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Methods and Materials 
 

Strains and Plasmids: E. coli strains and plasmids used in this study are listed in 

Table S1. Molecular biology techniques were performed using standard practices 

unless otherwise stated. Molecular cloning and vector propagation were performed 

in K-12 MG1655. The CAR gene from Nocardia iowensis and SFP gene from Bacillus 

subtilis, were synthesized and codon-optimized for expression in E. coli (GenScript 

USA). The pDULE plasmid harbouring pAF synthase\tRNA genes was purchased 

from Addgene (pDule2-para-aminoPhe was a gift from Ryan Mehl, Addgene plasmid 

#85503)[2], the pBad plasmid harbouring HMFO was a gift from the Fraaije group 

(University of Groningen). Purified HMFO used in this study was a gift from Gecco 

Biotech (www.gecco-biotech.com). 

Cell culture conditions: A standard recipe for Lysogenic Broth (LB) medium was 

used (10 g/L Bacto tryptone, 5 g/L Yeast extract, 10 g/L NaCl and 15 g/L Agar for 

LB-Agar plates). MMV medium was prepared with the following recipe, 5.3 g/L 

Na2HPO4 × 12 H2O, 1.4 g/L KH2PO4, 0.2 g/L MgSO4 × 7 H2O, 1.0 g/L (NH4)2SO4. 

The following components were sterile-filtered using 0.2 μm filter before adding the 

medium: 1 ml/L vitamin solution (1000 ×), 5 ml/L trace solution (200 ×), 4 ml/L 

glucose (50%). M9 medium was prepared using the following recipe, 56 g/L of M9 

salt (mix by Sigma) and a 0.2 μm filter was used to filter the following component 

before addition 100 μl of 1 M CaCl2, 2 mL of 1 M MgSO4, 8 mL of 50% glucose 

solution, 5 mL of 4% vitamin B1 (thiamine), 50 mL of 20% Cas-amino acids.  

Minimal media with vitamins   

The minimal media with vitamins used in this work was prepared as follows. The 

content per litre  had 5.3 g Na2HPO4ꞏ12H2O, 1.4 g KH2PO4, 0.2 g MgSO4ꞏ7H2O, 1.0 

g (NH4)2SO4, 1 ml vitamin solution and 5 ml of a trace element solution, 4 ml glucose 

(50%)  and  Antibiotics . The trace element solution per litre contained 780 mg 

Ca(NO3)2ꞏ4H2O, 200 mg FeSO4ꞏ7H2O, 10 mg ZnSO4ꞏ7H2O, 10 mg H3BO3, 10 mg of 

CoCl2ꞏ6H2O, 10 mg CuSO4ꞏ5H2O, 4 mg MnSO4ꞏH2O, 3 mg Na2MoO4ꞏ2H2O, 2 mg 

NiCl2ꞏ6H2O, and 2 mg Na2WO4ꞏ2H2O [3]. The vitamin solution consisted of 2.2 mg 

Biotin, 2.2 mg folic acid, 220 mg p-aminobenzoic acid, 220 mg Riboflavin, 440 mg 

pantothenic acid, 440 mg niacinamide, 440 mg pyridoxine×HCl, 440 mg, 

thiamine×HCl per litre [4].   
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Protein biosynthesis  
 

 For experiments testing the direct incorporation of pAF into LmrRV15TAG, pDULE 

vector harboring pAF synthase\tRNA and pET17b+ vector harboring LmrRV15TAG 

were co-transformed into E. coli k-12 MG1655 (RARE). Culture media were 

supplemented with 100 µg/L ampicillin and 10 µg/L streptomycin to provide selective 

pressure for plasmid maintenance. Except for cultures grown in LB medium, 

overnight pre-cultures were pelleted and re-suspended in either M9 medium or MMV 

medium. This step was done to ensure that nutrient rich LB medium was removed. 

Experimental cultures were then initiated by adding 2 % (v/v) of re-suspended pre-

cultures into 50 ml either M9 or MMV medium while 1 % (v/v) pre-culture was added 

to LB medium. Gene expression was then induced with 1 M isopropyl-β-d-1-

thiogalactopyranoside (IPTG) (1 mM final concentration) and 20 % L- arabinose 

(0.02 % final concentration) between an OD600 of 0.4 and 1. During induction, 1 M 

pAF (1 mM final concentration) was added in solid form, incubated at 24 °C, and 

agitated at 135 rpm for 48 hrs. These experiments were performed in 250 ml baffled 

Erlenmeyer flasks for better aeration.  

 

 

 

 

 

 

 

Table S3. Expression conditions for pAF incorporation into LmrR_V15X_RMH. 

Media/Sample Strain 

 E.Coli K-12 MG1655 

pAF Temperature Time 

LB  RARE 1mM 30 C  16 h  

LB control  RARE  No pAF added 30 C  16 h  

M9 RARE 1 mM 30 C  16 h 

M9 control RARE No pAF added 30 C  16 h 

MMV RARE 1 mM 24 C  48 hours 

MMV control RARE No pAF added 24 C  48 hours 
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Hydrazone formation reaction in vivo / in vitro 

Hydrazone formation reaction in vivo: Experimental culture cells were grown in 50 ml 

MMV supplemented with antibiotics at 37°C, 135 rpm until OD600 of 0.4 – 0.7. Gene 

expression was induced with 1 mM isopropyl-β-d-1-thiogalactopyranoside (IPTG) 

and 0.02 % L- arabinose. During induction 1 mM pAF was added in solid form, 

incubated at 24 °C, and agitated at 135 rpm for 48 hrs. Cultures were pelleted and 

resuspended in newly prepared MMV, to wash away non-incorporated UAA, or in 

reaction buffer. In the 2.5 mL cell culture with newly prepared MMV medium was 

added 25 L NBDH (2) (5 mM in DMF) solution (final concentration 50 µM) and 62.5 

L carbonic acid or aldehyde (200 mM in DMF) solution (final concentration 5 mM). 

Then the mixture was put into the 24 °C shaker at 135 rpm for 1 to 24 hours. The 

formation of the product was determined by HPLC. Take 500 µL reaction culture into 

2 ml Eppendorf, added 50 µL IS (1 mM Fluorescein in DMF), then extracted with 1ml 

ethyl acetate, after the evaporation, the residue was resuspended in 1200 µL CH3CN. 

200 µL of this solution was placed into HPLC vial and the sample was analyzed by 

HPLC.   

 

Hydrazone formation reaction in vitro was set-up as follows: To 280 L of 5 M 

HMFO and 4 M LmrR_V15pAF_RMH in freshly prepared phosphate buffer pH 6.5 

was added 10 L NBDH (1.5 mM in DMF) solution (final concentration 50 µM) and 

10 L carbonic acid (150 mM in DMF) solution (final concentration 5 mM). Then the 

mixture was put into the 24 °C shaker at 135 rpm for 1 to 3 hours. The yield of the 

products was determined by HPLC. To the reaction mixture was added 50 µL 

internal standard (1 mM Fluorescein in DMF), then it was extracted with 200 µL ethyl 

acetate. After the evaporation, the residue was resuspended in 240 µL CH3CN. 200 

µL of this solution was placed into HPLC vial and the sample was analyzed by HPLC.   
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Gene sequence used in the work 

 

LmrR-V15TAG RMH 

ATGGGTGCCGAAATCCCGAAAGAAATGCTGCGTGCTCAAACCAATTAGATCCTGCTGATGGTCCTGAAACAA
GGCGATAACTATGTGTATGGCATTATCAAACAGGTGAAAGAAGCGAGCAACGGTGAAATGGAACTGAATGAA
GCCACCCTGTATACGATTTTTGATCGTCTGGAACAGGACGGCATTATCAGCTCTTACTGGGGTGATGAAAGT
CAAGGCGGTCGTCGCAAATATTACCGTCTGACCGAAATCGGCCATGAAAACATGCGCCTGCGGCATGAATC
CTGGAGTCGTGTGGACAAAATCATTGAAAATCTGGAAGCAAACAAAAAATCTGAAGCGATCAAATCTAGAGG
TGGCAGCGGTGGCTGGAGCCACCCGCAGTTCGAAAAATAA 

 

HMFO 

ATGACTGATACGATTTTTGACTACGTGATTGTTGGCGGTGGCACGGCGGGTAGCGTTCTGGCCAACCGTCT
GTCCGCCCGTCCGGAGAATCGCGTGTTGCTGATTGAGGCCGGTATTGATACCCCGGAAAACAATATTCCGC
CGGAGATCCACGATGGCCTGCGCCCGTGGCTGCCGCGTCTGAGCGGTGATAAGTTCTTTTGGCCGAATCT
GACCGTCTACCGTGCCGCGGAACACCCGGGTATCACGCGCGAGCCGCAGTTCTATGAACAAGGCCGTCTG
CTGGGCGGTGGTAGCAGCGTGAACATGGTCGTTTCTAACCGTGGTCTGCCTCGCGACTATGACGAATGGCA
GGCACTGGGCGCAGATGGTTGGGATTGGCAGGGTGTTCTGCCGTACTTCATCAAGACCGAGCGTGACGCG
GACTACGGTGACGACCCGTTGCATGGCAATGCGGGTCCGATTCCGATCGGTCGCGTCGATTCGCGTCACT
GGAGCGACTTCACGGTGGCGGCAACCCAAGCTCTGGAAGCGGCTGGCCTGCCGAACATTCACGACCAAAA
CGCACGTTTTGATGACGGTTACTTCCCACCGGCATTTACGTTGAAAGGTGAAGAGCGCTTCAGCGCCGCAC
GCGGTTATCTGGATGCGAGCGTCCGTGTGCGTCCGAACCTGAGCCTGTGGACTGAGAGCCGTGTCCTGAA
GCTGCTGACCACTGGCAATGCAATCACCGGTGTGAGCGTGCTGCGTGGTCGCGAAACCCTGCAAGTTCAAG
CGCGCGAGGTCATCCTGACCGCCGGTGCGTTGCAAAGCCCAGCGATTCTGTTGCGCACCGGCATCGGCCC
TGCGGCGGATCTGCACGCACTGGGTATTCCTGTTCTGGCAGACCGTCCGGGTGTTGGTCGCAATCTGTGG
GAGCACAGCTCTATCGGTGTGGTTGCCCCGCTGACCGAGCAGGCACGTGCAGACGCCAGCACGGGTAAAG
CCGGCTCTCGCCATCAACTGGGTATCCGTGCGTCGTCCGGCGTAGATCCGGCGACGCCTAGCGACCTGTT
TCTGCATATCCATGCTGATCCAGTCAGCGGTCTGGCAAGCGCTCTGTTCTGGGTGAACAAGCCAAGCTCCA
CCGGCTGGCTGAAGCTGAAGGACGCGGACCCGTTTAGCTACCCGGACGTAGACTTCAATCTGCTGAGCGAT
CCGCGCGACTTGGGTCGTCTGAAAGCGGGCCTGCGTCTGATCAAACATTACTTCGCATATCCGTCCCTGGC
GAAATATGGTTTGGCGCTGGCATTGAGCCGTTTTGAGGCACCGCAGCCGGGTGGTCCGCTGCTGAACGAC
CTGTTGCAGGACGAAGCCGCCCTGGAACGCTATTTGCGTACGAACGTCGGCGGTGTTTGGCATGCGAGCG
GCACGGCGCGTATCGGCCGTGCGGATGATTCCCAGGCTGTTGTCGATAAAGCGGGTCGTGTGTACGGCGT
CACCGGCCTGCGTGTTGCGGACGCAAGCATTATGCCGACCGTTCCGACCGCCAATACCAATCTGCCGACG
CTGATGCTGGCTGAGAAAATTGCGGATGCGATTCTGACCCAGGCTTAA 

CAR-SFP 

CCATGGGCAGCAGCCATCACCATCATCACCACAGCCAGGATCCGAATTCGATGGCTGTGGACTCGCCGGAT

GAACGCCTGCAACGCCGTATCGCCCAACTGTTTGCCGAAGATGAACAAGTGAAAGCTGCCCGCCCGCTGGA

AGCAGTTAGCGCGGCCGTCTCTGCACCGGGTATGCGTCTGGCTCAGATCGCAGCTACGGTGATGGCTGGT

TATGCGGATCGTCCGGCGGCGGGCCAGCGTGCTTTCGAACTGAATACCGATGACGCAACCGGCCGTACCA

GCCTGCGTCTGCTGCCGCGTTTTGAAACCATTACGTACCGCGAACTGTGGCAGCGTGTCGGCGAAGTGGCA

GCTGCGTGGCATCACGACCCGGAAAACCCGCTGCGTGCGGGTGATTTTGTGGCCCTGCTGGGCTTCACCA

GCATTGATTATGCAACGCTGGATCTGGCTGACATCCATCTGGGTGCGGTTACCGTGCCGCTGCAAGCGAGC

GCGGCGGTGTCCCAACTGATTGCAATCCTGACCGAAACGAGTCCGCGCCTGCTGGCGTCCACCCCGGAAC

ATCTGGATGCTGCGGTGGAATGCCTGCTGGCAGGCACCACGCCGGAACGTCTGGTGGTTTTCGATTATCAC

CCGGAAGATGACGATCAGCGCGCCGCATTTGAAAGTGCGCGTCGCCGTCTGGCAGATGCAGGTTCCCTGG

TGATCGTTGAAACCCTGGACGCGGTGCGTGCGCGTGGCCGTGATCTGCCGGCTGCGCCGCTGTTTGTCCC

GGATACCGACGATGACCCGCTGGCGCTGCTGATTTATACGTCAGGTTCGACCGGCACGCCGAAAGGTGCC

ATGTACACCAATCGTCTGGCCGCAACGATGTGGCAGGGCAACTCAATGCTGCAAGGCAACAGCCAACGCGT

TGGCATTAACCTGAATTATATGCCGATGAGTCATATTGCGGGTCGTATCTCCCTGTTCGGCGTGCTGGCGCG



28 
 

TGGCGGCACCGCATACTTTGCTGCGAAATCAGACATGAGCACCCTGTTTGAAGATATTGGCCTGGTTCGCC

CGACCGAAATCTTTTTCGTTCCGCGTGTCTGTGACATGGTGTTTCAGCGCTATCAAAGCGAACTGGATCGCC

GTTCTGTCGCTGGTGCGGATCTGGACACCCTGGACCGCGAAGTGAAAGCGGATCTGCGTCAGAATTACCTG

GGCGGTCGCTTCCTGGTTGCAGTCGTGGGCTCGGCTCCGCTGGCCGCAGAAATGAAAACGTTTATGGAAA

GCGTGCTGGACCTGCCGCTGCATGATGGTTATGGCAGTACCGAAGCCGGCGCATCCGTTCTGCTGGATAAC

CAGATCCAACGTCCGCCGGTCCTGGACTATAAACTGGTCGATGTGCCGGAACTGGGTTACTTTCGCACGGA

TCGTCCGCACCCGCGTGGCGAACTGCTGCTGAAAGCAGAAACCACGATTCCGGGTTATTACAAACGCCCGG

AAGTTACGGCGGAAATCTTTGATGAAGACGGCTTCTATAAAACCGGCGATATTGTGGCCGAACTGGAACATG

ACCGCCTGGTTTACGTGGATCGTCGTAACAATGTTCTGAAACTGTCCCAGGGCGAATTTGTGACCGTTGCGC

ACCTGGAAGCTGTGTTCGCGAGCAGCCCGCTGATCCGTCAAATTTTTATCTATGGTAGTTCCGAACGCAGTT

ACCTGCTGGCCGTCATTGTGCCGACCGATGACGCACTGCGTGGCCGCGATACCGCTACGCTGAAAAGCGC

TCTGGCGGAATCTATTCAGCGTATCGCCAAAGACGCAAATCTGCAACCGTATGAAATTCCGCGCGATTTTCT

GATCGAAACCGAACCGTTCACGATTGCCAATGGCCTGCTGAGCGGTATCGCAAAACTGCTGCGCCCGAACC

TGAAAGAACGTTATGGTGCGCAGCTGGAACAAATGTACACCGACCTGGCTACGGGCCAGGCAGATGAACTG

CTGGCCCTGCGCCGTGAAGCTGCGGATCTGCCGGTGCTGGAAACCGTTAGCCGTGCCGCAAAAGCGATGC

TGGGTGTGGCAAGCGCGGATATGCGTCCGGACGCACATTTTACCGATCTGGGCGGTGACAGCCTGTCTGC

ACTGAGTTTTTCCAACCTGCTGCACGAAATCTTCGGTGTTGAAGTCCCGGTGGGTGTTGTCGTGTCTCCGGC

AAACGAACTGCGTGATCTGGCGAATTATATTGAAGCCGAACGCAACAGTGGCGCAAAACGTCCGACCTTCA

CGTCAGTGCATGGCGGTGGCTCGGAAATTCGTGCTGCGGATCTGACCCTGGACAAATTTATCGATGCACGC

ACGCTGGCCGCAGCTGATTCTATTCCGCACGCCCCGGTGCCGGCACAGACCGTTCTGCTGACGGGTGCGA

ATGGCTATCTGGGTCGTTTCCTGTGCCTGGAATGGCTGGAACGCCTGGATAAAACCGGCGGCACCCTGATT

TGTGTTGTCCGTGGTAGCGACGCGGCGGCGGCACGTAAACGTCTGGATTCAGCCTTTGATAGCGGCGATC

CGGGCCTGCTGGAACATTATCAGCAACTGGCAGCACGTACCCTGGAAGTGCTGGCAGGCGATATTGGTGAC

CCGAACCTGGGCCTGGATGACGCGACCTGGCAGCGTCTGGCAGAAACGGTCGATCTGATTGTGCATCCGG

CAGCTCTGGTGAATCACGTTCTGCCGTACACCCAGCTGTTTGGCCCGAACGTGGTTGGCACCGCGGAAATT

GTGCGCCTGGCTATCACCGCGCGTCGTAAACCAGTGACCTATCTGTCTACGGTTGGCGTCGCAGATCAGGT

TGACCCGGCTGAATACCAAGAAGATAGCGATGTGCGTGAAATGTCTGCGGTGCGTGTCGTGCGCGAAAGCT

ATGCCAACGGTTACGGCAATTCTAAATGGGCTGGTGAAGTGCTGCTGCGCGAAGCGCATGATCTGTGCGGT

CTGCCGGTGGCAGTTTTTCGTTCAGATATGATTCTGGCACACTCGCGCTATGCTGGTCAGCTGAATGTCCAA

GATGTGTTCACCCGTCTGATTCTGTCACTGGTTGCTACGGGCATCGCGCCGTATTCGTTTTACCGCACCGAT

GCAGACGGTAACCGTCAGCGCGCCCATTACGATGGTCTGCCGGCAGATTTCACCGCGGCGGCGATTACGG

CGCTGGGTATCCAGGCCACCGAAGGCTTTCGCACGTATGATGTGCTGAATCCGTATGATGACGGTATTAGT

CTGGACGAATTTGTTGATTGGCTGGTCGAATCCGGCCATCCGATTCAGCGTATCACGGATTATTCAGACTGG

TTTCACCGCTTCGAAACCGCCATCCGTGCACTGCCGGAAAAACAGCGTCAAGCCAGCGTGCTGCCGCTGCT

GGATGCATACCGTAACCCGTGTCCGGCCGTTCGCGGTGCAATTCTGCCGGCTAAAGAATTTCAGGCTGCGG

TCCAAACCGCGAAAATTGGCCCGGAACAGGATATTCCGCACCTGAGTGCCCCGCTGATTGATAAATACGTG

TCTGACCTGGAACTGCTGCAACTGCTGGGTAGTGGCTCTGGACTGGTGGGTGCCCTGATGCACGTGATGCA

GAAGCGCAGCCGCGCCATCCACTCCTCCGACGAAGGGGAGGACCAGGCTGGCGATGAAGATGAAGATTGA

GCGGCCGC 

FSC 

GGATCCGGTGCGTAACCAGGGTCTGGGTTCTTGGCCGGTTCGTCGTGCTCGTATGTCTCCGCACGCTACCG

CTGTTCGTCACGGTGGTACCGCTCTGACCTACGCTGAACTGTCTCGTCGTGTTGCTCGTCTGGCTCACGGT

CTGCGTGAAGCTGGTGTTCGTCCGGGTGACCGTGTTGCTTACCTGGGTCCGAACCACCCGGCTTACCTGGA

AACCCTGTTCGCTTGCGGTCAGGCTGGTGCTGTTTTCGTTCCGCTGAACTTCCGTCTGGGTGTTCCGGAACT
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GGACCACGCTCTGGCTGACTCTGGTGCTTCTGTTCTGATCCACACCCCGGAACACGCTGAAACCGTTGCTG

CTCTGGCTGGTGACCGTCTGCTGCGTGTTCCGGCTGGTGAACTGGAAGCTGCTGACGACGAACCGCTGGA

CCTGCCGGTTGGTCTGGACGACGTTTGCCTGCTGATGTACACCTCTGGTTCTACCGGTCGTCCGAAAGGTG

CTATGCTGACCCACGGTAACCTGACCTGGAACTGCGTTAACGTTCTGGTTGAAACCGACCTGGCTTCTGAC

GAACGTGCTCTGGTTGCTGCTCCGCTGTTCCACGCTGCTGCTCTGGGTATGGTTTGCCTGCCGACCCTGCT

GAAAGGTGGTACCGTTATCCTGCACTCTGCTTTCGACCCGGGTGCTGTTCTGTCTGCTGTTGAACAGGAAC

GTGTTACCCTGGTTTTCGGTGTTCCGACCATGTACCAGGCTATCGCTGCTCACCCGCGTTGGCGTTCTACC

GACCTGTCTTCTCTGCGTACCCTGCTGTGCGGTGGTGCTCCGGTTCCGGCTGACCTGGCTGGTCGTTACCT

GGACCGTGGCCTGGCGTTCGTTCAGGGTTACGGTATGACCGAAGCTGCTCCGGGTGTTCTGGTTCTGGAC

CGTGCTCACGTTGCTGAAAAAATCGGTTCTGCTGGTGTTCCGTCTTTCTTCACCGACGTTCGTGTTGCTGGT

CCGTCTGGTGAACCGGTTCCGCCGGGTGAAAAAGGTGAAATCGTTGTTTCTGGTCCGAACGTTATGAAAGG

TTACTGGGGTCGTCCGGAAGCTACCGCTGAAGTTCTGCGTGACGGTTGGTTCCGTTCTGGTGACGTTGCTA

CCGTTGACGGTGACGGTTACTTCCACGTTGTTGACCGTCTGAAAGACATGATCATCTCTGGTGGTGAAAACA

TCTACCCGGCTGAAGTTGAAAACGAACTGTACGGTTACCCGGGTGTTGAAGCTTGCGCTGTTATCGGTGTTC

CGGACCCGCGTTGGGGTGAAGTTGGTAAAGCTGTTGTTGTTCCGGCTGCTGGTTCTCGTATCGACGGTGCT

GAACTGCTGGCTTGGCTGCGTACCCGTCTGGCTGGTTACAAAGTTCCGAAATCTGTTGAATTCACCGACCGT

CTGCCGACCACCGGTTCTGGTAAAATCCTGAAAGGTGAAGTTCGTCGTCGTTTCGGTTAAGCGGCCGC 

ECH 

CATATGTCTACCGCTGTTGGTAACGGTCGTGTTCGTACCGAACCGTGGGGTGAAACCGTTCTGGTTGAATTC

GACGAAGGTATCGCTTGGGTTACCCTGAACCGTCCGGACAAACGTAACGCTATGAACCCGACCCTGAACGA

CGAAATGGTTCGTGTTCTGGACCACCTGGAAGGTGACGACCGTTGCCGTGTTCTGGTTCTGACCGGTGCTG

GTGAATCTTTCTCTGCTGGTATGGACCTGAAAGAATACTTCCGTGAAGTTGACGCTACCGGTTCTACCGCTG

TTCAGATCAAAGTTCGTCGTGCTTCTGCTGAATGGCAGTGGAAACGTCTGGCTAACTGGTCTAAACCGACCA

TCGCTATGGTTAACGGTTGGTGCTTCGGTGGTGCTTTCACCCCGCTGGTTGCTTGTGACCTGGCGTTCGCT

GACGAAGACGCTCAGTTCGGTCTGTCTGAAGTTAACTGGGGTATCCCACCGGGTGGCGTTGTAAGCCGTGC

TCTGGCTGCTACCGTTCCGCAGCGTGACGCTCTGTACTACATCATGACCGGTGAACCGTTCGACGGTCGTC

GTGCTGCTGAAATGCGTCTGGTTAACGAAGCTCTGCCGGCTGACCGTCTGCGTGAACGTACCCGTGAAGTT

GCTCTGAAACTGGCTTCTATGAACCAGGTTGTTCTGCACGCTGCTAAAACCGGTTACAAAATCGCTCAGGAA

ATGCCGTGGGAACAGGCTGAAGACTACCTGTACGCTAAACTGGACCAGTCTCAGTTCGCTGACAAAGCTGG

TGCTCGTGCTAAAGGTCTGACCCAGTTCCTGGACCAGAAATCTTACCGTCCGGGTCTGTCTGCTTTCGACCC

GGAAAAATAACTCGAG 

Note 

All underlined sequence are the restriction sites used for cloning 
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Scale up of in vivo hydrazone reaction using LmrR_V15pAF_RMH/HMFO 
system. 

Experimental culture cells were grown in 2 L MMV supplemented with antibiotics at 

37°C, 135 rpm until OD600 of 0.6. Gene expression was then induced with 0.02 % 

arabinose. 1 mM of pAF was also added in a solid form upon expression induction 

and incubated at 24 °C, agitated at 135 rpm for 48 hrs. Cultures were pelleted and 

resuspended in phosphate buffer at pH 6.5, to wash away non-incorporated UAA. In 

the 200 mL cell culture at OD600 of 25 in buffer, 26 mg of  NBDH dissolved in 12 ml 

acetonitrile (ACN),  5 mM benzyl alcohol (final concentration) in acetonitrile were 

added and incubated at 24 °C / 135 rpm for overnight. Cells were then collected and 

spun down at 6000 rpm for 20 mins and collected the supernatant for product 

extraction. Pellet were then resuspend in 20 ml phosphate buffer and sonicated, the 

mixture was also spun down and collected the supernatant. The pellet was washed 

again 3x with 20 ml buffer and ACN (ratio 1:1). Sodium chloride (25 g) was added to 

the aqueous solution and the reaction mixture was extracted with EtOAc (3 x 300 

mL). The remaining aqueous phase was then filtered through celite and extracted 

again with EtOAc (3 x 300 mL). The combined organic phases were dried with 

anhydrous Na2SO4 and all volatiles were removed to give the crude product. The 

product was purified via column chromatography (SiO2, 

Pentane:EtOAc:MeOH=100:5:1). All fractions containing the product were collected 

giving the hydrazone in a mixture (total mass 8.9 mg). 
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NMR spectra 1H-NMR crude product 3b in acetone-d6 

Crude product of 3b after extraction 

NMR spectra 1H‐NMR product 3b in acetone‐d6 

 

Product 3b after column purification 
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The scale up of hydrazone formation using the  LmrR_V15pAF_RMH/HMFO  system 

was successful and the presence of benzaldehyde  detected on the NMR shows the 

efficient oxidation of the benzyl alcohol by the HMFO. The product was extracted 

and purified by classical organic synthesis technique i.e. column chromatography. 

However, the yield was lower due to the substrate used (hydrazine), which makes it 

difficult to extract the product from the cell. As a prove of concept, this substrate was 

used for the reaction due to the chromogenic nature for easy screening. 
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