Chemistry–A European Journal

Supporting Information

Quest for the Most Aromatic Pathway in Charged Expanded Porphyrins

Irene Casademont-Reig, Tatiana Woller, Victor García, Julia Contreras-García, William Tiznado, Miquel Torrent-Sucarrat,* Eduard Matito,* and Mercedes Alonso* 1 Conformational and topological switches induced by (de)protonation

Figure S1: Reaction used to evaluate several global aromaticity descriptors in hexaphyrins. $\Delta \eta$ is given in kcal·mol⁻¹ and Λ in ppm·cgs.

Figure S2: Lowest-energy conformations for neutral and charged hexa-, hepta-, and octaphyrins. Aromatic and antiaromatic macrocycles are colored as red and green, respectively. Nonaromatic macrocycles are colored in grey.

Figure S3: Evolution of the relative Gibbs free energy of selected heptaphyrins with oxidation state upon protonation or deprotonation of the macrocycles.

[26]	ΔG	N_H	Φ_p	[28]	ΔG	N_H	Φ_p	[32]	ΔG	N_H	Φ_p
$\overline{\mathbf{F}}$	17.9	3	33.4	F	8.8	3	25.3	F	0.0	3.5	19.0
\mathbf{M}	21.5	2	32.6	\mathbf{M}	5.9	2.5	32.5	\mathbf{M}	11.9	3	34.6
\mathbf{R}	7.6	2	12.6	\mathbf{R}	7.6	2	11.0	Η	29.8	1	24.8
D	0.0	3	3.1	D	0.0	3	11.2	\mathbf{F}^{4-}	-	-	-
\mathbf{T}	27.8	0	26.4	\mathbf{T}	28.7	0	24.1	\mathbf{M}^{4-}	24.2	0	28.8
\mathbf{F}^{2-}	50.3	0	37.1	\mathbf{F}^{2+}	-	-	-	\mathbf{H}^{4-}	0.0	0	0.0
\mathbf{M}^{2-}	-	0	-	\mathbf{M}^{2+}	3.8	0	34.4	\mathbf{F}^{3+}	7.5	0	31.2
\mathbf{R}^{2-}	0.0	0	6.4	\mathbf{R}^{2+}	0.0	0	17.6	\mathbf{M}^{3+}	0.0	0	34.7
\mathbf{D}^{2-}	27.7	0	0.0	\mathbf{D}^{2+}	8.1	0	16.3	\mathbf{H}^{3+}	0.8	0	24.8
\mathbf{T}^{2-}	7.1	0	24.4	\mathbf{T}^{2+}	9.5	0	32.8				

Table S1: Relative Gibbs free energies (kcal·mol⁻¹), hydrogen bond index (N_H) and ring strain (Φ_p in °) of hexaphyrins and heptaphyrins.^{*a*}

^a Gibbs free energies at the M06-2X/6-311+G(d,p)//CAM-B3LYP/6-311G(d,p) level of theory.

Table S2: Relative Gibbs free energies (kcal·mol⁻¹), hydrogen bond index (N_H) and ring strain (Φ_p in °) of octaphyrins.^{*a*}

ΔG	N_H	Φ_p	[36]	ΔG	N_H	Φ_p	[38]	ΔG	N_H	Φ_p	[36]	ΔG	N_H	Φ_p
0.0	4	15.4	\mathbf{F}_{a}^{2-}	12.6	3	15.1	\mathbf{F}_{a}^{2+}	2.3	0	17.7	\mathbf{F}_{a}^{2+}	1.5	3	16.0
14.5	3	17.7	\mathbf{F}_{b}^{2-}	0.0	3	20.1	\mathbf{F}_{b}^{2+}	9.7	0	24.7	\mathbf{F}_{b}^{2+}	0.0	3	19.8
27.9	2.5	24.5	\mathbf{M}_{a}^{2-}	1.2	2.5	23.8	\mathbf{M}_{a}^{2+}	10.9	0	26.4	\mathbf{M}_{a}^{2+}	4.6	2	24.8
49.7	0	30.1	\mathbf{M}_{b}^{2-}	21.4	0	31.2	\mathbf{M}_{b}^{2+}	11.0	0	35.8	\mathbf{M}_{b}^{2+}	27.9	0	31.0
33.4	0	6.0	\mathbf{H}_{a}^{2-}	12.2	0	3.8	\mathbf{H}_{a}^{2+}	0.0	0	16.7	\mathbf{H}_{a}^{2+}	13.7	0	11.1
49.8	0	26.7	\mathbf{H}_{b}^{2-}	17.4	0	22.1	\mathbf{H}_{b}^{2+}	5.8	0	27.8	\mathbf{H}_{b}^{2+}	31.6	0	27.6
	$\begin{array}{c} \Delta G \\ 0.0 \\ 14.5 \\ 27.9 \\ 49.7 \\ 33.4 \\ 49.8 \end{array}$	$\begin{array}{c cc} \Delta G & N_H \\ \hline 0.0 & 4 \\ 14.5 & 3 \\ 27.9 & 2.5 \\ 49.7 & 0 \\ 33.4 & 0 \\ 49.8 & 0 \end{array}$	$\begin{array}{c cccc} \Delta G & N_H & \Phi_p \\ \hline 0.0 & 4 & 15.4 \\ 14.5 & 3 & 17.7 \\ 27.9 & 2.5 & 24.5 \\ 49.7 & 0 & 30.1 \\ 33.4 & 0 & 6.0 \\ 49.8 & 0 & 26.7 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

^a Gibbs free energies at the M06-2X/6-311+G(d,p)//CAM-B3LYP/6-311G(d,p) level of theory.

system	ΔG	ΔG	RMSD	system	ΔG	ΔG	RMSD
	D3 dispersion	No dispersion			6-311+G(d,p)	6-311G(d,p)	
$26R^{2-}$	0	0	0.017	28R	9.9	7.6	0.008
$26D^{2-}$	26.9	27.7	0.030	28D	0	0	0.057
$26F^{2-}$	51.1	50.4	0.052	28 T	30.2	28.7	0.011
$26 M^{2-}$	5.5	7.1	0.026	28M	7.4	5.9	0.015
$26 M^{2-}$	a	a	a	28 F	10.3	8.8	0.017
$\mathbf{28R}^{2+}$	0	0	0.107	$32F^{4-}$	a	a	a
$28 M^{2+}$	3.5	3.8	0.143	$32H^{4-}$	0	0	0.017
$\mathbf{28T}^{2+}$	9.8	9.5	0.022	$32M^{4-}$	22.8	24.2	0.018
$\mathbf{28D}^{2+}$	7.7	8.1	0.043				
$28F^{2+}$	a	a	a				

Table S3: Relative Gibbs free energies $(kcal \cdot mol^{-1})$ and RMSD values of expanded porphyrins optimized with CAM-B3LYP and different basis sets.

^a Those topologies could not be optimized as an energy minimum since the conformation changes upon the optimization.

Table S4: Pearson coefficients between several descriptors of aromaticity for unsubstituted expanded porphyrins (n=20).

	$\Delta \eta$	Λ	NICS(0)	$\mathrm{NICS}_{zz}(1)$
$\Delta \eta$	1			
Λ	-0.672^{a}	1		
NICS(0)	-0.641^{a}	0.915^{a}	1	
$\mathrm{NICS}_{zz}(1)$	-0.670^{a}	0.962^{a}	0.923^{a}	1
			/	

a The correlation is significant at the 0.01 level (two-tailed).

Figure S4: Orientation of the twisted-Hückel and Hückel octaphyrin structures employed in the calculation of the NICS-based indices. The magnetic field is oriented along the z axis.

Figure S5: 2D-NICS_{zz}(1) plots (in ppm) of the magnetic shielding of **28M** in the xy plane 1Å situated above the molecular plane.

2 Magnetically induced currents in neutral and charged expanded porphyrins

Figure S7: Visualization of the current density plots using a vector representation in $26F^{2-}$. The percentage ratios are with respect to the net bond current strength in pyrrole (11.8 nA·T⁻¹). The external magnetic field is parallel to the symmetry z axis. The percentage ratios are with respect to the net bond current strength in pyrrole (11.8 nA·T⁻¹).

Figure S8: Percentage ratios of the current strength in 28M and $28M^{2+}$ with respect to the net bond current strength in pyrrole (11.8 nA·T⁻¹).

Figure S9: Percentage ratios of the current strength in **32H** and **32H**⁴⁻ with respect to the net bond current strength in pyrrole (11.8 $nA \cdot T^{-1}$).

Figure S10: Percentage ratios of the current strength in **32M** and **32M**³⁺ with respect to the net bond current strength in pyrrole (11.8 $nA \cdot T^{-1}$).

Figure S11: Percentage ratios of the current strength in $36H_a$ and $36H_a^{2-}$ with respect to the net bond current strength in pyrrole (11.8 nA·T⁻¹).

Figure S12: Percentage ratios of the current strength in $36M_b$ and $36M_b^{2+}$ with respect to the net bond current strength in pyrrole (11.8 nA·T⁻¹).

3 Local aromaticity indices in neutral and charged expanded porphyrins

Table S5: Evolution of the aromaticity indices for the annulene pathway of expanded porphyrins upon the protonation of the macrocycle.^a

system	πe^-	FLU	BOA	HOMA	BLA	AV1245	AV_{min}
28R	28	0.021	0.300	0.620	0.067	1.31	0.42
$\mathbf{28R}^{2+}$	28	0.020	0.264	0.682	0.051	1.07	0.16
$28\mathrm{M}$	28	0.018	0.269	0.677	0.059	1.45	0.60
$28 M^{2+}$	28	0.018	0.253	0.718	0.048	1.14	0.01
32F	32	0.020	0.292	0.632	0.065	1.28	0.39
$32F^{3+}$	32	0.020	0.251	0.695	0.048	1.15	0.15
32 M	32	0.020	0.292	0.664	0.065	1.40	0.53
$32 M^{3+}$	32	0.017	0.234	0.749	0.045	1.17	0.00
$36\mathbf{M}_b$	36	0.025	0.330	0.582	0.076	1.16	0.35
$36 \mathbf{M}_b^{2+}$	38	0.024	0.313	0.593	0.069	1.48	0.15
$36H_b$	36	0.025	0.323	0.579	0.076	1.15	0.21
$\mathbf{38H}_{b}^{2+}$	38	0.019	0.250	0.702	0.024	1.48	0.04

^a All indices were calculated at the CAM-B3LYP/6-311+G(d,p) level of theory.

system	πe^-	FLU	BOA	HOMA	BLA	AV1245	AV_{min}
28R	24	0.020	0.251	0.719	0.054	0.07	0.03
$\mathbf{28R}^{2+}$	24	0.020	0.219	0.735	0.043	-0.07	0.05
$28\mathrm{M}$	24	0.016	0.215	0.784	0.043	0.13	0.01
$28 M^{2+}$	24	0.019	0.217	0.750	0.041	-0.16	0.01
32 F	28	0.017	0.238	0.759	0.053	0.38	0.02
$32F^{3+}$	28	0.020	0.227	0.732	0.044	0.11	0.10
32 M	28	0.018	0.238	0.765	0.051	0.33	0.01
$32 M^{3+}$	28	0.018	0.211	0.783	0.038	0.10	0.00
$\mathbf{36M}_b$	32	0.024	0.287	0.662	0.064	0.43	0.04
$36 \mathrm{M}_b^{2+}$	32	0.022	0.259	0.701	0.057	0.16	0.03
$36H_b$	32	0.024	0.286	0.662	0.064	0.43	0.00
${f 38H}_b^{2+}$	32	0.018	0.208	0.783	0.038	-0.34	0.02
a + 11 + 11		1 1 1		ALC DOLLTD	10 011 0		0.1

Table S6: Evolution of the aromaticity indices for the inner pathway of expanded porphyrins upon the protonation of the macrocycle.^a

^a All indices were calculated at the CAM-B3LYP/6-311+G(d,p) level of theory.

Table S7: Evolution of the aromaticity indices for the outer pathway of expanded porphyrins upon the protonation of the macrocycle.^a

system	πe^-	FLU	BOA	HOMA	BLA	AV1245	AV_{min}
28R	30	0.026	0.324	0.487	0.069	1.45	0.08
$\mathbf{28R}^{2+}$	30	0.022	0.295	0.604	0.063	1.59	0.20
28 M	30	0.024	0.311	0.515	0.067	1.48	0.04
$28 M^{2+}$	30	0.020	0.283	0.642	0.059	1.67	0.22
32F	35	0.027	0.330	0.443	0.070	1.39	0.01
$32F^{3+}$	35	0.021	0.156	0.613	0.060	1.54	0.12
32M	35	0.026	0.324	0.475	0.069	1.41	0.06
$32 M^{3+}$	35	0.019	0.267	0.684	0.055	1.63	0.20
$36M_b$	40	0.032	0.362	0.315	0.079	1.14	0.03
$36 \mathbf{M}_b^{2+}$	40	0.027	0.323	0.464	0.057	0.16	0.03
$36H_b$	40	0.032	0.363	0.300	0.080	1.12	0.02
$\mathbf{38H}_b^{2+}$	40	0.019	0.003	0.665	0.000	1.87	0.27
a	All indias		loulated a	+ the CAM	DOI VD /6	$2.911 + C(d_{n})$) lovel of the

^a All indices were calculated at the CAM-B3LYP/6-311+G(d,p) level of theory.

Table S8: Evolution of the aromaticity indices for the annulene pathway of expanded porphyrins upon deprotonation of the macrocycles.^a

system	πe^-	FLU	BOA	HOMA	BLA	AV1245	AV_{min}
26R	26	0.019	0.278	0.716	0.065	1.56	0.60
$26 \mathbf{R}^{2-}$	26	0.017	0.218	0.659	0.057	1.58	0.38
26F	26	0.023	0.317	0.619	0.074	1.27	0.35
$26F^{2-}$	26	0.015	0.124	0.720	0.044	1.66	0.66
32 M	32	0.020	0.292	0.664	0.065	1.40	0.53
$32 M^{4-}$	32	0.023	0.261	0.450	0.066	1.30	0.02
32H	32	0.022	0.309	0.611	0.070	1.21	0.42
$32H^{4-}$	32	0.024	0.280	0.423	0.071	1.11	0.01
$36H_a$	36	0.022	0.304	0.636	0.068	1.21	0.40
$\underline{\mathbf{36H}_a^{2-}}$	34	0.020	0.265	0.659	0.067	1.36	0.54
a A 11 · 1·		1 1 / 1	1 I O	ANT DOT VD	10 011 0	(/ 1) 1 1	C 1 1

^a All indices were calculated at the CAM-B3LYP/6-311+G(d,p) level of theory.

system	πe^-	FLU	BOA	HOMA	BLA	AV1245	AV_{min}
26R	24	0.017	0.250	0.785	0.057	1.05	0.12
$26 \mathbf{R}^{2-}$	24	0.009	0.142	0.888	0.045	1.73	1.23
26 F	24	0.020	0.281	0.712	0.067	0.86	0.43
$26F^{2-}$	24	0.006	0.018	0.971	0.029	1.83	1.54
32 M	28	0.018	0.238	0.765	0.051	0.33	0.01
$32 M^{4-}$	28	0.010	0.137	0.840	0.044	0.86	0.21
32H	28	0.020	0.258	0.730	0.056	0.40	0.01
$32H^{4-}$	28	0.012	0.175	0.793	0.052	0.82	0.09
$\overline{\mathbf{36H}_a}$	32	0.020	0.260	0.738	0.056	0.56	0.03
$36H_a^{2-}$	32	0.017	0.219	0.773	0.049	0.93	0.11

Table S9: Evolution of the aromaticity indices for the inner pathway of expanded porphyrins upon deprotonation.^a

^{*a*} All indices were calculated at the CAM-B3LYP/6-311+G(d,p) level of theory.

Table S10: Evolution of the aromaticity indices for the outer pathway of expanded porphyrins upon deprotonation.^a

system	πe^-	FLU	BOA	HOMA	BLA	AV1245	AV_{min}
26R	30	0.031	0.351	0.346	0.078	1.02	0.01
$26 \mathbf{R}^{2-}$	30	0.031	0.334	0.286	0.077	1.13	0.01
26F	30	0.034	0.369	0.256	0.080	1.00	0.00
$26F^{2-}$	30	0.029	0.296	0.345	0.069	1.25	0.18
32 M	35	0.026	0.324	0.475	0.069	1.41	0.06
$32 M^{4-}$	35	0.028	0.311	0.305	0.070	1.51	0.02
32H	35	0.029	0.348	0.389	0.077	1.25	0.01
$32H^{4-}$	35	0.029	0.322	0.280	0.072	1.47	0.01
$\overline{\mathbf{36H}_a}$	40	0.030	0.351	0.360	0.076	1.20	0.04
$36H_a^{2-}$	40	0.027	0.314	0.456	0.068	1.70	0.22
a A 11 · 1·		1 1 4 1	1 1 C	ANT DOT VD	10 911 10	(1)	C 1 1

^{*a*} All indices were calculated at the CAM-B3LYP/6-311+G(d,p) level of theory.

system	$\operatorname{Circuit}^{b}$	πe^-	FLU	BOA	HOMA	BLA	AV1245	AV_{min}
$26 R^{2-}$	iiiiii	24	0.009	0.142	0.888	0.045	1.73	1.23
$26 \mathbb{R}^{2-}$	iiiiio	25	0.012	0.167	0.812	0.047	1.78	0.59
$26 \mathbb{R}^{2-}$	oiiiio	26	0.015	0.19	0.741	0.048	1.82	0.59
$26F^{2-}$	iiiiii	24	0.006	0.018	0.971	0.029	1.83	1.53
$26F^{2-}$	iiiiio	25	0.010	0.074	0.841	0.037	1.74	0.66
$26F^{2-}$	iiioio	26	0.014	0.124	0.732	0.044	1.66	0.63
$32H^{4-}$	iooioio	32	0.021	0.26	0.503	0.060	1.16	0.19
$32H^{4-}$	ioiioio	31	0.021	0.256	0.516	0.064	0.96	0.19
$32H^{4-}$	ioiioii	30	0.021	0.254	0.531	0.068	0.73	0.19
$32 M^{4-}$	oioooii	32	0.020	0.234	0.535	0.056	1.54	0.35
$32 M^{4-}$	oioioio	32	0.019	0.23	0.543	0.055	1.53	0.35
$32 M^{4-}$	oioioii	31	0.019	0.225	0.565	0.059	1.34	0.35
$36 H_a^{2-}$	iiioiiio	34	0.020	0.265	0.659	0.067	1.36	0.54
$\mathbf{36H}_{a}^{2-}$	iiioioio	35	0.021	0.284	0.628	0.068	1.29	0.54
$\mathbf{36H}_{a}^{2-}$	ioioioio	36	0.023	0.302	0.599	0.069	1.23	0.54

Table S11: Aromaticity indices of the three most delocalized circuits of anionic expanded porphyrins.^a

^a All indices were calculated at the CAM-B3LYP/6-311+G(d,p) level of theory.

 b i denotes the inner route (C-N-C) and o the outer route (C-C) in a pyrrole ring. The labelling of the conjugation pathway starts from the top right five-membered ring.

Table S12: Aromaticity indices of the three most delocalized circuits of cationic expanded porphyrins.^a

$\begin{array}{l c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	system	$\operatorname{Circuit}^{b}$	πe^-	FLU	BOA	HOMA	BLA	AV1245	AV_{min}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$28 \mathbb{R}^{2+}$	000000	30	0.022	0.295	0.604	0.063	1.59	0.20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{28R}^{2+}$	i00000	29	0.021	0.263	0.642	0.174	1.34	0.16	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$28 M^{2+}$	000000	30	0.020	0.283	0.642	0.059	1.67	0.22	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$28 M^{2+}$	ooiooo	29	0.019	0.266	0.685	0.052	1.46	0.20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$32F^{3+}$	i000000	32	0.017	0.232	0.761	0.039	1.38	0.20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$32F^{3+}$	iooiooo	33	0.018	0.25	0.713	0.045	1.38	0.21	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$32F^{3+}$	i000000	34	0.020	0.273	0.655	0.054	1.41	0.17	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$32M^{3+}$	ooiiooi	32	0.016	0.222	0.787	0.036	1.25	0.28	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$32M^{3+}$	oooiooi	33	0.017	0.235	0.760	0.042	1.43	0.32	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$32 M^{3+}$	000i000	34	0.018	0.252	0.724	0.049	1.52	0.24	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{36M}_b^{2+-}$	oooooiio	38	0.024	0.313	0.593	0.069	1.48	0.15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$36 M_b^{2+}$	ooooiiio	37	0.025	0.313	0.577	0.072	1.28	0.15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{36M}_{b}^{2+}$	ooioiiio	36	0.021	0.285	0.674	0.060	1.12	0.12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{38H}_{b}^{2+}$	00000000	40	0.019	0.266	0.665	0.055	1.87	0.27	
38\mathbf{H}_{b}^{2+} 00000000 39 0.018 0.249 0.708 0.048 1.71 0.19	$\mathbf{38H}_{b}^{2+}$	000i0000	39	0.018	0.249	0.716	0.048	1.73	0.21	
	$\mathbf{38H}^{\mathrm{\check{2}+}}_b$	000000i0	39	0.018	0.249	0.708	0.048	1.71	0.19	

^a All indices were calculated at the CAM-B3LYP/6-311+G(d,p) level of theory.

 b i denotes the inner route (C-N-C) and o the outer route (C-C). The labelling of the conjugation patway starts from the top right five-membered ring, except for 32M and 36M in which the first labelled five-membered ring corresponds to the top left one.

Figure S13: Delocalization indices (DIs) for $36H_a^{2-}$ and $36M_b^{2+}$ macrocycles computed at the CAM-B3LYP/6-311G(d,p) level of theory. The main conjugation pathway is depicted with bold bonds.

Figure S14: Delocalization indices (DIs) for 28M and 32M macrocycles computed at the CAM-B3LYP/6-311G(d,p) level of theory. The main conjugation pathway is depicted with bold red bonds.

Figure S15: Delocalization indices (DIs) for 32F and 32H macrocycles computed at the CAM-B3LYP/6-311G(d,p) level of theory. The main conjugation pathway is depicted with bold bonds.

Figure S16: Illustration of the most delocalized pathways in $\mathbf{36H}_a^{2-}$ and $\mathbf{36M}_b^{2+}$.

Figure S17: Illustration of the most delocalized pathways in $32H^{4-}$ and $32M^{3+}$.

Figure S18: Delocalization indices (DIs) for $28M^{2+}$ and $32M^{3+}$ macrocycles computed at the CAM-B3LYP/6-311G(d,p) level of theory. The main conjugation pathway is depicted with bold bonds.

Figure S19: Delocalization indices (DIs) for $32H^{4-}$ and $32M^{4-}$ macrocycles computed at the CAM-B3LYP/6-311G(d,p) level of theory. The main conjugation pathway is depicted with bold bonds.

Figure S20: Delocalization indices (DIs) for $36H_b$ and $38H_b^{2+}$ macrocycles computed at the CAM-B3LYP/6-311G(d,p) level of theory. The main conjugation pathway is depicted with bold bonds.

Figure S21: Delocalization indices (DIs) for $36H_a$ and $36M_b$ macrocycles computed at the CAM-B3LYP/6-311G(d,p) level of theory. The main conjugation pathway is depicted with bold bonds.