Supplementary Methods

Technical details of the acoustic feature extraction

We extracted acoustic features with four sets of tools, described below, and also preprocessed them to reduce
the influence of atypical observations.

Praat

We extracted intensity, pitch, and first and second formant values from the denoised recordings every 0.03125
seconds. For female participants, the pitch floor was set at 100 Hz, with a pitch ceiling at 600 Hz, and
a maximum formant of 5500 Hz. For male participants, these values were 75 Hz, 300 Hz, and 5000 Hz,
respectively. From these data, several summary values were calculated for each recording: mean and maximum
first and second formants, mean pitch, and minimum intensity. In addition to these summary statistics, we
measured the intensity and pitch rates as change in these values over time. For vowel measures, the first and
second formants were used to calculate both the average vowel space used, as well as the vowel change rate
(measured as change in Euclidean formant space) over time.

MIRtoolbox

All MIRtoolbox (v. 1.7.2) features were extracted with default parameters'. mirattackslope returns a list
of all attack slopes detected, so final analyses were done on summary features (e.g., mean, median, etc.).
Final analyses were also done on summary features for mirroughness, which returns time series data of
roughness measures in 50ms windows. We RMS-normalized the mean of mirroughness, following previous
work?. MIRtoolbox features were computed on the denoised recordings, with the exception of mirtempo and
mirpulseclarity, where removing the silences between vocalizations would have altered the tempo.

Rhythmic variability

For temporal modulation spectra we followed a previous method?, which combines discrete Fourier transforms
applied to contiguous six-second excerpts. To analyze the entirety of each recording, we appended all
recordings with silence to be exact multiples of six-seconds. The location of the peak (Hz) and variance of
the temporal modulation spectra were extracted from their RMS values. Because intervening silence would
influence temporal modulation measures, we computed them on recordings before they had been denoised.

Normalized pairwise variability index (nPVTI)

The nPVI represents the temporal variance of data with discrete events, which makes it especially useful for
comparing speech and music*. We used an automated syllable- and phrase-detection algorithm to extract
events®. We computed nPVI in two ways: by averaging the nPVI of each phrase within a recording, as well
as by treating the entire recording as a single phrase. Because intervening silence would influence nPVI
measures, we computed them on recordings before they had been denoised.

Preprocessing

Automated acoustic analyses are highly sensitive at extremes (e.g., impossible values caused by non-vocal
sounds, like loud wind). To correct for these issues, we Winsorized all acoustic variables. This process defines
observations exceeding the lowest and highest 5 percentile ranks as outliers, recoding them as the values
of those percentile boundaries. These data were used for all acoustic analyses. This approach is generally
preferable to trimming extreme values, as trimming overcompensates for outliers by removing them entirely®.



Analyses of the acoustic features using an alternate method (i.e., imputing extreme values with the mean
observation for each feature within each fieldsite) yielded comparable results; readers are welcome to try
alternate trimming methods with the open data and materials.

In the cases of three acoustic features (roughness, vowel travel rate, and pulse clarity), we used log-transformed
data, because the raw data were highly skewed. This decision was supported by the exploratory-confirmatory
approach; that is, results replicated across both exploratory and confirmatory samples in the log-transformed
data.

Quantifying sensitivity with signal detection theory

To quantify sensitivity to infant-directedness in speech and song in the naive listener experiment, and to
quantify their response biases, we computed the metrics of d’ and ¢ (criterion) over the stimuli. These
quantities were calculated with standard techniques from signal detection theory”.

Specifically, a response on a given trial was coded as a hit if the trial was an infant-directed vocalization and
the participant correctly responded with baby; a miss if for an infant-directed vocalization, they responded
adult; a false-alarm if for an adult-directed vocalization, they responded baby; and a correct-reject if
for an adult-directed vocalization, they correctly responded adult.

The hit rate H was then computed as the total number of hits for a given recording, divided by the total
number of hits plus the misses; the false-alarm rate F' was computed as the total number of misses for a
given recording, divided by the total number of false-alarms plus the correct-rejects. These scores were then
conservatively adjusted with the log-linear correction for extreme scores®, and finally d’ was estimated via
the following equation, where the function z(-) represents the inverse of the normal cumulative distribution
function:

d =z(H)— 2(F)

Criterion (c) was estimated as:

Additional naive listener data collection via Prolific

In revising this manuscript, we discovered that a small subset of the corpus had been erroneously excluded
from the naive listener experiment. In most cases, these were recordings that had been too-conservatively
edited to be too short to include in the experiment (but could reasonably be edited to include longer sections
of audio); in some other cases, the original excerpting included confounding background noises that, upon
additional editing, were avoidable. To ensure maximal coverage of the fieldsites studied here, we re-excerpted
the audio of 103 examples and collected supplemental naive listener data on these recordings via a Prolific
experiment (N = 97, 54 male, 42 female, 1 other, mean age = 29.7 years). The Prolific experiment was
identical to the citizen-science experiment, except that each participant was paid US$15/hr, rather than
volunteering; and each participant rated 188 recordings instead of up to 16.

We included in the Prolific experiment the set of recordings that were erroneously excluded from the citizen-
science experiment, along with 85 additional recordings randomly selected from those that were included
in the citizen-science experiment, so as to ensure that each Prolific participant heard a balanced set of
vocalization types. The two cohorts’ ratings of the recordings in common across the two experiments were
highly correlated (r = 0.95, p < 0.0001; two-sided test), demonstrating that they had similar intuitions
concerning infant-directedness in speech and song. As such, in the main text, we report all the ratings
together without disambiguating between the cohorts.



Supplementary Results

Alternate analysis of acoustic features via principal-components approach

We conducted an exploratory principal components analysis of the full 94 acoustic variables (Extended Data
Fig. 2). The first three principal components accounted for 39% of total variability in acoustic features. The
results provide convergent evidence that the main forms of acoustic variation partition into orthogonal clusters
that most strongly distinguish speech from song overall (in PC1); most strongly distinguish infant-directedness
in song (in PC2); and most strongly distinguish infant-directedness in speech (in PC3). Factor loadings are in
Supplementary Table 7; these largely corroborate the findings of the LASSO and exploratory-confirmatory
analyses.

One further pattern that the principal components analysis highlights is that infant-directedness makes speech
more “songlike”, in terms of higher pitch and reduced roughness (PC3); but speech strongly differed from song
overall in terms of the variability and rate of variability of pitch, intensity, and vowels, and infant-directedness
further exaggerated these differences for speech (PC1).

Robustness tests of main results in naive listener experiment

On the suggestion of an anonymous reviewer, we repeated the main analyses of the naive listener experiment
(i-e., estimated sensitivity to infant-directedness in speech and song) with two alternate data exclusion
strategies. First, the analyses and figures in the main text only study ratings of recordings that contained
minimal extraneous sounds (such as a baby crying; see Methods). To ensure that the exclusion of these
recordings did not account for the main findings, we repeated the analyses while including ratings of all
recordings, including those with putatively confounding background sounds. They robustly replicated, with
comparable effect sizes (speech: d’ = 1.13, t(4.75) = 3.42, 95% CI [0.48, 1.77], p = 0.02; song: d' = 0.54, t(4.¢1)
= 3.35, 95% CI [0.23, 0.86], p = 0.023).

A further potential confound concerns listeners’ familiarity with the languages spoken or sung in the recordings.
In the main text analyses, we explicitly model the expected differences in sensitivity that could result from
lower or higher degrees of linguistic relatedness between the vocalizer and the listener (see, e.g., Fig. 3c).
However, because the experiment was only conducted in English, many participants likely could understand
at least some parts of the English-language vocalizations. To ensure that these recordings did not account for
the main findings, we repeated the analyses while excluding all English-language recordings. These recordings
came predominantly from the Wellington, San Diego, and Toronto fieldsites (where nearly all recordings
were in English) but also appeared elsewhere, such as the Arawak fieldsite (where English Creole recordings
were often comprehensible to English speakers), and in a few other sites, when a speaker happened to be
bilingual and produce English-language vocalizations. The results replicated with these exclusions, although
the estimated effect was weaker in song (speech: d’ = 0.79, t(4.02) = 3.01, 95% CI [0.28, 1.30], p = 0.039;
song: d' = 0.37, t(3.91) = 3.00, 95% CI [0.13, 0.62], p = 0.041).

Demographic analyses of a subsample of naive listeners

An anonymous reviewer raised the possibility that conducting the naive listener experiment online, as opposed
to in a laboratory, reduced the diversity of the sample; if so, this could bias the results of the experiment, in
principle. To test this question, we analyzed demographic information from participants living in the United
States, who provided income, education level, and ethnicity data.

Descriptive statistics revealed that the subsample of United States participants was highly diverse (Supple-
mentary Table 6), including, for example, representation from all ethnicity categories currently defined by
the National Institutes of Health, and a broad range of annual household incomes. The sample was generally
more representative of the United States population than are samples recruited in typical laboratory studies,
which may skew towards wealthier samples with representation of fewer ethnicity categories®!°.



Nevertheless, we proceeded by asking whether demographic factors were likely to affect people’s ability to
perceive infant-directedness. We ran mixed-effect regressions for each of the available demographic variables
with random intercepts for the vocalist in the recording, and fixed effects for vocalization type and the
demographic factor. While the main effects of income, education, or race on task performance were statistically
significant (ps < 0.0001), in all cases, the effect sizes were tiny, explaining ~0.1% of variance in the model.
These findings imply that the choice of a citizen-science approach likely did not bias the results of the
experiment, at least in United States participants.

Society-level predictors for naive listener data

Listener sensitivity within each fieldsite was correlated with a number of society-level characteristics: rank-
order population size (speech: 7 = 0.51; song: 7 = 0.58), distance from fieldsite to nearest urban center
(speech: r = -0.78; song: r = -0.51), and number of children per family (speech: r = -0.53; song: r = -0.72;
all ps < .001 from two-sided tests). Each of these predictors were highly correlated with each other (all r >
0.6), however, suggesting that they did not each contribute unique variance. There was no correlation with
ratings of how frequently infant-directed vocalizations were used within each society (ps > .4). These findings
suggest that at least some cross-fieldsite variability in listener sensitivity to infant-directedness is attributable
to the cultural relatedness between vocalizers and listeners (as opposed to the linguistic relatedness analyzed
in in the Main Text and Fig. 3c).

Simulated infant-directed vocalizations

Prior research has shown that simulated infant-directedness is qualitatively similar, albeit less exaggerated
than when authentic, for both speech!! and song'?. Indeed, a model of the naive listener results adjusting
for fieldsite indeed showed a small decrease in “baby” guesses when an infant was not present (ID song:
6.4%, ID speech: 7.5%, AD song: -6.5%, AD speech: -4.2%, ps < .0001), but this effect was not stronger for
vocalizations that were infant-directed compared to adult-directed (x?(1) = 2.93, p = 0.087). Both the naive
listener results and acoustic analyses were robust to whether these simulated infant-directed vocalizations
were included or excluded, however, implying that the use of simulated infant-directed vocalizations did not
undermine the robustness of the main effects.



Supplementary Figures
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Supplementary Fig. 1 | LASSO classification of acoustic features with alternate cross-validation
approaches. We repeated the main LASSO analysis (Fig. 1b) twice, but rather than conducting k-fold
cross-validation across fieldsites, we did so across language families and world regions (see descriptive
information about the fieldsites in Table 1). The results replicated robustly across both models, with
corpus-wide classification performance significantly above chance in all cases. The vertical bars represent the
mean classification performance across the cross-validation units (11 language families and 6 world-regions,
respectively; quantified via receiver operating characteristic/area under the curve; AUC); the error bars
represent 95% confidence intervals of the mean; the points represent the performance estimate for each
language family or world region; and the horizontal dashed lines indicate chance level of 50% AUC.
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Supplementary Fig. 2 | Replication of main LASSO results using unedited audio. As a test
of robustness, we repeated the main LASSO analyses (Fig. 1b) with acoustic features extracted from raw,
unedited audio. This approach ensures that the main results are not attributable to idiosyncrasies in the
audio introduced by the editing process. The results repeated robustly, with above-chance performance in
all fieldsites for both speech and song, and with the 3 most influential acoustic features selected by the
model repeating across both specifications (see Fig. 1b). The vertical bars represent the overall classification
performance (quantified via receiver operating characteristic/area under the curve; AUC); the error bars
represent 95% confidence intervals; the points represent the average performance for each fieldsite (n = 21
fieldsites); and the horizontal dashed lines indicate chance level of 50% AUC. The horizontal bars show the
acoustic characteristics with the largest influence in each classifier; the green and red triangles indicate the
direction of the effect, e.g., with median pitch having a large, positive effect on classification of infant-directed
speech. See Supplementary Methods for further details.
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Supplementary Fig. 3 | The main effects in the naive listener experiment are not attributable
to learning. a, This panel repeats the raw accuracy data reported in Extended Data Fig. 4b, but using
only data from responses that were participants’ first trial, to avoid the possibility of any learning effects
over the course of their participation (with data available from n = 1,035 recordings). The results do not
change appreciably. The points indicate average ratings for each recording; the gray lines connecting the
points indicate the pairs of vocalizations produced by the same voice; the half-violins are kernel density
estimations; and the boxplots represent the medians, interquartile ranges, and 95% confidence intervals
(indicated by the notches). b, Over the course of multiple trials in the experiment, which contained corrective
feedback, participants’ raw accuracy barely increased. The lines depict linear regressions for each of the four
vocalization types and the shaded regions depict 95% confidence intervals.
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Supplementary Fig. 4 | Exploratory-confirmatory selected acoustic features for pre-registered

analyses.

The preregistered analyses included comparisons of the acoustic features of infant-directed

vocalizations, regardless of whether they included speech or song. For the reasons discussed in the Methods,
and per the results reported in Fig. 2, these results should be interpreted with caution, as direct comparisons
of acoustic features across modalities (language vs. music) may be spurious or may hide underlying variation
within each modality. Moreover, these analyses do not include fieldsite-level random effects, so they are less
conservative than those reported in Fig. 2 (i.e., they identify a larger number of acoustic features). The
boxplots show the 25 acoustic features with a significant difference in at least one main comparison (e.g.,
infant-directed song vs. infant-directed speech, in the right panel), in both the exploratory and confirmatory
analyses. All variables are normalized across participants. The boxplots represent the median and interquartile
range; the whiskers indicate 1.5 x IQR; and the notches represent the 95% confidence intervals of the medians.
Faded comparisons did not reach significance in exploratory analyses. Significance values are computed via
linear combinations using two-sided tests (n = 1,570 recordings); *p < 0.05, **p < 0.01, ***p < 0.001; no
adjustments made for multiple-comparisons due to the exploratory-confirmatory approach taken. Prespecified
hypotheses about each comparison are posted in the project GitHub repository.



Supplementary Tables

Label Stub Variables Description Significance

Attack Curve mir_attack Mean, Med, MIRtoolbox detects acoustic events The slope of an attack curve

Slope StD, Range, in the audio; for a subset of those provides a relative measure of

Min, Max, 1st it can compute an attack slope "alerting components," or
Quart, 3rd from amplitude curves, which is the immediately discriminable
Quart, IQR, slope of the line from the beginning  beginnings of a vocalization.
Distance of the event to its peak.

Roughness mir_roughness Mean, Med, A roughness value produced by Along with inharmonicity,

StD, Range, computing the peaks of the audio roughness provides one measure of
Max, 1st spectrum and taking the average of  dissonance in a recording.
Quart, 3rd the dissonance between all possible Roughness similarly provides at
Quart, IQR, pairs of peaks; following Buyens et least one measure of vocal clarity.
Distance al. (2017), we reduce this to a

single measure by taking the

RMS-normalized mean.

85th Energy mir_rolloff85 ‘Whole An estimate of the amount of high The 85th energy percentile allows a

Percentile frequency in a signal measured by comparison of relative measures of
the frequency such that a 85% of high-frequency acoustics in a
the total energy is contained below  vocalization.
it.

Inharmonicity mir_inharmonicity Whole An estimate of the inharmonicity in ~ Along with roughness,
the signal produced by identifying inharmonicity provides a more
the number of partials that are not precise measure of dissonance in a
multiples of the fundamental vocalization.
frequency (i.e. those outside of the
ideal harmonic range).

Tempo mir_tempo Whole A tempo estimate made by Tempo allows assessment of the
detecting periodicities from MIR’s speed or pace of a vocalization.
event detection curves. Outputs a
single number.

Pule Clarity mir_pulseclarity ‘Whole Estimates the rhythmic clarity, or Pulse clarity provides a measure of
strength of the beats (Lartillot et the vocal clarity of a speaker or
al. 2008). emphasis on individual utterances.

Rhythmic npvi_total Recording The nPVI equation measures the By providing a measure of

Variability “average degree of durational durational contrast, nPVI_total is
contrast between adjacent events in  a measure of rhythmic complexity
a sequence" (Daniele & Patel, in a recording.

2015). This makes it especially

useful for comparing rhythmic

units across language and music

(i.e., syllables vs. notes). To

automatically detect events, we

used Mertens’ (2004) syllable

detection algorithm.
Rhythmic npvi_phrase Phrase In addition to detecting syllables, nPVI_ phrase provides a more
Variability Mertens’ algorithm detects phrases. granular measure of rhythmic

‘Whereas npvi__total computes
nPVI based on the whole file as a
continuous phrase, this measure
computes the nPVI for each
detected phrase and reports the
mean. In other words, it excludes
the distances between the ends and
beginnings of phrases.

complexity, within phrases, rather
than between them.



(continued)

Label Stub Variables Description Significance
Temporal tm_peak_hz Whole The temporal modulation spectrum The peak of the temporal
Modulation is the frequency decomposition of modulation spectrum provides a
the amplitude envelope of a signal. measure of how maximally
This measures how loud something modulated, or variable, the onset of
is at any given moment. We then notes are in a recording, providing
measure how fast the loudness a raw measure of metre for speech
changes. For example: if someone and song.
sings a note every second, the
spectrum will have a peak at 1Hz.
If someone sings a note three times
a second, but with an emphasis
every three seconds, there will be a
large peak at 1Hz, and a smaller
peak at 3Hz. The peak of the
spectrum is the frequency of the
amplitude spectrum which has the
highest root mean square of a given
recording and represents a raw
value of the recording’s tempo.
Temporal tm_std_hz StD The temporal modulation spectrum The standard deviation of temporal
Modulation is the frequency decomposition of modulation allows for an
the amplitude envelope of a signal. assessment of the overall variability
This measures how loud something  of temporal modulations in a
is at any given moment. We then recording, providing a coarse
measure how fast the loudness measure of rhythm, with a lower
changes. For example: if someone standard deviation leaning towards
sings a note every second, the more monorhythmic signals.
spectrum will have a peak at 1Hz.
If someone sings a note three times
a second, but with an emphasis
every three seconds, there will be a
large peak at 1Hz, and a smaller
peak at 3Hz. The standard
deviation of the spectrum is taken
as a measure of how exaggerated
the peak is.
Pitch praat_f0 Mean, Med, The fundamental frequency (f0) in Pitch provides a fundamental
StD, Range, Hertz for each recording measure of the highness or lowness,
Min, Max, 1st in frequency, of an utterance.
Quart, 3rd Likewise, the shape of the pitch
Quart, IQR curve and the overall value of pitch
is a common discriminable feature
in both speech and song.
Pitch Space praat_fOtravel Mean, Med, The distance between f0 at each Pitch space provides a dynamic
StD, Range, .03125/sec interval to the next. measure of pitch’s range over time.
Max, 1st
Quart, 3rd
Quart, IQR
Pitch Rate praat_pitch_rate Whole, Med, The pitch rate is a measure of pitch ~ The pitch rate provides a measure
IQR change over time. In essence, the of how smooth or variable pitch is
pitch rate provides a measure of over time.
pitch curve smoothness (a lower
value corresponds to a smoother
curve).
Vowel Space praat_vowtrav Mean, Med, The Euclidian distance travelled in ~ Vowel space provides a measure of
StD, Range, vowel space. This is equivalent to how much of the possible complex
Max, 1st distance between the two formants. vowel space is used.
Quart, 3rd
Quart, IQR
Vowel Space praat_vowtrav_rate  Whole, Med, The Euclidian distance travelled in ~ Vowel travel rate provides a
Travel Rate IQR vowel space over a rate of time. measure of how much of the vowel

This is equivalent to distance
between two formants divided by
rate of time.
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space is used over time, a relative
measure of acoustic "flashiness" of a
signal.



(continued)

Label

Stub Variables

Description

Significance

Amplitude

Amplitude
Space

Amplitude
Rate

1st Formant

Second
Formant

File duration

Concatenated
file duration

Mean, Med,
StD, Range,
Min, Max, 1st
Quart, 3rd
Quart, IQR,
Distance

praat_intensity

praat_intensitytravelMean, Med,
StD, Range,
Max, 1st
Quart, 3rd
Quart, IQR

praat_intensity_rate Whole, Med,
IQR

Mean, Med,
StD, Range,
Min, Max, 1st
Quart, 3rd
Quart, IQR

Mean, Med,
StD, Range,
Min, Max, 1lst
Quart, 3rd
Quart, IQR

praat_f1

praat_f2

meta_length

meta_edit_length

A measure of amplitude (loudness)
in decibels

The distance between amplitude at
each .03125/sec interval to the
next.

A measure of decay in intensity
curves in each recording measured
as change in amplitude over time.

The frequency in Hertz of the 1st
formant at each (.03125/sec) point

The frequency in Hertz of the
second formant at each
(.03125/sec) point

The length of the unedited sound
files

The length of the concatenated
versions of the sound files

Amplitude provides a measure of
how loud or quiet a vocalization is
and can be compared between
types within speakers

Intensity space provides a dynamic
measure of intensity’s range over
time.

The intensity rate provides a
measure of how loud or soft
amplitude changes over time.

1st formants are the 1st in a
harmonic series following from the
fundamental frequency and is
important for a number of acoustic
reasons.

Second formants are the second in
a harmonic series following from
the fundamental frequency, and
along with the 1st formant, is used
by listeners to perceive vowels.

Supplementary Table 1.

repository, suffixes are added to denote summary statistics (e.g., mir_attack_mean).
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Codebook for acoustic features. Variable names are stubs; in the datasets on the project GitHub



Speech Song
Acoustic feature Coefficient  Acoustic feature Coeflicient
Speech Song
Pitch (Median) 2.449  Vowel Travel (IQR) 0.735
Vowel Travel Rate (Median) 0.677 Intensity (Median) -0.428
Pitch (IQR) 0.533  Attack Curve Slope (Median) -0.419
Pulse Clarity 0.231 Roughness (Median) -0.405
Energy Roll-Off (85th %-ile) -0.185 Second Formant (IQR) -0.285
Second Formant (Median) 0.170  Energy Roll-Off (85th %-ile) -0.255
Roughness (IQR) -0.167  Inharmonicity -0.171
Attack Curve Slope (Median) 0.152  Attack Curve Slope (IQR) 0.159
Attack Curve Slope (IQR) 0.119  Pitch (IQR) -0.156
Inharmonicity -0.073  Vowel Travel Rate (IQR) 0.117
Tempo -0.057  Second Formant (Median) -0.105
Intensity (IQR) 0.041 Tempo 0.080
Pulse Clarity 0.079
Peak Tempo 0.074
Pitch (Median) -0.042
Rhythmic Variability (nPVI) -0.028

Supplementary Table 2.

The predictive influence of each of the acoustical features in distinguishing

infant-directed from adult-directed vocalizations, chosen via two LASSO models (performance and the top
six features for each model are depicted in Fig. 1b). The coeflicients can be interpreted in a similar fashion
to a logistic regression, i.e., as changes in the predicted log-odds ratio (with positive values indicating a

higher likelihood of infant-directedness).
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Comparison Feature Statistic B8 SE z p
ID Speech vs. AD Speech
Intensity Median 0.081 0.052 1.542 0.123
Acoustic Roughness Median  -0.220 0.100 -2.202 0.028
IQR -0.124 0.071 -1.740 0.082
Vowel Travel IQR 0.283 0.126 2.236 0.025
Pitch (Fo) Median 0.641 0.101 6.341 <0.001
IQR 0.602 0.128 4.692 <0.001
Energy Roll-off (85 %ile) Whole -0.261 0.063  -4.129 <0.001
Inharmonicity Whole -0.274 0.072 -3.802  <0.001
Pulse Clarity Whole 0.213 0.069 3.092 0.002
Vowel Travel Rate Median 0.514 0.116 4.412  <0.001
IQR 0.519 0.123 4.234 <0.001
ID Song vs. AD Song
Intensity Median -0.138 0.048 -2.905 0.004
Acoustic Roughness Median  -0.227 0.097 -2.349 0.019
IQR -0.190 0.083 -2.295 0.022
Vowel Travel IQR 0.257 0.080 3.203 0.001
Pitch (Fo) Median  -0.052 0.062 -0.836 0.403
IQR -0.191 0.079 -2.414 0.016
Energy Roll-off (85 %ile) Whole -0.025 0.074 -0.330 0.742
Inharmonicity Whole -0.169 0.088 -1.923 0.055
Pulse Clarity Whole 0.064 0.111 0.579 0.562
Vowel Travel Rate Median 0.179 0.094 1.896 0.058
IQR 0.211 0.088 2.396 0.017

Supplementary Table 3.

Regression results from confirmatory analyses (corresponding with the boxplots

in Fig. 2). The features tested here were limited to those with significant differences in the exploratory analyses,
as such no adjustments for multiple comparisons were used. Statistics are from post-hoc linear combinations
using two-sided tests following multi-level mixed-effects models. Abbreviations: infant-directed (ID); adult-

directed (AD).
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Song type Number of songs

Love Song 21
Caring song

Sad Song

Ballad

Hanging out before bed song
Lullaby

Orphan song

Past remembrance song

Religious ballad

— = = = = = N W W

Song about island home

Supplementary Table 4. Adult-directed
songs with descriptions rated as “soothing" by two
independent annotators. A mixed-effects model
estimating the difference in perceived infant-
directedness across these vs. other adult-directed
songs, adjusting for fieldsite-wise variability, found
a statistically significant difference in responses
(b = —0.027,se = 0.006,t42,360 = —4.107,}9 <
.0001), but this difference was small (an estimated
average difference of ~2.7% less infant-directed)
and in the opposite direction to what one might ex-
pect if soothing songs were mistaken for lullabies.
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Speech Song

Fieldsite d’ 95% CI n d 95% CI n
Tannese Vanuatans  0.154 [-0.487 0.796] 2 0.070 [-0.250 0.390] 10
Mentawai Islanders  0.514 [-0.269 1.297] 6 0.140 [-0.227 0.507] 13
Tsimane 0.642 [-0.003 1.288] 11 0.233 [-0.096 0.563] 12
Sépara/Achuar 0.481 [-0.151 1.113] 10 0.259 [-0.071 0.588] 11
Quechuan/Aymaran  0.958 [ 0.285 1.632] 3 0.355 [ 0.011 0.699] 6
Enga 0.910 [ 0.214 1.605] 2 NA NA 0
Mbendjele 0.894 [ 0.216 1.572] 3 0417 [ 0.066 0.768] 10
Hadza 1.142 [0.433 1.851] 10 0.440 [ 0.097 0.783)] 9
Nyangatom 1.092 [0.394 1.789] 5 0.453 [0.108 0.799] 7
Jenu Kurubas 1.290 [ 0.665 1.916] 10 0.515 [ 0.193 0.836) 11
Toposa 1.164 [0.488 1.839] 8 0.522 [0.180 0.865] 6
Krakow 1.308 [ 0.483 2.134] 7 0.529 [ 0.110 0.949] 7
Turku 1.489 [ 0.812 2.167] 16 0.536 [ 0.198 0.874] 14
Rural Poland 1.273 [ 0.704 1.842] 10 0.575 [ 0.274 0.876] 7
Colombian mestizos 1.325 [ 0.680 1.969] 5 0.605 [ 0.268 0.943] 7
San Diego 1.407 [0.674 2.141] 13 0.612 [ 0.241 0.982] 17
Beijing 1.613 [ 1.050 2.176] 26 0.706 [ 0.408 1.004] 28
Arawak 1.729 [ 1.067 2.392] 0.732 [0.391 1.073] 6
Afrocolombians 1.562 [ 0.815 2.309] 4 0.742 [0.369 1.115] 9
Toronto 1.593 [ 0.807 2.379] 27 0.747 [0.375 1.119] 23
Wellington 2.417 [ 1.730 3.104] 20 1.066 [ 0.720 1.413] 26
Supplementary Table 5. Estimated fieldsite-wise d-prime values, quantifying sensitivity to

infant-directedness in speech and song, independent of response bias. Values are estimated as coeffi-
cients from mixed-effects model predicting d’ from vocalization type, with random effects of fieldsite
for each vocalization type. n refers to the number of vocalists that had a complete pair of vocalizations
in the listener experiment (e.g., where one or both of the infant- and adult-directed vocalizations were
not excluded due to confounds). Due to the strict exclusion procedure (see Methods), some fieldsites
have very small samples, complicating the interpretation of these results, and one fieldsite had no
observations for song. These exclusions only apply to the naive listener experiment, however, and not
the acoustic analyses reported elsewhere in this paper.
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Characteristic % N
Gender

Female 45.6% 7352
Male 51.5% 8299
Other 2.9% 463
[participant did not report] 14
Ethnicity

American Indian/Alaska Native 1.4% 207
Asian 23.3% 3366
Black or African-American 3.7% 536
More than one race 9.4% 1351
Native Hawaiian or other Pacific Islander  0.9% 131
White 61.2% 8836
[participant did not report] 1701
Hispanic

No 87.6% 12712
Yes 12.4% 1804
[participant did not report] 1612
Annual household income

Under $10,000 9.1% 912
$10,000 to $19,999 8.8% 879
$20,000 to $29,999 7.4% 47
$30,000 to $39,999 7.5% 755
$40,000 to $49,999 7.4% 47
$50,000 to $74,999 14.7% 1471
$75,000 to $99,999 12.2% 1227
$100,000 to $150,000 17.9% 1795
Over $150,000 15.0% 1503
[participant did not report] 6092

Supplementary Table 6.

Demographics of United States participants. See notes and

corresponding analyses in SI Text 1.5.
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Principal Component 1

Principal Component 2

Principal Component 3

Feature Weighting  Feature Weighting  Feature Weighting

Amplitude Space (Mean) -0.200  Amplitude (Mean) 0.271  Pitch (Mean) -0.306

Amplitude Space Travel Rate -0.200  Amplitude (Median) 0.266  Pitch (3rd Quartile) -0.302

(Median)

Pitch Space_rate (IQR) -0.199  Amplitude (3rd Quartile) 0.264  Pitch (Median) -0.291

Pitch Space Travel Rate -0.198  Amplitude (1st Quartile) 0.243  Pitch (1st Quartile) -0.248

(Whole)

Amplitude Space Travel Rate -0.195  Roughness (3rd Quartile) 0.213  Pitch (IQR) -0.223

(IQR)

Amplitude Space (Median) -0.188  Roughness (IQR) 0.212  Roughness (1st Quartile) 0.215

Pitch Space (3rd Quartile) -0.187  Roughness (Standard 0.203  Roughness (Median) 0.194
Deviation)

Amplitude Space Travel Rate -0.187  Roughness (Median) 0.188  Pitch (Standard Deviation) -0.178

(Whole)

Pitch Space (IQR) -0.187  Amplitude (Maximum) 0.188  Roughness (3rd Quartile) 0.154

Amplitude Space (1st -0.185  Roughness (Range) 0.174  Roughness (IQR) 0.148

Quartile)

Amplitude Space (3rd -0.185  Roughness (Maximum) 0.174  Amplitude Space (Range) -0.144

Quartile)

Vowel Space Travel Rate -0.184  Amplitude (Minumum) 0.167  Amplitude Space (Maximum) -0.144

(Median)

Pitch Space (Mean) -0.182  Roughness (Mean) 0.155  Roughness (Mean) 0.142

Vowel Space Travel Rate -0.180  1st Formant (1st Quartile) 0.147  Pitch (Maximum) -0.131

(IQR)

Amplitude Space (IQR) -0.179  Amplitude Space (Maximum) 0.136  Amplitude (3rd Quartile) -0.124

Vowel Space Travel Rate -0.177  Amplitude Space (Range) 0.136  Pitch Space (1st Quartile) -0.122

(Whole)

Pitch Space_rate (Median) -0.176  Roughness (1st Quartile) 0.130  Second Formant (Minumum) 0.119

Vowel Space (Mean) -0.170  1st Formant (Standard -0.129  Amplitude (Mean) -0.118
Deviation)

Amplitude Space (Standard -0.161  Vowel Space (IQR) -0.128  Amplitude (Median) -0.116

Deviation)

Vowel Space (Median) -0.161  Vowel Space (3rd Quartile) -0.124  85th Energy Percentile 0.116

Vowel Space (Standard -0.159  Second Formant (Mean) -0.123  Pitch Space (Maximum) -0.114

Deviation)

Vowel Space (1st Quartile) -0.158  1st Formant (Range) -0.121  Pitch Space (Range) -0.114

Vowel Space (3rd Quartile) -0.152  1st Formant (Minumum) 0.121  Second Formant (IQR) -0.111

Pitch Space (Standard -0.152  Second Formant (3rd -0.120  Amplitude (Maximum) -0.110

Deviation) Quartile)

Pitch Space (Median) -0.150  Second Formant (Maximum) -0.118  Amplitude (Range) -0.110

Vowel Space (IQR) -0.143  Second Formant (Median) -0.117  Pitch (Range) -0.107

Amplitude (IQR) -0.127  Second Formant (Range) -0.116  Second Formant (Standard -0.106

Deviation)

Temporal Modulation (Peak) -0.107  1st Formant (Median) 0.114  Inharmonicity 0.104

nPVI Recording 0.100  Vowel Space (Mean) -0.109  Amplitude (1st Quartile) -0.103

Amplitude (Standard -0.099  1st Formant (Maximum) -0.107  1st Formant (Mean) 0.101

Deviation)

Supplementary Table 7.
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Factor loadings for the top three principal components reported in Extended Data Fig. 2.
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