip® GX Touch HT Nucleic

Acid Analyzer (PerkinElmer). RNA samples were sent to Novogene (Singapore) for poly-A enriched cDNA library preparation using the NEBNext® Ultra[™] RNA Library Prep Kit for Illumina® (New England Biolabs) and 150 bp paired-end sequencing using a HiSeq X instrument (Illumina). Sequencing data generated for this project was submitted to NCBI and is available under Bioproject PRJNA770096. RNAseq reads were aligned to the *H. pulicicidum NOD* cluster sequence (GenBank accession MG182145.1) using the Geneious mRNA mapper (Geneious R11.1, Biomatters, Auckland, New Zealand). These alignments identified errors in the originally-published^[2] coding sequences for genes *nodD2*, *nodR*, *nodY1*, *nodY2*, and *nodZ*. Our RNAseq-verified coding sequences of all *NOD* genes are included below (pg 11-20), and have also been updated on GenBank.

Table S1: Fungal transformant list

Assignment of the 4-Series RC63-5 G, C, M, B, W + D1 CY2 pSK81 (nodD1) RC121-3 G, C, M, B, W, D1 + CY2 pRC121 (nodD1) (la) O (Δ PAX) - (paxG, nodM, B, C, W, D1, O) - RC128-1 G, C, M, B, W, D1, O CY2 PRC121 pRC128 (la) + D2 (Δ PAX) - (paxG, nodM, B, C, W, D1, O) (nodD2) RC166-8 G, C, M, B, W, D1, O, CY2 pRC121 pRC166 RC167-8 G, C, M, B, W, D1, O, CY2 pRC121 pRC167 (IVa) D2, R + Z (Δ PAX) - (paxG, nodM, B, C, W, D1, O) (nodD2, R, Z) LS201-3 G, C, M, B, W, D1, O, CY2 pRC121 pLS201 (nodD2, R, Z) LS202-9 G, C, M, B, W, D1, O, CY2 pRC121 pLS203 (nodD2, Y2) LS203-8 G, C, M, B, W, D1, O, CY2 pRC121 pLS202 (nodD2, R, Y2) (lb) D2, R + Y2 (Δ PAX) - (paxG, nod	Code*	IDT Genes	<i>P. paxilli</i> base strain	Genomic context	Plasmid one	Plasmid two
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Assignment	of the 4-Series				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RC63-5	GCMBW+D1	CY2		pSK81	pRC63
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110000	0,0,111,0,11 : 01	(ΔΡΑΧ)	-	(paxG, nodM,B,C,W)	(nodD1)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RC121-3	G,C,M,B,W,D1 +	CY2		pRC121	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(la)	0	(ΔΡΑΧ)	-	(paxG,nodM,B,C,W,D1,O)	-
$ \begin{array}{ $	RC128-1	G,C,M,B,W,D1,O	CY2		pRC121	pRC128
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(lla)	+ D2	(ΔΡΑΧ)	-	(paxG,nodM,B,C,W,D1,O)	(nodD2)
	RC166-8	G,C,M,B,W,D1,O,	CY2		pRC121	pRC166
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(IIIa)	D2 + R	(ΔΡΑΧ)	-	(paxG,nodM,B,C,W,D1,O)	(nodD2,R)
	RC167-8	G,C,M,B,W,D1,O,	CY2		pRC121	pRC167
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(IVa)	D2,R+Z	(ΔΡΑΧ)	-	(paxG,nodM,B,C,W,D1,O)	(nodD2,R,Z)
	LS201-3	G,C,M,B,W,D1,O	CY2		pRC121	pLS201
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		+ Y2	(ΔΡΑΧ)	-	(paxG,nodM,B,C,W,D1,O)	(nodY2)
$\begin{array}{ $	LS202-9	G,C,M,B,W,D1,O,	CY2		pRC121	pLS202
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		D2 + Y2	(ΔΡΑΧ)	-	(paxG,nodM,B,C,W,D1,O)	(nodD2,Y2)
$\begin{array}{ $	LS203-8	G,C,M,B,W,D1,O,	CY2		pRC121	pLS203
RC173-5 (IVb)G, C, M, B, W, D1, O, D2, R, Z + Y2CY2 (Δ PAX)pRC121 (paxG, nodM, B, C, W, D1, O)pRC173 (nodD2, R, Z, Y2)Assignment of NodJ functionLS148-7 (V)+ J(Δ paxM) (Δ paxM)pLS148 paxG, C, B-(V)+ J(Δ paxM) (Δ paxM)paxG, C, B(nodM, W, D1, O, J) 		D2,R+Y2	(ΔΡΑΧ)	-	(paxG, nodM, B, C, W, D1, O)	(<i>nodD2,R,Y2</i>)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	RC1/3-5	G,C,M,B,W,D1,O,	CY2		pRC121	pRC1/3
Assignment of NodJ function LS148-7 G,C,M,B,W,D1,O PN2257 pLS148 - (V) +J ($\Delta paxM$) paxG,C,B ($nodM,W,D1,O,J$) - LS146-1 G,C,M,B,W,D1,O, PN2257 pLS133 pLS146 (VI) D2,R,Z,Y2 + J ($\Delta paxM$) paxG,C,B ($nodM,W,D1,O$) ($nodD2,R,Z,Y2,J$) Assignment of NodX function ($\Delta paxM$) paxG,C,B ($nodM,W,D1,O$) - LS196-4 G,C,M,B,W,D1,O, PN2257 pLS196 - - LS170-3 G,C,M,B,W,D1,O, PN2257 paxG,C,B ($nodM,W,D1,O,X$) - LS170-3 G,C,M,B,W,D1,O, PN2257 pLS170 - - (VII) J + X ($\Delta paxM$) paxG,C,B ($nodM,W,D1,O,J,X$) - LS197-3 G,C,M,B,W,D1,O, PN2257 pLS133 pLS197 LS147-3 G,C,M,B,W,D1,O, PN2257 pLS133 pLS147 (VIII) D2,R,Z,Y2,J + X ($\Delta paxM$) paxG,C,B ($nodM$	(00)	D2,R,Z + Y2	(ΔΡΑΧ)	-	(paxG,nodM,B,C,W,D1,O)	(noaD2,R,Z,Y2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Assignment	of NodJ function	I	1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LS148-7	G,C,M,B,W,D1,O	PN2257		pLS148	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(V)	+ J	(Δ <i>paxM</i>)	paxG,C,B	(nodM,W,D1,O,J)	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LS146-1	G,C,M,B,W,D1,O,	PN2257		pLS133	pLS146
Assignment of NodX function LS196-4 G,C,M,B,W,D1,O +X PN2257 ($\Delta paxM$) pLS196 paxG,C,B pLS196 (nodM,W,D1,O,X) - LS170-3 G,C,M,B,W,D1,O, PN2257 pLS170 - (VII) J + X ($\Delta paxM$) paxG,C,B (nodM,W,D1,O,J,X) - LS197-3 G,C,M,B,W,D1,O, PN2257 pLS133 pLS197 LS197-3 G,C,M,B,W,D1,O, PN2257 pLS133 pLS197 LS147-3 G,C,M,B,W,D1,O, PN2257 pLS133 pLS147 (VIII) D2,R,Z,Y2 + X ($\Delta paxM$) paxG,C,B (nodM,W,D1,O) (nodD2,R,Z,Y2,X) LS147-3 G,C,M,B,W,D1,O, PN2257 pLS133 pLS147 (VIII) D2,R,Z,Y2,J + X ($\Delta paxM$) paxG,C,B (nodM,W,D1,O) (nodD2,R,Z,Y2,X) In vivo feeding studies I CY2 - pLS29 -	(VI)	D2,R,Z,Y2 + J	$(\Delta paxM)$	paxG,C,B	(nodM,W,D1,O)	(nodD2,R,Z,Y2,J)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Assignment of NodX function					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 \$196-4	G,C,M,B,W,D1,O	PN2257		pLS196	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20100-4	+ X	(Δ <i>paxM</i>)	paxG,C,B	(nodM,W,D1,O,X)	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LS170-3	G,C,M,B,W,D1,O,	PN2257		pLS170	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(VII)	J + X	$(\Delta paxM)$	paxG,C,B	(nodM,W,D1,O,J,X)	-
LS137-3 D2,R,Z,Y2 + X (ΔpaxM) paxG,C,B (nodM,W,D1,O) (nodD2,R,Z,Y2,X) LS147-3 G,C,M,B,W,D1,O, PN2257 pLS133 pLS147 (VIII) D2,R,Z,Y2,J + X (ΔpaxM) paxG,C,B (nodM,W,D1,O) (nodD2,R,Z,Y2,X) In vivo feeding studies LS29-1 J CY2 - pLS29 -	LS197-3	G,C,M,B,W,D1,O,	PN2257		pLS133	pLS197
LS147-3 (VIII) G,C,M,B,W,D1,O, D2,R,Z,Y2,J+X PN2257 (ΔpaxM) pLS133 paxG,C,B pLS147 (nodM,W,D1,O) In vivo feeding studies - - - -		D2,R,Z,Y2 + X	$(\Delta paxM)$	paxG,C,B	(nodM,W,D1,O)	(nodD2,R,Z,Y2,X)
(VIII) D2,R,Z,Y2,J + X (ΔpaxM) paxG,C,B (nodM,W,D1,O) (nodD2,R,Z,Y2,J,X) In vivo feeding studies LS29-1 J CY2 - pLS29 -	LS147-3	G,C,M,B,W,D1,O,	PN2257		pLS133	pLS147
In vivo feeding studies LS29-1 J CY2 - pLS29 -	(VIII)	D2,R,Z,Y2,J + X	(ΔpaxM)	paxG,C,B	(nodM,W,D1,O)	(nodD2,R,Z,Y2,J,X)
LS29-1 J CY2 - pLS29 -	In vivo feeding studies					
	LS29-1	J	CY2	-	pLS29	-
(ΔΡΑΧ)			(ΔΡΑΧ)			

*Numeral in brackets refers to the trace number used to identify this transformant in Figure 3 of the manuscript.

Table S2: Components of DNA constructs used in this study

Code	Promoter	Gene	gDNA/cDNA	Original MIDAS level 1 plasmid	Terminator
RC63	PtrpC	natR	gDNA	pRC1	TtrpC
RC63	PjanD	nodD1	gDNA	pRC25	ТрахР
RC121	PtrpC	neoR	gDNA	pSK16	T <i>TtrpC</i>
RC121	PpaxG	paxG	gDNA	pSK2	TpaxG
RC121	PpaxM	nodM	gDNA	pSK18	ТрахМ
RC121	PpaxB	nodB	gDNA	pSK19	ТрахВ
RC121	PpaxC	nodC	gDNA	pSK20	TpaxC
RC121	PjanD	nodW	gDNA	pKV45	Т <i>trpC</i>
RC121	PjanO	nodD1	gDNA	pRC25	ТрахВ
RC121	PjanD	nodO	gDNA	pSK42	TpaxP
RC128	PtrpC	natR	gDNA	pRC1	T <i>trpC</i>
RC128	PjanD	nodD2	gDNA	pKV61	TpaxG
RC166	PtrpC	natR	gDNA	pRC1	T <i>trpC</i>
RC166	PjanD	nodD2	gDNA	pKV61	TpaxG
RC166	PjanO	nodR	gDNA	pKV58	TpaxG
RC167	PtrpC	natR	gDNA	pRC1	T <i>trpC</i>
RC167	PjanD	nodD2	gDNA	pKV61	TpaxG
RC167	PjanO	nodR	gDNA	pKV58	TpaxG
RC167	PjanO	nodZ	gDNA	pRC156	TpaxG
RC173	PtrpC	natR	gDNA	pRC1	T <i>trpC</i>
RC173	PjanD	nodD2	gDNA	pKV61	TpaxG
RC173	PjanO	nodR	gDNA	pKV58	TpaxG
RC173	PjanO	nodZ	gDNA	pRC156	TpaxG
RC173	PjanO	nodY2	gDNA	pKV49	TpaxG
LS201	PtrpC	natR	gDNA	pRC1	T <i>trpC</i>
LS201	PjanP	nodY2	cDNA	pLS58	ТрахР
LS202	PtrpC	natR	gDNA	pRC1	TtrpC
LS202	PjanD	nodD2	gDNA	pKV61	TpaxG
LS202	PaceB	nodY2	cDNA	pLS58	TaceB
LS203	PtrpC	natR	gDNA	pRC1	TtrpC
LS203	PjanD	nodD2	gDNA	pKV61	TpaxG
LS203	PjanO	nodR	gDNA	pKV58	TpaxG
LS203	PjanP	nodY2	cDNA	pLS58	TpaxP
LS148	PjanO	neoR	gDNA	pSK16	TtrpC
LS148	PjanO	nodM	cDNA	pLY52	TtrpC
LS148	PjanO	nodW	cDNA	pYL54	TtrpC
LS148	PjanO	nodD1	cDNA	pYL55	TtrpC
LS148	PjanO	nodO	cDNA	pYL56	TtrpC
LS148	PaceB	nodJ	cDNA	pLS59	TaceB
LS146	PaceB	natR	gDNA	pRC1	TaceB

WILEY-VCH

SUPPORTING INFORMATION

LS146	PaceB	nodD2	cDNA	pYL57	TaceB
LS146	PaceB	nodR	cDNA	pLS56	TaceB
LS146	PaceB	nodZ	cDNA	pLS57	TaceB
LS146	PaceB	nodY2	cDNA	pLS58	TaceB
LS146	PaceB	nodJ	cDNA	pLS59	TaceB
LS196	PjanO	neoR	gDNA	pSK16	TtrpC
LS196	PjanO	nodM	cDNA	pLY52	Т <i>trpC</i>
LS196	PjanO	nodW	cDNA	pYL54	Т <i>trpC</i>
LS196	PjanO	nodD1	cDNA	pYL55	TtrpC
LS196	PjanO	nodO	cDNA	pYL56	TtrpC
LS196	PaceB	nodX	cDNA	pLS50	TaceB
LS170	PjanO	neoR	gDNA	pSK16	TtrpC
LS170	PjanO	nodM	cDNA	pLY52	TtrpC
LS170	PjanO	nodW	cDNA	pYL54	Т <i>trpС</i>
LS170	PjanO	nodD1	cDNA	pYL55	TtrpC
LS170	PjanO	nodO	cDNA	pYL56	TtrpC
LS170	PaceB	nodJ	cDNA	pLS59	TaceB
LS170	PaceB	nodY2	cDNA	pLS58	TaceB
LS197	PaceB	natR	gDNA	pRC1	TaceB
LS197	PaceB	nodD2	cDNA	pYL57	TaceB
LS197	PaceB	nodR	cDNA	pLS56	TaceB
LS197	PaceB	nodZ	cDNA	pLS57	TaceB
LS197	PaceB	nodY2	cDNA	pLS58	TaceB
LS197	PaceB	nodX	cDNA	pLS50	TaceB
LS147	PaceB	natR	gDNA	pRC1	TaceB
LS147	PaceB	nodD2	cDNA	pYL57	TaceB
LS147	PaceB	nodR	cDNA	pLS56	TaceB
LS147	PaceB	nodZ	cDNA	pLS57	TaceB
LS147	PaceB	nodY2	cDNA	pLS58	TaceB
LS147	PaceB	nodJ	cDNA	pLS59	TaceB
LS147	PaceB	nodX	cDNA	pLS50	TaceB
LS29	PjanO	nodJ	gDNA	pKV47	TpaxG

Sequences

Promoters used in this study

>PtrpC

GAATTCATGCCAGTTGTTCCCAGTGATCTTCGTTTCGAAGATGGACACTCCCAATTTGTGCAAGTTATTCGGC CTACCTGGCTGTGGCCGAGGCGCGTTATCATGACCGTCGCTGTTCAAAGATAAGGCGAGAAGTTTGCGGGC TGTCTTGACGATATGGCTTCGTTCAGACAGATATAGTTCCCGGAGTCGCAGGCGTCTATTCTTCTCCGAAAC AAACTCGGCTGCACTGTTTCCATCACCGGGTCTGGCGTTGAGGATGTCAGCGAAACTCGGCCCGGCAAGTG ACACCCGAAAAGTATCGACTCCGGCTGCCCGTTTCAAGCTAGTGGCTTCCTCATCAGCGAGTCGGCCAAGC AGACGTGAAGCAGGACGGGTTTGCCATTCCAAGACCGTGATCCGAAGCGCGTTGATTTCATCAATCCCAGC CTTTTCGCTCAACCAAAGAGCATCGGCTTTGATTTCCTTCAGGTCATACGAGGCTTGTGCAATGGTCTgCGCA TGGATCGCTGCTGTTCTCCTATCAAACTCGGATTTTGTCTTAGGGGATGGCGTAGGAAAGACGCTGCCGCG GTTCAGAAGCACCTCGATGCTATCAGGATGTGACAAAAACGACTCGAAAACCCGGGGATTCATCGGTGATGCT TTCGGGATCGCAAGCGTAAAGAAAGACTCTCTTCCAAGACCTAGAAGTATAGCAAAATCAGCAGCAGACCAT CAATGTATAGCGAATGCGCCCATACAAAAGCTGAACGTCCCCGGAGAAGCACTTGTCCAGGGACGGGAAAT AGGCTTCCGGAACGGGAGCCATTGGCAGCACAGCTATATCATTCTAAGTAAACAAATGTAATGAGCAAGCG GACGGAGTGCTGAAACCTCCGTATGCCTGAAGCCGACGAAAGCGCGTTGGATTAGAGGTCGACAGAAGAT GTCGTCCAGGCGGTGAGCACAAAATTTGTGTCGTTTGACAAGATGGTTCATTTAGGCAACTGGTCAGATCAG CCCCACTTGTAGCAGTAGCGGCGCGCGCGCGCGCGAGTGTGACTCTTATTAGCAGACAGGAACGAGGACATTATT TTCTTAAGTTCGCCCTTCCTCCCTTTATTTCAGATTCAATCTGACTTACCTATTCTACCCAAGCATCGAT

>PjanD

>PpaxG

ATTCACGACCTGTGACTAGTCAAGGTTATCAATTTTAAAACTTACTGGGTGTTGTGTTGAATACTATGCACGA GATCTGGCACGTATAATCTATGGAGTTTACTTCCGTACACAGAATTACATCTCGCTTTGTGAATACGAATCAC CCAGTCATGGATGTATTACAACGCAACCATAATCGTTGCATCATGTCATCCATGTTCGCACGCCTTGTCTATA ATACGGAGTTCTCAAGTGGGGGCAGAGGGATTTATTTTCGAGAATTTGAAACATGACTGTACCGCAGTTGTA ATTATAGAGAGTTATTTAACTGGGGTAGTTGGGAACGGATTTTTAGCGGCATAAATCAATACAAGGATCCGGT GTCGTTTACTCTCGAACCCTACCCATACCCCGGAATTTCCTTCATCGCAATTTTGCAATCCTACTACCAGGATCCGGT AGAAAAGAATTTCTTCCAGTCCCATTTCTTTCATCATAGGGTTATAAAAATAGTGCTCTTGAATTCAGGTTCA CGCCAGAGAAAACTTCATCAAGTTCGACGCC

>PpaxM

GTTGTTGGCATGGGAGTAGGATGGATCATAAACTACATCGGAATGGTCTACATCTCGTTCAAACATGAAACTT ACGGAATGTCGATTATGCCCCTCTGTTGCAACATCGCGTGGGAACTGGTCTACTGTCTGGTCTTTCCCTCGA AAAGCCCGGTGGAGAGGGGGTGTATTCTGGATGGGCCTCCTCATCAACTTTGGTGTCATGTACGCAGCAATA ACGTTTTCATCCCGAGAGTGGGGCCCATGCGCCGCTTGTTGAGCGCAATATTTCCTTGATATTTTTCGTCGCG ACCATGGGCTTTCTCTCTGGGCATGTTGCATTGGCCCTTGAAATCGGGCCTGCGCTGGCATATTCATGGGG

GGCCGTCATTTGTCAACTTCTTCTAAGCGTTGGTGGATTGAGTCAACTGTTGTGTCGAGGCAGTACGCGTGG CGCATCCTATACTCTATGGTATGTCTGATCTCATTTCATGCCCGATGAATCGGAATTTCTTCCCCAAAGTGAC AGAAATACAAGTACTCATCTTCTGTACTATAGGGCTTCCCGCTTCTTAGGATCAACATGTACAGTTGGGGTTTG CCGGCTTACGTTGGATGTATTGGTCGGAAGCATTCGGTTGGCTGAATAGTCCTTTGGTACTGTGGAGTCTTG TGGTGTTTTTATCAATCGATGGGTTTTATGGAAGCATTGGTGGACGTCGACCGTAACGAAAAGTCACTTGG CATAAGCGGGCCGAAAAAAGCAAATTGATCGGCAGTTGAGGGTGAAACATGTAACTAGCTTATTCTGCATAC AATGCATTATCTATGGAGGGATGAGAAAAAGTAAAATGAAATTGAAGAAAAGAAAAGAAAATTAGAAACAAAA ATACACGTTTACTTTTGAAATAACCTTGGAAACTAAGATCCGAAAAAGAAAATCTTTTCTTCATGCATTTCTG CCAGTGCTAGATTGAAATTGAAGAAAAGTACATACGATGTACTTTGCTTACGATACGCGTAACGTGCATGTCC AAGGCGACCCAATCCATGATATAATTGGCACGTTTTAGTAGTAAGCAATGATCATTTGTGGCTGACACTATGC AATCTGTATCATATGATATTAGTATGCAAAGGTTGATTCTGAGTTTGAATTTCAACCACTGTTCATCGTTCCTC ATTGTTAACCTTATTCATATTTGCACACTTTTGCTTTATCTTTAGAATTCAACCACTGTTCATCGTTCCTC

>PpaxB

>PpaxC

ACAACAAAAAGATCAGCCAATGGCTTAATCGCCTGGTACTCCGGAGGAGCTTGGGAAACATCAAAACCGTC CATAGTTTCTAAGGTTGACGTGGGAAAAAGAAATTAGAGTCACTCGTTGAATAGCTATAGATTGAAGGATTTG ACCATGATGCGTATTAACGGCTAAATGTACGTCTATTTATGCCCTGTGGATGAAATGGGAATATTGAATTGTT AATGAAACTGCATTATCTCATCGGTTAGCCCGCAGCGGGAGATGGACACTCCCGGAAATCTCTGTAGATGCA GTCCACGAGGAGATCCTGCAAGATCTAAACTAGTCTATTTCGCCAACGAAAGCTAGTATGCAGTCATTCTTG CCATGGAATTCAGACGAACTGCGTCGCAACAATTAGCTGTCTTTGGATAGGCAGAGTTTAGGCTTACTGCCA AGTGAAGAAAATGGCTCAAAGGAATGAAAGCCGATTTGAGTACGGTGCGCCTGGAAAATCGAGGCGTCGAT GAAGGATCTTGAGGCGTTGCTGCGCTTAACCTATTTAGGCGTGATGTTGTCATTACAGGGGCTGGTATGAAG AAAAAATAAAAGATTAATTACTACTGCATAGTTTGATATCTGCATCACGGAGAAACCGGAATTATTAAGGTAC CGACAGCCCCTCTTGATACTACTCCTCGTTGCTCATCGTAGACATCGCTGAATGAGGTCAATCCGTAAATTT AGTAACATGTATCACTTTTGGGATCACGCCTGAAAGCTGACAATTGTGGGGCGAAAATGCTGAACGCGATGA ATCCCACTGCTTTTTCTAATTGTGATAGCTGCAGCCGCCGATTGGACACCTGGGAAAGTATACTCCTTGCATT ACTTATTATATGGAGGGGATGTATTGCGCCGAATCTCAACAGCCTACCAAGCAGAGCTACTCGACTCATTTC ATTTTTCCTTTCCTTGAGAGAACTCGAGAATACGTTAGTCAATACCAAATTCTCTGTTCCAAGTCAACATGAAT ACTCTTTCGATTCTCTCCAACACAGCCTTTCAGGGTGTAGGTCCCATTTT

>PjanO

>PjanP

CTTTGCGATACCGTGCAAAAAAAAAAAAAGAAGAGCCGGGCAGTGCAAAATAGCTTCCTACTCGGTCCCTAGAAAC GTTTGCTGGATGGATAGACTTCGTTTCTTTTCCTTCTATTGCCTCGCTCCCAAAGGTACAATAATTTACGTATA TTGAGTCCAGTATTTATGGTCAGACCTATACGCGTACATACCTTCAGTAAATTTAGAGTACACTTCCTGGCCA CATGGTAGTAAAACCCTCTTTAAGTACCGTAAACTTTTGAAAATTCAATAATGCAATGATTATGCAATGTGGG GCTATCACGGTCTGGCCGGAGACTATATTGTGGTAATGATACGACATGCAGAATACCAAAGCCAGGCACGAT GGAACAGTGAATACATACAGGTCATCCAGGCGCCAACGAGGTTCATCCAGGTGTGGACCTACTCCACTTTAA GCTAACCCCGGTGTGCTCAGTAATAAAATTGCGTAAAACTCCAGTATACATTATTTAACTCGTTATAAATCTTT TACAACTACATTATCTCTACTAATAGTTTCATTATCATTTCGATAGAGGTCTTTAGGGTTTTCTAGTACTCTATA AGCCTAAAATATTATATTTTGTACTAGTTGATTATATTATTTTATTTTAAGACTTATTTCACTACTTTTAGACTAG AGTAAGAATAAAATATCTTAATTACAGTGATAATATTATTATCACAGACCCTGTATTTCTTTGTTTTAAAATA GCAGAAATGGCTCATATGCTCAATATAACAGATCATGCATAATGGCAACCGATAAGAAACTAAAAACAAGCCA ATCATATTGAAAATTACATAAAATTCTAAAGCTACATCCACGGTGCCTAAATTATGTCTCAGGCACCCTCGTAT AGCCATGGATAGGGTATGATTCCAGTTACCCTGTGAAAAGCCGCAAGTCCTGAAAATGTTTCCCAAAAATGT GATAACCAGCTCACTAGCCCCTTGAAATTTGTTTGCTTCCTACACCATCCACTTCTATCTTGCTTTCTGCTGC ATTCCACAGGACA

>PaceB

Coding sequences used in this study (gDNA)

>paxG_gDNA

ACGAAGCAGTCAAAATCCGGGCTGTGAAGATCATGGAGTCGACGGGGGAGCTTCCAATATACTAGGGAAACC CTAAGTCGACTTAGTGCGGAGGCTCGTGGCTATGTAAAGAAGCTGGAGACTTCCTTAGGGCCCAATCCTGG AATTCATAAGATTCTCGATCTACTTGAAGTGGAGTACCCTACTAATGAGAAAGGAAGAGTTTAA

>nodM_gDNA

ATGTCTACCCCTGAGTTCAAGGTGATAATCGTTGGCGGCTCCCTTGCGGGTCTAACATTGGCCCATTGCCTC CTCCGCGCCGGAATTTCCCACATCGTTCTTGAGAGGCGTAGTGTAATCGCACCAGAGGAAGGTGCCTCAAT AGGGATTCTTCCTAATGGCGCTCGTGTCTTGGATCAACTAGGCATCTATGAACATATTCAAGACACTACTGAG CCATTGAGTACAGCTCATATACGATATCCAGATGGGTTCTATTTCAGCAGTCGCTATCCCGAGATCATAAAAG AAAGGTGAGCACTCCCATGAACATATGCCTATCGTTTGCGCAATGGCTGACCCCAGCATGGCCGTTCGTAG GTTTGGGTATCCGATAGCCTTTTTACCCCGGAGGAGACTTTTGGAGATTCTCTATACATCGTACCCTGACCAT TCTAACATCTATACCAACAAGAATGTGATCAAGGTGCAAAGCCATGATAATCAAGTTTCTGTCTTGACAGAGG ATGGAAATACATATCGAGGGGATCTTGTGGTGGGCGCCGACGGTGTCAACAGTCGAGTTCTATCTGAAATTT TCGCCAATCTCAGACCTCAAGCCCGGCGAGCAGGTTAACGCGTTCTACGACGGACTCACAATCGTCACGAT ATCAGATTACAGCAGAAAGACGCAGAAGGGATCTGTGAAGAAGCCAAGTCACTAACTGTCTGGAAAGGTGTT ACATTCGGTGACATTTGGGAAAGAAGAAGAAGAACAGCATCATTGACCGTTTTGGATGAGTTCTTGCATCACACTT GGAGTTGGGACAGATCGGTTTGTGTGGGCGACAGTATCCACAAGGTATATGCCTCCTATGGTCTGAAGCAC ATTAAGGGGTTGGCTAACGCTGTCATATAGATGACTCCAAATTTTGGCCAGGGTGCGAATACTGCTATCGAG GATATATCACTGCTTCTGAGGCAGTTCAAATCACAGCGTCTTCGACGCGTTCAGAAGATATATAAAATGTCAA GGTTTGTTACGCGGCTTCAAGCGCGCGATGGGTTGTTGAATACTCTTCTGGGACGCCATTACGCCCCATATG CAGCAGATCTTCCAGCTAAGATTGCCTCTGGATGCATCGCTGGTGCGGAAGTTCTGGATTACCTCCCATTAC CCAAGGTAACTGGGGCGGGCTGGAATAGGGGCCATCGTAGATCTACCATGTACATCCTGCTAGGATTCACA GGGGTATTCACCTCTGCTCTGGCGATGGTAGTGTTACTCCATATTAGAGACATCGCTTCATAG

>nodB_gDNA

ATGGATGGATTCGATCGTTCCAATGCACCCGTTGAATATCAGCGCGTCGAATGGATTTCGGACATCTTCGTC TTCGGAATGGGCGTTTGTTGGCTCATAAACTACGCCGGCATGATCTACACCTCGCTCCAGGAACAGACTTAC AGCATGGCACCGCTGGCTCTTTGCTGCAACTTTGCTTGGGAAATGGTATATGGTCTTATCTACCCTTCAAAA GCCGCATCGAGCAAGGTGTGTTTCTAGCTGGACTGGTAGTCAATCTCGGAGTCATGTACACCGCGATCAGG TTTGCGCCGAATGAATGGGCCCATGCGCCTCTTGTGATGAACAACATCACACTCATTTTCGCACTAGGTGTC TTGGGCTCCTTGACGGGCCCATCTAGCCGCACCAGCAGAGATTGGGCCAGCACTTGGATATTCTTGGGGTGC AGTGGCTTGCCAGCTACTGCTAAGCGTCGGGGGGGTTCTGCCAGCTTCTAGGGAGAAGTAGTAGTCGTGGAG CTTCATATACCTTATGGTAGGTAATCCATCTTCTTGCTCCGAAGTTATGCAACAGAACTTTGAGGACATATAAA TAACAAGGTATAGGTTATCTCGCTTTATAGGATCCGGTTGTGGTTGGGTTTGCCATATTGAGGTACATGTA CTGGTCGGAGGCATTCAACTGGCTCAATAGTCCTCTGGTACTATGGAGCCTCGGTGTATTCATTGCGGTAGA CAGCCTCTATGGAATTTGTCTGTGGAATGTGAAGAAATACGAACATGGCCAAGAACGAAGCAATGCGCGGA AGGCTCAATAA

>nodC_gDNA

ATGTCCTTAGGTTTACAGTGCTTGGCGGCAGTGTTGTTTTCGGCTTTGTTTTCACTTGGGGTCATCCTAGTTC ATCTTCCATGGCGCGCCTTGAAGTCAAAGGACCCGCGTGAGCGAATATTAGGTTCGCCCAAAGAACTGGTT CCAACATGCCCTTACGAATATATTCGAAATATATACGGGCGTCATCATTGGGCGCCCTTTGTGGCCAAGTTA GCACCGAATCTCAAAGAAAGTGATTCAGACAGGTACACAATGGTACTTGAAATCATGGACTGCATACACCTA TGCCTGATTATGGTCGATGATGTACGTTCATCTTATTATACGCCTCTTGTTGGTGATAGAGGTGAGAGTTGTA AATAACTAACCCGGACTCTCAGATTACAGATGACAGCGACTATCGTAAAGGCCGCCCAGCGGCCCATATCAT CTTCCCGCGGCTCGCCCCGTGGGTCACACAGAGTTTGGCAGAGATTCTAGAGGGCCAGGACATCTCGCTG GTTTGGCGACGTGACGGCCTCACTAGCTTTCCAAAAGCTCACGACGAGCGCGTGATTGCTTATCGGTGCAT GTCATCTTTGAAGACTGGCGCGCTTTTTAGGTTGCTAGGGAGGCTTGTCTTGGAAAATCGTTCCATGGATGA CACATTGAGTCAGGTTGGGTAAGTGAACTGTATCCATCCTGAACTCGACCCCTTTCACAGTGGCGGAAGCCA ATGCTAAAACGTCTAGATACTATTCACAAATTACAAAATGACTGCAAAAATGTTTTCTCATCCGAGTACGCAAA GGCAAAAGGTACTTTAGCTGAGGACTTACGGAACCGAGAGCTGACGTATCCTATCATCTTGGCCCTCAATGA GCCTGAAGGATTTTATATTGAGAAAGCCTTTGAGTCTGGCTCCCCTCGTGACATACAAAATGCAATCGGTGT AATACAGAGTGAAAACGTATACCGTGCTTGTTTGGACGAGTTGAAACAATATGAATCGAACGTCAGAGAGTG GGTTACACTATGGGGTAGAAAGGAGAAACTCGATCTTACGCATTGA

>nodW_gDNA

ATGACTTTAGCTATTTTAGGCATCAGTTGCCTGGCAGCCGTCCTATCTCATACTATTTTATTCATCCGAGGAG AGTGGGACAAGCACGCCCCGGTCCTGTTCCATTGCTTCATTACTTGCCCCCATTGCGCTCATATGCTCGTTGT TGGCAGTGGGATTATATGGGATCACTTTTATGTTCATCCAAGTTTGGCTATGCTATATCTCTTCTATCTGTCTT TCAATCATTATATATCGGTTGTTTCTGCATCCCTTAAGAGATTTCCCCCGGCAAGGTATCCGCCAGGCTGAGCA CGTTGAGATGGATGAAAACAGCAGCCGTAGATAGAAAATGGCACCTTGAAGTACAGAATATGCATAGTGTCT ATGGCGATTTCGTCCGAATTAGTAAGTTCTAGCCTATTTCCAACTCTGCCATAAACTCGAAGTTGATAGACTA TGTGTCAGGGCCTCGTGAGATATCCGTCAACAACTTCAATGCCATTCGCGATTTGGCCAAGTGTGCCAGGG GTCCATTCTACGACGTGAATTATCCCCCACAAGTCCCTTCAAATGACAAGGGACAGGAATTTCCACCTCCGAC GGAAGAAAATTTGGCAAAAGGCCTTCAGTCCTAATGGTGAGTATCACACAACCCTGGCGTGGGCGATTCATG CTGATAGAGCATACAGCTATGCTAGCTCATGAAGGCCATGTCCGGCAATGTTGCCAAGAACTCATGGGCTAT CTCTCATCTAGAGGAGGTCAACCGGTAGAAGTAACTGAATTGATGCAAAGAGTCACATTTGAATCAATGGGT TGGCTTGTATTTGGAAAGGCCTTCAACATGATTCAAAAAGGCCTTTCGCATCCCGGCTTCACGCAACTGAGG TCTGTCAAGCAACTAGGGGGGGTTACTTCTGTGGGCGCCTTGGACGTTGATCCTTCTCCGCAATCTACCGTTC TTGAGGTCCAAGGCAACAAGTTGGCTACAGTGGTGCTCACAGGAGGTAGTGGAAAGGAAGCAAGTAGGTAA TACTTAATTACATACTAATCAGGATACCTGACTGACGCACAGTGGAGAATCCAACTATGACTCACGATCTATT CGGTAGCGACTCTACAGCATCGACCCTTACTGCCATCTTGTTTCTTCTGGCAACCCATCCAGACAAGCAGGC AATTCTTCAAAAAGAGGTTGATGACATGAATATAGGTGGACTGCCTATGCCAACCTCCACCCTAGTCAATATG CCTTACCTCAACAGTTGCATCAACGAAGCACTCCGTTTATATCCAGCAGTGATGAGCGGCTCGCAGCGGGA GTCCGGTCCTGGTGGAGTGATCCTTGATGGCCAGTTTATACCAGAGCATATGCTCGTATCCATGCCCACTTA CACGATACACAGGGGTTAGTATCGATTCGATACAGTCATCCTTTGAGCTTAATTTTAACTCTGCCGTCTTTAG ATAAGAGAAATTTCGTCAGGCCAGATGAGTTCATCCCGGAGCGATGGACGAGCCAATCACACTTGACTCTCA ACCCAGATGCATTCATCCCTTTCTCTGTGGGTGTGTACGGATGCCTCGGTAAACCTTTCGCGATGATGGAGA TGCGTATGGTAATTTCCTCTATAATGTCAAGATTCAATCTGAGACTTCTGCCTGGGCGGCCGATGAGCCATG AAGCCTCTGCGCCAGCATACGATTGCTATATAATTCATATACCAGCGTTTTCTCTTGTTTTCGAACCCCGGGC TGGAAATATCTGGGCATAA

>nodD1_gDNA

ATGGATGCTGCTTCAACTCTTACGCATGCACCGGTATCTCAGCCATGGCAGTCCCTAGCTCAAGGGTTGGG GTTCGTCAATGAGCATGAAGGGTACTGGTGGTCTAAGCTTGGACCTCCTCTCGGTAAAATGATGAACTGGGC AAAGCCTGGTGATGATGGTGAGCTGTTCTGGAAGGTTTTCATCAGCTATGATTACACGCCCATTCAGCTCAG TCTCAATTTTCACAATGGCAAAATGACGCTGCGCACCGCGAACATACCAATTAGCGATAAATCGGGAACCGC AGACGACCCAATCAACCAAGCTTCGGTAGACGCCATAATCCGCCAGGAACGAGTGTTGCCATCCCAGG ATCTACGTTGGTTCAACCACTTTGCATCCCAGTACTTCTTCGACAAGGACACGGCAGCCTCTCTAAAGACCA AGGTCGATAAGCTCCGAGTCCAGCAGGGGGGGTTCAGTGTATGCTGAGCCACGACTTTCCTGAGCGTGATGTC CAATGCAAAGTGGCTTTCTGCCCGCTTTGGAAAGCCGTCGCTACAGGTCTTTCCAACAAGGAGATCATCTGG TCGTCCGAAAATGCAGCGAAAGCAGGAGTGCGACCTGTATTCTTCGCTTTCGATACGGTGTTAAAAGATAAT TACAAGAGCTCTCGTATCAAGATCTACTACCTCACAACACGGACAGCCTTCAACTCTATGGTCGACATCTACA CACTTGGAGGCCTGCTAAAAGGGCCTGATATCCAAAAAGGAGTAGAGGCCCTTGAAGTGCTCTGGAAAGCC GTCCTCAACGTCCCCGAGGGGGGGGCCCGATGATAAAGATCTACCCATGAATCCACACCGTTGTGCGGCAGT AATCTTCAATTTTGAGCTGTGGCCAGGAGCAGAGTTTCCGAGTCCCAAGGCCTATCTCCCAGCCCATTATTA TGGCCGGCCTGATTTGGAGATAGCTGATGGTATGGACTACTTCTTCAAGCAGCAAGGGTTGGATGGGGTAT ATGGTTCTTACAAGGAGAACTATTTGAAGTGCTTGTACGACCTCCTCACCTCACATCTACCAAGCTATG AGGGTCCAATGCCTACGTTACGGTGTACTACAAGCCCGAGCTATCTCTAGATACCGAGTAG

>nodO_gDNA

>nodD2_gDNA

ATGGACTCTACCGGGAGACAGCCTCTCAGCCAGGACGGGCAGCCATGGCAAGCTCTTGCCTCTGGCTTGG GATTTCCAGATGAAGACCAGAAGTATTGGTGGTCAGTCATGGCGCCCCTATTAGGGGGAACTGATGAAATGG CTCGTCCAACGGCCGAAGGCGGTATCTTCTGGCCCACGTTGATCACCAAGGATGGTACTCCGTTCGAGCCG AGCCTTAACTTCTACAAAAATAAAGCCACTCTACGAGTTGGATATGCGCCTGCATGCGAGCTTTCAGGAAGC AATGACGACCCTATCAATCAACGAGCCCCCAATTGCGGCATTGGAGCACCAAAAGAGAGTCCTACCACAGCA GAATCTCAAATGGGTGGATAATTTCAAGAAAGCATGGTTCATCGATAATGACGACGCAGTAGCCTTGAAGGC ACGCGTACATAACGAGCTCTTTGAACAGGCAGCCGTCCAATGCTTGATAGGTTATGTGTTTTCCGACTACAC GGGACACCTTTCGCCAGCTTGGTGACGATGCTTCCAGTTACCTAGATTGCCTATCAGTGCTAGAGGAGTATA ACTACCAGCAGTCGCGACTTAAGGTATACTATGCTACACCATGCACTGCATTCGACACGATGGTCCAGGTTT TCACTTTGGGCGGAAGGCTCAAGGGCCCTGAAGTTGACCATGCGATTGAATGCCTTCGTGTCCTATGGCCC AGCGTGCTTGCAGTTCCTGAAAACCATCCGGACGACCAAGACTTGCCTCGACGGTACCACTCTGTAGCAGT TTACGGTCGTGATGAATTGGGAAATTGCGGAGGGCCTAGAGGGATTTTTCAAGACTCTTGGCTGGAGTGAGC CTTTCCATGCCTATAAACAGAATTACATTGCAACATGGTTAGTCTATCGCCTTTCTCTCGCTCATTGCCCTGAT CCAATGAAGTATTTTACTCACACGATGTAGTGCCACGCCCGAAGGGAAATGGAAAGCGATCCAACACGACG TATCATTCTCGTTCAAGGACTCAAGCCCATATGTGTCGGTTTATTATAAACCAGAGCTCTCGGTCCTATCCTC ACCGTCGTAG

>nodR_gDNA

ATGTTTGATATTGATTTTGGCATTCTATTTCCAATTTCCTGGGAACAATCCCCTATCTTTCTGGCTGTTGGGCT AATATTCGCATTTGCGACCTTATCTCCGTGGCTCCGTTCCGGGGGAACGCCTGATCAATGGTCGCGAAGGCTT CAAAGGTAGGATACATCATTGTCTCCAAATGAAAGACATCAAATCGTGCCGGGTCATATGTGCTGATACTTG GAGATAGTACAACGATTCTTTCTACATGATGACGGATAGTGGTACCGAAATGGTCCTACACCCGAGATACGT CGACGAGATCCGGAACGACCCAAGGTTGGACTTTCACAGATATATGAAAACTGTAATAGAATTCGATCCATTT ACCGAGATCTTATCCAAACCAAATTGACTAGATCTGTGGGTAAGGGGTTGTCGTCCTCTAGAGAATGCAGGC TCGAGGACGCCCTTCACAATCGATGGGAAGAAGGCGAAGGTGAATATGAAGAGTACCTTCTAGTGCTTCCC CCTGCTGAAATGCATACAGAATGGCATGAGATTGTATTGCTCTCCGTAATGATCCCGGTTGTTGCGCAAGGA GTATCCAAAATGTTTGTCGGAGATCCATTGTGCCGTAACAAGGATTGGATAGGTATGATCTTAAGGCATACAA GGAGTGTCCAGACAGCACTGCGGTCCCTTCGATTGTGGCCTTACTTTCTTAGACCACTTGCAGCCAGATTTC TGCCAACCTGTCGACAAGTCACTGCAGAAATAGAAGAGGCCAGGCGCATCATCCAATCCAGTACTTGAGAAG AAGCGTGCCGAGAAGCTCGCAATGATTCAGAAGGGAGAAAAACCTCCAGAGCCCAACACCTACATGGATTG GTTAGAAGAATCCGACAAGGATGAATTCTATGACCCAGTTGTTGCTCAGCTGAAGATTTCCATGGCAGCTAT ACACGCTACCTCGGACCTCTTATCGCAGACAATTTTCAGCCTATGTGACAGCCCAGAGCTAGTCAAGGAACT TGGACAGCGTCCTGAAGGAGACTCAACGCCTAAAACCTATGCAAATCAGTAAGCGCCGGTGCCGCCGTGTG GACTTGCTATCGCTAATCGCTTTGCCTTTGCTTGCTCTCTAGACTTGACGCGACTAGCTCTAGATCGCATAAA ACTTTCCGATGGCACGGTTATCCCTAGGGGCTCCAAAGTTCTTATCTCCTGCCACAACATGTGGGATTCGAA CGTCTACCCCAACGCAAACCAGTATGACGGTCATCGCTTCTATAAACTTCGGCAGCGCGCGGAATGGAGA ATTCCGCACAGCTATCAACACCTAGTCCGGATCATCTGGGCTTCGGACTGGGAATGTATGCCTGTCCCGGTA GGCATATCGCATCGACCGTTATGAAAGTCACACTATGCCATATCCTCCTGAAGTATGACTTCGAATTGGCGG

AGGGCTGCACCCCTAGAGTGATTGAATATGGTAGTTTCTTGTTAGCTGATCCAACGGCGAGAGTTTCTATCA GACGGCGGAAAGAAGAGATTCAACTGTAA

>nodZ_gDNA

ATGATAACAGCATCCACTTCCGTGTTTGGTGGCTTAATCCTTGCCTTTATCTTCTCACTTTTATATAAGAATAA GAAGACCCGTATCCCAGCAGAAATCGACCGCGTAAGGACGGGAGGTTTCCTAGCACACATTAGAGCCTTTG GGTGCAGGTTAGGTACGCGAGTTGATGATATTCGCAATGGATATAATAAGGTTAGTTGCTCCTATAGCTGCT CACAACAAATACTCAACACATGATATCTCAATACGCAGTTCAACAAAAACGGTAAGCCGTTTGTGATCCAGGA TTCTACCTTTATCCCACAGGTCGTCATACCACCTCAATACCTGGGATGGTTGAAGGAGCAACCAGAGAAGGC TCTTTCTGCAGAAACCGTGAGGCTAGAACAGCTTGGACTTCGCTATTTGGTCCCTAGCTCAGATCCCGAGAT GGTCCATTTGTTGACAGACGTCGTGTGTCGCCTATCTTACCCCGCAATTTTCAAAGAGTACAAGAGCGTTTATAT GAGGAGCTCCATATGAGTACGGATGAAATCATGGGGCTGGAGGCAACTGAGTGGCGTCAGATTTGTCTCCA TGAAGCGATGGAAACGATTCTTCGAAGGATGATTAGTTGCGTCCTGATTGGACTCCCATGGTGTCGAGATGA GGAATGCTTAAAATCGTGGACCGGATTTCTTCACTGCATGGCCATTGCAGGAACTATTCTAGGGGCAGTAAC ACCTTGGTTCCTACGGCCACTCCTCGGACTACTGCTCAAGCCGCCCGTTGGCTATATGCGCAGAAGATCAC TGCGTTATCTTACTCCGATCTTTACTGAAAGATGGAAAAAATTGAGAAGCATGAGAAGAGCTCACTGACGA CACGATGCTCTTAGCCTTGCGTCGGAATTTCTATTCTTTGTGAGTCACTCTACGCGTTGGTATCATGGTTTCC CATATTCAATACGCGATGCGATGGATCGAGGCTCTAACGAGAACGCAGTCGATCGCATTCTTTGACGCGCCT ATAGGAGCTGCAGAAGTCACCATGCTCGATCTTCTAAGTGCGGATCCCACAATAGGTTACTGGGAAAAGCTT GTGGAAGAAGCCACTACTGCATTCAGAACAGACGAGGACTGGATTCATGCAGGCACTGTGTCAAAATTGGC ATACACGGACAGCGCAATCAGGGAGTCTCTACGCCGAAACCCTTTCAGCATCCGAAACGTGACCCGAGAGG TGATAGGAAAAGATGGGCTAACACTGCCATCCGGTACGCGTCTGCCACAGGGCACTTGGATCACGACCGCT CTCGCCAATATACATCATGATGCAAGATTTTACTCAAATCCCACCGAATACCAGCCTTTCCGTTTTGTGGCCA GAGAAGCGTTTCACACAGAGGGGAAAGAGGGTAGCGAAAAGGTTTTACAGCCCTCTGAAGCTATCTTGACG AGCACAATTGATGAAAGGCTCTTGACATTCGGATATGGGCGTCGAGCATGGTACGAAATCCAACTGTCTCCT CCCGGCCGATGGTTCGCTTCACACATACTGAAAATGTTGATCGCGTATATCACGATCAATTATGACATACAG CCCTTGACGGGACCGCCGAAAAAAGTCAAATTCGCAGATTTCACCGTGCCATCGCCGAGTATCAAAATCATT GTGCGCCGGAAGAATCTCGCTTACCTTAGGCAACGTGAGCGTTGA

>nodY2_gDNA

ATGGCGCCTGATAGACTTGGTCCCGAGGGCACAGCACGCCCCAATTCCAGTGGCATCTCAGTTATCGTGGT CGGCCTTGGAATTGCTGGCCTAACAGCTGCAATTGAGTGCCACCGGAAGGGCCATTCAGTCATTGCCTTCG AGCGAATGAAGGATGTCGAACCCTTTGGTGAGTTTGGCTTCGAATCCCCATATTGGTTACTCCGCCAACCTA GTAAAGGCGATAGCATCATCATCGGCAGCAACGGCGGCCGTATTTTCGGCAAATGGGGCCGCGGTGAGGT ACGCAATGCTATGCAAGCCTGGCGATATACGCCTACCCATGCCGACATTTACGATACCGCCGGAAGATTCAT GGCCCAGTCTGAGATTCCCAAAGCTGCGGATGACATGTACTTCACTCTCGAGGCAGACTAGCGAAGACCT TCTACGAACACGCACAAAGCCTCGGCATTGATATGAGGATGGGGTCGAAAGTGACTGAATTTTGGGAAGAC AGCAATCGGGCTGGAATCGTTGTGGAAGGAGAGAGGGTTTGAGGCCGACTGTGTTATTTGCGCTGATGGCAT ACACAGCAAGTCTCGCTCCTTGTTCACTTCTCTAAACGCTCAACCATTTCGTTCTGGTTTCTCTATTTTCAGG CGATCAGTTCAAAGTGTTTCTGGGGAAGGAGATCTGTGTTGTCATAATTACCTGCGGGCTAGGCCGTGCAGT GGTCTGCAGTGCTATGCATAGGGTGAGCAATACCTATCTCCCAGATACCAATAATATATAGCAGGTAGGCTT TGGACTATATCTTCCTGTTCTGCTCACACAAGACTGCCCCAGGACCTAAATGAAGCGGAACAGTCGTGGTCG ACCCATGCCAACCCGGATGATCTATTGGACGCCATCAAAGACTGGCCGTGCAGGCGCCAGATCGAACCAAT CGTTCGGAAGATATCCGAAGACCAGTTCATCGACTATCCCCTTCTAACTGTGTCTCCACTGGACACGTGGGT ATCCCAGCACGGGCGGATGATTCTAATAGGAGATGCTGCTCATCCATTCTTTCCGACTTCCGGACAAGGAG GCGCACAAGCCATGGAGGATGCAGCTGTGCTTGCAATTTGCCTCGAGTTGGCAGGGAAAGGAAACATCCCC CTGGCTCTTCATGCAACAGAAAAGATCAGGTCTAGTTTCCCGGCCCTTCGGGCTACTCTCCCTTTCCATTTTA TCCGTTTTCCTTACTTTCGCTAATACCACGTAACTTCCAGAAAGAGCCGAGCTTCAGTCCTCCAACTAAACAG GACGTATTCAGAAGGGGTTCAACTAGCACCAGCGCTGCCGAAATCCAAAGACAGTATGTCTGTTCCAAATGT TCCAGTAATGGATTGGATCTGGCATCACTGCTGCCAGTCCTACGCATATGATGAGTTCGACAAGGTAGCGGA GGCGATTCAAAGCGGGAGTGAATACATTCCACATAATCTTCCAGAAGATGGTACGTAG

>nodJ_gDNA

ATGGAĂCTTATCGTTATTATCATAACTCTCGCTTTTTGCATCCTGCTGTACGGTACTCGATGGAGAGCTGCTC TCGACCCCCGCGAGCCCCGTTTGATATCCCCTACGGTACCACTCATCGGGCACATACTTGGTATCGCGACT GACGGCTTTGGGTATTTTTCCAAGCTCAAGTATGGTTAAGACTTCTACATGTTGCTTAGTTGAAGCGAGGAAG ATATGCTGTATATAGTACATAGACTAACGGTGTAGATAGTGACAAATATGGACTTCCCGCCTTCTCGCTCCAG

ATGCCACTATCAAGGCTTTATGTGATCACGTCTAGCGAGCTAGTCCCGGCTATTCAAAGACAGTCCCAGAAT ATACGATTCGATACGTTCGAATTTACACTGGCCGCAGAACGTGTAGGTGGTGTCAGTGGGCCTGGACTTAAA TTGCTTAAAGGTAGTATCGTGGATGAGCTACAACATGCTATGCATCACGCACTTATAGGACATGGCTTGGAT GCCATGAATCTTTCCATGATCGAGGCTATAAAGCCCTCAATAGACGAACTCCAAAGCCAGAAACAAGCGGCA TTCGACTTATTTGCATGGTGTAAACGTTCTATCACAATGGCGAGCACAGACTCGGTTTACGGTCCTATGAATC CATTCCGATCCATAGAAGTTGAAAGGGCTTTTTGGTAGGTCAAAGCACAGAATAGAACCCCAATGCTGTGTA AGAATTGCTGAGCTCATACGTGGTGTAGGGATTTCGCGTCGAATATGAATATGATAATCCTCAATGTCCTTCC CTTTCTCACAGCACGAAAGTCCCTAGATGATCGTCGTAAGGTTGTGGACGCTCTAACAGAGTATTACAACCT GGGAGGCCACGAAAACTCCTCGGAAATGACGTATGGTCGATGGGAGGTCCAATATAACAAGGGAATCACCA CACAAGATATAGCTCGAATGGAAATTGTTAACGCGATAGGTGTCCTATCGAATACTGCGCCTTCCACATTTTG GACCCTTTTCGAAATTTACTCACGCCCGAGTTTGCTGAGGGATCTTCGACAAGAGCTCGTGGCTTCTGCTGT GTACACGCATCCAGGTACCGATGGAGGGGATAGTTCGTACTATTGATCTCAGCGCTGTACGCGCCAAGTGCA GTTTGCTTCTCGGTACCTTTCAGGAGGTCCTCCGTATGAGGTCTAATGCTATAGTCACGCGCATGGTCCATG AGGATACCATCCTCAACGAGCGAGTTCTATTCAAGAAGGGGTCCGTGATCGTGATCCCTGCAAGATGTGTTA ATCGCGAAAAGTCAGTATGGGGCGAAACAGGGGGATAGCTTCGACGCATATCGATATCTCGGCCAGGGGAAG AGTGGGACATCGCGAAGTGGCCGTAACGTCACACGCGTTGCGTTCCAGTCTTTCGGGACAGCACCTAACAT CTGTCCTGGGCGCCACTTCGCATCTGGGGAGATATTAGCGGTAGTAGCCATGGTGATTTTACGGTTTGACAT GGAGCCCGTGCTCGGAGAGTGGATTCCTCCCAAGGCCAACGTGAAAACACTTGCAAGTTCCATACAGACAC CGGCAGGGGAGTTCATGGTGACTCTCAGAGAGAGAAAGGAATTCAAGGATGACAAATGGGATTTCAGGGTC ACAGAAGGCGACTCGAAGTTTCCACTGCTAGTTGGGTAA

>natR

ATGACCACTCTTGACGACACGGCTTACCGGTACCGCACCAGTGTCCCGGGGGACGCCGAGGCCATCGAGG CACTGGATGGGTCCTTCACCACCGACACCGTCTTCCGCGTCACCGCCACCGGGGACGGCTTCACCCTGCG GGAGGTGCCGGTGGACCCGCCCTGACCAAGGTGTTCCCCGACGACGACGACGACGACGACGACGACGACG CGGGGAGGATGGCGACCCGGACTCCCGGACGTTCGTCGCCGTACGGGGACGACGGCGACCTGGCGGGCTT CGTGGTTGTCTCGTACTCCGGCTGGAACCGCCGGCTGACCGTCGAGGACATCGAGGTCGCCCCGGAGCAC CGTGGGCACGGGGTCGGGAGAGCGTTGATGGGGCTCGCGACTGAGGTCGCCCCGGAGCGCCGGG CACCTCTGGCTGGAGGTCACCAACGTCAACGCACCGGCGATCCACGCGTACCGGCGGATGGGGTTCACCC TCTGCGGCCTGGACACCGCCCTGTACGACGGCACCGCCTCGGAGCGAGGCGCCCGGA GCCTGCCCCTGA

>neoR

ATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTG GGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTT TTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCGCTATCGTGGCCGCGCGGCTGTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATT GGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTG ATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATC GAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGC TCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCA TGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGC TGGGTGTGGCCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAA TGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCT TCTTGACGAGTTCTTCTGAG

Genes used in this study (cDNA)

>nodM_cDNA

>nodW_cDNA

ATGACTCTCGCTATTCTGGGCATCAGTTGCCTGGCAGCCGTCCTATCTCATACTATTCTGTTCATCCGAGGA GAGTGGGACAAGCACGCCCCGGTCCTGTTCCATTGCTTCATTACTTGCCCCCATTGCGCTCATATGCTCGTTG TTGGCAGTGGGATTATATGGGATCACTTTTATGTTCATCCAAGTTTGGCTATGCTATATCTCTTCTATCTGTCT TTCAATCATTATATATCGGTTGTTTCTGCATCCCTTGAGAGATTTCCCCCGGCAAGGTATCCGCCAGGCTGAG CACGTTGAGATGGATGAAAACAGCAGCCGTAGATAGAAAATGGCACCTTGAAGTACAGAATATGCATAGTGT CTATGGCGATTTCGTCCGAATTAGGCCTCGTGAGATATCCGTCAACAACTTCAATGCCATTCGCGATTTGGC CAAGTGTGCCAGGGGTCCATTCTACGACGTGAATTATCCCCACAAGTCCCTTCAAATGACAAGGGACAGGAA TTTCCACCTCCGACGGAAGAAAATTTGGCAAAAGGCCTTCAGTCCTAATGCTATGCTAGCTCATGAAGGCCA TGTCCGGCAATGTTGCCAAGAACTCATGGGCTATCTCTCATCTAGAGGAGGTCAACCGGTAGAAGTAACTGA ATTGATGCAAAGAGTCACATTTGAATCAATGGGTTGGCTTGTATTTGGAAAGGCCTTCAACATGATTCAAAAA GGCCTTTCGCATCCCGGCTTCACGCAACTGAGGTCTGTCAAGCAACTAGGGGGGGCTCCTTCTGTGGGCGCC TTGGACGTTGATCCTTCTCCGCAATCTACCGTTCTTGAGGTCCAAGGCAACAAGTTGGCTACAGTGGTGCTC ACAGGAGGTAGTGGAAAGGAAGCAAAATCCAACTATGACTCACGATCTATTCAGCCATCTCCTGGACGACGA GACCCTTACTGCCATCTTGTTTCTTCTGGCAACCCATCCAGACAAGCAGGCAATTCTTCAAAAAGAGGTTGAT GACATGAATATAGGTGGACTGCCTATGCCAACCTCCACCCTAGTCAATATGCCTTACCTCAACAGTTGCATC AACGAAGCACTCCGTCTTTATCCAGCAGTGATGAGCGGCTCGCAGCGGGAAACCGGTCCTGGTGGAGTGAT CCTTGATGGCCAGTTTATACCAGAGCATATGCTCGTATCCATGCCCACTTACACGATACACAGGGATAAGAG AAATTTCGTCAGGCCAGATGAGTTCATCCCGGAGCGCTGGACGAGCCAATCACACTTGACTCTCAACCCAG ATGCATTCATCCCTTTCTCTGTGGGTGTGTACGGATGCCTCGGTAAACCTTTCGCCATGATGGAGATGCGTA TGGTAATTTCCTCTATAATGTCAAGATTCAATCTGAGACTTCTGCCTGGGCGGCCGATGAGCCATGAAGCCT CTGCGCCAGCATACGATTGCTATATAATTCATATACCAGCGTTTTCTCTTGTTTTCGAACCCCGGGCTGGAAA TATCTGGGCATAA

>nodD1_cDNA

ATGGATGCTGCTTCAACTCTTACGCATGCACCGGTATCTCAGCCATGGCAGTCCCTAGCTCAAGGGTTGGG GTTCGTCAATGAGCATGAAGGGTACTGGTGGTCTAAGCTTGGACCTCCTCTCGGTAAAATGATGAACTGGGC AAAGCCTGGTGATGATGGTGAGCTGTTCTGGAAGGTTTTCATCAGCTATGATTACACGCCCATTCAGCTCAG TCTCAATTTTCACAATGGCAAAATGACGCTGCGCACCGCGAACATACCAATTAGCGATAAATCGGGAACCGC AGACGACCCAATCAACCAACAAGCTTCGGTAGACGCCATAATCCGCCAGGAACGAGTGTTGCCATCCCAGG ATCTACGTTGGTTCAACCACTTTGCATCCCAGTACTTCTTCGACAAGGACACGGCAGCCTCTCTAAAGACCA AGGTCGATAAGCTCCGAGTCCAGCAGGGGGGGTTCAGTGTATGCTGAGCCACGACTTTCCTGAGCGTGATGTC CAATGCAAAGTGGCTTTCTGCCCGCTTTGGAAAGCCGTCGCTACAGGTCTTTCCAACAAGGAGATCATCTGG TCGTCCGAAAATGCAGCGAAAGCAGGAGTGCGACCTGTATTCTTCGCTTTCGATACGGTGTTAAAAGATAAT TACAAGAGCTCTCGTATCAAGATCTACTACCTCACAACACGGACAGCCTTCAACTCTATGGTCGACATCTACA CACTTGGAGGCCTGCTAAAAGGGCCTGATATCCAAAAAGGAGTAGAGGCCCTTGAAGTGCTCTGGAAAGCC GTCCTCAACGTCCCCGAGGGGTGGCCCGATGATAAAGATCTACCCATGAATCCACACCGTTGTGCGGCAGT AATCTTCAATTTTGAGCTGTGGCCAGGAGCAGAGTTTCCGAGTCCCAAGGCCTATCTCCCAGCCCATTATTA TGGCCGGCCTGATTTGGAGATAGCTGATGGTATGGACTACTTCTTCAAGCAGCAAGGGTTGGATGGGGTAT ATGGTTCTTACAAGGAGAACTATTTGAAGTGCTTTACGAACTCACAGAACCAACTCACAGCCCTCCACCATGA TATTTCTTTTCATTCAAAGGGTCCAATGCCTACGTTACGGTGTACTACAAGCCCGAGCTATCTCTAGATACC GAGTAG

>nodO_cDNA

ACAGCCTCTCTTGTTGGACTATACGCCATGGGGCGATCCTTATTGACCTCGAAGATTATCAGCACTTGAGCT ATGACGACGAGATCCATGAAGTGCAAGCTTCACCCAGTACACTTGGTGCGGACCTACTTACGTTCCTTGCGA AGAAAAAGAGGTTCTTTCCCGTAGGTCACTCTGGAGACATTGGCTTAGGTGGCTATCTCCTTCAGGGCGGAA TTGGGCTCAATTCTCGGGGGATATGGGTATGCCTGTGAATACATTACCGGGCTTGATATCATCACCGCTGATG GTGAAATCAAGCATTGTGATAAGACGGAAAACTCTGACCTATACTGGGCTGCTCGTGGAGCTGGACCGGAA TTCCCTGCAATCGTTATACGGTTCTTCCTGAAGACGTGCCCCCTCTTGCCGGTGTGTAAGCGGAGTAGATAC GTCTGGCCGGCGGCCATGTATGGGAAGGTTTTTAAGTGGCTTGAAGAGCTATTGAATTCCTTGAGCGAGGA ATTTGGTGACTCTAGCGAGAATGTCCGGGAAAAGCTCACGCCTATCATCAAAAATCATCCTCCAGGGACTTT CTTGGCTGAAGATTTCGTGAGCACCAACTTCCCCGAAGACTACGACCTTGGTAAGGATACCATGCCGCGGG GCGCTCGCTATTTTACCGACAGCGTCTTTCTCAAGCCCCGGTATCGACTTCGTCGCAACCTGCAAAGGAATGT TTACGGAGCTCAAACATCCCCGTGCATTGGCGTACTGGCAACCGATGAAGACCAATATTGATCGCATCCTTC CCGATATGGCCATGAGCATCCATAGTCATCATTACGTGTCACTACTTGCCATCTATGAAGACCCCAGTGAGG ACCAACAGCAAATATCCTGGATCATAGATCGTATGAAAAGTCTTGAGCCGGCAATCCTGGGAACTTTCATAG GGGATGCACCCCAGTGGAAAGGCCATCTAATTATTGGTCCGAGGAAGCTGAAGAACGGGTGATCACTATT GGGCGGAAGTGGGACCCTAGTAGTAGAATTCGGGGTATTGTGTTGAGCGACGCCTAA

>nodD2_cDNA

ATGGACTCTACCGGGAGACAGCCTCTCAGCCAGGACGGGCAGCCATGGCAAGCTCTTGCCTCTGGCTTGG GATTTCCAGATGAAGACCAGAAGTATTGGTGGTCAGTCATGGCGCCCCTACTCGGGGGAACTGATGAAATGG CTCGTCCAACGGCCGAAGGCGGTATCTTCTGGCCCACGTTGATCACCAAGGATGGTACTCCGTTCGAGCCG AGCCTTAACTTCTACAAAAATAAAGCCACTCTACGAGTTGGATATGCGCCTGCATGCGAGCTTTCAGGAAGC AATGACGACCCTATCAATCAACGAGCCCCCAATTGCGGCATTGGAGCACCAAAAGAGAGTCCTACCACAGCA GAATCTCAAATGGGTGGATAATTTCAAGAAAGCATGGTTCATCGATAATGACGACGCAGTAGCCTTGAAGGC ACGCGTACATAACGAGCTCTTTGAACAGGCAGCCGTCCAATGCTTGATAGGTTATGTGTTTTCCGACTACAC GGGACACCTTTCGCCAGCTTGGCGACGATGCTTCCAGTTACCTAGATTGCCTATCAGTGCTAGAGGAGTATA ACTACCAGCAGTCGCGACTTAAGGTATACTATGCTACACCATGCACTGCATTCGACACGATGGTCCAGGTTT TCACTTTGGGCGGAAGGCTCAAGGGCCCTGAAGTTGACCATGCGATTGAATGCCTTCGTGTCCTATGGCCC AGCGTGCTTGCAGTTCCTGAAAACCATCCGGACGACCAAGACTTGCCTCGACGGTACCACTCTGTAGCAGT TTACGGTCGTGATGAATTGGGAAATTGCGGAGGGCCTAGAGGGATTTTTCAAGACTCTTGGCTGGAGTGAGC CTTTCCATGCCTATAAACAGAATTACATTGCAACATGTGCCACGCCCGAAGGGAAATGGAAAGCGATCCAAC ACGACGTATCATTCTCGTTCAAGGACTCAAGCCCATATGTGTCGGTTTATTATAAACCAGAGCTCTCGGTCCT ATCCTCACCGTCGTAG

>nodR_cDNA

ATGTTTGATATTGATTTTGGCATTCTATTTCCAATTTCCTGGGAACAATCCCCTATCTTTCTGGCTGTTGGGCT AATATTCGCATTTGCGACCTTATCTCCGTGGCTCCGTTCCGGGGGAACGCCTGATCAATGGTCGCGAAGGCTT CAAAGTACAACGATTCTTTCTACATGATGACGGATAGTGGTACCGAAATGGTCCTACACCCGAGATACGTCG AAGGTGGCGAGATAAACCGAGATCTTATCCAAACCAAATTGACTAGATCTGTGGGTAGGCTCATTGGGTCCA TATCGGCTGAAATCGAGGACGCCCTTCACAATCGATGGGAAGAAGGCGAAGAATGGCATGAGATTGTATTG CTCTCCGTAATGATCCCGGTTGTTGCGCAAGGAGTATCCAAAATGTTTGTCGGAGATCCATTGTGCCGTAAC AAGGATTGGATAGGTATGATCTTAAGGCATACAAGGAGTGTCCAGACAGCACTGCGGTCCCTTCGATTGTGG CCTTACTTTCTTAGACCACTTGCAGCCAGATTTCTGCCAACCTGTCGACAAGTCACTGCAGAAATAGAAGAG GCCAGGCGCATCATCAATCCAGTACTTGAGAAGAAGCGTGCCGAGAAGCTCGCAATGATTCAGAAGGGAGA AAAACCTCCAGAGCCCCAACACCTACATGGATTGGTTAGAAGAATCCGACAAGGATGAATTCTATGACCCAGT TGTTGCTCAGCTGAAGATTTCCATGGCAGCTATACACGCTACCTCGGACCTCTTATCGCAGACAATTTTCAG CCTATGTGACAGCCCAGAGCTAGTCAAGGAACTGCGAGCCGAAGCTGTGTCTGTTATAGGAGCGTACGGCT GGGGGAAGGAAGCAATCTACAACCTGAAGCTGATGGACAGCGTCCTGAAGGAAACGCAACGCCTAAAACCT ATGCAAATCAACTTGACGCGACTAGCTCTAGATCGCATAAAACTTTCCGATGGCACGGTTATCCCTAGGGGC TCCAAAGTTCTTATCTCCTGCCACAACATGTGGGATTCGAACGTCTACCCCAACGCAAACCAGTATGACGGT CACCGCTTCTATAAACTTCGGCAGCGCGCGGGAATGGAGAATTCCGCACAGCTATCAACACCTAGTCCGGAT CATCTGGGCTTCGGACTGGGAATGTATGCCTGTCCCGGTAGGCATATCGCATCGACCGTTATGAAAGTCAC

ACTATGCCATATCCTCCTGAAGTATGACTTCGAATTGGCGGAGGGCTGCACCCCTAGAGTGATTGAATATGG TAGTTTCTTGTTAGCTGATCCAACGGCGAGAGTTTCTATCAGACGGCGGAAAGAAGAGAGTTCAACTGTAA

>nodZ_cDNA

ATGATAACAGCATCCACTTCCGTGTTTGGTGGCTTAATCCTTGCCTTTATCTTCTCACTTTTATATAAGAATAA GAAGACCCGTATCCCAGCAGAAATCGACCGCGTAAGGACGGGAGGTTTCCTAGCACACATTAGAGCCTTTG GGTGCAGGTTAGGTACGCGAGTTGATGATATTCGCAATGGATATAATAAGTTCAACAAAAACGGTAAGCCGT TTGTGATCCAGGATTCTACCTTTATCCCACAGGTCGTCATACCACCTCAATACCTGGGATGGTTGAAGGAGC AACCAGAGAAGGCTCTTTCTGCAGAAACCGTGAGGCTAGAACAGCTTGGACTTCGCTATTTGGTCCCTAGCT CAGATCCCGAGATGGTCCATTTGTTGACAGACGTCGTGTGTCGCTATCTTACCCGCAATTTTCAAAGAGTAC AAGAGCGTTTATATGAGGAGCTCCATATGAGTACGGATGAAATCATGGGGCCTGGAGGCAACTGAGTGGCGT CAGATTTGTCTCCATGAAGCCATGGAAACGATTCTTCGAAGGATGATTAGTTGCGTCCTGATTGGACTCCCA TGGTGTCGAGATGAGGAATGCTTAAAATCGTGGACCGGATTTCTTCACTGCATGGCCATTGCAGGAACTATT CTAGGGGCAGTAACACCTTGGTTCCTACGGCCACTCCTCGGACTACTGCTCAAGCCGCCCGTTGGCTATAT GCGCAGAAGATCACTGCGTTATCTTACTCCGATCTTTACTGAAAGATGGAAAAAATTGAGAAGCATGAGAA GAGCTCACTGACGACGCGTGAGCTGCCGGATGACTTCGTAACATGGTGTATTCAGGAGGTACGGAATGGTA ATATGAAAGAAAAACACGATGCTCTTAGCCTTGCGTCGGAATTTCTATTCTTTTCGATCGCATTCTTTGACGC GCCTATAGGAGCTGCAGAAGTCACCATGCTCGATCTTCTAAGTGCGGATCCCACAATAGGTTACTGGGAAAA GCTTGTGGAAGAAGCCACTACTGCATTCAGAACAGACGAGGACTGGATTCATGCAGGCACTGTGTCAAAATT GGCATACACGGACAGCGCAATCAGGGAGTCTCTACGCCGAAACCCTTTCAGCATCCGAAACGTGACCCGAG AGGTGATAGGAAAAGATGGGCTAACACTGCCATCCGGTACGCGTCTGCCACAGGGCACTTGGATCACGACC GCTCTCGCCAATATACATCATGATGCAAGATTTTACTCAAATCCCACCGAATACCAGCCTTTCCGTTTTGTGG CCAGGGACGCGTTTCACACAGAGGGGAAAGAGGGTAGCGAAAAGGTTTTACAGCCCTCTGAAGCTATCTTG ACGAGCACAATTGATGAAAGGCTCTTGACATTCGGATATGGGCGTCGAGCATGCCCCGGCCGATGGTTCGC TTCACACATACTGAAAATGTTGATCGCGTATATCACGATCAATTATGACATACAGCCCTTGACGGGACCGCC GAAAAAAGTCAAATTCGCAGATTTCACCGTGCCTTCGCCGAGTATCAAAATCATTGTGCGCCGGAAGAATCT CGCTTACCTTAGGCAACGTGAGCGTTGA

>nodY2_cDNA

ATGGCGCCTGATAGACTTGGTCCCGAGGGCACAGCACGCCCCAATTCCAGTGGCATCTCAGTTATCGTGGT CGGCCTTGGAATTGCTGGCCTAACAGCTGCAATTGAGTGCCACCGGAAGGGCCATTCAGTCATTGCCTTCG AGCGAATGAAGGATGTCGAACCCTTTGGCGATAGCATCATCATCGGCAGCAACGGCGGCCGTATTTTCGGC AAATGGGGCCGCGGTGAGGTACGCAATGCTATGCAAGCCTGGCGATATACGCCTACCCATGCCGACATTTA CGATACCGCCGGAAGATTCATGGCCCAGTCTGAGATTCCCAAAGCTGCGGATGACATGTACTTCACTCTTCG AGGCAGACTAGCGAAGACCTTCTACGAACACGCACAAAGCCTCGGCATTGATATGAGGATGGGGTCGAAAG TGACTGAATTTTGGGAAGACAGCAATCGGGCTGGAATCGTTGTGGAAGGAGAGAGGTTTGAGGCCGACTGT GTTATTTGCGCTGATGGCATACACAGCAAGTCTCGCTCCTTGTTCACTTCTCTAAACGCTCAACCATTTCGTT CTGGTTTCTCTATTTTCAGGGGGGAAAGCGGACGCTAATGCGATTATTGCCGATCCCGATGCGAAATGGATCC TTGACCAGACAGAGAACACCGATCAGTTCAAAGTGTTTCTGGGGAAGGAGATCTGTGTTGTCATAATTACCT GCGGGCTAGGCCGTGCAGTGGTCTGCAGTGCTATGCATAGGGACCTAAATGAAGCGGAACAGTCGTGGTC GACCCATGCCAACCCGGATGATCTATTGGACGCCATCAAAGACTGGCCGTGCAGGCGCCAGATCGAACCAA TCGTTCGGAAGATATCCGAAGACCAGTTCATCGACTATCCCCTTCTAACTGTGTCTCCACTGGACACGTGGG TATCCCAGCACGGGCGGATGATTCTAATAGGAGATGCTGCTCATCCATTCTTTCCGACTTCCGGACAAGGAG GCGCACAAGCCATGGAGGATGCAGCTGTGCTTGCAATTTGCCTCGAGTTGGCAGGGAAAGGAAACATCCCC CTGGCTCTTCATGCAACAGAAAAGATCAGAAAGAGCCGAGCTTCAGTCCTCCAACTAAACAGGACGTATTCA GAAGGGGTTCAACTAGCACCAGCGCTGCCGAAATCCAAAGACAGTATGTCTGTTCCAAATGTTCCAGTAATG GATTGGATCTGGCATCACTGCCGCCAGTCCTACGCATATGATGAGTTCGACAAGGTAGCGGAGGCGATTCA AAGCGGGAGTGAATACATTCCACATAATCTTCCAGAAGATGCGGAGGACGAGATCAATAGGGCTTTTGGACT CCAGAAGTCTCCCCCTACGTGA

>nodJ_cDNA

ATGGAACTTATCGTTATTATCATAACTCTCGCTTTTTGCATCCTGCTGTACGGTACTCGATGGAGAGCTGCTC TCGACCCCCGCGAGCCCCGTTTGATATCCCCTACGGTACCACTCATCGGGCACATACTTGGTATCGCGACT GACGGCTTTGGGTATTTTTCCAAGCTCAATGACAAATATGGACTTCCCGCCTTCTCGCTCCAGATGCCACTAT CAAGGCTTTATGTGATCACGTCTAGCGAGCTAGTCCCGGCTATTCAAAGACAGTCCCAGAATATACGATTCG ATACGTTCGAATTTACACTGGCCGCAGAACGTGTAGGTGGTGTCAGTGGGCCTGGACTTAAATTGCTTAAAG GTAGTATCGTGGATGAGCTACAACATGCTATGCATCACGCACTTATAGGACATGGCTTGGATGCCATGAATC TTTCCATGATCGAGGCTATAAAGCCCTCAATAGACGAACTCCAAAGCCAGAAACAAGCGGCATTCGACTTAT TTGCATGGTGTAAACGTTCTATCACAATGGCGAGCACAGACTCCGATTTACGGTCCTATGAATCCATTCGAT CCATAGAAGTTGAAAGGCCTTTTTGGGATTTCGCGTCGAATATGAATATGATAATCCTCAATGTCCTTCCCTT

TCTCACAGCACGAAAGTCCCTAGATGATCGTCGTAAGGTTGTGGACGCTCTAACAGAGTATTACAACCTGGG AGGCCACGAAAACTCCTCGGAAATGACGTATGGTCGATGGGAGGTCCAATATAACAAGGGAATCACCACAC AAGATATAGCTCGAATGGAAATTGTTAACGCGATAGGTGTCCTATCGAATACTGCGCCTTCCACATTTGGAC CCTTTTCGAAATTTACTCACGCCCGAGTTTGCTGAGGGATCTTCGACAAGAGCTCGTGGCTTCTGCTGTGTA CACGCATCCAGGTACCGATGGAGGGATAGTTCGTACTATTGATCTCAGCGCTGTACGCGCCAAGTGCAGTT TGCTTCTCGGTACCTTTCAGGAGGTCCTCCGTATGAGGTCTAATGCTATAGTCACGCGCCAAGTGCCATGAGG ATACCATCCTCAACGAGCGAGTTCTATTCAAGAAGGGGTCCGTGATCGTGATCCCTGCAAGATGTGTTAATC GCGAAAAGTCAGTATGGGGCGAAACAGGGGATAGCTTCGACGCATATCGATATCTCGGCCAGGGGAAGAG TGGGACATCCCGAAGTGGCCGTAACGTCACACGCGTTGCGTTCCAGTCTTTCGGGACAGCACCTAACATCT GTCCTGGGCGCCACTTCGCATCTGGGGAGATATTAGCGGTAGTAGCCATGGTGATTTTACGGTTTGACATG GAGCCCGTGCTCGGAGAGTGGATTCCTCCCAAGGCCAACGTGAAAACACTTGCAAGTTCCATACAGACACC AGCAGGGGAGTTCATGGGGAGATTCCTCCCAAGGCCAACGTGAAAACACTTGCAAGTTCCATACAGACACC AGCAGGGGAGTTCATGGTGACTCTCAGAGAGAGAAAGGAATTCAAGGATGACAAATGGGATTTCAGGGTCA

>nodX_cDNA

ATGGAGTCAAGTGCGGATAATACAGTTCCCAAGCAAGCGGAATCTGTATTCATACGCGAAATTCTAGAGAAT CCGCTAATGCCAAATCTTCCCCCTGAGCTGGCCGAAATCGCCAAATTTGTCTCCTTCGAGGGAAACGTCAAG CCTAGCATTCCTGTTAACTGGAGGCTCGCAGAGAGCATCTCAGCTTTGAAGCCTTTGAAGCAACGTTCCTG AATTATCTGGCCCATCGGAAGTATGGTGTACGCCCTAGCAATGTCTCAATAAACACAGACCACGCAACCTTG CTGACAGCAGAACTTTTTCCGAACCGAGATAAACACCGCGCCAACGCATCTCTACAACGGGCATTGATTACC GCACTAGGGTTGCCCGTCGAAGGCGAGGTTCAAGACACTTCTGAGGTCGTAACCGACAGGATCCAACAAAG ACTCTCAAAGTATGACGCCACACATCTAGACCATTTGCTAAATGAAGAACACCGCCAAGCCGGTACCATTGT CTACAGCTCCGCTGAGTACTTTGCCAGCGAGCACGGCCAGAAAAATGGCAAGGTGGGACTGTATGAGGTCA TTAGAGATCCAAATTCTTCTCAGCCAGCAGCCTGGTGGCCTGATCATCCTAACGCTCCATCGAGCCCCAAGA GGCCGCTGGCCGGGCTGAAGGTGGTGGACTTAACGCGCGCTATAGCGGGTCCGACGATAACACGAAGTCT TGCGGAGATGGGGGCTAGTGTAATGCGTGTTACTTCCCCAGACATCACGGACATGTCGGTGTTACACCAAG ACTTGAATTGGGGCAAATGGAACTCATGGCTACGGTTGGATGTCGAATCTGACCGCCAAAAGCTGAGGGAC TTGATATTGGATGCAGATGTGGTTGTAGATAGCTATCGGCCAGGTGTGATGAAACGTTTTGGCTTTGGCTAC GACGAGGTGTTCAATCTGGTGCGGGGACCGCAGTCGTGGTATTATTTACGTCAGGGAGAACTGCTATGGTTG GTATGGACCCTGGAGCCATAGAAGCGGCTGGCAGCAGATTAGCGACGCGTGCTGCGGGATTTCTACTTCGT ACGGCCATGCTATGGGTCTTGAAGAGCCTGTAACTCCTGCTCTGTTCAATTCTGATTATTGTACCGGAATATG CGGGTCCACGGCTGTCTTGGACGCCCTTGTCCAAAGAGCCGAGAAAGGGGGGAAGCTACAGGGTTGATGTA TCAATCAACTATTACAATCAATGGCTTGTTCGATCAGTCGGGACATACGACGAGCATACCTGGACTGACCTG TTCCGCCGTCACGACGCACCTGTTTTCAGACACTACCACTCCATGCAATACATGCTGCCTAAGCTGCTAACG GCATTGTACAAATTCGACGGCGAGATTCTCTTTCAAAGGGAATTTTTCGGCCCATTCCGGTCCGGCGCGTTG AACACGACGTTCATACAAGTAAGGCCTATCGCTCGATTCAAGGACGACGCGATTGAACTCAAGTATAATGTG GGCACGAGAGGGAACGGAGTCGATGCGCCAACTTGGCCGGCAGATCTACGCCGTGAGATTGTGAGAGATG AGGATGAGCAGGGGTCCGGATTCAGGTCAGGGTCAGGGTCAGGGTCCATTGCAGATTAG

Terminators used in this study

>TpaxG

TCACTCCCGAGCAATATTGCTAAAATAAAGTGGGTCGGTGATCGTTTTACCGAATGAAAATGTCGCATTTCCA CTTTAAGAGGTAAACCTCGGCATTTTTCTTGTGTCACTTGGTTAAAAGCACTATCCGTATATCTAACAACACAT CAAGCTCACGAACTTGAAAATAGTTCATAGAATAACTTGAACCTCAACGACAATATTGATAAATGCTACTAATA TTTGGAGCATAAACTCTGCATTTTCAGAGTATCGTTAAGTCCATGTCATTTAATTTTATGACCGCCAAGGTTAA CTACTGAATGGTGAGACTTGATACCAACTTCCTTGCCAAAACATTTGAATGATCGCGGTCCGAGGTACATTTG CTTCACTATTGCGAGTTCTATGCAAAAATTCGATAAATGGAAAATATGGGTTGAAAAACGCCTGGAAAATATT TCATTCATAAAGGAATCTCTATCTCCGCGATACAGCGATCCTGGAAGAGAGAAATGCAGCACGATTGA

>TpaxC

TTGGCCTTGTGAAATATGGGACTACGAAGTGAATCAGAAGTGAATATTGAGTATTTGAGTCTAGATAGTTCAC AATTTTACTTGCAATTACCAAACTTTGCAGAATTCTACCAAGCTAGACTACATGCGGGGTGTATCCTTCTTAG ACTCATGTCTGCAGTTCAGTATACAACGAGGATGCCTTCTATAGGATATTGAATCTACGTTGAAGTATTCCTT ATAGAGGTTGCAAAGTGCCCAGCAACATCTGATATCCGACATGACAGAGAT

>TpaxM

>TpaxB

>TpaxP

>TpaxQ

TCTAGTTTCAAATTCGCTGGGTTGGAGTAATCATTTTAACAATTGATGAAAGCCCAATCGCAAGTCCTACAGC TCATTATCGTGCAAGCAGCTGGCTCACCCCACCTCTGGGGTTGTAGTGGCGAACTATGTGAGACTAAGGAG CCCCGATCCTGCTAGTGTTTAACCTGCCCCATTTTTCATGCCCACTTTCACATCTTGCCTTATTGTGGCGCAG TCTAGAGTTGCAAACTTTGAGATACTTGGTAAGCGAGCAGGAGAGATACCATGCGCCTCAGATACTGTTTCA TTTCATTGATAGTAGTAGAGTTAGCTAGACTGGCGAGTCTTCTTCTGGAACTACAGGATAGTCCAGATTCTGA GTAGTAACAAACAATAAGCTCGTAGTAGTACATGTTGAGAAAGCCTTGAAATTTTGATACTATGGTTGCTTGA ATAAGGCGATCCGATTCCACGGATGTCAAATTTATCGAGTGTAATCTATTTCCA

>TtrpC

>TaceB

LC-MS Analysis of Fungal Transformants

The analysis of fungal transformants by LC-MS was conducted as described above (pg 4–5). For each of the transformants in this study extracted ion chromatograms (EICs) for key nodulisporic acid products have been reported. In each case the peak representing the metabolite of interest has been marked with an asterisk after confirmation by HR-ESI-MS² (Table S3, and pgs 43–65), or isolation and NMR analysis (pg 66–142). When no asterisk is shown the metabolite was either not produced, was below the limit of detection for the instrument, and/or was not confirmed by HR-ESI-MS².

Strain: RC63 Metabolite: NAE* LC-MS Trace: EIC (*M* 572.4)

Strain: RC121 Metabolite: NAD₄*

Strain: RC128 Metabolite: DH-NAC₄* LC-MS Trace: EIC (654.4 *M*)

Strain: RC166 Metabolite: DH-NAB₄* LC-MS Trace: EIC (652.4 *M*)

MSD1_652

Strain: RC167 Metabolite: DH-NAA₄* LC-MS Trace: EIC (666.4 *M*)

Strain: LS201 Metabolite: NAD4*

Strain: LS201

Metabolite: 24-hydroxy-NAD₄ (*metabolite not observed*) LC-MS Trace: EIC (602.4 *M*)

Time

Strain: LS202

Strain: LS203 Metabolite: NAB₄* LC-MS Trace: EIC (668.4 *M*)

MSD1_668

Strain: RC173 Metabolite: NAA₄* LC-MS Trace: EIC (682.4 *M*)

MSD1_682

Strain: LS148 Metabolite: NAD* LC-MS Trace: EIC (584.4 *M*)

WILEY-VCH

SUPPORTING INFORMATION

Strain: LS146 Metabolite: NAA*

WILEY-VCH

SUPPORTING INFORMATION

36
Strain: LS196 Metabolite: NAD₄* LC-MS Trace: EIC (586.4 *M*)

MSD1_586

Strain: LS196

Metabolite: 3"-hydroxy-NAD₄ (*Metabolite not observed*) LC-MS Trace: EIC (604.4 *M*)

Strain: LS170 Metabolite: NAD₂*

Strain: LS197 Metabolite: NAA₄*

Strain: LS197

Metabolite: 3"-hydroxy-NAA₄ (*Metabolite not observed*) LC-MS Trace: EIC (700.4 *M*)

Strain: LS147 Metabolite: NAA₂* LC-MS Trace: EIC (714.4 *M*)

MSD1_714

Identification of Nodulisporic Acids by Tandem Mass Spectrometry

Nodulisporic acids were identified primarily by HR-ESI-MS² using a method and information gained from the analysis of purified nodulisporic acids and their precursors. These included examples from each of the major series and at each biosynthetic step Emindole SB, NAF, NAE, NAD₄, NAD₄-OMe, NAD, NAD₁, NAD₂, DH-NAC₄, NAC, NAB₄, NAB, DH-NAA₄, and NAA₁. Comparison of HR-ESI-MS² spectra collected from these compounds allowed for fragmentation patterns to be rationalised and the information utilised to predict, and subsequently identify, MS² spectra of nodulisporic acids present in fungal transformants.

Both emindole SB and NAF have only one major fragment, 130 *M*, which is characteristic of the indole moiety having lost the terpenoid portion of the molecule. NAE also has only one major fragment, 266 *M*, which is consistent with a diprenyl indole moiety. No 130 *M* fragment was observed for NAE suggesting these prenyl groups are less readily lost than the original diterpene skeleton. For NAD₄ a more complex fragmentation pattern was observed. Loss of the terpene skeleton and retention of the western portion of the molecule explained the peak at 280 *M*, but two other fragments (524 *M* and 222 *M*) were also observed. The loss of a second portion of the molecule, with a mass of 58 *M*, would explain both these fragments. It was hypothesised that this second portion could be the ring oxygen and neighbouring geminal dimethyl carbon, $OC(CH_3)_2$, from the A ring. Analysis of the methyl ester, NAD₄-OMe, showed that only one of the fragments was affected by the esterification as 524 *M* was replaced by 542 *M*. This was consistent with the proposed fragmentation pattern of the molecule as shown in figure S1. NAD, NAD₁, and NAD₂ all showed MS² spectra consistent with the fragmentation pattern observed for NAD₄.

The major fragments in the HR-ESI-MS² spectra of DH-NAC₄ and NAC were consistent with successive loss of the eastern terpenoid skeleton and $OC(CH_3)_2$ of the A ring, indicating the same fragmentation pattern as for the D-series metabolites. An additional fragment for C-series compounds, suggesting a loss of *M* 68, was attributed to the C-26 prenyl group. Further confirmation was found in the fact that this fragment was not observed for NAB and NAB₄ in which the prenyl group is cyclised and therefore less readily lost during CID. The HR-ESI-MS² spectra of

DH-NAA₄ and NAA₁ were also consistent with the fragmentation patterns observed for all other nodulisporic acids analysed.

Given the consistent and predictable way in which the nodulisporic acids were observed to behave when analysed by HR-ESI-MS² it was possible to predict fragmentation patterns for biosynthetic intermediates. This allowed for rapid and accurate identification of nodulisporic acids in crude extracts where purification was not possible due to instability or low abundance. High resolution masses, key fragments, and annotated HR-ESI-MS² spectra for all nodulisporic acids identified are reported below.

Table S3: HR-ESI-MS² analysis of nodulisporic acids

Name	Formula	Exact Mass	Calc. for [M+H] ⁺	HRMS Obs. (Appm)	MS ² Fragments (%relative intensity)
Emindole SB	C ₂₈ H ₃₉ NO	405.3032	406.3104	406.3093 (2.81)	130 (100)
NAF	C28H37NO3	435.2773	436.2846	436.2856 (-2.25)	130 (100)
NAE	C38H53NO3	571.4025	572.4098	572,4098 (0.91)	266 (100)
NAD	C38H49NO4	583.3662	584.3734	584.3743 (-1.48)	526 (60), 280 (40), 222 (100)
NAD ₁	C ₃₈ H ₄₉ NO ₅	599.3611	600.3684	600.3685 (-0.25)	542 (60), 280 (60), 222 (100)
NAD ₂	C ₃₈ H ₅₁ NO ₆	617.3716	618.3789	618.3799 (-1.59)	560 (70), 280 (30), 222 (100)
NAD ₄	C ₃₈ H ₅₁ NO ₄	585.3818	586.3891	586.3887 (0.66)	528 (70), 280 (40), 222 (100)
NAD ₄ -OMe	C ₃₉ H ₅₃ NO ₄	599.3975	600.4047	600.4064 (-2.77)	542 (100), 280 (65), 222 (40)
NAD ₅	C ₃₈ H ₄₉ NO ₄	583.3662	584.3734	584.3737 (-0.45)	526 (70), 280 (30), 222 (100)
NAD ₆ *	C ₃₈ H ₅₁ NO ₅	601.3767	602.3840	602.3829 (-1.83)	544 (60), 280 (45), 222 (100)
DH-NAC	C43H57NO4	651.4288	652.4360	652.4346 (2.2)	594 (70), 348 (90), 290 (100)
DH-NAC ₁	C43H57NO5	667.4237	668.4310	668.4311 (-0.22)	610 (60), 348 (100), 290 (95), 222 (15)
DH-NAC ₂	C43H59NO6	685.4342	686.4415	686.4415 (0.0)	628 (40), 348 (100), 290 (80), 222 (5)
DH-NAC ₄	C ₄₃ H ₅₉ NO ₄	653.4444	654.4517	654.4516 (0.13)	596 (85), 348 (90), 290 (100), 222 (10)
DH-NAC₅	C43H57NO4	651.4288	652.4360	652.4373 (-1.94)	594 (90), 348 (70), 290 (100), 222 (10)
DH-NAC ₆	C ₄₃ H ₅₉ NO ₅	669.4393	670.4466	670.4452 (2.09)	612 (70), 348 (80), 290 (100), 222 (20)
NAC	C43H57NO5	667.4237	668.4310	668.4328 (-2.77)	610 (20), 364 (100), 306 (50), 288 (30)
NAC ₁	C43H57NO6	683.4186	684.4259	668.4259 (2.29)	626 (20), 364 (100), 306 (40), 288 (25)
NAC ₂	C43H59NO7	701.4292	702.4364	702.4346 (2.6)	644 (30), 364 (100), 306 (40), 288 (30)
NAC ₄	$C_{43}H_{59}NO_5$	669.4393	670.4466	670.4466 (0.3)	612 (30), 364 (100), 306 (50), 288 (30)
NAC ₅	C43H57NO5	667.4237	668.4310	668.4324 (-2.17)	610 (40), 364 (70), 306 (100), 288 (30)
NAC ₆	C43H59NO6	685.4342	686.4416	686.4424 (-1.29)	628 (15), 364 (100), 306 (70), 288 (50)
DH-NAB	C ₄₃ H ₅₅ NO ₄	649.4131	650.4204	650.4208 (-0.64)	592 (20), 346 (100), 288 (40)
DH-NAB1	C43H55NO5	665.4080	666.4153	666.4137 (2.4)	608 (20), 346 (100), 288 (35)
DH-NAB ₂	C43H57NO6	683.4186	684.4259	684.4259 (2.29)	626 (15), 346 (100), 288 (30)
DH-NAB ₄	C43H57NO4	651.4288	652.4360	652.4368 (-1.17)	594 (30), 346 (100), 288 (40)
DH-NAB₅	C43H55NO4	649.4131	650.4204	650.4192 (1.82)	592 (30), 346 (100), 288 (50)
NAB	C43H55NO5	665.4080	666.4153	666.4163 (-1.5)	608 (40), 362 (85), 304 (100)
NAB ₁	C ₄₃ H ₅₅ NO ₆	681.4029	682.4103	682.4102 (0.02)	624 (30), 362 (100), 304 (90)
NAB ₂	C43H57NO7	699.4135	700.4208	700.4208 (-0.17)	642 (50), 362 (100), 304 (75)
NAB ₄	C43H57NO5	667.4237	668.4310	668.4300 (1.42)	610 (40), 362 (95), 304 (100)
NAB₅	C43H55NO5	665.4080	666.4153	666.4163 (-1.5)	608 (10), 362 (100), 304 (20)
DH-NAA	C43H53NO5	663.3924	664.3997	664.3977 (2.94)	606 (100), 360 (70), 302 (40)
DH-NAA ₁	C43H53NO6	679.3873	680.3946	680.3940 (0.83)	622 (90), 360 (100), 302 (70)
DH-NAA ₄	C43H55NO5	665.4080	666.4153	666.4155 (-0.3)	608 (100), 360 (100), 302 (50)
NAA	C43H53NO6	679.3873	680.3946	680.3946 (-0.35)	622 (70), 604 (65), 564 (60), 376 (100), 318 (60), 290 (60)
NAA ₁	C ₄₃ H ₅₃ NO ₇	695.3822	696.3895	696.3882 (1.84)	638 (50), 620 (100), 376 (80), 318 (45), 290 (30)
NAA ₂	C ₄₃ H ₅₅ NO ₈	713.3928	714.4001	714.3998 (0.34)	656 (60), 638 (100), 376 (40), 318 (45), 290 (30)
NAA4	C ₄₃ H ₅₅ NO ₆	681.4029	682.4102	682.4117 (-2.18)	624 (70), 606 (100), 376 (90), 318 (35), 290 (40)

*As noted in Figure 3 of the manuscript an EIC-MS² trace for NAD₆ (602 M \rightarrow 280 M, 222 M) will also show a peak for NAD₁ given ¹³C isotopes of NAD₁ (i.e. 600.36 + 2) will closely match the parent mass of NAD₆ and also give the diagnostic 280, 222 M fragments which are common to both NAD₁ and NAD₆.

Emindole SB

0.2

^{100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760} Counts (%) vs. Mass-to-Charge (m/z)

550 575 600 625 650 675 700 725 750 775 800

SUPPORTING INFORMATION

0

100

125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 Counts (%) vs. Mass-to-Charge (m/z)

100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800 Counts (%) vs. Mass-to-Charge (m/z)

100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 Counts (%) vs. Mass-to-Charge (m/z)

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 Counts (%) vs. Mass-to-Charge (m/z)

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 Counts (%) vs. Mass-to-Charge (m/z)

64

-765.83191 -781.77757

775

Isolation of Nodulisporic Acids

Isolation of nodulisporic acids was carried out following procedures adapted from those described in the literature.^[3] To provide sufficient structural evidence for the nodulisporic acids identified, an example of each major series (main-series, 1-series, 2-series, 4-series) and each biosynthetic step (D, C, B, and A) was isolated and characterised. These metabolites were either known compounds or closely related to those previously reported allowing for assignment of NMR data to be confirmed by comparison to the literature.^[3] Analysis of these purified nodulisporic acids by HR-ESI-MS² provided further evidence for their identity and allowed for related intermediates to identified as described above (pg 43).

Isolation of NAD₄

Mycelia from an NAD₄ producing strain (230 g) was extracted with MeOH (2 × 250 mL). The second, then first extracts were passed through a column of HP-20 (80 mL, pre-equilibrated in MeOH). The combined eluents were diluted with H₂O (500 mL) and recycled back through the same column. The loaded column was washed with H₂O (250 mL) and eluted with 250 mL portions of i) 60% acetone/ H₂O (fraction A), ii) 80% acetone/ H₂O (fraction B), and iii) acetone (fraction C). One-third (approx. 200 mg) of fraction B (606.7 mg) was chromatographed on silica gel (40 g, eluting with 3 CV each of 9:1 PE/DCM, 20:1 DCM/EtOAc, EtOAc, 5:1 EtOAc/MeOH, MeOH), from which fractions eluting from EtOAc afforded two samples (13.0 mg and 2.4 mg) enriched in NAD₄.

NMR data see Table S4; HR-ESI-MS see Table S3.

NAD₄-OMe

A sample enriched in NAD₄ (13 mg) was dissolved in 2 mL 1:1 MeOH/DCM, and cooled to 0 °C. To this, 300 μ L TMSCHN₂ (2 M in Et₂O) was added and stirred for at 0 °C for 1 h. The reaction mixture was quenched with 2% AcOH_(aq) and warmed to room temperature over 30 min. The resulting DCM layer was separated by microextraction, dried *in vacuo* and purified by semi-preparative HPLC (C18, 100% MeCN, *t*_R = 9.8 min; then 90% MeCN/H₂O, *t*_R = 17.2–18.5 min) to produce NAD₄-OMe (2.2 mg). Evidence of *O*-methylation at the C-5" carboxyl terminus was confirmed by HR-ESI-MS² and 2D-NMR experiments.

NMR data see Table S4; HR-ESI-MS see Table S3

 $R = Me = NAD_4 - OMe$

Table S4. NMR Data for NAD4 and NAD4-OMe, CDCl3

		NAD ₄					NAD ₄ -OMe	
Position	¹³ C	¹ H (int., mult., J)	COSY	НМВС	NOESY ^a	¹³ C	¹ H (int., mult., J)	
NH-1	-	7.59 (1H, s)	-	2, 14, 15, 27	28(w)	-	7.59 (1H, s)	
2	151.2	-	-	-	-	151.2	-	
3	53.4	-	-	-	-	53.5	-	
4	39.4	-	-	-	-	39.4	-	
5	33.6	1.55 (1H, m)	5b, 6	-	5b	33.6	1.56 ^c (1H, m)	
		1.90 (1H, m)	5a, 6, 7(w)	-	5a, 28		1.91 [°] (1H, m)	
6	27.9	1.84 (2H, m)	5a, 5b, 7	-	7, 29, 30	27.9	1.84 (2H, m)	
7	73.5	3.56 (1H, dd, J = 6.9, 6.9 Hz)	5b(w), 7	30	6, 9, 2"b	73.5	3.55 (1H, appt t, <i>J</i> = 7.4 Hz)	
8	41.4	-	-	-	-	41.4	-	
9	40.2	1.70 (1H, m)	10a, 10b	-	7, 28	40.2	1.71 (1H, m)	
10	22.9	1.46 (1H, m)	9, 10b	-	-	22.9 ^b	1.45 ^c (1H, m)	
		1.61 (1H, m)	9, 10a	-	-		1.60 ^c (1H, m)	
11	25.2	1.61 (1H, m)	11b, 12	-	-	25.2	1.59 ^c (1H, m)	
		1.80 (1H, m)	11a, 12	-	-		1.79 ^c (1H, m)	
12	48.6	2.74 (1H, m)	11a, 11b, 13a, 13b	-	29	48.7	2.74 (1H, m)	
13	27.6	2.31 (1H, dd, J = 13.3, 10.7 Hz)	12, 13b	2(w), 12(w), 14	28	27.6	2.30 ^c (1H, dd, J =12.9, 10.4 Hz)	
		2.66 (1H, dd, J=13.4, 6.5 Hz)	12, 13a	2, 3, 12, 14	-		2.66 ^c (1H, dd, J=13.3, 6.4 Hz)	
14	118.6		-	-	-	118.7		
15	125.0		-	-	-	124.8	-	
16	109.8	7.49 (1H, s)	26	14, 17, 25, 27	-	109.8	7.49 (1H, s)	
17	139.2		-	-	-	139.1 ^d	-	
18	132.8		-	-	-	132.6 ^d		
19	119.8	5.95 (1H, d, <i>J</i> =3.0 Hz)	23	18, 20, 23	31, 32	119.6 ^c	5.95 (1H, d, J = 3.0 Hz)	
20	72.8		-	-	-	72.8	-	
O-21	-		-	-	-		-	
22	74.6		-	-	-	74.6	-	
23	48.7	2.92 (1H, ddd, J=10.7, 7.8, 3.0 Hz)	19, 24a, 24b	17, 22	33	48.6	2.93 (1H, m)	
24	33.5	2.69 (1H, dd, J=16.0, 8.4 Hz)	23, 24b, 26	22, 23(w), 25	24b, 34	33.5	2.68 ^c (1H, dd, J =16.2, 8.0 Hz)	
		3.13 (1H, dd, J = 16.0, 9.3 Hz)	23, 24a, 26	17, 18, 23, 25, 26(w)	24a		3.13 ^c (1H, dd, J =16.0, 9.1 Hz)	
25	138.2		-	-	-	138.0 ^d	-	
26	107.6	7.14 (1H, s)	16, 24a, 24b	15, 18, 24	-	107.6	7.13 (1H, s)	
27	141.4		-	-	-	141.5	-	
28	14.6	0.99 (3H, s)	-	2, 3, 4, 12	NH-1(w), 5b,	14.6	0.99 (3H, s)	
29	19.4	1 12 (3H_s)		3459	9, 13a 6_12	19.3	1 12 (3H s)	
30	16.4	0.85 (3H s)		7 8 9 1"	6,1"a	16.4	0.85 (3H s)	
31	30.1 ^b	1 35 ^b (3H s)		19 20 32	19	30.1 ^b	$1.35^{b}(3H s)$	
32	30.2 ^b	1.33 ^b (3H, s)		19, 20, 31	19	30.2 ^b	$1.34^{b}(3H s)$	
33	32.1	1.34 (3H s)	24	22 23 34	23	32.1	1 33 (3H s)	
34	22.1	1.09 (3H s)	22	22, 23, 34	249	22.1 22.3 ^b	1.09 (3H, s)	
1"	36.0	1.09 (31, s)	55 1"h 2"a 2"h	22, 23, 33	24a 30.3"(w)	36.1	1.09 (31, 3)	
	50.0	1.70 (114 m)	1"2,2"2,2"b	-	2"(w)	50.1	1 60 (114 m)	
2"	22.7	2.10(1H, m)	1 a, z a, z b 1"a 1"b 2"b 2"		5 (W)	22 Eb	2.06 ⁶ (1H, m)	
2	22.1	2.10(1H, m)	1 a, 1 b, 2 b, 3	-	-	22.5	2.00° (1H, III)	
2"	144.0	2.20(11, 11)	1 a, 1 b, 2 a, 5	-	/ 1"=() 1"b()	140 7	2.10 (10, 10)	
J 1"	144.9	0.30 (111, 14, <i>3 = 1</i> .4, 1.0 HZ)	∠ a, ∠ u, o	5,0	ia(w), iD(W)	142.7	0.70 (1⊓, tq, J = 7.4, 1.3 ⊓Z)	
4 5"	120.0		-	-	-	160 70	-	
5 6"	170.9	1.00 (211 a)	-	-	-	100.7	-	
6" 014	12.3	1.88 (3H ,S)	J"	3", 4", 5"	-	12.5	1.87 (3H ,S)	
OMe	-	-	-	-	-	51.9	3.74 (3H, s)	

^aMixing time = 0.5 s. Selected correlations. ^bInterchangeable within column. ^cobtained from HSQC experiment ^dobtained from HMBC experiment

Isolation of NAD & NAD1

Mycelia from an NAD producing strain (320 g wet weight approx.) was extracted with EtOAc (500 mL approx.) overnight, filtered, and extracted for a second time overnight. The combined extracts were washed with brine and solvent removed in vacuo to give a crude brown oil (3.6 g) which was dissolved in DCM:MeOH (9:1) and fractionated using flash chromatography. Fraction B (15 mg) was further purified by semi-preparative HPLC (column#2, 80% B, isocratic, 3.0 mL/min) which afforded NAD (0.8 mg) as a white solid. Fractions D and E were combined and purified by semi-preparative HPLC using the same conditions as described for NAD, this yielded NAD₁ (1.1 mg) as a white powder.

NMR Data see Tables S5 and S6, HR-ESI-MS Data see Table S3

Table S5: NMR Data for NAD, CDCl₃.

Position	¹³ C*	¹ H	COSY	НМВС
1 (N)	-	7.60 (1H, s)	-	27
2	150.7	-	-	-
3	53.2	-	-	-
4	38.9	-	-	-
5a	33.2	n.o.	-	-
5b		n.o.	-	-
6a	25.7	1.86 (1H, m)	7	-
6b		1.86 (1H, m)	7	-
7	76.6	3.44 (1H, dd, J = 11.3, 4.6 Hz)	6a, 6b	-
8	47.2	-	-	-
9	44.5	1.68 (1H, m)	-	-
10a		n.o.	-	-
10b		n.o.	-	-
11a		n.o.	-	-
11b		n.o.	-	-
12	48.7	2.73 (1H, m)	-	13a, 13b
13a	27.3	2.65 (1H, dd, J = 13.3, 6.4 Hz)	13b	2, 3, 12, 14
13b		2.30 (1H, dd, J = 13.3, 10.6 Hz)	13a	12
14	118.5	-	-	-
15	124.8	-	-	-
16	109.6	7.49 (1H, s)	-	14, 17, 18, 27
17	138.0	-	-	-
18	139.2	-	-	-
19	119.7	5.95 (1H, d, J = 3 Hz)	23	-
20	72.7	-	-	-
21 (0)		-	-	-
22	74.4	-	-	-
23	48.5	2.93 (1H, m)	19, 24a, 24b	-
24a	33.2	3.13 (1H, dd, J = 15.9, 9.3 Hz)	23, 24b	-
24b		2.69 (1H, dd, J = 15.9, 7.8 Hz)	23, 24a	-
25	132.7	-	-	-
26	107.5	7.14 (1H, s)	-	25, 15
27	141.5	-	-	-
28	14.4	1.01 (3H, s)	-	2, 3, 4, 12
29	19.2	1.16 (3H, s)	-	3, 9, 4, 5
30	10.9	1.09 (3H, s)	-	1", 7, 8, 9
31	29.9	1.35 (3H, s)	-	19, 20, 32
32	31.8	1.33 (3H, s)	-	19, 20, 31
33	22.1	1.09 (3H, s)	-	22, 23, 34
34	30.9	1.34 (3H, S)	-	22, 23, 33
1" 2"	153.4	5.92 (1H, a , J = 15.4 Hz)	2" 4" 2"	-
2 2.11	125.6	6.40 (1H, dd, J = 15.4, 11.2 Hz)	1", 3"	-
5" 4"	139.9	7.32 (1H, 0, J = 11.2 HZ)	Z	-
4 r"	124.8	-	-	-
5" C"	109.9	-	-	-
0	12./	1.30 (30, 5)	-	3,4,5

n.o. = not observed, signal obscured or not resolved. *Chemical shift obtained from HSQC and HMBC experiments

Table S6: NMR Data for NAD1, CDCl3.

Position	¹³ C	¹ H	COSY	НМВС
1 (N)	-	7.61 (1H, s)	-	-
2	150.9	-	-	-
3	52.7	-	-	-
4	39.4	-	-	-
5a	30.1	2.04 (1H, m)	5b	-
5b		1.94 (1H, m)	5a	-
6a	30.6	2.07 (1H, m)	-	-
6b		2.10 (1H, m)	-	-
7	106.5	-	-	-
8	49.2	-	-	-
9	40.4	n.o.	-	-
10a	25.7	1.83 (1H, m)	11b, 10b	-
10b		1.76 (1H, m)	11b, 10a	-
11a	24.9	1.66 (1H, m)	12, 11b	-
11b		1.50 (1H, m)	11a, 10a, 10b	-
12	48.7	2.80 (1H, m)	13a, 13b, 11a	13
13a	27.5	2.33 (1H, m)	12, 13b	2, 14
13b		2.68 (1H, m)	12, 13a	2, 3, 12, 14
14	118.3	-	-	-
15	124.9	-	-	-
16	109.7	7.50 (1H, s)	-	26, 27, 17, 18, 14, 15
17	138.2	-	-	-
18	139.1	-	-	-
19	119.7	5.95 (1H, d, J = 3.0 Hz)	23	23, 25, 20, 31
20	72.6	-	-	-
21 (0)	-	-	-	-
22	74.5	-	-	-
23	48.9	2.93 (1H, ddd, J = 9.2, 8.6, 3.0 Hz)	19, 24a, 24b	18, 19, 22, 24, 33, 34
24a	33.3	2.68 (1H, m)	23, 24b, 26	17, 23, 22
24b		3.13 (1H, dd, J = 15.9, 9.2 Hz)	23, 24a, 26	17, 18, 23, 25, 26
25	132.7	-	-	-
26	107.8	7.14 (1H, s)	24a, 24b	25, 24, 15
27	141.3	-	-	-
28	14.5	0.99 (3H, s)	-	12, 2, 3, 4
29	17.6	1.15 (3H, s)	-	3, 4, 5, 9
30	16.4	1.08 (3H, s)	-	7, 1", 8, 9
31	29.9	1.35 (3H, s)	-	20, 32
32	31.8	1.34 (3H, s)	-	20, 31
33	22.0	1.09 (3H, s)	-	22, 23, 34
34	30.1	1.34 (3H, s)	-	22, 23, 33
1"a	44.1	1.77 (1H, m)	2″, 1″b	-
1"b		2.33 (1H, m)	2″, 1″a	7
2"	72.7	4.88 (1H, ddd, J = 8.1, 8.1, 8.1 Hz)	3", 1"a, 1"b a"	-
3"	146.3	6.95 (1H, d, J = 8.1 Hz)	2″	-
4" -"	126.8	-	-	-
5"	170.9	-	-	-
6"	12.7	1.89 (3H, s)	-	3", 4", 5"

n.o. = not observed, signal obscured or not resolved.

Isolation of NAD₂

Mycelia from an NAD₂ producing strain (380 g wet weight approx.) was extracted with EtOAc (750 mL approx.) overnight, filtered, and extracted for a second time overnight. The combined extracts were washed with brine and solvent removed in vacuo to give a dark brown oil (3.6 g) which was dissolved in DCM: MeOH (9:1) and fractionated using flash chromatography. Fractions containing NAD₂ were identified by LC-MS and TLC, combined (60 mg approx.) and purified by semi-preparative HPLC (column#1, 90% B, isocratic, 3.5 mL/min). Collections of the major peak were freeze dried to give a white powder (4.9 mg). Analysis of this sample by NMR spectroscopy showed the major product contained an eastern hemisphere consistent with that of a 2-series nodulisporic acid. The characteristic H-19 signal was not present in the spectrum and further analysis identified the metabolite as an isomerised product of NAD₂ containing an 18-23 alkene instead of the expected 18-19-alkene. The migration of this double bond has been reported in previous isolations of nodulisporic acids and is a product of degradation during workup rather than an alternative biosynthetic product.^[3a]

72

NMR Data see Table S7. HR-ESI-MS see Table S3.

SUPPORTING INFORMATION

Table S7: NMR Data for 18-23 alkene-NAD₂, CDCl₃.

Position	¹³ C*	¹ H	COSY	НМВС
1 (N)	-	7.66 (1H, s)	26	14, 2, 15, 17
2	149.6	-	-	-
3	52.3	-	-	-
4	39.5	-	-	-
5a	31.6	1.58 (1H, m)	5b	-
5b		2.20 (1H, m)	5a	-
6	n.o.	n.o.	-	-
7	112.9	-	-	-
8	48.8	-	-	-
9	46.5	1.80 (1H, m)	10a, 10b	3, 8, 10, 30, 1"
10a	23.2	1.49 (1H, m)	9, 10b, 11a, 11b	8, 9
10b		1.41 (1H, m)	9, 10a, 11a, 11b	-
11a	25.3	1.79 (1H, m)	11b, 12, 10a, 10b	-
11b		1.59 (1H, m)	11a, 12, 10a, 10b	3, 12
12	49.0	2.77 (1H, m)	13a, 13b, 11a, 11b	-
13a	27.5	2.34 (1H, m)	13b, 12	2, 3, 11, 12, 14
13b		2.69 (1H, m)	13a, 12	2, 3, 12, 14
14	118.2	-	-	-
15	123.7	-	-	-
16	107.4	7.35 (1H, s)	26, 19	26, 15, 17, 19, 27
17	138.3	-	-	-
18	141.7	-	-	-
19	36.4	3.37 (2H, m)	16, 24	18, 17, 25, 23
20	73.5	-	-	-
21 (0)	-	-	-	-
22	71.4	-	-	-
23	136.2	-	-	-
24	34.3	2.45 (2H, m)	19	18, 17, 25
25	131.8	-	-	-
26	107.2	7.22 (1H, s)	1, 16	16, 14, 15, 17, 25, 23
27	143.0	-	-	-
28	14.4	1.00 (3H, s)	-	2, 3, 4, 12
29	17.4	1.10 (3H, s)	-	3, 4, 5, 9
30	16.4	1.12 (3H, s)	-	7, 8, 9, 1"
31/32	30.4	1.42 (6H, s)	-	18, 20, 31/32
33/34	29.6	1.32 (6H, s)	-	22, 24, 33/34
1"a	40.0	1.74 (1H, m)	1"b, 2"	2", 3", 8, 9
1"b		1.49 (1H, m)	1"a	3", 7, 8, 30, 9
2"	78.4	4.60 (1H, dd, J = 5.5, 3.1 Hz)	3", 1"a, 6"	3", 8, 7
3"	80.6	4.03 (1H, m)	2", 6", 4"	5", 2", 4"
4"	40.2	2.70 (1H, m)	3", 6"	5", 6", 3"
5"	176.8	-	-	-
6"	13.2	1.13 (1H, m)	4", 2", 3"	3", 4", 5"

n.o. = not observed, signal obscured or not resolved. *Chemical shift obtained from HSQC and HMBC experiments

Isolation of DH-NAA₄ & DH-NAC₄

Mycelia from a DH-NAA₄ producing strain (260 g wet weight approx.) was extracted with EtOAc (500 mL approx.) overnight, filtered, and extracted for a second time overnight. The combined extracts were washed with brine and solvent removed in vacuo to give a buttery yellow solid (2.1 g) which was dissolved in DCM: MeOH (9:1) and fractionated using flash chromatography. Fractions containing the target nodulisporic acids were identified by LC-MS and TLC, combined (250 mg) and purified by semi-preparative HPLC (column#1, 95% B, isocratic, 3.5 mL/min). Collections of the two major peaks were freeze dried and analysed by NMR identifying them as DH-NAA₄ (0.2 mg) and DH-NAC₄ (0.1 mg).

NMR Data see Tables S8 and S9, HR-ESI-MS see Table S3

DH-NAA4

DH-NAC₄

Table S8: NMR Data for DH-NAA4, CDCl3.

Position	¹³ C*	¹ H	COSY	НМВС
1 (N)	-	-	-	-
2	153	-	-	-
3	55.8	-	-	-
4	39.1	-	-	-
5a	32.2	1.86 (1H, m)	5b	-
5b		1.68 (1H, m)	5a	-
6a	27.5	1.70 (1H, m)	6b, 7	-
6b		1.75 (1H, m)	6a, 7	-
7	73.4	3.53 (1H, dd, J = 9.6, 5.8 Hz)	6a, 6b	8
8	46.9	-	-	-
9	41.3	1.62 (1H, m)	-	-
10	n.o.	n.o.	-	-
11	25.3	n.o.	-	-
12	47.4	2.84 (1H, m)	13a	-
13a	27.6	2.30 (1H, dd, J = 13.8, 10.7 Hz)	13b, 12	2
13b		2.74 (1H, dd, J = 13.8, 6.5 Hz)	13a	2, 3, 15
14	121.7	-	-	-
15	122	-	-	-
16	116.3	7.70 (1H, s)	-	25, 27, 18, 14
17	n.o.	-	-	-
18	136.1	-	-	-
19	120.8	6.01 (1H, d, J = 3.0 Hz)	23	18, 20
20	72.6	-	-	-
21 (O)	-	-	-	-
22	74.4	-	-	-
23	49.2	3.00 (1H, ddd, J = 9.3, 7.7, 3.0 Hz)	19, 24a, 24b	-
24a	31.8	2.8 (1H, dd, J = 17.6, 7.7 Hz)	24b, 23	18, 22, 26
24b		3.41 (1H, dd, J = 17.6, 9.3 Hz)	24a, 23	18
25	138.5	-	-	-
26	113.3	-	-	-
27	161.6	-	-	-
28	15	0.91 (3H, s)	-	2, 3, 4, 12
29	19.4	1.10 (3H, s)	-	3, 4, 5, 9
30	16.6	0.84 (3H, s)	-	7, 9, 1"
31	29.9	1.36 (3H, s)	-	32, 19, 20
32	31.9	1.34 (3H, s)	-	31, 19, 20
33	22.2	1.08 (3H, s)	-	23, 34, 22
34	30	1.36 (3H, s)	-	23, 33, 22
1'	197.3	-	-	-
2'	75.9	4.97 (1H, s)	-	27, 1', 3'
3'	140	-	-	-
4'a	122.3	4.93 (s, br)	-	-
4'b		5.15 (s, br)	-	-
5'	n.o.	n.o.	-	-
1"a	35.9	1.44 (1H, m)	-	8
1"b		1.71 (1H, m)	-	-
2"a	22.8	2.09 (1H, m)	3", 2"b	-
2"b		2.19 (1H, m)	3", 2"a	-
3"	144.9	6.89 (1H, dd, J = 6.4, 6.4 Hz)	2"a, 2"b, 6"	-
4"	126.4	-	-	-
5"	169.6	-	-	-
6"	12.2	1.87 (3H, s)	3"	4" <i>,</i> 5"

n.o. = not observed, signal obscured or not resolved. *Chemical shift obtained from HSQC and HMBC experiments

Table S9: NMR Data of DH-NAC4, CDCl3.

Position	¹³ C*	¹ H	COSY	НМВС
1 (N)	-	7.69 (1H, brs)	-	-
2	150.7	-	-	-
3	53.0	-	-	-
4	39.2	-	-	-
5	33.4	n.o.	-	-
6	n.o.	n.o.	-	-
7	73.4	3.51 (1H, m)	-	-
8	35.8	-	-	-
9	40.0	1.68 (1H, m)	-	-
10	n.o.	n.o.	-	-
11	n.o.	1.61 (2H, m)	12	-
12	48.7	2.71 (1H, m)	13a, 13b	-
13a	n.o.	2.30 (1H, dd, J = 13.2, 10.7 Hz)	12, 13b	-
13b		2.65 (1H, dd, J = 13.2, 6.4 Hz)	12, 13a	-
14	n.o.	-	-	-
15	n.o.	-	-	-
16	107.8	7.39 (1H, s)	-	-
17	n.o.	-	-	-
18	n.o.	-	-	-
19	119.5	5.93 (1H, d, J = 3.0 Hz)	23	-
20	72.7	-	-	-
21 (0)	-	-	-	-
22	74.4	-	-	-
23	48.5	2.92 (1H, ddd, J = 9.4, 7.5, 3.0 Hz)	19, 24a, 24b	-
24a	31.6	3.13 (1H, dd, J = 15.8, 9.4 Hz)	23, 24b	-
24b		2.57 (1H, dd, J = 15.8, 7.5 Hz)	23, 24a	-
25	n.o.	-	-	-
26	n.o.	-	-	-
27	n.o.	-	-	-
28	14.5	0.99 (3H, s)	-	2, 3, 4, 12
29	19.2	1.11 (3H, s)	-	3, 4, 5, 9
30	16.3	0.86 (3H, S)	-	7, 8, 9, 1
31	30.1	1.35 (3H, S)	-	19, 20, 32
3Z 22	31.9	1.33 (3H, S)	-	19, 20, 31
20	50.0 22.1	1.00 (24 c)	-	54, ZZ
54 1's	22.1	$1.09(3\pi, 3)$	- 5' 1'h	22, 23, 33
1'h	20.2	3.55 (1H, m)	1'a 2' 1'	
2'	122 5	5.35(1H m)	1 a, 2 , 4 1' 5' 1'h	
2	132.5	-	-	-
۵'	25.6	1 76 (3H s)	2'	2' 3' 5'
5'	18.1	1.86 (3H, s)	- 1'a. 2'	2', 3', 4'
1"a	41.2	1.71 (1H, m)	1"b. 2"a. 2"b	-
1"b		1.45 (1H. m)	1"a. 2"a. 2"b	-
2"a	n.o.	2.19 (1H, m)	1"a, 1"b. 2"b. 3"	-
2"b	-	2.10 (1H, m)	1"a, 1"b. 2"a. 3"	-
3"	144.7	6.89 (1H, dd, J = 6.4. 6.4 Hz)	2"a, 2"b. 6"	-
4"	126.2	-		-
5"	168.9	_	-	-
6"	12.2	1.88 (3H, s)	3"	3", 4", 5"

n.o. = not observed, signal obscured or not resolved. *Chemical shift obtained from HSQC and HMBC experiments

Isolation of NAC

Mycelia from an NAC producing strain (120 g) was extracted with MeOH (2 × 250 mL). The second, then first extracts were passed through a bed of HP-20 beads (80 mL, pre-equilibrated in MeOH). The combined eluents were diluted with 750 mL of H₂O to a final concentration of 40% MeOH/ H₂O and cycled back through the same HP-20 column. The loaded beads were washed with H₂O (250 mL) and then eluted with 250 mL portions of i) 50% acetone/ H₂O (fraction A), ii) 80% acetone/ H₂O (fraction B) and iii) acetone (fraction C). Fractions B and C, verified by TLC and LC-MS analysis to contain nodulisporic acid compounds, were combined (667 mg) and chromatographed over silica gel (40 g, MeOH/CHCl₃, 1–100%, fractions D–H). Fraction E (5–6% MeOH/CHCl₃, 378 mg) was further chromatographed over silica gel (24 g, EtOAc/*n*-hexane, 0–100%, 17 CV; EtOAc, 7 CV, fractions I–L). The MeOH-soluble portion of fraction L (EtOAc, 32.4 mg) was purified using semipreparative HPLC (column#1, 85% acetonitrile/ H₂O, 3.3 mL/min) to give NAC (t_R = 5.9 min).

Fraction F (6–7% MeOH/CHCl₃) from the first silica column was purified by semipreparative HPLC (C18, 80% acetonitrile/H₂O, 3.3 mL/min) to afford NAC (t_R = 9.7 min) and combined with the earlier HPLC fraction to give a total yield of 0.6 mg. NMR spectra of our sample of NAC recorded in CDCl₃ were consistent with literature data.^[3b]

NMR data see Table S10; HR-ESI-MS see Table S3

NAC

Table S10. NMR Data for NAC, CDCl₃.

Position	¹³ C*	¹ H	COSY	НМВС
1 (N)		7.81 (1H, br s)	-	2, 14, 15, 27
2	152.0	-	-	-
3	53.1	-	-	-
4	39.1	-	-	-
5a	33.2	1.52 (1H, m)	5b, 6a	-
5b		1.99 (1H, m)	5a	-
6a	25.6	1.86 (1H, m)	5a, 6b, 7	-
6b		1.90 (1H, m)	6a, 7	-
7	76.5	3.44 (1H, dd, J = 10.8, 4.2 Hz)	6a, 6b	-
8	47.4	-	-	-
9	44.5	1.68 (1H, m)	-	-
10	24.8	1.46 (2H, m)	11a, 11b	-
11a	25.1	1.57 (1H, m)	10, 11b, 12(w)	-
11b		1.72 (1H, m)	10, 11a	-
12	48.9	2.72 (1H, m)	11a(w), 13a, 13b	-
13a	27.4	2.30 (1H, dd, J = 13.3, 10.8 Hz)	12, 13b	-
13b		2.65 (1H, dd, J = 13.3, 6.4 Hz)	12, 13a	2, 3, 14
14	118.7	-	-	-
15	126.7	-	-	-
16	107.4	7.40 (1H, s)	-	14, 15, 17, 25, 26, 27
17	135.4	-	-	-
18	131.9	-	-	-
19	120.2	5.96 (1H, d, J = 2.8 Hz)	23	18, 20, 23
20	72.7	-	-	-
21 (0)	-	-	-	-
22	73.9	-	-	-
23	60.1	2.69 (1H, dd, J = 4.6, 2.8 Hz)	19, 24	-
24	76.5	5.08 (1H, d, J = 4.6 Hz)	23	22, 25
25	136.1	-	-	-
26	121.9	-	-	-
27	141.1	-	-	-
28	14.4	1.02 (3H, s)	-	2, 3, 4, 12
29	19.1	1.14 (3H, s)	-	3, 4, 5, 9
30	11.0	1.09 (3H, s)	-	7, 8, 9, 1"
31	32.0	1.34 (3H, s)	-	19, 20, 32
32	29.85	1.32 (3H, s)	-	19, 20, 31
33	29.85	1.50 (3H, s)	-	22, 23, 34
34	22.6	1.07 (3H, s)	-	22, 23, 33
1'	27.0	3.79 (2H, m)	2'	-
2'	123.1	5.38 (1H, br t, <i>J</i> = 6.7 Hz)	1', 4', 5'	-
3'	133.0	-	-	-
4'	25.6	1.76 (3H, s)	2', 5'	2', 3', 5'
5'	18.1	1.90 (3H, s)	2', 4'	2', 3', 4'
1''	153.5	5.91 (1H, d, <i>J</i> = 15.3 Hz)	2''	-
2''	125.9	6.39 (1H, dd, <i>J</i> = 15.3, 11.5 Hz)	1", 3"	-
3''	139.9	7.33 (1H, d, <i>J</i> = 11.5 Hz)	2", 6"	-
4''	125.2	-	-	-
5"	171.1	-	-	-
6''	12.6	1.98 (3H, br s)	3"	3", 4", 5"

n.o. = not observed, signal obscured or not resolved. *Chemical shifts obtained from HSQC and HMBC experiments.

SUPPORTING INFORMATION

Isolation of NAB₄

Mycelia from an NAB₄ producing strain (240 g wet weight approx.) was extracted with EtOAc (500 mL approx.) overnight filtered and extracted for a second time overnight. The combined extracts were washed with brine and solvent removed in vacuo to give a buttery yellow solid (2.8 g) which was dissolved in DCM: MeOH (9:1) and fractionated using flash chromatography. Fractions containing indole diterpenes were identified by TLC, combined, and subjected to a second round of flash chromatography. Fractions containing NAB₄ were identified by LC-MS and combined (200 mg). Semi-preparative HPLC (column#1, 95% B, isocratic, 3.5 mL/min) was used to purify the major peak which was freeze dried to give a white powder (12 mg). 2D NMR Showed that this sample contained two indole diterpene products which had signals consistent with 2' epimers of NAB₄ which are known to be common breakdown products of nodulisporic acids.^[4] Further purification of this sample led to degradation of the target metabolites.

Table S11: NMR Data for NAB4 and its 2'-epimer, CDCl3.

Position	130*	14	0057	LIMBC
POSICION	C	<u>-n</u>	031	HIVIDC
Epimer 1				
1'a	n.o.	3.30 (1H, d, J = 15.8 Hz)	1'b, 2'	26, 3', 27
1'b		4.06 (1H, m)	1'a, 2'	2', 26, 3', 27
2'	68.6	5.20 (1H, d, J = 7.0 Hz)	1'a, 1'b	5', 4', 27
3'	146.3	-	-	-
4'	112.3	4.76 (m)	5'	16.7
5'	16.7	1.22 (3H, s)	4'	4', 3'
26	115.3	-	-	-
27	153.8	-	-	-
Epimer 2				
1'a	n.o.	3.47 (1H, d, J = 17.6 Hz)	1'b, 2'	26, 3', 27
1'b		4.04 (1H, m)	1'a, 2'	2', 26, 3', 27
2'	68.6	5.20 (1H, d, J = 7.0 Hz)	1'a, 1'b	5', 4', 27
3'	145.0	-	-	-
4'	113.6	4.85 (m)	5'	16.7
5'	16.7	1.29 (3H, s)	4'	4', 3'
26	123.9	-	-	-
27	152.5	-	-	-

n.o. = not observed, signal obscured or not resolved.

*Chemical shift obtained from HSQC and HMBC experiments

Isolation of NAA₁ and NAB

Mycelia from an NAA₁ producing strain (500 g wet weight approx.) was extracted with MeOH (1 L). The extract was passed through a bed of HP-20 beads (250 mL, pre-equilibrated in MeOH). The eluent was diluted with H₂O (1:1) and cycled back through the same HP-20 beads. The loaded beads were washed with 500 mL portions of i) H₂O, ii) 50% acetone/H₂O, iii) 80% acetone/H₂O, and iv) acetone. Target nodulisporic acids were identified by LC-MS in the 50% and 80% fractions which were subsequently combined and subjected to silica gel chromatography (CHCl₃: MeOH). Fractions containing NAA₁ were identified by LC-MS and the target purified using semi-preparative HPLC (Column#1, 80–90% B over 20 min, 3.5 mL/min) to give NAA₁ as a yellow powder (2.8 mg) and NAB as a white powder (0.1 mg).

NMR data see Table S12 and S13; HR-ESI-MS see Table S3.

Table S12: NMR Data for NAA₁, CD₃OD.

Position	¹³ C	¹ H	COSY	НМВС
1 (N)	-	-	-	-
2	155.7	-	-	-
3	56.5	-	-	-
4	40.3	-	-	-
5a	31.1	1.73 (1H, m)	6, 5b	-
5b		1.91 (1H, m)	5a, 6	4
6	30.0	1.86 (2H, m)	5a, 5b	4
7	107.5	-	-	-
8	50.3	-	-	-
9	42.1	1.81 (1H, dd, J = 2.6, 12.8 Hz)	10a, 10b	29, 30
10a	25.7	1.58 (1H, m)	9, 10b, 11a, 11b	-
10b		1.72 (1H, m)	9, 10a, 11b	12, 9
11a	26.6	1.71 (1H, m)	12, 11b, 10a	12, 9
11b		1.88 (1H, m)	12, 11a, 10a, 10b	3
12	49.0	2.96 (1H, m)	13a, 13b, 11a, 11b	-
13a	28.2	2.37 (1H, m)	12, 13b	12, 2, 14
13b		2.77 (1H, dd, J = 13.8, 6.5 Hz)	12, 13a	12, 2, 14
14	123.0	-	-	-
15	123.1	-	-	-
16	117.0	7.76 (1H, s)	24	27, 26, 17, 25, 18, 14, 15
17	137.0	-	-	-
18	135.2	-	-	-
19	121.9	6.12 (1H, d, J = 3.0 Hz)	23	18, 20, 23, 31
20	74.1	-	-	-
21 (O)	-	-	-	-
22	75.7	-	-	-
23	60.2	2.76 (1H, m)	19, 24	18
24	75.4	5.16 (1H, d, J = 5.9 Hz)	23, 16	22, 23, 18, 25, 26
25	138.4	-	-	-
26	114.6	-	-	-
27	163.2	-	-	-
28	15.2	1.00 (3H, s)	-	12, 2, 3, 4
29	18.1	1.15 (3H, s)	-	2, 3, 4, 9, 5
30	17.1	1.05 (3H, s)	-	7, 9, 1", 8
31	29.9	1.36 (3H, s)	-	19, 20, 32
32	32.0	1.34 (3H, s)	-	19, 20, 31
33	23.2	1.13 (3H, s)	-	22, 23, 34
34	30.2	1.45 (3H, s)	-	33, 23, 22
1	197.7	-	-	-
2	11.2	5.22 (1H, S)	-	1, 3, 4, 5, 27
3'	141.6	-	-	
4'a	117.4	5.18 (1H, m)	4°D, 5°	1, 3, 5
4'D	40.2	5.00 (1H, m)	4 a	-
5	18.3	1.48 (3H, S)	4 a 2" 1"b	-
1"a	45.3	1.69 (1H, m)	2", 1"b	8, 9, 30, 2°, 3°
0"L D	74.0	2.35 (1H, M)	2,1"a	8, 9, 7 7
∠ ۲	74.0	4.5 (1H, M) $(0.0)(11) d_{2} = 0.0 (1.4 + 1-)$	5, 1, 3, 1, D 2", c"	/
3	146.1	υ.υ (1H, aq, J = δ.U, 1.4 HZ)	Ζ,Ο	σ, σ
4" = "	128.7	-	-	-
5" 6"	1/1.8		-	- ר" " " א"
O	12./	1.85 (3H, 0, J = 1.4 HZ)	3	5,3,4

n.o. = not observed, signal obscured or not resolved.

Table S13: NMR Data for NAB, CDCl_{3.}

Position	¹³ C*	¹ H	COSY	НМВС
1 (N)	-	-	-	-
2	151.3	-	-	-
3	55.3	-	-	-
4	38.5	-	-	-
5	31.8	n.o.	-	-
6	25.5	1.77 (2H, m)	7	-
7	76.6	3.41 (1H, m)	6	-
8	47.5	-	-	-
9	44.9	n.o.	-	-
10	n.o.	n.o.	-	-
11	n.o.	n.o.	-	-
12	47.0	2.73 (1H, m)	13a, 13b	-
13a	28.0	2.23 (1H, dd, J = 13.6, 2.8 Hz)	13b, 12	-
13b		2.65 (1H, dd, J = 13.6, 6.3 Hz)	13a, 12	3
14	n.o.	-	-	-
15	n.o.	-	-	-
16	107.4	7.31 (1H, s)	-	27, 17, 18
17	133.2	-	-	-
18	135.4	-	-	-
19	119.9	5.96 (1H, d, J = 2.8 Hz)	23	20
20	72.5	-	-	-
21 (0)	-	-	-	-
22	73.6	-	-	-
23	60.4	2.69 (1H, dd, J = 5.7, 2.8 Hz)	19, 24	-
24	75.9	4.98 (1H, d, J = 5.7 Hz)	23	-
25	n.o.	-	-	-
26	n.o.	-	-	-
27	154.6	-	-	-
28	15.0	0.91 (3H, s)	-	2, 3, 4, 12
29	19.3	1.09 (3H, s)	-	3, 4, 5, 9
30	11.0	1.06 (3H, s)	-	7, 8, 9, 1"
31	32.0	1.32 (3H, s)	-	32, 20
32	29.8	1.33 (3H, s)	-	31, 20, 19
33	23.1	1.12 (3H, s)	-	22, 23, 34
34	30.1	1.48 (3H, s)	-	22, 23, 33
1'a	40.6	3.50 (1H, s, J = 16.4 Hz)	1'b, 2'	-
1'b		4.07 (1H, dd, J = 16.4, 8.0 Hz)	1'a, 2'	-
2'	69.0	5.24 (1H, d, J = 8.0 Hz)	1'a, 1'b	-
3'		-	-	-
4'a	112.9	4.8 (1H, s br)	4'b, 5'	-
4'b		4.72 (1H, s br)	4'a	-
5'	17.0	1.25 (3H, s)	4'a	-
1"	153.8	5.91 (1H, d, J = 15.3 Hz)	2"	-
2"	125.7	6.38 (1H, dd, J = 15.3, 13.0 Hz)	1", 3"	-
3"	n.o.	7.31 (1H, m)	2", 6"	-
4"	n.o.	-	-	-
5"	n.o.	-	-	-
6"	127	1 98 (3H s)	3"	-

n.o. = signal not observed or obscured. *Signals obtained from HSQC and HMBC experiments

Isolation of NAD₆

Mycelia from an NAD₆ producing strain (264 g wet weight) was extracted with EtOAc (500 mL approx.) overnight filtered and extracted for a second time overnight. The combined extracts were washed with brine and solvent removed in vacuo to give a brown solid (2.0 g) which was dissolved in CHCl₃ and fractionated using flash chromatography. Fractions containing NAD₆ were identified by TLC and LC-MS and combined (40 mg). Semi-preparative HPLC (column#1, 70% B, isocratic, 3.5 mL/min) was used to purify the major peak which was freeze dried to give NAD₆ as a white powder (1.6 mg).

NMR data see Table S14; HR-ESI-MS see Table S3.

NAD₆

Table S14: NMR Data for NAD₆, (CD₃)₂CO.

Position	¹³ C*	¹ H	COSY	НМВС
1 (N)	-	9.67 (1H, s br)	-	-
2	152.4	-	-	-
3	54.2	-	-	-
4	40.3	-	-	-
5a	33.5	1.86 (1H, m)		
5b		1.82 (1H, m)		
6a	27.6	1.70 (1H, m)	7	
6b		1.85 (1H, m)	7	
7	74.4	3.90 (1H, dd, J = 10.8, 3.8 Hz)	6a, 6b	
8	42.0	-	-	-
9	42.9	n.o.		
10a	n.o.	1.51 (1H, m)		
10b		1.62 (1H, m)	11b	
11a	25.6	1.66 (1H, m)	12, 11b	
11b		1.77 (1H, m)	11a, 10b	
12	49.6	2.76 (1H, obscured)	11a, 13a, 13b	
13a	27.8	2.29 (1H, dd, J = 13.0, 10.9 Hz)	12, 13b	
13b		2.65 (1H, m)	12, 13a	14
14	118.2	-	-	-
15	n.o.	-	-	-
16	109.9	7.43 (1H, s)	26	14, 17, 18
17	138.2	-	-	-
18	143.0	-	-	-
19	119.3	5.98 (1H, d, J = 3.0 Hz)	23	
20	72.9	-	-	-
21 (0)	-	-	-	-
22	74.6	-	-	-
23	49.7	2.83 (1H, obscured)	19, 24a, 24b	
24a	33.6	2.65 (1H, m)	23, 24b, 26	
24b		3.09 (1H, dd, J = 15.8, 9.3 Hz)	23, 24a, 26	
25	132.7	-	-	-
26	108.2	7.18 (1H, s)	16, 24a, 24b	25
27	n.o.	-	-	-
28	14.6	1.04 (3H, s)		2, 3, 4, 12
29	19.5	1.14 (3H, s)		3, 4, 5, 9
30	16.7	0.88 (3H, s)		7, 8, 9, 1"
31	30.4	1.31 (3H, s)		19, 20, 32
32	32.1	1.26 (3H, s)		19, 20, 31
33	30.0	1.27 (3H, s)		22, 23, 34
34	22.2	1.05 (3H, s)		22, 23, 33
1"a	45.5	1.49 (1H, m)	1"b, 2"	
1"b		1.89 (1H, m)	1"a, 2"	
2"	65.3	4.77 (1H, td, J = 8.4, 4.6 Hz)	1"a, 1"b, 3"	
3"	145.8	6.75 (1H, d, J = 8.8 Hz)	2", 6"	
4"	126.6	-	-	-
5"	169.4	-	-	-
6"	12.5	1.89 (3H, s)	3", 2"	3", 4", 5"

n.o. = signal not observed or obscured. *Signals obtained from HSQC and HMBC experiments

Isolation of NAD₅

Mycelia from an NAD₅ producing strain (208 g wet weight) was extracted with EtOAc (500 mL approx.) overnight filtered and extracted for a second time overnight. The extracts were combined, and solvent removed in vacuo to give a brown-yellow oil (1.05 g) which was dissolved in CHCl₃ and fractionated using flash chromatography. Fractions containing NAD₅ were identified by TLC and LC-MS and combined (67 mg). Preparative HPLC (column#1, 85–100% B over 20 min, 5 mL/min) was used to purify NAD₅ which was freeze dried to give a white powder (<0.1 mg).

NMR data see Table S15; HR-ESI-MS see Table S3.

NAD₅

Table S15: NMR Data for NAD₅, (CD₃)₂CO

Position	¹³ C*	¹ H	COSY**	нмвс
1 (N)	-	9.82 (1H, s)		
2	151.9	-	-	-
3	53.3	-	-	-
4	39.6	-	-	-
5a	33.2	2.11 (1H, m)	5b, 6a, 6b	
5b		2.25 (1H, dd, J = 15.0, 6.8 Hz)	5a, 6a, 6b	
6a	n.o.	2.47 (1H, ddd, J = 16.4, 6.8, 3.3 Hz)	5a, 5b, 6b	
6b		2.67 (1H, m)	5a, 5b, 6a	
7	214.9	-	-	-
8	51.8	-	-	-
9	43.0	n.o.	-	-
10	n.o.	n.o.	-	-
11	n.o.	n.o.	-	-
12	49.7	2.85 (obscured)	13a, 13b	
13a	n.o.	2.70 (1H, dd, J= 13.2, 6.0 Hz)	13b, 12	
13b		2.35 (1H, dd, J = 13.2, 10.7 Hz)	13a, 12	
14	n.o.	-	-	-
15	n.o.	-	-	-
16	109.9	7.45 (1H, s)		
17	n.o.	-	-	-
18	n.o.	-	-	-
19	119.4	5.99 (1H, d, J = 3 Hz)	23	
20	72.9	-	-	-
21 (O)	-	-	-	-
22	74.6	-	-	-
23	49.5	2.81 (obscured)	19, 24a,	
	1010		24b	
24a	n.o.	2.66 (1H, dd, J = 16.0, 7.5 Hz)	23, 24b	
24b		3.09 (1H, dd, J = 16.0, 9.6 Hz)	23, 24a	
25	n.o.	-	-	-
26	108.2	7.18 (1H, s)		
27	n.o.	-	-	-
28	14.7	1.07 (3H, s)		2, 3, 4, 12
29	1/./	1.25 (3H, s)		3, 4, 5, 9
30	21.2	1.07 (3H, s)		7, 8, 9, 1"
31	30.3	1.31 (3H, s)		19, 20, 32
32	32.1	1.26 (3H, S)		19, 20, 31
33	30.1	1.27 (3H, S)		22, 23, 34
34	22.2	1.05 (3H, S)	411 01	22, 23, 34
1.9	38.0	1.87 (1H, M)	1"D, 2"	
1 D		1.51 (1H, M)	1"a, 2"	
2" 2"	n.o.		1"a, 1"b, 3"	
3"	142.7	6.76 (1H, td, J = 7.6, 1.7 Hz)	2", 6"	
4" 5"	128.6	-	-	-
5" 6"	169.4	-	-	-
6"	12.3	1.81 (3H, d, J = 1.7 Hz)	3"	3", 4", 5"

n.o. = signal not observed or obscured. *Signals obtained from HSQC and HMBC experiments **Some correlations confirmed using selective 1D TOCSY (mixing time 50 ms)

SUPPORTING INFORMATION

NMR Spectra

NAD NMR Spectra

Figure S3. HSQC Spectrum of NAD

Figure S4. COSY Spectrum of NAD

Figure S5. HMBC Spectrum of NAD

SUPPORTING INFORMATION

NAD₁ NMR Spectra

Figure S6. ¹H NMR Spectrum of NAD₁

SUPPORTING INFORMATION

Figure S8. COSY Spectrum of NAD1

WILEY-VCH

Figure S9. HSQC Spectrum of NAD1

WILEY-VCH

Figure S10. HMBC Spectrum of NAD1

SUPPORTING INFORMATION

Figure S11. ¹H NMR Spectrum of NAD₄

WILEY-VCH

Figure S15. HMBC Spectrum of NAD4

Figure S16. NOESY (mixing time = 0.5 s) NMR Spectrum of NAD₄

SUPPORTING INFORMATION

Figure S18. ¹³C NMR Spectrum of NAD₄-OMe

SUPPORTING INFORMATION

Figure S21. HMBC Spectrum of NAD4-OMe

SUPPORTING INFORMATION

NAD₂ NMR Spectra

Figure S22. ¹H NMR Spectrum of NAD₂

SUPPORTING INFORMATION -0 -10 -20 -30 . -40 -50 -60 -70 • f1 (ppm) -80 -90 -100 . . -110 . -120 -130 -140 -150 -160 -170 4.0 f2 (ppm) 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S23. HSQC Spectrum of NAD₂
WILEY-VCH

Figure S24. COSY Spectrum of NAD₂

Figure S25. HMBC Spectrum of NAD₂

SUPPORTING INFORMATION

NAC NMR Spectra

Figure S27. COSY Spectrum of NAC

Figure S31. COSY Spectrum of DH-NAC4

Figure S32. HSQC Spectrum of DH-NAC₄

Figure S33. HMBC Spectrum of DH-NAC₄

SUPPORTING INFORMATION

NAB₄ NMR Spectra

Figure S34. ¹H NMR Spectrum of NAB₄

Figure S35. COSY NMR Spectrum of NAB₄

Figure S36. COSY NMR Spectrum of NAB₄

Figure S37. ¹H NMR Spectrum of DH-NAA₄

Figure S38. COSY Spectrum of DH-NAA4

SUPPORTING INFORMATION

Figure S39. HSQC Spectrum of DH-NAA4

SUPPORTING INFORMATION

Figure S40. HMBC Spectrum of DH-NAA4

Figure S41. ¹H NMR spectrum of NAA₁

Figure S42. ¹³C NMR spectrum of NAA₁

Figure S43. COSY spectrum of NAA1

Figure S44. HSQC Spectrum of NAA1

SUPPORTING INFORMATION

Figure S46. ¹H NMR Spectrum of NAB

Figure S47. COSY Spectrum of NAB

SUPPORTING INFORMATION

NAD₆ NMR Spectra

Figure S50. ¹H NMR Spectrum of NAD₆

Figure S51. COSY Spectrum of NAD₆

Figure S53. HMBC Spectrum of NAD₆

SUPPORTING INFORMATION

NAD₅ NMR Spectra

Figure S54. ¹H NMR Spectrum of NAD₅

Figure S55. COSY Spectrum of NAD₅

Figure S56. HSQC Spectrum of NAD5

142

In Vivo Feeding Studies

To determine whether NAD₅ and NAD₆ were substrates for NodJ, and consequently whether they are precursors for the main and 1-series, *in vivo* feeding studies were undertaken. To conduct these experiments *nodJ* was added to the CY2 strain of *P. paxilli*, in which the entire paxilline biosynthetic gene cluster has been deleted, and the CY2 strain without *nodJ* was used as a control.

Fungi were grown using standard conditions (Pg 5) and nodulisporic acid substrates were provided to the culture on days 0 and 4 as MeOH aliquots (100 μ L, 1–2 mg/mL substrate). The substrates included NAD₄, NAD₅, NAD₆ and a MeOH blank as a control (Table S16). Cultures were harvested after 10 days and mycelia were extracted and analysed following standard procedures (Pg 5).

Table S16. NodJ in vivo feeding studies

Experiment*	Strain	Substrate provided
Α	CY2	MeOH (control)
В	LS29 (CY2 + nodJ)	MeOH (control)
С	CY2	NAD ₄
D	LS29 (CY2 + nodJ)	NAD ₄
E	CY2	NAD ₆
F	LS29 (CY2 + nodJ)	NAD ₆
G	CY2	NAD _{5/1} **
Н	LS29 (CY2 + nodJ)	NAD _{5/1} **

*All experiments were conducted in triplicate

**Insufficient NAD5 was available to conduct the experiment therefore a sample containing both NAD1 and NAD5 was used.

Analysis of experiments A and B did not show the presence of any nodulisporic acids (Figure S58) and culture growth appeared unaffected by addition of MeOH aliquots. Mycelia from experiment C showed the presence of the substrate, NAD₄, but no other nodulisporic acids, confirming CY2 does not contain proteins capable of producing additional nodulisporic acids. Experiment D produced NAD, NAD₁, NAD₅, and NAD₆, which are the expected products of NodJ when provided with NAD₄ as seen in heterologous reconstruction of the biosynthetic pathway (Figure S58). This result confirms both the expression of *nodJ* in this strain and its ability to access substrate provided via spiking the culture.

Singh *et al* predicted that NAD was formed via an enzyme catalysed elimination of 2"-OH from NAD₆, therefore experiments E and F were conducted to test this hypothesis.^[3a] However, when NAD₆ was provided as a substrate NAD was not detected (Figure S58), indicating an alternative explanation for the production of main series nodulisporic acids was required. We propose that hydrogen abstraction at C-2" of NAD₄ gives an allylic radical intermediate which partitions either to NAD through the loss of hydrogen or to NAD₆ through reaction with an iron-bound hydroxyl radical (Scheme 2, Manuscript). Such bifurcation of a radical intermediate has been reported for other P450 oxidases and is consistent with the experimental data obtained through feeding studies.^[5] NAD₁ was also not detected in these experiments confirming the inability of NAD₆ to be utilised as a substrate by NodJ to produce any other nodulisporic acids and therefore the 6-series is a shunt pathway.

The final two experiments were conducted to establish whether NAD₅ was a substrate for NodJ and therefore a precursor for NAD₁. Since insufficient NAD₅ could be purified for feeding studies a sample containing both NAD₅ and NAD₁ was used as the substrate. When this substrate was provided to CY2 in experiment G the ratio of NAD₅ to NAD₁ remained unchanged after the 10 days in culture (Figure S59). However, with NodJ present (experiment H) the NAD₅ decreased and NAD₁ increased. This result provides evidence to suggest that NAD₅ can be converted to NAD₁ by NodJ and is therefore an intermediate and not a shunt product. Interestingly no evidence for production of NAD₃, a metabolite characterised by Merck, was observed in this experiment despite the obvious biosynthetic relationship to NAD₅.^[3a]

SUPPORTING INFORMATION

Figure S58. LC-MS analysis of in vivo feeding studies.

LC-MS analysis of in vivo feeding studies leading to the assignment of NAD₆ as a shunt product and NAD₅ as a precursor for NAD₁. Traces are EICs of HR-ESI-MS2 analysis and letter codes refer to experiment details in Table S16. *Since NAD and NAD₅ are isomeric a single trace has been provided and NAD peaks distinguished by an asterix (*).
WILEY-VCH

SUPPORTING INFORMATION

Figure S59. NAD_{5/1} feeding study

Analysis of NAD_1 and NAD_5 , and comparison to substrate, in experiments G and H (-1, -2, -3 refer to replicate cultures). Result presented as relative (left) and absolute (right) values.

Non-enzymatic NAD₆ elimination

To determine whether elimination of the 2"-OH of NAD₆ could proceed non-enzymatically a sample of NAD₆ was treated with formic acid and analysed by LC-MS over a period of 12 h. No evidence of NAD production was observed over this time and higher concentrations of acid led to degradation of the metabolite.

SUPPORTING INFORMATION

Proposed NodJ P450 Monooxygenase Bifurcation Mechanism

Figure S60. Proposed mechanism for NodJ

Top - Proposed mechanism fro NodJ in the bifurcation of nodulisporic acid biosynthesis to produce both NAD and NAD₆ via oxidation at C-2".

Bottom - NodJ mechanism in the context of the cytochrome P450 catalytic cycle.

SUPPORTING INFORMATION

Phylogenetic Classification of NodX

Figure S61. Phylogenetic classification of NodX

Maximum likelihood phylogenetic tree generated from protein sequences of NodX and CoA transferases aggregated by Hackmann, 2022.^[6] Tree shows the position of NodX in red relative to the six CoA transferase families proposed by Hackman 2022.^[6] Non-CoA transferase proteins identified by Hackmann as being erroneously labelled in online databases as CoA transferases are shown in grey. Protein sequences were aligned using Clustal Omega and this tree was generated using RAxML using the GAMMA BLOSUM62 protein model.^[7] Maximum likelihood support values (100 bootstrap replicates) are shown for major branches, space permitting. Importantly, the Frc clade (also known as CoA transferase family III) contains both prokaryotic and eukaryotic CoA transferase sequences.

Nodulisporic Acid Biosynthesis Scheme

Figure S62. Nodulisporic acid biosynthesis

WILEY-VCH

SUPPORTING INFORMATION

Author Contributions

Research was conducted in equal parts by lead authors Dr. A. T. Richardson, Dr. R. C. Cameron, and Dr L. J. Stevenson with assistance and contributions from supporting authors Dr A. J. Singh, Dr Y. Lukito, Dr D. Berry and Dr M. J. Nicholson. Prof E. J. Parker and Dr M. J. Nicholson conceived the study and were responsible for funding acquisition, project oversight and administration, and assisted with preparation of the manuscript,

References

- C, J, van Dolleweerd, S, A, Kessans, K, C, Van de Bittner, L, Y, Bustamante, R, Bundela, B, Scott, M, J, Nicholson, E, J, Parker, ACS Synth, Biol. 2018, 7, 1018-1029. [1]
- [2] K. C. Van de Bittner, M. J. Nicholson, L. Y. Bustamante, S. A. Kessans, A. Ram, C. J. van Dolleweerd, B. Scott, E. J. Parker, J. Am. Chem. Soc. 2018, 140, 582-585.
- [3] a) S. B. Singh, J. G. Ondeyka, H. Jayasuriya, D. L. Zink, S. N. Ha, A. Dahl-Roshak, J. Greene, J. A. Kim, M. M. Smith, W. Shoop, J. S. Tkacz, J. Nat. Prod. 2004, 67, 1496-1506; b) J. G. Ondeyka, K. Byrne, D. Vesey, D. L. Zink, W. L. Shoop, M. A. Goetz, S. B. Singh, J. Nat. Prod. 2003, 66, 121-124; c) J. G. Ondeyka, A. M. Dahl-Roshak, J. S. Tkacz, D. L. Zink, M. Zakson-Aiken, W. L. Shoop, M. A. Goetz, S. B. Singh, Bioorganic Med. Chem. Lett. 2002, 12, 2941-2944; d) O. D. Hensens, J. G. Ondevka, A. W. Dombrowski, D. A. Ostlind, D. L. Zink, Tetrahedron Lett. 1999, 40, 5455-5458; e) J. G. Ondevka, G. L. Helms, O. D. Hensens, M. A. Goetz, D. L. Zink, A. Tsipouras, W. L. Shoop, L. Slayton, A. W. Dombrowski, J. D. Polishook, D. A. Ostlind, N. N. Tsou, R. G. Ball, S. B. Singh, J. Am. Chem. Soc. 1997, 119, 8809-8816.
- Y. Zou, X. Li, Y. Yang, S. Berritt, J. Melvin, S. Gonzales, M. Spafford, A. B. Smith, J. Am. Chem. Soc. 2018, 140, 9502-9511. [4] [5]
- a) F. P. Guengerich, ACS Catal. 2018, 8, 10964-10976; b) F. P. Guengerich, Chem. Res. Toxicol. 2001, 14, 611-650; c) A. E. Rettie, A. W. Rettenmeier, W. N. Howald, T. A. Baillie, Science 1987, 235, 890-893.
- [6] T. Hackmann. Prot. Sci. 2022, 31, 864-881.
- [7] a) A. Stamatakis, Bionformatics 2014, 30, 1312-1313; b) F. Sievers, A. Wilm, D. Dineen, Mol. Syst. Biol. 2011, 7, 539.