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Reviewer Comments & Decisions:  
 

Decision Letter, initial version: 
Dear Dr Fernandez-Cuesta, 
 
Your Article, "Whole-genome sequencing and multi-omic integrative analyses reveal novel axes of 
molecular variation and specialized tumor profiles in Malignant Pleural Mesothelioma" has now been 
seen by 3 referees. You will see from their comments copied below that while they find your work of 
considerable potential interest, they have raised quite substantial concerns that must be addressed. In 
light of these comments, we cannot accept the manuscript for publication, but would be very 
interested in considering a revised version that addresses these serious concerns. 
 
We hope you will find the referees' comments useful as you decide how to proceed. If you wish to 
submit a substantially revised manuscript, please bear in mind that we will be reluctant to approach 
the referees again in the absence of major revisions. 
 
You'll see that the reviewers are broadly supportive of the work and find the analysis to be of interest. 
However, they lay out a series of concerns about the analysis and the interpretation of the work which 
will all need to be addressed. You'll see that the lack of normal control samples for the majority of the 
WGS set has been flagged as a limitation. We appreciate that you are likely unable to provide said 
samples at this late stage, but you will need to convince your reviewers that their exclusion does not 
irreparably undermine the strength of your conclusions, and the overall value of the dataset. Reviewer 
#1 has asked for functional work to confirm some of your findings. We agree that these data would 
strengthen the paper, and we would encourage you to add these data if possible. However, the 
absence of these data will not preclude our interest in the paper. Their other comments must be 
addressed. 
 
Reviewer #2 has raised a number of technical issues. They've also made requests for clarifications and 
the provision of missing details. These should all be addressed in full. Reviewer #3 has expressed 
doubt that your classification system represents a true advance over the current (histology-based) 
system. This is an important point as 'buy-in' from the mesothelioma community will underpin the 
paper's eventual success. As such, please address these concerns textually. They have also 
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highlighted the lack of a validation cohort. Again, we appreciate that you are unlikely to have access 
to a new, suitably powered cohort at this point in the process. However, this comment will need to be 
addressed either textually, or through splitting your cohorts to create a discovery and validation 
grouping (if possible). Their other points should be addressed. 
 
If you choose to revise your manuscript taking into account all reviewer and editor comments, please 
highlight all changes in the manuscript text file. At this stage we will need you to upload a copy of the 
manuscript in MS Word .docx or similar editable format. 
 
We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 
us if there are specific requests from the reviewers that you believe are technically impossible or 
unlikely to yield a meaningful outcome. 
 
If revising your manuscript: 
 
*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 
referee comment. If no action was taken to address a point, you must provide a compelling argument. 
This response will be sent back to the referees along with the revised manuscript. 
 
*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 
Article format instructions, available <a 
href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 
Refer also to any guidelines provided in this letter. 
 
*3) Include a revised version of any required Reporting Summary: 
https://www.nature.com/documents/nr-reporting-summary.pdf 
It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 
manuscript goes back for peer review. 
A revised checklist is essential for re-review of the paper. 
 
Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-
integrity">guidelines on digital image standards.</a> 
 
You may use the link below to submit your revised manuscript and related files: 
 
[redacted] 
 
<strong>Note:</strong> This URL links to your confidential home page and associated information 
about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 
this email to co-authors, please delete the link to your homepage. 
 
If you wish to submit a suitably revised manuscript we would hope to receive it within 6 months. If 
you cannot send it within this time, please let us know. We will be happy to consider your revision so 
long as nothing similar has been accepted for publication at Nature Genetics or published elsewhere. 
Should your manuscript be substantially delayed without notifying us in advance and your article is 
eventually published, the received date would be that of the revised, not the original, version. 
 
Please do not hesitate to contact me if you have any questions or would like to discuss the required 
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revisions further. 
 
Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 
direction, we are now requesting that all authors identified as ‘corresponding author’ on published 
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 
the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 
achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 
from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 
information please visit please visit <a 
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 
 
Thank you for the opportunity to review your work. 
 
Sincerely, 
 
Safia Danovi 
Editor 
Nature Genetics 
 
 
 
Referee expertise: 
 
Referee #1: mesothelioma genomics 
 
Referee #2: lung cancer genomics 
 
Referee #3: lung cancer genomics 
 
 
Reviewers' Comments: 
 
Reviewer #1: 
Remarks to the Author: 
This is an impressive WGS study of MPM with very sophisticated bioinformatic analyses. While the 
dataset represents a invaluable resource, there are few actionable findings and the few interesting 
observations are not followed with functional data. 
1. many of the q values are not impressive, i.e. barely below 0.05 
2. the authors describe CIMP in a substantial minority of MPM. While methylation of the mesothelin 
promoter was noted in the TCGA study, a CIMP phenotype was not called in that dataset. More detail 
is needed on this observation. In CRC, CIMP overlaps partially with MSI. A comment is needed on MSI 
and TMB in the CIMP subset of MPM. That would make this observation potentially actionable. 
3. the authors describe HRD in 23% of MPM. This is an observation that begs for functional validation 
in terms of PARPi sensitivity. 
4. p.8: LATS2, not LAST2 
5. the authors state that " the higher rate of chromothripsis in the Acinar phenotype could be a result 
of BAP1 inactivation known to impair DNA repair" but Fig 3A shows a fairly obvious trend to mutual 
exclusivity between BAP1 alterations and chromothripsis. 
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6. p.9: the statement that "The specialization of tumors was influenced by early genomic events. 
WGD, TERT amp and copy neutral LOH may have occurred more than ten years before diagnosis, both 
concomitantly with and subsequent to asbestos exposure" is is based on data that are either not 
convincing or poorly presented (Fig 5D). 
7. Fig 3A: it would be very unusual for MTAP to undergo homozygous deletion without concurrent 
CDKN2A homozygous deletion. The authors should review these cases for undervalued CDKN2A 
deletion. 
8. Fig 4A shows 3 SETDB1 mutated samples but the authors report only one GNH case. Please discuss. 
9. Fig 4A reveals that a concerning proportion of the WGS samples had no matched normal. 
 
 
 
Reviewer #2: 
Remarks to the Author: 
This is the largest WGS analysis of MPM to date and the authors used unusual approaches for the 
analyses. In my opinion, the analyses require major revisions and validation (or at least comparisons 
of results) using alternative approaches. However, there are some important limitations that cannot 
be fully addressed even with major revisions (first of all, the lack of germline material as reference for 
most tumors). 
 
 
 
Reviewer #3: 
Remarks to the Author: 
The authors report findings from whole genome sequencing and multi-omic integrative analyses of 
tumor tissues from patients with malignant pleural mesothelioma. The authors state that ploidy, 
adaptive immune response, CpG island methylation along with histological subtypes explain the 
variation in the phenotypic behavior in this disease with nearly uniform poor outcomes. State of art 
tools from sequencing to analyses are used from the French Mesobank source (predominantly). 
Potentially, this approach could improve the current solely histology-centric classification. The paper 
would be of great interest to the community of mesothelioma researchers and clinicians given that this 
body of work represents the largest data to data from whole-genome sequencing. I commend the 
authors for this remarkable work. 
 
1. It is not clear what cohort was used for various analyses. There are multiple cohorts- MESOMICS, 
Discovery (with and without ITH), and other published cohorts, TCGA, Bueno, in addition to cell lines. 
Most of the confusion centers around MESOMICS and Discovery cohorts. What is the Discovery cohort 
and what constituted this cohort (demographics, histology, etc) 
 
2. There should be a clear description of the cohorts (in the written part of the manuscript) outlining 
the treatment received (surgery, systemic therapy) and follow up for the Meso cohort and as well as 
the Discovery Cohort 
 
3 The first section titled integrative multi-omics analyses uncover novel axes of molecular variation is 
hard to follow. It is hard to understand how much the latent factors (LF) 1,3, 4 add to the histological 
factors? Is one histology more heterogeneous in terms of LF than the other histology? Despite its 
shortcomings, histological classification is the current and only standard in the clinic for treatment 
decision-making (surgery and the choice of initial systemic therapy, for example). I have a hard time 
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understanding what these three (excluding the morphology factor) contribute to the "molecular 
variation" 
 
4. Results shown in Figure 1 e regarding the prognostic value of LF1-4 would have been stronger if 
there is validation in an independent cohort. Those findings did not hold up in the larger subtype of 
the epithelioid type where only LF3 appeared to be significant (Fig S5B). This should be highlighted. 
Unfortunately, it is hard to assess the sarcomatoid histological subtype without adequate numbers. 
Once again, one cannot draw definite conclusions in the absence of a validation cohort 
 
 

Author Rebuttal to Initial comments   
 

RESPONSE TO THE EDITOR (SD) 

 

SD: You'll see that the reviewers are broadly supportive of the work and find the 
analysis to be of interest. However, they lay out a series of concerns about the analysis 
and the interpretation of the work which will all need to be addressed. 

LFC: We have addressed all their comments below, as largely as possible, to cover any 
possible concerns. 

 

SD: You'll see that the lack of normal control samples for the majority of the WGS set 
has been flagged as a limitation. We appreciate that you are likely unable to provide 
said samples at this late stage, but you will need to convince your reviewers that their 
exclusion does not irreparably undermine the strength of your conclusions, and the 
overall value of the dataset. 

LFC: We completely understand the concerns of the reviewers and editor regarding the lack 
of matched normal for many of the samples in our series; however we were very much aware 
of this limitation from the very beginning of the project and we have taken the necessary 
steps to limit the impact of this lack of normals on achieving the objectives of our study. We 
explain all of this in the response to Reviewer #1 - Comment 9 and Reviewer #2 below. 

 

SD: Reviewer #1 has asked for functional work to confirm some of your findings. We 
agree that these data would strengthen the paper, and we would encourage you to add 
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these data if possible. However, the absence of these data will not preclude our 
interest in the paper. Their other comments must be addressed. 

LFC: Due to the specific expertise of our team, and the lack of infrastructure, we have not 
been able to run such functional analyses in-house. However, we have used publically-
available MPM cell line data (Iorio et al. 2016 and de Reyniès et al. 2014) to address as much 
as possible the reviewer’s point. We have also addressed all his/her other comments. 

 

SD: Reviewer #2 has raised a number of technical issues. They've also made requests 
for clarifications and the provision of missing details. These should all be addressed 
in full. 

LFC: We have addressed all the technical concerns of Reviewer #2, as well as the requests for 
clarifications, that were related to (i) the relationship between the methods used here and 
those used in previous genomic characterization of mesothelioma and other tumors, and (ii) 
the lack of matched normal tissue/blood for some samples. 

 

SD: Reviewer #3 has expressed doubt that your classification system represents a true 
advance over the current (histology-based) system. This is an important point as 'buy-
in' from the mesothelioma community will underpin the paper's eventual success. As 
such, please address these concerns textually. They have also highlighted the lack of a 
validation cohort. Again, we appreciate that you are unlikely to have access to a new, 
suitably powered cohort at this point in the process. However, this comment will need 
to be addressed either textually, or through splitting your cohorts to create a 
discovery and validation grouping (if possible). Their other points should be 
addressed. 

LFC: We have addressed textually all the concerns of the reviewer regarding the importance 
of our discoveries, and added analyses to validate our results in publicly available cohorts. 
We have also improved our description of the methods and results and now mention 
explicitly which results could be validated using external cohorts, and if none was available, 
what steps we took to validate our results. 
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Finally, we would like to thank the editor and reviewers for highlighting the following 
features: 

(i) that our WGS MPM tumor dataset (n=115) represents the largest to date (in comparison 
to WES only in Hmeljak et al. Cancer Discov. 2018, n=20 WGS in Bueno et al. Nat Genet. 
2016, and n=15 new WGS in the recent work by Creaney et al. Genome Med. 2022); 

(ii) that our study also represents the largest MPM cohort profiled at three omic layers 
(genome, transcriptome, and epigenome), which facilitated the use of a unified framework 
(i.e. Multi-Omics Factor Analysis) research approach, this framework is necessary given the 
previous individual observations made by us and others (Alcala et al. EBioMedicine 2019, 
Blum et al. Nat Commun. 2019, and Creaney et al. Genome Med. 2022) that capturing and 
summarizing the entire molecular landscape would be required to really progress the field 
of MPM research; and lastly,  

(iii) that we applied insightful theories and methods from other fields, such as the Pareto 
task allocation theory from cancer ecology and evolution, in order to not only get the most 
out of our dataset but to be able to uncover aspects of MPM biology not otherwise 
identifiable.  

 

 

RESPONSE TO THE REFEREES 

 

Reviewer #1: (mesothelioma genomics) 

 

Remarks to the Author: This is an impressive WGS study of MPM with very 
sophisticated bioinformatic analyses. While the dataset represents an invaluable 
resource, there are few actionable findings and the few interesting observations are 
not followed with functional data. 

 

Answer: We thank the reviewer for noting the value of our work and the quality of the paper, 
and express our thanks for the many valuable suggestions on how to improve the 
manuscript. Below we fully address the specific comments provided, but would like also to 
address the important general comments on actionability and functional data. Given the 
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design of our study, and the nature of the material available, we didn’t anticipate our study 
would have clinical impact in the very short term. But rather, through our unsupervised 
analyses we aimed to examine the inter-patient molecular differences that may uncover the 
possible reasons for the limited impact novel therapeutics have had on mesothelioma 
survival. Therefore in order to better fulfill this aim, where applicable, we have now included 
discussions on the actionability of our findings, which are really focussed on the way they 
may be used for patient stratification in clinical trials. With regard to functional data, due to 
material and resources available we were not able to conduct such wet-laboratory validation 
ourselves, but that does not preclude us from investigating our findings in a biological model. 
That is why we have now moved some of our original analyses conducted in mesothelioma 
cell lines from supplementary material into the main text, but also included new analyses on 
this valuable resource, as suggested by the reviewer. We hope that these inclusions are of 
interest to the reviewer and improve the relevance of the manuscript to the mesothelioma 
community.  

 

1. Many of the q values are not impressive, i.e. barely below 0.05 
 

Answer: We fully agree with the reviewer about the importance of reproducibility of results, 
and thus now provide more information along with the manuscript corroborating our results 
and interpretations, in particular highlighting in a new Table S6 (see simplified version 
below and Table S6 extended version for review only) all replications that we performed, 
including for the less impressive q-values. Regarding the q-values themselves, it might be 
that we have not chosen the best way of disclosing them. Indeed, all but 2 p-values reported 
in the main text and Figures (now 19/21, previously 23/24), and most q-values (now 44/59, 
previously 21/37) are actually below a more stringent cutoff of 0.01. The remaining (now 15 
out of 59, previously 16 out of 37) q-values reported are between 1% and 5%.  

Many of the remaining q-values (6 out of 16 previously) between 1% and 5% were 
actually the largest among a set of q-values: this is the case for all q-values referring to Figure 
2c and Table S8 (for a total of more than 200 q-values, the maximal is >0.01, but the median 
is well below 0.01 in 5/6 instances), and Table S4 (for a total of 14 q-values, the maximal is 
0.028, but the median is below 10-3). Therefore, we have decided to refer directly to the 
supplementary table gathering all the q-values supporting our conclusions or to report in 
the main text the median q-value instead of the maximal q-value to give a better sense of 
their scale to the reader. In addition, we now avoid graphical representation of q-values 
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ranges and therefore we have replaced the panels illustrating the IGSEA results by more 
conventional graphics, heatmaps of the enriched pathways (Figure 2c).  

Five out of the remaining q-values between 1% and 5% were computed from clinical 
variables (the asbestos exposure score and overall survival), and tended to be larger (0.01 
and 0.02), which is expected given the larger rate of missing data in these precious clinical 
variables (n=47 for the asbestos analysis instead of n=120 for genomic analyses). We now 
report a successful replication of the associations with asbestos in the Bueno cohort with a 
cruder exposition (yes/no instead of our score taking into account duration, frequency and 
strength of exposure), and a replication of the association between the biological 
interpretation of each latent factor and survival in Table S6. 

The last q-values between 1% and 5% correspond to analyses with lower power. 
Firstly, the overexpression of the E2F pathway in WGD samples, which might also suffer from 
limited power due to the low number of samples in the WGD+ group (n=17). We now 
mention (p. 4) that this analysis is itself a replication of the results from the PCAWG 
consortium (Quinton et al. Nature 2021), which found this pathway consistently upregulated 
across most common cancers, although we could not replicate this result in the TCGA MESO 
cohort, possibly due to a lack of power (11 WGD samples in this cohort). Secondly, q-values 
related to the relationship between specific alterations and archetypes (Figure 5c); these 
analyses are based on ANOVAs between archetype proportions and the mutational status 
(altered or wild-type) and thus have a power that depends on the number of altered tumors 
(ranging from 3 to 71), and thus lower than other molecular analyses such as those based on 
continuous variables like gene expression. We have now systematically performed all 
statistical analyses, where possible, independently in the Bueno and TCGA cohorts, and 
report these, the majority of which were able to be replicated, although the lack of WGS 
prevented the calling of structural variant and thus strongly limited the possibility to 
replicate findings involving large genomic events or alterations in drivers mostly affected by 
structural variants, as is often the case in MPM (see Table S6).  

 

Summary of Table S6. List of p- and q-values from MESOMICS cohort and replication  

Initial 
submission 

n Category n Action taken in R1 Result Comment (see 
above) 

  Largest among 
set of values 

6 Report median & 
replicate 

5/6 medians < 
0.01; all 
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0.01 < p or q 
< 0.05 

 

 

 

 

 

 

17 

replicated 

Low power 
clinical 
associations 

 

5 

 

Replicate results 

 

4/5 replicated 

No detailed 
asbestos exposure 
limited replication 

 

Low power 
molecular tests  

 

 

5 

 

 

Replicate results 

3/5 replicated; 

1/5 is 
replication of 
other studies 

Hypotheses 
including large 
genomic events 
could not be 
properly tested 

Other 1 Replicate results 1/1 replicated  

 

Finally, we now stress in the methods (p. 16) our philosophy regarding the reporting 
of p- and q-values and maximizing results reproducibility. We first note that we took a 
conservative q-value threshold of 0.05, instead of some q-value thresholds of 0.1 or 0.2 
commonly observed, which means that among 59 q-values reported we only expect two or 
three to be false positives. In addition, in line with the American Statistical Association 
statement on the misuse of p-values (Wasserstein and Lazar, Am Stat. 2016), which 
intends to “steer research into a ‘post p<0.05 era’,” we decided to report all p- and q-values, 
even those that may be closer to arbitrary thresholds such as the 5% threshold. 

 

2. The authors describe CIMP in a substantial minority of MPM. While methylation 
of the mesothelin promoter was noted in the TCGA study, a CIMP phenotype was 
not called in that dataset. More detail is needed on this observation. In CRC, 
CIMP overlaps partially with MSI. A comment is needed on MSI and TMB in the 
CIMP subset of MPM. That would make this observation potentially actionable. 

 

Answer: In order to clarify our analyses with regard to this phenotype we have provided 
additional details about the CIMP index, and its replication in the TCGA cohort, below, and in 
the study methods (section: CpG island methylator phenotype index, p. 29). As suggested 
we have now examined microsatellite instability (MSI) in our cohort (see methods p. 19 and 
Table S2), and provide a discussion of its link with CIMP index and clinical impact below and 
in the results (p. 9).  



 
 

 

11 
 

 

 

To validate the finding of variation in CIMP in our cohort, we examined whether this 
was also the case in the TCGA dataset. We apologize that this validation was not clearly 
explained in our initial submission and have improved the relevant methods section. Using 
the identical method employed in the MESOMICS cohort, of calculating the proportion of all 
CpG islands with mean beta value ≥ 0.3, we found the CIMP index in TCGA samples to range 
from 0.31 to 0.44 (Table S2, and methods section: CpG island methylator phenotype 
index). In the MESOMICS cohort, the CIMP index ranged from 0.32 to 0.47 (Table S2), and 
there was no significant difference in the distribution of CIMP index values between TCGA 
and MESOMICS (p-value=0.98, student’s t-test). As with the CIMP index in the MESOMICS 
cohort, CIMP index values in the TCGA cohort were also correlated with one MOFA latent 
factor (TCGA-LF4, see Figure S2 and S3), and were associated with a significantly higher 
hazard ratio in survival analysis (see Figure S5G).  

We have been deliberate in not describing this finding in MESOMICS and TCGA as a 
CIMP+ phenotype as the method we have used to investigate CpG island methylation level, 
based on DNA methylation array data, differs from the classical gene panel model assessed 
through methylation-specific PCR (Weisenberger et al. Nat Genet. 2006; Hughes et al. 
Cancer Res. 2013). Instead we refer to our measurement as a CIMP index, with a continuous 
rather than categorical interpretation. Nevertheless, we did compute a CIMP proxy based on 
the mean methylation level (beta value) of promoter CpG islands for the five genes in the 
Weisenberger et al. panel (see methods section: CpG island methylator phenotype 
index), and found this proxy to be significantly correlated with CIMP index for both the 
MESOMICS (p-value=1.36x10-36, r=0.86) and TCGA (p-value=3.08x10-24, r=0.84) cohorts 
(Table S2). Therefore we are confident in our finding of variation in CIMP within MPM, and 
that a subset of samples display a high level of CIMP.  

With regard to CIMP in colorectal cancer, it is well established that CIMP positive 
status often co-occurs with MSI (Phipps et al. Gastroenterology 2015). We thank the 
reviewer for their suggestion to investigate this further and have therefore performed 
additional analysis to call MSI in our cohort using the MSIsensor-pro software (Jia et al. 
Genomics, Proteomics & Bioinformatics 2020, see methods section p. 19). We detected 
one sample (MESO_084_T) to display MSI, which also had a high tumor mutational burden 
compared with other mesothelioma samples (13.3 mutations per mb, while the median TMB 
in our cohort was 0.98 per mb, Table S13). However this sample had a CIMP index value of 
0.34, compared with the median of 0.36 in our cohort, therefore we conclude that MSI is very 
rare in our series of MPM, and co-occurrence with high CIMP index could not be established. 
This is now mentioned in the results (p. 9). 
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There has been limited studies of potential therapies to target CIMP+ tumors, which 
may be due to its variability in prognostic value (for example, CIMP+ status is associated with 
better survival in gliomas but poorer survival in colorectal cancer) and its uncertain etiology 
(Malta et al. Neuro-Oncology 2017; Juo et al. Ann of Oncol. 2014). In this study we have 
investigated potential drivers of high CIMP in mesothelioma, which given the association 
between higher CIMP index and poorer survival, could be considered targets for future 
therapies. As discussed in the manuscript, we identified EZH2 overexpression as one 
potential mechanism which could be exploited, but upon the reviewer’s suggestion we have 
also examined additional mutational drivers found in other tumors known to display a 
CIMP+ phenotype. CIMP positive status has been associated with mutations in BRAF in CRC, 
and IDH1 in glioma, however in our cohort only one tumor was positive for BRAF mutation 
(MESO_061_T, CIMP index 0.35) and no IDH1 mutations were detected, therefore 
unfortunately an analysis of CIMP index in association with these mutations was not 
possible. This is now mentioned in the results (p. 9). 

 

3. The authors describe HRD in 23% of MPM. This is an observation that begs for 
functional validation in terms of PARPi sensitivity. 
 

Answer: We thank the reviewer for this useful comment. While we are unable to create new 
functional data, we further examined the cell line data from Iorio et al. included in the 
manuscript in order to provide functional validation of our HRD results, and validated the 
high rate of this pattern within MPM. This dataset includes 1,001 cancer cell lines (21 MPM 
cell lines) annotated for somatic mutations, copy number alterations, and hypermethylation, 
and screened with 265 anti-cancer compounds, including five PARPi (Iorio et al. Cell 2016). 
Indeed, the data from MPM cell lines that we present in Figures S8-S9 actually contains copy 
number alterations that we have now used to call copy number signatures using SigProfiler 
in order to detect HRD signatures in these cell lines. We detected an HRD signature in nine 
out of 21 lines and thus validated the high rate of this pattern in MPM. Then we tested the 
association between the response to five PARPi drugs (two Olaparib -one approved and one 
in clinical development-, ABT−888, AG−014699, and BMN−673) and the HRD pattern. The 
sensitivity of these cell lines to the clinically approved Olaparib, shows a tendency towards 
higher sensitivity in HRD samples compared to non-HRD samples (see Figure S17) probably 
due to the presence of non-HRD samples with the same level of sensitivity as the HRD 
samples. 
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Interestingly, the first clinical trial with published results (Ghafoor et al. J Thorac 
Oncol. 2021) also demonstrated unexpected results in the association between Olaparib 
sensitivity and alterations in DNA repair genes, whereby, contrary to their original 
hypothesis, patients with BAP1 mutations had poorer survival when treated with Olaparib 
than wild-type patients. This suggests a highly complex mechanism between the response to 
this drug, and markers for DNA repair pathway activity. This complexity might explain the 
reason why we only observe a trend between Olaparib and the HRD pattern. Concerning 
BAP1 alterations, our observations in these cell lines go in the same direction as those in the 
Ghafoor trial. According to this paper and against their first hypothesis, BAP1 alterations are 
not a good marker of PARPi sensitivity and are associated with decreased PFS and OS. In our 
data, Olaparib response is positively associated with the prognostic CIMP index factor 
(r=0.65, Figure S9), meaning that CIMP-low samples are more sensitive to this PARPi than 
the CIMP-high (which are enriched for BAP1 alterations (Figure 5a), and associated with 
poorer survival (Figure S5)). Overall, as suggested by this recent clinical trial and by our 
data, the interplay between PARP inhibitor sensitivity and markers of DNA repair 
mechanisms appears more complex than expected, and might explain the weak signal we 
observed between HRD and PARPi sensitivity. This data is now included in the results (p. 7-
8). 

 

4. p.8: LATS2, not LAST2 
 

Answer: We have corrected the typo.  

 

5. The authors state that " the higher rate of chromothripsis in the Acinar 
phenotype could be a result of BAP1 inactivation known to impair DNA repair" 
but Fig 3A shows a fairly obvious trend to mutual exclusivity between BAP1 
alterations and chromothripsis. 
 

Answer: We agree that our statement was not clear. What we meant is that among other 
possible mechanisms, for those samples carrying BAP1 mutations this could be a mechanism 
for the chromothripsis pattern. Additionally we tested the hypothesis of mutual exclusivity 
between BAP1 alterations and chromothripsis using Fisher’s exact test and found no 
significant association between the two events (p-value=0.23), therefore we acknowledge 
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that our statement might have been too speculative and decided to completely remove it 
from the text.  

 In addition, regarding the Acinar phenotype, we would like to note that additional 
analyses on the splicing machinery have been performed during the time of this review, 
which support the key role of chromatin-remodeling pathways disruption in defining this 
phenotype. This is now mentioned in the results (p. 9-10) and methods (p. 25) and in a 
new Fig. S26. 

 

6. p.9: the statement that "The specialization of tumors was influenced by early 
genomic events. WGD, TERT amp and copy neutral LOH may have occurred 
more than ten years before diagnosis, both concomitantly with and subsequent 
to asbestos exposure" is based on data that are either not convincing or poorly 
presented (Fig 5D). 
 

Answer: We apologize and acknowledge that Figure 5, panel d was not very clear. We now 
provide a novel design for this panel and rephrased its description in the main text, to make 
these results comparable with similar results obtained for other cancer types, explicitly state 
our hypothesis and methods, and better convey the scope and interpretation of our results. 
In particular, we now explicitly state the limitations of this analysis, which due to the 
challenges of working with highly immune-infiltrated tumors, is based on the few samples 
for which a subclonal deconvolution was possible (methods, p. 42).  

Our hypothesis was that the timing of large-scale genomic alterations in 
mesothelioma does not differ from that observed in other cancer types, and more 
specifically, that whole-genome duplication (WGD), large-scale losses of heterozygosity, and 
amplification of the chromosomal region including TERT, typically predate diagnosis by a 
decade. Due to the limited number of samples (n=6), we tested this hypothesis using outlier 
tests, designed to test whether values observed in mesothelioma were outliers in the 
empirical distribution of timings of such events in other cancers, but that cannot say whether 
there is a more subtle trend of slightly higher or lower average timing in mesothelioma. We 
now report the results of the test of this hypothesis in Figure 5d and associated text (see a 
reproduction of the figure below), showing that estimates of the timing of WGD, TERT amp, 
and copy neutral LOH in our mesothelioma samples fall well within the values observed 
across >2500 tumors by the Pan-cancer Whole-Genome Consortium (Gerstung et al. Nature 
2020) (empirical p-values ranging from 0.16 to 0.79). We conclude in the main text that 
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“thus WGD, TERT amp and copy neutral LOH may indeed have occurred more than ten years 
before diagnosis, both concomitantly with and subsequent to asbestos exposure, although 
conclusive evidence of the timing of these alterations will need to be investigated in 
subsequent studies, with a hypothesis-driven study design.” (p. 10) 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

16 
 

 

 

New Figure 5d. Comparison between estimated timings of large-scale genomic events across 
>2500 tumors from 38 types by the pan cancer whole genome consortium (PCAWG, in gray) 
and estimated timings from our MESOMICS cohort of MPM (red). p-values correspond to 
empirical p-values (quantile of the distribution of timings from the PCAWG cohort). PCAWG: 
Pan-Cancer Whole-genome cohort (Gerstung et al. 2020), MESOMICS: our MPM cohort. 

 

7. Fig 3A: it would be very unusual for MTAP to undergo homozygous deletion 
without concurrent CDKN2A homozygous deletion. The authors should review 
these cases for undervalued CDKN2A deletion. 

 

Answer: We thank the reviewer for this comment, that made us realize that this figure was 
misleading. Indeed, the white color in the figure represented either wild-type or uncertain 
copy number. We have now added a special light blue/dark blue striped pattern in cases 
when the gene is cut and therefore the copy number changes within the focal genomic region, 
and a gray coloring to specify samples for which the alteration is in a segment that did not 
pass our quality thresholds. The five cases with MTAP deletions for which we did not report 
a CDKN2A co-deletion that the reviewer is alluding to actually fell into these two categories: 
three samples had a cut within the CDKN2A region and thus the copy number of the gene was 
partially 1 and partially 0, and two samples were sitting on a low-quality copy number 
segment call and thus excluded. We now correctly mention in the results (p. 7) that MTAP 
deletion happened exclusively with concurrent CDKN2A deletion in our cohort as the 
reviewer mentioned. In addition, we have corrected the copy number matrix that was used 
in MOFA analysis that also combined wild-type copy number and ambiguous copy number 
into the same category; this change only concerned 0.5% of segments and thus had a very 
marginal impact on the results and did not impact any of our conclusions (see updated 
Figures).  

 

8. Fig 4A shows 3 SETDB1 mutated samples but the authors report only one GNH 
case. Please discuss. 

 

Answer: We have added more details about this near-haploid sample and its relatedness 
with the GNH subtype presented in the TCGA study (Hmeljak et al. Cancer Discov. 2018), 
in the results (p. 4), showing that our results do not contradict what was found in the TCGA 
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data, but suggest the existence of different types of haploidization and interplays with 
SETDB1 alterations.  

In particular, both our SETDB1 mutated samples and our near-haploid sample differ 
from what was described in the TCGA. Indeed, the three SETDB1 mutations we found are two 
missense mutations with uncertain significance (0.25<REVEL score <0.5) and a splicing 
mutation, contrary to the five cases reported in the TCGA that were all more damaging 
(readthrough mutation, indels, and homozygous deletions). Therefore, our results suggest 
that SETDB1 mutations overall are not exclusive to the GNH subtype, but does not contradict 
the observation that the most damaging SETDB1 mutations could be enriched in or exclusive 
to GNH samples. Regarding our near-haploid sample, we now mention that this sample 
(MESO_108) has a ploidy of 1.10, almost no copy-neutral LOH (<1%), no SETDB1 nor TP53 
mutations, and did not undergo whole-genome doubling, contrary to the GNH subtype 
discovered in the TCGA cohort. Therefore, we conclude that this sample actually does not 
correspond to the GNH subtype in the sense of Hmeljak and colleagues, but corresponds to 
another possible genomic trajectory, where genomic instability is driven by alternative 
pathways than TP53, not followed by a genome doubling event and SETDB1 alterations. The 
absence of GNH samples akin to those of the TCGA in our cohort of 115 genomes is not 
surprising given the rarity of this subtype (5/154 TCGA and ICGC samples; Fisher test p-
value=0.073). 

 

9. Fig 4A reveals that a concerning proportion of the WGS samples had no matched 
normal. 

 

Answer: One of the biggest limitations when studying rare cancers is obtaining high quality 
biological material for a relatively large number of patients to run meaningful genomic 
studies. This is further complicated by the limited numbers of matched-normal tissue/blood 
that are collected in biobanks due to cost and space constraints and the fact that normal 
tissue is not required for routine diagnosis. This limitation is further exacerbated in the case 
of diffuse malignant pleural mesothelioma, because the diffuse nature of the disease plays 
against obtaining pure normal adjacent tissue, and also does not help when trying to acquire  
distant normal tissue.  

For our study we took advantage of the French MESOBANK, a multi-centric virtual 
and exhaustive repository of clinical data, biological samples, and standardized operational 
procedures for mesothelioma (Galateau-Salle et al. Ann Pathol. 2014). Despite containing 
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more than 10,000 specimens with unique depth of etiological and clinical annotations, most 
of the biological specimens are formalin-fixed paraffin-embedded material, and for the 
limited cases with frozen tissue available, matched normal was rare and matched blood 
almost nonexistent, which are recurrent general limitations of most biobanks. An initial 
assessment of the tumor-normal (T-N) pairs available with frozen material resulted in more 
than 100 T-N pairs available. Unfortunately, we experienced a high failure rate of almost 
50%. Two major sources of failure were identified: sample retrieval and tumoral content. 

With regard to sample retrieval, although virtual biobanks are a very much 
encouraged option for rare cancers, whereby samples are stored in a decentralized manner, 
one drawback of virtual biobanks is that the availability of tissue within each center is not 
necessarily updated regularly, leading to a discrepancy between reportedly available and 
physically available samples. Following identification of the suitable matched T-N pairs, only 
46 tumors with normal tissue were actually physically available. We faced an additional 
challenge related to the high infiltration nature of these tumors, which significantly reduced 
the tumor content, thereby again decreasing the number of suitable samples available for 
sequencing to 46 T-N pairs. Because funding was available and frozen tumor was also 
available for a significant number of samples, we decided to proceed with a series of tumor 
only samples because while we agree that this is an additional challenge that requires 
tailored computational work to ensure the validity of the results in terms of molecular 
genomic alterations, the lack of matched normal is not an issue for transcriptomic and 
methylation analyses, for which the normal reference is not required. 

Given that the lack of germline for a part of our MESOMICS samples (72/115) was an 
early fact in our project, we designed and implemented a battery of bioinformatic tools 
to computationally solve this issue with the aim of performing accurate and confident 
calling of all kinds of MPM somatic alterations. Our main idea was to implement a 
strategy that took advantage of our matched series (46 WGS) throughout the whole process. 
In particular, the matched series was used for training advanced machine learning methods, 
building a custom panel of germline variants (Panel of Normals, PoN), and finally, but most 
importantly, for performing extensive benchmarking that led to the improvement of all the 
computational tools employed for calling somatic alterations in tumor-only samples. 
Through extensive benchmarking, we demonstrate that our implemented computational 
strategy, coupled with a subset of tumor/normal WGS samples, achieved excellent results in 
all somatic alteration calls (CNV, Point mutations, and SVs). Therefore, our matched series of 
46 WGS was the distinct resource that allowed us to computationally learn the specific 
pattern of somatic alterations found in MPM WGS. Indeed, using our computational strategy 
we were able to call with confidence somatic structural variants at a high precision (~90%), 
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recall (~87%), and accuracy (~89%), as well as somatic copy number variants. When 
combined, this permitted us to call and study for the first time in MPM complex mutational 
processes such as chromothripsis and whole genome doubling, with an increased power 
(115 instead of 46 WGS).  

In summary, adding the tumor-only series allowed us to increase the statistical 
power for expression and methylation analyses, while the computational strategy that 
we developed for calling somatic alterations helped us to reduce to a minimum the 
impact of the lack of normal material. Beyond our study, the proposed strategy for 
calling somatic alterations in the case of missing normal tissue is key for genomics 
studies of rare cancers, in which each sample counts. This is the reason why we 
describe our methodology in a separate data note manuscript submitted to 
GigaScience and available in biorxiv 
(https://www.biorxiv.org/content/10.1101/2022.07.06.499003v1), including very 
detailed information on the strategy and additional quality control for all the datasets 
presented. For simplicity, we provide additional methodological details on the strategy when 
addressing the Reviewer #2 suggestions. 

Finally, we would like to note that many of our results were derived using integrative 
multi-omic analyses that are robust to missing matched-normal tissue and that were 
validated using exome data from published cohorts. Indeed, the three novel sources of 
variation (Figure 1) and three cancer tasks (Figure 2) were replicated in the TCGA and 
Bueno series, and copy number (Figure 3) and small variant profiles (Figure 4) as well as 
several of their associations with sources of variation and cancer tasks (Figure 5) were 
replicated in the TCGA series. However, replicating our results regarding large genomic 
events (Figures 3 and 4) and their association with sources of variation and cancer tasks 
(Figure 5) would require an additional series of WGS data and could thus not be replicated 
with an existing external cohort. Nevertheless, as we show in the data note, we rigorously 
evaluated the performance of our method by splitting the dataset into training and 
testing sets and found that we could predict these structural variants with high 
accuracy.  

 

 

Reviewer #2: (lung cancer genomics) 
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Remarks to the Author: 

This is the largest WGS analysis of MPM to date and the authors used unusual 
approaches for the analyses. In my opinion, the analyses require major revisions and 
validation (or at least comparisons of results) using alternative approaches. However, 
there are some important limitations that cannot be fully addressed even with major 
revisions (first of all, the lack of germline material as reference for most tumors). 

 

Answer: We would like to thank the reviewer for noting the importance of our data. 
Regarding their comment on the “unusual approaches'', we acknowledge that we favored 
recent methods for data integration (MOFA, Argelaguet et al. Mol Syst Biol. 2018; 
Argelaguet et al. Genome Biol. 2020), and interpretation (Pareto task analysis, Hausser 
and Alon, Nat Rev Cancer 2020), rather than those used, for example, in the classical TCGA 
papers (consensus clustering of expression data, from Wilkerson and Hayes, 
Bioinformatics 2010, or integrative clustering, from Mo et al. PNAS 2013), and previous 
mesothelioma genomics papers (Bueno et al. Nat Genet. 2016, Hmeljak et al. Cancer 
Discov. 2018). MOFA and Pareto have multiple advantages when capturing molecular 
variation compared to the previous approaches, such as allowing us to integrate arbitrarily 
many ‘omic datasets (vs a single dataset in ConsensusCluster+ and four in icluster+), 
capturing both continuous and discrete independent sources of biological variation (vs 
discrete clusters only), and quantifying the importance of each ‘omic layer in separating 
samples and clusters (vs unknown relationships between clusters). However we understand 
the reader may want to see more conventional representation of the related results and 
compare the findings from these exciting methods with those previously used in 
mesothelioma publications. 

We now provide further justifications for our choice of methods (p. 34-36) and 
provide in Figure S32 (see below) a comparison of our results with those obtained using the 
exact methods used in previous large-scale genomic studies (A-D, ConsensusCluster+ as in 
Bueno et al. Nat Genet. 2016, and E-H, icluster+ as in Hmeljak et al. Cancer Discov. 2018). 
We show that these methods capture some of the variation in the dataset: the three 
archetypes (B and F, to be compared with Figure 2a), higher-ploidy samples (G, middle 
panel), and the CIMP index (C, G, right panels), but in a much cruder way than with MOFA 
and the Pareto task analysis, mostly because the discreteness assumption of clustering 
methods misses the inherent continuity in the data (noted in mesothelioma by Blum et al. 
Nat Commun. 2019, and ourselves, Alcala et al. EBioMedicine 2019). Indeed we observe 
small and fragile clusters, with negative or low (<0.25) silhouette widths for a large number 
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of samples, indicating uncertain or wrong cluster assignment (D and H), and preventing 
downstream analyses. We think that these new analyses both validate our results, and at the 
same time highlight the need to use more modern techniques that were not yet available in 
previous mesothelioma studies.  

Note that MOFA is increasingly becoming a new standard in multi-omic analyses, with 
the two methodological papers now having surpassed in only two years the number of 
citations that the icluster+ paper accumulated in almost a decade (427 vs 344 according to 
google scholar), and recent high-profile reviews in Nature Biotechnology (Argelaguet et al. 
Nat Biotechnol. 2021) and Nature Methods (Efremova and Teichmann, Nat Methods 
2020), and high-profile cancer applications (e.g., Lu et al. Nat Cancer 2021), making it 
appealing and familiar to the Nature journals readership.  

 

 

 

New Figure S32. Association between MOFA latent factors and the clusters identified by 
consensus clustering (A-D) and integrative clustering (E-H). (A) Kruskal-Wallis rank sum test 
p-values between each clustering (row) and MOFA LFs (column). (B) Consensus clustering 
results for K=3 clusters (colors) in MOFA latent factor space of LF2 vs. LF3. (C) Same as (B) but 
for K=4 clusters, with an additional plot of the samples in the one-dimensional space of LF4. (D) 
Top-left: average silhouette width for consensus clustering with different values of K. Bottom-
left: proportion of samples below the selected silhouette width threshold for consensus 
clustering with different K. Right: consensus matrix heatmap for K=3. (E-F) Follow the same 
design as (A-D) but using iCLuster+ instead. 

 

Additionally, we have taken it upon ourselves to alter the visual representation of the 
IGSEA results obtained from Pareto task analysis. These results, used to infer cancer tasks 
assigned to each archetype, are now represented as heatmaps (Figure 2c), a more classical 
and reader-friendly display.   
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Regarding the reviewer’s comment on the “lack of germline material as reference for most 
tumors”, as previously addressed in Reviewer #1, comment 9, we acknowledge that missing 
germline material for 72 out of 115 tumors, due to the difficulty to obtain adequate samples 
for such rare tumors, is a challenge that requires much additional computational work to 
ensure the validity of the results. The lack of germline for a part of our MESOMICS samples 
was an early fact in our project and as such we designed and implemented a battery of 
bioinformatic tools to computationally solve this issue with the aim of performing accurate 
calling of all kinds of MPM somatic mutations. To implement our strategy, we took advantage 
of our matched series (46 WGS) throughout the whole process. In our strategy, the matched 
series was used for training advanced machine learning methods, building a custom panel of 
germline variants (Panel of Normals, PoN), and finally, but most importantly, for performing 
extensive benchmarking that led to the improvement of all the computational tools 
employed for calling somatic mutations in tumor-only samples (see Figure below). 
Therefore, our matched series of 46 WGS was the distinct resource that allowed us to 
computationally learn the specific pattern of somatic mutations found in MPM WGS. 

Our strategy generated almost perfect results for calling somatic copy number 
variants (see Figure below). Briefly, we ran the PURPLE copy-number caller twice for each 
matched sample (Figure below, panel A): first using the matched WGS samples as input, 
and second using only the tumor WGS as input. Subsequently, we performed a direct 
comparison of the PURPLE tumor-only calls with their corresponding matched-pair calls for 
several features including ploidy, the proportion of the deleted genome, and copy number 
states at the gene level, among others. The benchmark revealed a high concordance across 
all the evaluated metrics between tumor-only and matched PURPLE calls. Indeed, the 
agreement for ploidy (R=1) and percentage of genome deleted (R=0.999) exceeded a 0.99 
correlation (Figure below, panel B and C).  Moreover, a high concordance was also 
observed at the gene level with minor copy number alleles reaching R>0.977 (Figure below, 
panel D). The benchmarking demonstrated that calling copy number variants in MESOMICS 
tumor-only samples was highly accurate and indeed almost matched the calling of tumor-
normal pairs, and therefore we confidently applied the tumor-only mode of PURPLE to call 
somatic CNV in our MESOMICS tumor-only WGS series. 

For calling single nucleotide variants and indels, we trained and evaluated the 
performance of a supervised machine learning model based on random forest for 
distinguishing germline from somatic variants in tumor-only WGS (see Figure below). The 
matched WGS were used as input for training and evaluating the performance of the random 
forest (RF) model (Figure below, panel A). Point mutations were called using Mutect2 as 
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implemented in our NextFlow pipeline (https://github.com/IARCbioinfo/mutect-nf, release 
v2.2b).  We designed a RF model with a total of 20 features divided into three main classes, 
namely: associated with external databases (gnomAD, COSMIC), genomic location/impact, 
and features obtained directly from the Mutect2 variant caller. For training the RF model, 
the 46 tumors with matched normal available, called with both the tumor-only and matched 
modes of Mutect2 were used. The matched somatic calls (ground-truth) were used to 
annotate the variants of the tumor-only WGS into germline and somatic classes. A total of 
407,984 SNVs in a 1:1 proportion of germline:somatic were used for training (75%) and 
evaluating (25%) the performance of the RF model. The same strategy was employed for 
training and evaluating the RF model for classifying indels. The performance of the optimal 
RF-models for SNVs and indels reached a precision of 0.92 and 0.92, recall of 0.94 and 0.93, 
and accuracy of 0.93 and 0.94, respectively (Figure below, panel B). Finally, the trained RF 
models were used to classify a total of 1,454,942 point mutations of which 217,436 were 
classified as somatic. The benchmarking result demonstrates that we developed a highly 
accurate and robust methodology to call point mutations in tumor-only WGS datasets for 
which a series of matched tumor-normal samples are available. 

Similarly to point mutations, we implemented custom RF models to distinguish at 
high accuracy somatic from germline structural variants (SVs) in tumor-only samples. The 
RF-models were composed of a total of 19 features based on external databases (PCAWG, 
gnomAD), a custom panel of normal (46 matched WGS), genomic regions, and SV features 
obtained directly from state-of-the-art SV callers (Delly, Manta, and SVaba). The training 
(75%) and evaluation (25%) of the RF model for each SV caller were performed using a total 
of 12,454, 16,720, and 12,264 SVs at 1:1 somatic:germline proportions for Delly, Manta, and 
SvABA, respectively. The performance in terms of precision, recall, and accuracy achieved by 
each RF model were on average 0.90±0.009, 0.87±0.016, and 0.89±0.010, respectively 
(Figure below, panel C).  

https://github.com/IARCbioinfo/mutect-nf
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Overview and benchmarking results of the computational strategy implemented for calling 
somatic alterations in tumor-only MPM samples. Panels are reproduced from Data Note 
manuscript, figures 4A-C and 5A, C, and E. 

 

In summary, we have demonstrated that we were able to implement a computational 
strategy that, coupled with a subset of tumor/normal samples, achieved excellent 
benchmark results in all kinds of somatic mutations (CNV, point mutations, and SVs). 
Furthermore, we are providing with this revision an additional manuscript submitted to the 
GigaScience journal and currently available in biorxiv 
(https://www.biorxiv.org/content/10.1101/2022.07.06.499003v1) describing the full 
details of the computational strategy and implementation  developed to call with confidence 
genomic alterations in T-only MPM samples, as well as additional quality control of the novel 
multi-omic data generated for this manuscript.  



 
 

 

25 
 

 

 

 

 

Reviewer #3: (lung cancer genomics) 

 

Remarks to the Author: The authors report findings from whole genome sequencing 
and multi-omic integrative analyses of tumor tissues from patients with malignant 
pleural mesothelioma. The authors state that ploidy, adaptive immune response, CpG 
island methylation along with histological subtypes explain the variation in the 
phenotypic behavior in this disease with nearly uniform poor outcomes. State of art 
tools from sequencing to analyses are used from the French Mesobank source 
(predominantly). Potentially, this approach could improve the current solely 
histology-centric classification. The paper would be of great interest to the community 
of mesothelioma researchers and clinicians given that this body of work represents 
the largest data from whole-genome sequencing. I commend the authors for this 
remarkable work. 

 

Answer: We thank the reviewer for the positive assessment of our manuscript and the 
encouraging note on how our work will be of great interest for the mesothelioma community. 

 

1. It is not clear what cohort was used for various analyses. There are multiple 
cohorts- MESOMICS, Discovery (with and without ITH), and other published 
cohorts, TCGA, Bueno, in addition to cell lines. Most of the confusion centers 
around MESOMICS and Discovery cohorts. What is the Discovery cohort and 
what constituted this cohort (demographics, histology, etc) 
 

Answer: We thank the reviewer for this comment and we apologize for the lack of clarity 
when describing these cohorts in the initial submission. We now clearly distinguish each of 
these cohorts by indicating the cohort and sample size in the text and legends for all analyses. 
In brief, the MESOMICS cohort has two parts, the ‘discovery cohort’ and the ‘ITH cohort’, the 
MESOMICS discovery cohort consists of one tumor sample for each of the 120 patients, and 
is always referred to as MESOMICS (Table S1). The MESOMICS ITH cohort is made up of 
patients from the MESOMICS discovery cohort for which we have more than one tumor 
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sample available, and consists of 13 samples from the discovery cohort (12 of them from the 
discovery cohort) and an additional 13 samples from the same patients to study intra-
tumoral heterogeneity (Table S15).  We have clarified this in the methods (p. 15), and 
include a dedicated cohort description in the main text (see response to your Comment 2 
below). TCGA and Bueno refer to  two independent replication cohorts from previously 
published studies: Hmeljak et al. Cancer Discov. 2018, called “TCGA” and Bueno et al. Nat 
Genet. 2016, called “Bueno”. The cell line cohort is used for replication and clinical 
translation, and was obtained from Iorio et al. Cell 2016, de Reynies et al. Clin Cancer Res. 
2014, and Blum et al. Nat. Commun. 2019. The MSK-IMPACT cohort is used for replication 
and was obtained from Bielski et al. Nat Genet. 2018. 

 

2. There should be a clear description of the cohorts (in the written part of the 
manuscript) outlining the treatment received (surgery, systemic therapy) and 
follow up for the Meso cohort and as well as the Discovery Cohort 
 

Answer: We now provide an additional tab in Table S1 with a detailed description of the 
three primary MPM cohorts (MESOMICS, TCGA, and Bueno) including when available sex, 
race, age, asbestos exposure history and source, histological type, surgery, therapy, stage, 
survival time, and OS per histological type. This description is expanded in the methods (p. 
15) as described in the answer above (Comment 1), where we also added its main 
differences with TCGA and Bueno cohorts.  

 

3. The first section titled integrative multi-omics analyses uncover novel axes of 
molecular variation is hard to follow. It is hard to understand how much the 
latent factors (LF) 1,3, 4 add to the histological factors? Is one histology more 
heterogeneous in terms of LF than the other histology? Despite its 
shortcomings, histological classification is the current and only standard in the 
clinic for treatment decision-making (surgery and the choice of initial systemic 
therapy, for example). I have a hard time understanding what these three 
(excluding the morphology factor) contribute to the "molecular variation" 

 

Answer: We apologize because obviously we have not been able to properly explain what 
these novel latent factors are. We now first show that the current histological classification 



 
 

 

27 
 

 

 

only explains 9% of the inter-patient variation in terms of gene expression, DNA methylation, 
copy number variation, structural variants, SNVs and indels, leaving more than 90% of inter-
patient molecular differences unexplained (Figure 1a). We then better state in the results 
(p. 3-4) and in the discussion (p. 10) that LF1-4 are all independent sources of inter-patient 
heterogeneity that together explain more than 60% of the molecular differences between 
patients, and that LF1, 3, and 4 are previously unexplored/unknown because of the major 
focus that previous studies have put on refining the histological groups.  

The fact that they are all independent and mostly unrelated to the Morphology factor 
(histology, LF2) is precisely why they are interesting. Indeed, the identification of factors 
unrelated to morphology means that if we focus only on LF2 (morphology) we are 
disregarding very important additional and independent sources of molecular variation with 
prognostic value. To illustrate this, we have identified tightly correlated proxies for these LF 
(see below, answer to Comment 4), which allowed us to explicitly state in the results and 
show in a novel Figure S5 (panels A-C, see below) that all histological types can be either 
WGD+ or WGD-, have high or low adaptive immune responses, and have a high or low CIMP 
index, and that there is no significant association between these features and any histological 
type (results, p. 4). In addition, we emphasized the complementarity of these sources of 
variation in predicting patient prognosis in Fig. S5, where we compare multiple predictive 
models using prognostic factors in MESOMICS and TCGA cohorts. These analyses show that, 
together, these four axes better predict survival than the previous factors strongly associated 
with the histological classification (results, p. 5). Thus these three novel axes (LF1, LF3, and 
LF4), further explored in this study, provide three additional opportunities to stratify 
patients based on their molecular profile, and this could be the missing piece to the puzzle 
in understanding why many novel therapeutic approaches applied to unselected populations 
of malignant pleural mesotheliomas are failing to produce clinical benefit.  
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New Fig. S5. Association between histological types and proxies for the MOFA latent factors. 
(A) Association between Whole-genome doubling (WGD) status (proxy for the ploidy factor) 
and histological types in the MESOMICS and MSK-IMPACT cohorts. (B) Association between the 
Adaptive versus innate response score (proxy for the adaptive-response factor) and histological 
types, in the MESOMICS and Bueno and TCGA cohorts. (C) Association between the CIMP-index 
proxy computed on a five-gene panel (proxy for the CIMP-index factor) and histological types 
in the MESOMICS and TCGA cohorts. 

 

 If we take as example another recalcitrant cancer such as small-cell lung cancer 
(SCLC), clinical trials for SCLC focusing on unselected populations have yielded 
disappointing results and this is likely because SCLC has been regarded as a homogeneous 
disease. But the recent classification of SCLC based on their transcritomic profiles by Rudin 
and colleagues (Rudin et al. Nat Rev Cancer 2019) has unveiled therapeutic vulnerabilities 
to treatments previously considered ineffective in SCLC (Gay et al. Cancer Cell 2021). For 
example, considering the high tumor mutation burden, immunotherapies have been recently 
added as front-line therapy in the treatment of SCLC, but they only made modest 
improvements in overall survival (Plaja et al. Cancers 2020; Esposito et al. Cancers 2020). 
In a retrospective analysis of the IMpower133 trial, a trend was observed that the greatest 
benefit was provided to one of these expression groups that they named SCLC-inflamed. This 
corresponds to a minority of SCLC patients who have a relatively activated and immune “hot” 
microenvironment (Gay et al. Cancer Cell 2021; Dora et al. Mol Oncol. 2020; Owonikoko 
et al. J Thorac Oncol. 2021). 

 The same kind of outcome is what we anticipate from our study on MPM. By unveiling 
the so far unknown unknowns in this disease we hope to provide the clinical community 
with the tools to design better suited clinical trials and better interpret the results of 
previous or ongoing trials for a disease for which the prognosis and clinical management 
have not significantly changed over the past decades. We feel that continuing to refine the 
histological classification will not provide any meaningful improvement to the current 
unmet needs, and therefore, new ground-breaking approaches are needed. Indeed, while the 
nature of our data makes our findings difficult to be implemented in the clinic, the tightly 
correlated proxies that we have identified, could serve as biomarkers for response to specific 
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therapies (such as immunotherapy for LF3) and could be easily tested in a hypothesis-driven 
study design. 

In summary, we hope this work would reset the course of clinical testing, by 
identifying potential additions to diagnostic work up and removing the sole emphasis on 
histology, which, as the reviewer correctly said, is the current and only standard feature used 
in the clinic for treatment decision-making despite, as shown in our study, it only 
representing one out of the four sources of molecular variation in MPM. We have tried to 
convey all of this in the discussion of the manuscript (p. 11-12), and also illustrate how our 
novel classification explains inter-patient differences in three patients with similar clinical 
characteristics but vastly different molecular profiles (novel Fig. S31 reproduced below). 

 

 

New Fig. S31. Added value of the four-factor molecular classification in understanding inter-
tumor heterogeneity in three example patients. The three patients have similar clinical 
characteristics (top table) but different overall survival, and different molecular profiles 
captured by our four-dimensional molecular classification. 
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4. Results shown in Figure 1e regarding the prognostic value of LF1-4 would have 
been stronger if there is validation in an independent cohort. Those findings 
did not hold up in the larger subtype of the epithelioid type where only LF3 
appeared to be significant (Fig S5B). This should be highlighted. Unfortunately, 
it is hard to assess the sarcomatoid histological subtype without adequate 
numbers. Once again, one cannot draw definite conclusions in the absence of a 
validation cohort 

 

Answer: We share the same opinion as the reviewer on the importance  of reproducibility, 
and now better highlight which results have been independently validated in Table S6 (see 
answer for Reviewer #1, Comment 1), and in particular cover the validation of the 
prognostic value of the latent factors in a new Figure S5 (see below). 

We acknowledge the influence of the prognostic histological type on the prognostic 
value of these latent factors. This is the reason why we provided in Figure S6 (former Fig. 
S5) and Table S5 the results for survival analyses in MME only. We found the Adaptive-
response factor (LF3) to be significantly associated with survival in both the mixed and 
MME-only cohorts from MESOMICS, while Morphology factor (LF2) unsurprisingly lost its 
prognostic value in this subset of samples, due to its association with the histopathological 
types. Whilst position along the Ploidy (LF1) and CIMP-index (LF4) factors was not 
associated with tumor type, when excluding MMS samples their prognostic value was not 
significant following correction for multiple testing, however their respective effect size 
remains similar to those identified in the entire cohort including non-epithelioid samples. 
Specifically, for LF1 HR=1.18 in the all MESOMICS cohort n=120 vs 1.22 in MESOMICS MME-
only subset n=79. For LF4, HR=1.29 in the all MESOMICS cohort n=120 vs 1.14 in MESOMICS 
MME-only subset n=79. It is possible that the loss of statistical significance is due to a 
decrease in power. We now point this out in the results (p. 5). 

As the reviewer highlighted in Comment #3, the interpretation of the latent factors 
and their use in the clinic is not straightforward, which is why we chose to represent and 
validate simpler proxies for each factor instead. For each proxy we display the prognostic 
value in the MESOMICS cohort, and in a validation cohort obtained from a previously 
published study, which data allowed for such validations (see Methods, p. 17). For the 
ploidy factor, we used the Whole-Genome Doubling (WGD) status from the mesothelioma 
samples of the MSK-IMPACT cohort (Zehir et al. Nat Med. 2017; Bielski et al. Nat Genet. 
2018). As initially reported by the authors across more than 30 tumor types, we find that 
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WGD is associated with poorer survival in the MSK-IMPACT MPM cohort (Fig. S5D). For the 
Morphology factor, we used the percentage of sarcomatoid component as reported in the 
Bueno cohort (Bueno et al. Nat Genet. 2016) by pathologists from microscopic examination 
of H&E slides, which is as expected associated with a worse prognosis (Fig. S5E). For the 
Adaptive-response factor, we used an Adaptive vs Innate immune response score, defined as 
the difference between the proportions of adaptive cells (B and T cells) minus the proportion 
of innate response cells (macrophages, monocytes, neutrophils), that we could obtain from 
the estimated immune cell proportions computed from the gene expression data in all RNA-
seq cohorts (MESOMICS, Bueno, and TCGA) This is based on the fact that B and T cells are 
associated with good prognosis while macrophages are associated with bad prognosis, and 
this has been recently proven also true in mesothelioma (Ollila et al. Front Oncol. 2022). 
We found that this score was associated with a better prognosis (Fig. S5F). Finally, for the 
CIMP-index factor, we used a simpler CIMP-index proxy computed from only five genes, and 
replicated our results in the only cohort containing methylation data, the TCGA cohort (Fig. 
S5G).  

 

 

 

 

 

 

 

 

 

New Fig. S5. Forest plots of hazard ratios for overall survival showing the replication of latent 
factors’ prognostic value. (D) WGD status (proxy for the ploidy factor) in the MESOMICS and 
MSK-IMPACT cohorts. (E) Percentage of epithelioid estimated by pathologists from H&E slides 
(proxy for the morphology factor) in the MESOMICS and Bueno cohorts. (F) Adaptive versus 
innate response score (proxy for the adaptive-response factor), in the MESOMICS and Bueno 
and TCGA cohorts. (G) CIMP-index proxy computed on a five-gene panel (proxy for the CIMP-
index factor), in the MESOMICS and TCGA cohorts. 
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Even with validations on these additional cohorts, MPM numbers are still very low 
(e.g., the MSK-IMPACT is the only other cohort available with a satisfactory number of 
primary tumor specimens assessed for WGD, yet still contains only 12 WGD+ samples). We 
acknowledge that this limits the interpretation of the prognostic value of the four factors we 
report in the same way as it has limited the interpretation of the prognostic value of markers 
proposed in previous molecular studies, but this demonstrates the great value of the 
MESOMICS cohort, as it will provide to researchers a needed multi-omic resource to test 
their own hypotheses, in particular providing the largest set of sarcomatoid tumors to date 
(n=15), more than doubling the number of such samples available from the Bueno and TCGA 
cohorts. 

 

Other minor additional changes 

Note that in addition to the changes mentioned above, we have made a series of small 
improvements and corrections: 
- we have improved the computation of the variance explained by each latent factor, using 
correlation coefficients as in a classical PCA instead of using MOFA’s intricate model 
residuals with a more complex interpretation (see Fig. 1a, and methods p. 36) 

- we have corrected the representation of CN in sex chromosomes in Fig. 3b, that wrongly 
represented males as having lost one copy 

- we have improved the assessment of damaging structural variants (previously selected 
through too stringent filters based on the position of breakpoints and the location of the 
genes), leading to the detection of additional driver SVs (see Fig. 4, Fig. S19) 

- we have improved our method for finding the correspondence between latent factors in 
multiple embeddings, applying a theorem specially derived for this purpose (see Fig. S2 and 
methods p. 36-37) 

- we now represent the median % of amplifications and deletions across all samples of each 
PCAWG cohort in Fig. S18, instead of the median across samples with CNVs only 

- we have improved the differential expression analysis model comparing WGD+ and - 
samples, using a log-transformation of expression values as suggested in Quinton et al. 
Nature 2021 (see Fig. S24) 
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Decision Letter, first revision: 
21st Sep 2022 
 
 
Dear Dr Fernandez-Cuesta, 
 
Your Article, "Whole-genome sequencing and multi-omic integrative analyses reveal novel axes of 
molecular variation and specialized tumor profiles in Malignant Pleural Mesothelioma" has now been 
seen by 3 referees. You will see from their comments below that while they find your work of interest, 
some important points are raised, particularly by Reviewer #2 who considers your response to their 
feedback to be incomplete. 
 
We therefore invite you to revise your manuscript taking into account all reviewer and editor 
comments, and we strongly urge you to fully address all of Reviewer #2's points in full, otherwise we 
will be reluctant to send the paper back out. Please highlight all changes in the manuscript text file. At 
this stage we will need you to upload a copy of the manuscript in MS Word .docx or similar editable 
format. 
 
We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 
us if there are specific requests from the reviewers that you believe are technically impossible or 
unlikely to yield a meaningful outcome. 
 
When revising your manuscript: 
 
*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 
referee comment. If no action was taken to address a point, you must provide a compelling argument. 
This response will be sent back to the referees along with the revised manuscript. 
 
*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 
Article format instructions, available 
<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 
Refer also to any guidelines provided in this letter. 
 
*3) Include a revised version of any required Reporting Summary: 
https://www.nature.com/documents/nr-reporting-summary.pdf 
It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 
manuscript goes back for peer review. 
A revised checklist is essential for re-review of the paper. 
 
Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-
integrity">guidelines on digital image standards.</a> 
 
Please use the link below to submit your revised manuscript and related files: 
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[redacted] 
 
<strong>Note:</strong> This URL links to your confidential home page and associated information 
about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 
this email to co-authors, please delete the link to your homepage. 
 
We hope to receive your revised manuscript within four to eight weeks. If you cannot send it within 
this time, please let us know. 
 
Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 
further. 
 
Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 
direction, we are now requesting that all authors identified as ‘corresponding author’ on published 
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 
the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 
achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 
from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 
information please visit please visit <a 
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 
 
We look forward to seeing the revised manuscript and thank you for the opportunity to review your 
work. 
 
Sincerely, 
 
Safia Danovi 
Editor 
Nature Genetics 
 
 
 
 
Reviewers' Comments: 
 
Reviewer #1: 
Remarks to the Author: 
The authors have provided very thorough responses and have made changes that have improved the 
paper. I have one general comment and one specific comment. 
1. the paper seems to be missing a schematic figure summarizing the novel classification findings. 
Most of the figures relating to MOFA and latent factors are not visually intuitive and the novelty is hard 
to grasp. This is also reflected in the abstract which just describes the study in general terms without 
a clear declarative statement of the novel findings. 
2. in Fig 4, the use of the abbreviation ERG for epigenetic regulatory genes (ERGs) in the same list as 
altered genes will lead to confusion as this is also a gene name. I suggest that the ERG track be 
moved to the lower section with the type/sex/smoking/asbestos/WGD tracks. 
 
 



 
 

 

35 
 

 

 

 
Reviewer #2: 
Remarks to the Author: 
I reviewed the authors’ response to two of my comments and I am satisfied by their responses. I have 
also reviewed the manuscript in Biorxiv related to tumor-only analyses and we tested the related 
codes. It seems to work well particularly for SNVs (less for SVs). 
 
However, there is no response to many of the additional comments I originally made. I am not sure 
why they have been ignored. 
 
See my comments in quotation “” for each original question. 
 
 
This is the largest WGS analysis of MPM to date and the authors used unusual approaches for the 
analyses. In my opinion, the analyses require major revisions and validation (or at least comparisons 
of results) using alternative approaches. However, there are some important limitations that cannot 
be fully addressed even with major revisions (first of all, the lack of germline material as reference for 
most tumors). This study aims to identify factors that can contribute to a new classification of 
malignant pleural mesotheliomas (MPM) with clinical implications. It has the largest MPM whole 
genome sequencing data to date, as well as RNA-seq and methylation data. The authors performed 
many analyses using approaches that are not typically used in cancer genomic analyses and with the 
potential to identify novel findings. They are laudable for their effort to tease apart MPM genomic, 
epigenomic and histological features to suggest a possible new classification. However, I have several 
major concerns related to the analyses and data interpretation. I summarize the comments based on 
the analysis types: 
 
1. Among the 120 tumor samples, >60% of WGS and 90% of RNA seq and methylation analyses lack 
matched normal or blood samples for the analyses. Although the authors attempted to address this 
issue with random forest-based and other approaches and even using additional normal samples from 
other datasets for some analyses, the lack of matched germline reference can affect the results. For 
example, TERT amplification in Fig.3a appears to be identified almost exclusively in tumor-only 
samples; and many analyses are presented based on the TERT amp in the manuscript. Another 
example is the deletion of RBFOX1. It would be important to systematically verify all major findings in 
the T/N matched samples (at least those based on WGS, since only a handful of normal tissue samples 
are available for RNA seq and methylation) and discuss discrepancies between matched and tumor-
only results. “As mentioned above, a response was provided, although the authors did not specifically 
commented on the apparent enrichment of genomic driver events in tumor-only samples vs. T/N.” 
 
2. In Fig.1a, methylation data in LF1, LF2, and LF3 explains the largest component of the variance. 
This could be due to the unbalanced size of the MPM datasets used for the analysis. In Fig. S1, it 
appears that the methylation data is three times larger than the RNA and DNA Alt data. This could 
also explain why the DNA Alt (driver genes and other genomic features) appears not to explain any 
variance component. How much variance is explained by each data type? How much variance could be 
explained by including a larger number of LFs? Are these 4 LFs statistically independent from each 
other? How sensitive is MOFA to sample size (although this is the largest WGS study of MPM to date, 
is still small). And the Bueno cohort used for replication lacks methylation data, so it is not ideal to 
replicate an analysis mostly driven by methylation data. “No answer was provided. The authors need 
to address the issue of unbalanced MPM datasets” 
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3. In Fig.S5, LF1 was associated with RNA-seq batch effects and LF4 (CIMP factor) was associated 
with sample wells (at least this is my interpretation since there is no legend). Did the authors consider 
these factors in their analyses? How? “No answer was provided to this comment, although the CIMP 
factor was discussed in response to Reviewer 1. Also, in the revised manuscript (now Figure S6d), the 
association is not there anymore.” 
4. In general, it would be important to validate or at least compare this LF classification using other 
approaches, e.g., iCluster or Cluster-of-clusters, typically used in genomic analyses of other cancer 
types similarly composed of mixed histologies and molecular features. “The authors responded to this 
question” 
5. The strongest cancer prognostic factor is tumor stage, but the survival analyses do not appear to 
have been adjusted by stage. This could strongly bias the results. All survival analyses should include 
stage in the model. “No answer was provided” 
 
6. In the survival analyses in Fig.1e the strongest effect is provided by LF2, which corresponds to the 
known morphological classification. The other latent factors do not appear to strongly affect survival 
beyond this factor. In Fig.S5, in the analyses restricted to the epithelioid group, only LF3 is 
(marginally) associated with survival. In Figure S6, 22 Cox proportional hazards survival models were 
tested: how did the authors take multiple testing into consideration? In the cross-validation results, 
the combination of all 4 factors does not substantially improve the AUC (0.79) over the combination 
on any of three factors (0.78-0.80) or two factors (0.73-0.78). And this seems to be true (although 
with different estimates) also for the TCGA data. Also, based on the Introduction, aneuploidy and 
immune infiltration had been already identified as playing a role in MPM, and yet the morphological 
classification remained as the major classification variable. Thus, it is not clear whether 
the addition of the data related to the LF1, 3, and 4 can be useful in clinical settings or could be 
considered for treatment strategies. “No answer was provided, although the authors tangentially 
addressed this issue in response to Reviewer 3.” 
 
7. There is a large difference in terms of purity estimated from RNA-seq, WGS, and by pathology (no 
purity estimates are reported based on methylation data) in Supp Table 1. How did the authors 
reconcile the purity differences and which purity estimates were used for the analyses? How much 
does tumor purity affect MOFA results? Is any LF correlated with tumor purity? In addition, purity was 
included as an additive covariate in the regression analyses, but others have shown that a 
multiplicative model would be more appropriate (see Zheng et al. 2017 Genome Biology for example). 
“No answer was provided.” 
 
8. In the Pareto TI analysis, outlier tumors based on gene expression are known to interfere with the 
position of the archetypes. Did the author verify whether there were any outlier tumors? “No answer 
was provided.” 
In Fig2a, the authors described that only LF2 and LF3 create the “triangular shape delimited by 3 
extremes”, not ploidy or CIMP factors. Can the results based on ploidy and CIMP be presented so one 
can verify the results and compare them with LF2 and LF3? “No answer was provided.” 
 
9. There is a large discrepancy between CIMP-index (32-56%) and CIMP-normal index (1.3-19%). 
How do the authors explain this large difference? The range of CIMP in tumors is based on beta values 
>0.3. This is not the typical way the CIMP phenotype is identified. CIMP is important because exhibits 
highly recurrent hyper-methylation of TSS genes. Can the authors replicate the CIMP analyses using 
unsupervised clustering methods and evaluate how the LFs vary by CIMP subtypes? “No answer was 
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provided, although the authors discussed the CIMP factors in response to Reviewer 1.” 
 
10. The TCGA-MOFA methylation analyses are based on the arrays with ~450K probes and appears to 
replicate the MESOMICS analyses based on the EPIC array with ~850K probes. Can more features in 
enhancer probes (enriched in the 850k EPIC array) improve the MOFA analysis? “No answer was 
provided.” 
 
11. Notes: lines 1077-1078 report 2 different estimates (1.3% or 0.0013?); lines 1125-1127: the 
number of probes used do not match: 150 + 207 + 2446 = 2803 not 3764 probes. “No answer was 
provided.” 
 
12. I am not clear how the tumor evolution was estimated across all samples. Do the different LFs 
identify tumors with different evolutionary trajectories? Fig5d only describes 6 samples. Was the 
timing of the lesions only conducted in these 6 samples? Four out of 6 are linked to TERT amp (likely 
based on tumor-only samples). And was asbestos exposure only ascertained in one sample (grey 
area)? It would be important to time the asbestos exposure in relation to different genomic changes to 
try to understand whether the asbestos exposure was involved in the initiation or progression of the 
tumors or had no detectable effect on tumor evolution. “No answer was provided, although the 
authors acknowledged the limitations of their approach in response to Reviewer 1.” 
 
13. For the gene expression analyses, did the authors take into account copy number alterations 
(beyond WGD), which could substantially affect gene expression levels? “No answer was provided.” 
 
14. How did the authors identify 3 specific cancer tasks from IGSEA analyses? Can results from other 
pathways be shown (Table S7 only reports the 3 archetypes)? “No answer was provided.” 
15. IGSEA results are confusing: for many gene sets, there only 10-15% of genes overlap with a given 
pathway, but they reach very low p-values. For example, for downregulated pathways - myogenesis 
has 11/200 overlapping genes but has much lower p-value (3.90E-07) than the down-regulated 
pathways in the xenobiotic metabolism with 33/200 genes overlap (p=0.02). Can the authors clarify 
these findings? “No answer was provided.” 
Table S3 is confusing (and there are 2 “Table S3”). It’s unclear what is the mean expression between 
the two groups. For example, how were genes with different expression estimate signs labelled 
(up/down regulated)? In addition, gene names annotation should be included. Similar issues are in 
Table S7. 
Samples with DNMT3B and EZH2 mutations - are they overly expressed in the tumors? “No answer 
was provided” 
16. The authors calculated a genomic instability score using CNV, gene expression, and methylation 
data, but I am not clear on how these scores were combined or which score was used for which 
analyses. It seems that there is no great correlation between the scores calculated from different 
omics in Supp Table 2. “No answer was provided.” 
 
17. In Fig.3A, MPM driver gene overview, the top genes BAP1 and NF2 are both identified as having 
large deletion events (mostly heterozygous deletions). What is the relationship between these 
heterozygous deletions and SV (and SNV) events? The gene expression plot for figure 3a should 
separate different alteration types for these two genes. “No answer was provided.” 
18. 23% of the samples have homologous recombination-deficiency (HRD) phenotype. Given the 
potential clinical implications of this finding, can the authors verify these results with other approaches 
(e.g., CHORD, HRDetect)? Are there any germline variants in HRD genes in these samples? “No 
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answer was provided, although the authors reported previous cell lines results and clinical trial data to 
support their findings on HRD in response to Reviewer 1.” 
In Figure 3, only NF2 is reported on chr22q; however, there are multiple cancer driver genes (TSS) 
located on this region (such as CHEK2 and EP300). Unless there is a need to emphasize NF2 for its 
link to MPM, these two cancer driver genes should be considered. “No answer was provided.” 
 
19. In Fig.4, can the specific structural variants be defined (large indels, translocations and fusion 
transcripts)? For example, do large indels overlap with heterozygous deletion? What is the difference 
between translocation and fusion transcripts? How was the “CNB” estimated? By number of 
segmentations? Copy number breakpoints? “No answer was provided” 
Are any specific alteration types in BAP1 and NF2 in the matched T/N WGS data? “No answer was 
provided.” 
 
20. Mutational signatures: the authors mentioned de novo signature extraction for SNVs, but no 
results are reported. “No answer was provided” 
It is interesting that APOBEC mutations have much lower TMB than other signatures, including the age 
signature (Fig S10). This is different than many cancer types and could be discussed in the Discussion. 
“No answer was provided”. Moreover, APOBEC 2 and 13 are usually associated. In this figure, SBS13 
is only presented in half of samples with SBS2. Also, 3 samples have a platinum therapy signature: 
weren’t the samples treatment naïve? If not, this should be mentioned at the beginning, since 
treatment may strongly affect genomic changes. If yes, why these signatures? The authors may want 
to check the signature assignment. “No answer was provided.” 
The authors proposed age as the etiological factor responsible for signatures 1, 5, and 40. However, at 
least for signature 40 the etiology is still unknown. 
The authors showed 7 copy number signatures but it’s unclear how the number of copy number 
signatures were derived/chosen and how they were assigned to be associated with certain processes. 
“No answer was provided.” 
 
21. ecDNA: on Figure 3C, the ecDNA region on chr10 appears to have extremely high WGS coverage 
compared to the rest of the region, but the estimated copy numbers are not higher than other 
regions. I suspect copy numbers were wrongly estimated here. Otherwise, how can the authors 
explain this? “No answer was provided.” 
In Figure S11, there appears to be a recurrent ecDNA identified on chr13:15-17Mbp. However, this 
region largely overlaps with the chr13 centromere, which should be excluded from the analyses. “No 
answer was provided.” 
In Figure S13, in tumor 019T there is chromothripsis in the same regions were ecDNA was identified. 
The authors could emphasize this finding, since chromothripsis can be a primary mechanism of 
genomic DNA rearrangements and amplification into ecDNA. “No answer was provided.” 
 
22. In Figure S8, the color legend is missing. “The color legend for the Pearson correlation has been 
added to what is now Figure S9.” 
 
 
 
Reviewer #3: 
Remarks to the Author: 
I appreciate the thoughtful response to the previous critiques. 
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Author Rebuttal, first revision: 

Reviewer #1: 

Remarks to the Author: 

 

The authors have provided very thorough responses and have made changes that have improved the 
paper. I have one general comment and one specific comment. 

 

1. the paper seems to be missing a schematic figure summarizing the novel classification findings. Most 
of the figures relating to MOFA and latent factors are not visually intuitive and the novelty is hard to 
grasp. This is also reflected in the abstract which just describes the study in general terms without a 
clear declarative statement of the novel findings. 

 

Answer: We thank the Reviewer for the positive assessment of our paper. We now better highlight in the 
abstract that we propose a novel morpho-molecular classification that explains major the inter-patient 
molecular differences, and promoted our summary Fig. S31, which summarizes our findings and our 
proposed classification using the example of 3 patients with similar clinical characteristics but vastly 
different survival and molecular profiles, to main Fig. 6. 

 

2. in Fig 4, the use of the abbreviation ERG for epigenetic regulatory genes (ERGs) in the same list as 
altered genes will lead to confusion as this is also a gene name. I suggest that the ERG track be moved 
to the lower section with the type/sex/smoking/asbestos/WGD tracks. 

 

Answer: Good point, we have made the suggested modification. 

 

Reviewer #2: 

Remarks to the Author: 
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I reviewed the authors’ response to two of my comments and I am satisfied by their responses. I have 
also reviewed the manuscript in Biorxiv related to tumor-only analyses and we tested the related codes. 
It seems to work well particularly for SNVs (less for SVs). 

 

However, there is no response to many of the additional comments I originally made. I am not sure why 
they have been ignored. 

 

Answer: We thank the Reviewer for their thorough review of the manuscript and the code presented in 
the data note paper in Biorxiv, and for their positive assessment of our response to their first comments. 
We took great care to answer to the best of our ability to each and every comment we received, and 
would like to highlight that the reason for not having responded to the list of 22 individual comments was 
that they were not provided to us. We are very sorry for this unfortunate situation, and thank the 
Reviewer for having gone through the tedious work of parsing all the other Reviewer’s answers carefully 
to find where their original comments were addressed. We also thank the Reviewer for prioritizing 
together with the Editor, the most urgent concerns that needed to be fully addressed (we have highlighted 
them below in yellow based on the information that we received from the Editor). While we have tried to 
address all the 22 comments as much as possible since the Reviewer made an enormous effort in 
performing such a detailed review that can only help improve our manuscript, we have paid particular 
attention to the depth by which we have addressed the highlighted comments below. We highlight in red 
novel text that was added for this second revision, and in blue, text that we already added in the first 
revision but that is linked with an answer to this revision.   

Note that for this second revision, in order to limit the already very large amount of 
supplementary material in this manuscript, we have tried to find a balance between adding figures to the 
supplementary information (denoted as Fig. SX), when we felt that they carried critical information for 
the readers, and suggested adding them for this review only (denoted as Fig. RX), when we felt that they 
explored other important aspects of the data but were perhaps not critical for assessing the validity of our 
conclusions. We want to mention to the Reviewers and Editor that if the paper is accepted, we would like 
to select the transparent peer-review option so all responses to comments, including the figures therein, 
will be publicly available. Nevertheless, if the Reviewers or Editor feel that some particular figures should 
be included in the supplementary instead of only the rebuttal letter, we will be happy to include them. 

 

See my comments in quotation “” for each original question. 
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This is the largest WGS analysis of MPM to date and the authors used unusual approaches for the 
analyses. In my opinion, the analyses require major revisions and validation (or at least comparisons of 
results) using alternative approaches. However, there are some important limitations that cannot be 
fully addressed even with major revisions (first of all, the lack of germline material as reference for most 
tumors). 

 

Answer: This part has already been addressed during the first round of revision and we are glad that the 
Reviewer is satisfied by our answers. 

 

This study aims to identify factors that can contribute to a new classification of malignant pleural 
mesotheliomas (MPM) with clinical implications. It has the largest MPM whole genome sequencing 
data to date, as well as RNA-seq and methylation data. The authors performed many analyses using 
approaches that are not typically used in cancer genomic analyses and with the potential to identify 
novel findings. They are laudable for their effort to tease apart MPM genomic, epigenomic and 
histological features to suggest a possible new classification. However, I have several 

major concerns related to the analyses and data interpretation. I summarize the comments based on 
the analysis types: 

 

1. Among the 120 tumor samples, >60% of WGS and 90% of RNA seq and methylation analyses lack 
matched normal or blood samples for the analyses. Although the authors attempted to address this 
issue with random forest-based and other approaches and even using additional normal samples from 
other datasets for some analyses, the lack of matched germline reference can affect the results. For 
example, TERT amplification in Fig.3a appears to be identified almost exclusively in tumor-only samples; 
and many analyses are presented based on the TERT amp in the manuscript. Another example is the 
deletion of RBFOX1. It would be important to systematically verify all major findings in the T/N matched 
samples (at least those based on WGS, since only a handful of normal tissue samples are available for 
RNA seq and methylation) and discuss discrepancies between matched and tumor-only results. “As 
mentioned above, a response was provided, although the authors did not specifically commented on 
the apparent enrichment of genomic driver events in tumor-only samples vs. T/N.” 

 

Answer: We thank the Reviewer for this important comment. As we have described in our previous 
response to Reviewers, and in our accompanying data note, we took care to implement a robust 
computational strategy to call genomic variants and alterations in tumor-only samples, however, we also 
note that some specific somatic genomic alterations appear to have different prevalence rates in the 
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tumor-only vs. tumor-matched samples. We believe this is primarily due to the proportion of different 
tumor types within the tumor-only vs. tumor-matched sample sets, whereby the nature of our cohort 
resulted in the tumor-only samples being enriched for sarcomatoid and biphasic types in comparison to 
the tumor-normal. This is relevant for specific genomic alterations that are more prevalent in particular 
types, such as TERT amplifications in sarcomatoid mesothelioma, and BAP1 mutations in epithelioid 
mesothelioma, hence we would expect to find more TERT amplifications and less BAP1 mutations in the 
tumor-only compared with tumor-normal samples. In order to reassure readers that there is no influence 
of missing normal material on genomic alteration rates, we have performed an analysis restricted to 
epithelioid samples, which are well-balanced between the two data types (38 tumor-only and 39 T/N 
matched). In Fig. S33, we show that recurrent somatic alterations are not enriched in tumor-only samples 
(Fisher’s exact tests for all recurrently altered genes p-values>0.05 except for one single gene out of more 
than 100 tests, even without multiple-testing correction, and all q-values>0.05 after Benjamini-Hochberg 
adjustment; see new tab of Table S13). We now also include these results in the Methods on p.20, p.21, 
and p.22. In reference to the specific genes mentioned by the Reviewer, we did not find a significant 
difference in rates of TERT amplifications nor RBFOX1 deletions between tumor-only and T/N epithelioid 
samples.   
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Figure S33. Comparison of the number of alterations in gene drivers between T/N matched samples and 
tumor-only samples of the epithelioid type (n=77 samples, 38 T-only and 39 T/N). (A) Small variants. (B) 
Structural variants. (C) Copy number amplifications. (D) Copy number deletions.  
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2.a In Fig.1a, methylation data in LF1, LF2, and LF3 explains the largest component of the variance. This 
could be due to the unbalanced size of the MPM datasets used for the analysis. In Fig. S1, it appears 
that the methylation data is three times larger than the RNA and DNA Alt data.  

 

Answer: We thank the Reviewer for their comments (2a, b, and c) regarding the proportion of variance 
explained by MOFA, which has led us to improve our explanation, computation, and display of the 
proportion of variance explained in each omic type presented in Fig. 1a.  

 

Fig. 1a was misleading because it implied, through grouping by latent factor and stacking the omic 
datasets, that the omics datasets explained variance within a factor. It appeared that with a value of 21%, 
the omics datasets explained 21% of the variance within LF1. Subsequently the reader could plausibly 
interpret that methylation would explain more variance within a latent factor, than for example RNA, 
simply because the methylation dataset was larger. The correct interpretation is in fact the opposite, that 
the latent factors explain variance within each omic dataset. We now have changed this representation 
to barplots stacked by ‘omic layer (see revised Fig. 1a below) in order to clarify our message. In this figure, 
we show much more clearly that for a focal omic layer, such as gene expression (RNA), the value of 20% 
indicates that the four latent factors collectively explain 20% of the inter-patient variance within the gene 
expression dataset. Thus, the variance within a dataset that is explained by a given latent factor is 
independent of how well that latent factor explains the other six datasets, and therefore independent of 
their size.  
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Revised Figure 1a. Proportion of inter-patient variance within an omic type explained by 
histopathological type (left) and MOFA latent factors 1-4 (right). E.g. 7% of variation present in RNA 
expression can be explained by mesothelioma types, in contrast to 20% explained by integrative multi-
omics factor analysis. 

 

To illustrate in detail to the interested reader, we now also provide a detailed Fig. S3 (see below) 
with a break down of all variance explained by each latent factor individually and combined, and also 
provide illustrative examples of molecular features that are badly explained by a latent factor (panel A) 
and well-explained by a latent factor (panel B), and typical features associated with each latent factor 
(panels D-G). We believe that these new representations better convey the underlying statistical model, 
where each molecular feature is the explained variable and factors are the explanatory variables (e.g., 
Expression_gene1 ~ Factor1, Expression_gene2 ~ Factor1), and thus each dataset (including methylation 
datasets) are treated independently. A detailed explanation has also been added to the Methods p.38-39. 
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New Figure S3. Proportion of inter-patient variance explained by MOFA latent factors. (A) Example 
feature for which a latent factor explains 0% of inter-patient variance (here factor 2 explains no variance 
at all in the expression of gene NCR3–R2=0). (B) Example feature for which a latent factor explains most 



 
 

 

47 
 

 

 

of the variance (here factor 3 explains 87% of the variance of methylation site cg17731952–R2=0.87). (C) 
Variance explained by the three histopathological types, each latent factor independently, predicted total 
variance explained by all latent factors together if they were completely independent (LF1 to LF4 
predicted), and actual variance explained by a model including the four latent factors (LF1 to LF4 
observed). (D) Typical Total CN feature associated with Factor 1. (E) Typical Enhancer Methylation feature 
associated with Factor 2. (F) Typical Enhancer Methylation feature associated with Factor 3. (G) Typical 
Gene Body Methylation feature associated with Factor 4. 

 

 

2.b. This could also explain why the DNA Alt (driver genes and other genomic features) appears not to 
explain any variance component. How much variance is explained by each data type?  

 

Answer: Regarding the small proportion of variance in DNA alterations explained by each latent factor, 
this is an artifact due to the difficulty to properly account for the proportion of variance explained for an 
indicator variable, and we agree with the Reviewer that this misleadingly suggested that MOFA did not 
explain DNA alterations. Indeed, for consistency with the other omic types, we originally displayed the R2 
of a linear model of the form alt_i ~ Factor_k, where alt_i is an indicator variable (0: wild type, 1:altered). 
Nevertheless, classical R2 for such variables are known to have a theoretical upper bound strictly smaller 
than 1, and in our case this maximum is often below 0.5 (black line in Fig. R1A below), which leads to the 
false interpretation that it is impossible to explain 100% of the variation in DNA alterations. We now rather 
display in Fig. 1a the pseudo R2 of McKelvey and Zavoina, using the Veall-Zimmermann estimator (Veall 
and Zimmermann, Qual Quant, 1992), and we explain p.39 that this pseudo-R2 has a similar interpretation 
to classical R2 (proportion of variance in an indicator variable explained by a feature) but it is based on a 
logistic regression model which better models indicator variables. See also in Fig. R1B below an example 
where wild-type and altered samples are maximally separated by a MOFA latent factor (all altered samples 
are at one extreme of the factor), but the classical R2 is very low (0.085) while the pseudo R2 correctly 
indicates a perfect fit (1.000). We also show in a new Fig. S3C (see above) a comparison between pseudo 
R2 and R2 for DNA alterations, which shows that DNA alterations are actually explained almost as well as 
the other omic types by MOFA latent factors. 
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Figure R1. Comparison of R2 and pseudo R2 for estimating the proportion of variance in DNA alterations 
(SNVs, indels, and SVs) explained by MOFA factors. A) Observed R2 (black) and pseudo R2 (red) of each 
alteration (points), compared to their theoretical maximal values (solid lines), as a function of the number 
of samples carrying this alteration, for each factor. B) Example gene whose alteration is maximally 
separated by MOFA Factor 3, but R2 is very small while pseudo R2 is 1. Pseudo R2 are computed using the 
Veall and Zimmermann (1992) estimator, which was shown to be the closest to ordinary linear regression 
R2 and analogous to a proportion of variance. 

 

2.c. How much variance could be explained by including a larger number of LFs? Are these 4 LFs 
statistically independent from each other?  

 

Answer: We agree that this is important information and thus now directly show in Fig. 1a the total 
proportion of variance explained by the first four latent factors, selected for subsequent analysis: 20% of 
RNA variance, 27% of promoter methylation variance, 31% of body methylation variance, 46% of enhancer 
methylation variance, 61% of total copy number variance, 21% of minor copy number variance, and 19% 
of DNA alteration variance. This increases to 35% (RNA), 41% (meth. pro), 46% (meth. bod.), 67% (meth. 
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enh.), 85% (Major CN), 62% (Minor CN), and 47% (DNA alt), when including all 10 LFs. This information is 
now reported in Table S2.  

The four LFs that have been retained for further analyses are statistically independent of one 
another, as shown in Fig. S6C (new in revision 1). This independence can also be visualized in Fig. S3B 
(new in revision 2). We expect under statistical independence of the factors, that the R2 of a model 
combining all factors of the form feature~Factor1+Factor2+Factor3+Factor4 (see “LF1 to LF4 predicted” 
in Fig. S3B) would be the sum of the R2 of each independent model feature~Factor1, feature~Factor2, 
feature~Factor3, and feature~Factor4. In contrast, if the factors were completely colinear, the R2 of all 
independent models would be equal, and the R2 of the combined model would be equal to that of any of 
the independent models. In Fig. S3B, we observe that the R2 of the combined model is very close to that 
expected under perfect statistical independence (“LF1 to LF4 expected” and “LF1 to LF4 observed”, Fig. 
S3B), corroborating the statistical independence of the factors for each omic dataset. 

  Of note, some of the other latent factors are not statistically independent (LF5 and LF9), none 
were found to be associated with survival as presented in Fig. S7A and their replication in other cohorts 
has been assessed as difficult as presented in Fig. S2. For these reasons, we have focussed on the first four 
latent factors, although we now note in p.39 that with larger cohorts, future studies might reproduce 
some of these other factors and have more power to detect their influence on survival.  

 

2.d. How sensitive is MOFA to sample size (although this is the largest WGS study of MPM to date, is 
still small). And the Bueno cohort used for replication lacks methylation data, so it is not ideal to 
replicate an analysis mostly driven by methylation data. “No answer was provided. The authors need 
to address the issue of unbalanced MPM datasets”  

 

Answer: With the additional work on replication that we produced for revision 1, we believe that we have 
also demonstrated in this manuscript that MOFA can be quite robust to changes in sample size. The latent 
factors identified in our MESOMICS analysis (n=120) were also recapitulated in two other individual 
cohorts of different sample sizes: Hmeljak et al, n=73, and Bueno et al. n=181, as well as a combined 3-
cohort analysis of n=374 (Figs. S1 and S2). The Bueno cohort has been used to replicate findings that are 
not only driven by methylation data. As the Reviewer noted, LF2, LF3, and LF4 explain a large proportion 
of variance within this type of omic data, but even without methylation data in the MOFA Bueno, we 
succeeded in replicating the findings related to LF2 and LF3. This highlights that tumor type and immune 
infiltration have important, detectable impacts outside of DNA methylation profile. Additionally, although 
the identification of LF4 was challenging, without a CIMP index to validate its existence in Bueno, we were 
able to replicate LF4 and CIMP findings using the TCGA cohort (see Table S6 for further details on the 
replication analyses). We now also mention in the methods p.36 that our sample size is in line with the 
size of n=100 that was shown to allow to capture the main sources of variation in simulated datasets in 
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the original MOFA study, across a wide range of omic datasets (1 to 21), features per dataset (100 to 
10,000), latent factors (5 to 60), and missing values (from 0 to 90%) (Argelaguet et al. 2018); we also 
mention that n>100 fits general recommendations for dimensionality reduction based on matrix 
factorization such as PCA for stable latent factors and weights so the results from the sample can 
accurately be generalized to the population (Saccenti J Proteom Res 2016). 

 

3. In Fig.S5, LF1 was associated with RNA-seq batch effects and LF4 (CIMP factor) was associated with 
sample wells (at least this is my interpretation since there is no legend). Did the authors consider these 
factors in their analyses? How? “No answer was provided to this comment, although the CIMP factor 
was discussed in response to Reviewer 1. Also, in the revised manuscript (now Figure S6d), the 
association is not there anymore.” 

 

Answer: As the Reviewer noted, the legend for Fig. S5C, in the first submitted version of the manuscript, 
was missing and we apologize for this oversight. The light pink in the figure indicated a q-value of between 
0.05 and 0.1, therefore a borderline significant association between LF1 and LF4 and some batch variables. 
During the first round of revisions we made a correction to the MOFA input matrices specifying copy 
number levels concerning 0.5% of segments, following this, the quality checks presented in Figs. S6C and 
D were repeated and the associations found to be q-value > 0.1 (now in Fig. S7D), therefore they weren’t 
corrected for in any subsequent analyses. 

 

4. In general, it would be important to validate or at least compare this LF classification using other 
approaches, e.g., iCluster or Cluster-of-clusters, typically used in genomic analyses of other cancer types 
similarly composed of mixed histologies and molecular features. “The authors responded to this 
question” 

 

Answer: We thank the Reviewer for their suggestion and have performed the proposed analyses during 
the first revisions.  

 

5. The strongest cancer prognostic factor is tumor stage, but the survival analyses do not appear to have 
been adjusted by stage. This could strongly bias the results. All survival analyses should include stage 
in the model. “No answer was provided” 
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Answer: We thank the Reviewer for raising this important point, and we note that tumor stage and 
histological subtype are currently the main known prognostic factors for mesothelioma. Unfortunately, 
we have not been able to adjust the survival analyses on tumor stage due to the lack of staging data in 
the database MESOBANK, from where the MESOMICS samples come from. Staging data was not included 
in the French MESOBANK as this information was not systematically recorded in clinical records in France 
at the time. During this period (year of diagnosis [1998-2017], median of 2011), there was a lack of pleural 
staging system accepted by the French community of clinicians, and an evidenced-based revision of the 
staging system for mesothelioma was not proposed until 2016 by the IASLC Mesothelioma Staging Project 
(Pass et al. J Thorac Oncol. 2016). From our discussions with pathologists involved in the MESOBANK, the 
main reason seems to be the limited impact staging would have in treatment-decision making given the 
dismal prognosis of the disease, with no therapeutic options. In addition, there was no consensus on 
staging systems worldwide in 1996 where new staging proposals were published for the first time (Rusch 
et al. J Thorac Cardiovasc Surg. 1996). This proposal was followed by an evidence-based revision of the 
staging system from and before 1995-2016 and published later in 2016 by the IASLC (Pass et al. J Thorac 
Oncol. 2016). Moreover, when staging was carried out several staging modalities were in progress, such 
as IMIG staging or UICC, and there were some discrepancies between them. This might also be the reason 
why stage was not included as a covariable when comparing the survival of different types or molecular 
groups in previously published mesothelioma genomic analyses (e.g., no adjustment in Bueno et al. Nat 
Genet. 2016 nor Hmeljak et al. Cancer Discov. 2018). However, we would like to note that Hmeljak et al. 
show in their Fig. S1 that T stage was not significantly associated with survival in their cohort. We are very 
sorry not to be able to address this Reviewer’s concern but we hope they will understand that this is 
beyond our capabilities since the data is not available for us to integrate it, additionally we now mention 
this in the Methods p.15. 

 

6. In the survival analyses in Fig.1e the strongest effect is provided by LF2, which corresponds to the 
known morphological classification. The other latent factors do not appear to strongly affect survival 
beyond this factor. In Fig.S5, in the analyses restricted to the epithelioid group, only LF3 is (marginally) 
associated with survival. In Figure S6, 22 Cox proportional hazards survival models were tested: how 
did the authors take multiple testing into consideration? In the cross-validation results, the combination 
of all 4 factors does not substantially improve the AUC (0.79) over the combination on any of three 
factors (0.78-0.80) or two factors (0.73-0.78). And this seems to be true (although with different 
estimates) also for the TCGA data. Also, based on the Introduction, aneuploidy and immune infiltration 
had been already identified as playing a role in MPM, and yet the morphological classification remained 
as the major classification variable. Thus, it is not clear whether the addition of the data related to the 
LF1, 3, and 4 can be useful in clinical settings or could be considered for treatment strategies. “No 
answer was provided, although the authors tangentially addressed this issue in response to Reviewer 
3.” 
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Answer: We thank the Reviewer for this comment. In this manuscript, we aim to highlight the importance 
of the sources of molecular variation we have identified in addition to tumor morphology. We hope that 
the modifications and additions we provided during these two revisions will emphasize their biological 
significance. 

In the re-submitted version of the manuscript, following a small correction to the MOFA input 
matrices specifying copy number levels concerning 0.5% of segments, LF2 was no longer the axis with the 
largest Cox model effect size (Fig. 1f), therefore all four LFs are important factors in prognosis. Whilst, LF3 
was the only axis reaching statistical significance in the survival analysis restricted to MME samples (Fig. 
S7B), importantly, as the Reviewer noted, we showed in the revision that the four factors are statistically 
independent (Fig. S7C), and LF1, LF3 and LF4 are not associated with the histological type (Fig. 1b), thus 
we hypothesize that a lack of statistical power prevents LF1 and LF4 from reaching statistical significance 
when examining MME samples only. Nevertheless, to legitimate the significance of these three additional 
axes of molecular variation, we successfully replicated their association with survival in additional cohorts, 
importantly using more clinically-suitable proxies (Fig. S6).  

Concerning the twenty-two Cox models presented in Table S5, we addressed the importance of 
multiple testing by using cross-validation (on MESOMICS, Fig. S8A-C) and bootstrapping (on TCGA, Fig. 
S8D-F) approaches to provide the standard error of iAUC for each model to let the reader evaluate their 
robustness as predictive models. Still, we agree that the difference in iAUC between the models using 
MOFA factors is subtle. However, the difference is more substantial when compared with previously 
published prognostic factors (Fig. S8C and F, left panel), and the increase of iAUC when using MOFA 
factors together suggests the complementarity of these axes to predict patient survival. Additionally, the 
highest increase in AUC is observed when using this 4-factor model in MESOMICS (Fig. S8A) and TCGA 
(Fig. S8D) in the short-survival patients (≤ 1.42 years) when most deaths occur, and in the MESOMICS 
cohort, this model outperforms all others even in longer-survival time analysis (Fig. S8A). 

As the Reviewer has pointed out, it is indeed critical that research continues to focus on 
improvements that could be made to clinical management, and continuing to refine histological 
classification is not likely to provide benefit to patients. Therefore, new approaches are needed such as 
those presented in the current study. The interpretation of the latent factors and how they may be used 
in a clinical setting is not straightforward, therefore we made several additions to the first version of this 
manuscript during revision to improve this aspect of the work. As described in the revised manuscript (p.4 
and Methods) and in our response to Reviewer 3 comment 4, in Fig. S6 we represent and validate simpler 
proxies for each factor, demonstrating the variability in ploidy, immune infiltration, and CIMP index, 
across the morphological types, highlighting the importance of investigating these features in addition to 
morphology, and how proxies of these have prognostic value in additional mesothelioma cohorts. 
Importantly, in Fig. S10 and 19 we further investigated mesothelioma cell lines and their response to drug 



 
 

 

53 
 

 

 

targets based on their position along latent factors and genomic alterations, highlighting the complexity 
of the interplay between molecular features and drug sensitivity. Finally, we also now provided a summary 
figure (Fig. 6, see Reviewer 1 comment 1 answer) to describe with concrete examples the novelty of the 
classification suggested in this manuscript. This new main figure illustrates how our novel classification 
may explain inter-patient differences in three patients with similar clinical characteristics but vastly 
different molecular profiles. We believe that this work demonstrates the potential benefits of establishing 
a morpho-molecular classification for clinical management of mesothelioma. 

 

7. There is a large difference in terms of purity estimated from RNA-seq, WGS, and by pathology (no 
purity estimates are reported based on methylation data) in Supp Table 1. How did the authors 
reconcile the purity differences and which purity estimates were used for the analyses? How much does 
tumor purity affect MOFA results? Is any LF correlated with tumor purity? In addition, purity was 
included as an additive covariate in the regression analyses, but others have shown that a multiplicative 
model would be more appropriate (see Zheng et al. 2017 Genome Biology for example). “No answer 
was provided.” 

 

Answer: We thank the Reviewer for their comment and wish to clarify our analyses. We received a similar 
comment from Reviewers of the data note, therefore we now provide for the revision of the data note 
additional data, including a figure comparing the purity estimates (see Fig. R2 below attached with this 
review). This figure shows that the three purity estimates were correlated with q-values<0.01, although 
they show important differences. We have also added several sentences in the data note explaining that 
the three purity measurements estimate different aspects of purity: the proportion of DNA material from 
the tumor for the WGS-estimated values, the proportion of infiltrating immune cells for the RNA-seq, and 
the amount of tumor tissue in the observed slide for the pathological estimate. Thus, we paid particular 
attention to mention what is the source of each purity estimate used throughout the Methods, and chose 
to use WGS-estimates whenever we wanted to quantify or control for the proportion of normal cells in 
the bulk, chose the RNA-seq estimates (that we refer to as immune infiltration) whenever we wanted an 
estimate of the amount of non-immune cells in the bulk, and used the pathological estimates for example, 
prior to sequencing, to determine if sufficient tumor content was available to include the sample.  

Tumor purity is associated with some aspects of the MOFA. The morphology and CIMP index 
factors are associated with purity as estimated by RNA sequencing data (q-value=0.02 and r=0.26, and q-
value=0.002 and r=0.33, respectively), indicating some influence on tumor immune infiltration on sample 
position along these latent factors. Importantly, samples with high purity in this estimate (i.e. low immune 
infiltration) are found distributed across these two latent factors and are therefore driven by aspects of 
molecular variation other than simply immune infiltration (Fig. R3). Furthermore, neither WGS-estimated 
purity nor purity estimated by the pathologist were associated with these latent factors. In contrast, and 
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as anticipated, the adaptive-response factor is associated with purity as estimated by the pathologist (q-
value=6.59x10-5, r=-0.39), and with WGS (q-value=9.84x10-9, r=-0.54), and RNA sequencing (q-
value=3.14x10-11, r=-0.62) estimates, reflecting the importance of non-tumoral cells, primarily immune 
infiltration, on the position of samples and their task specialization. 

Regarding the multiplicative model proposed by Zheng and colleagues, we thank the Reviewer for 
this useful reference. We indeed used a multiplicative model to correct for purity in MOFA (see methods 
p.35), but originally did not when performing the differential expression analysis. We have therefore taken 
the suggestion on board and repeated our analysis of differentially expressed genes between whole-
genome doubling positive and negative tumors, this time using a multiplicative model. We now show in a 
new panel Fig. S26E (see below and Methods p.28) that using a multiplicative model to incorporate the 
effect of purity on gene expression, while not changing our conclusion regarding the impact of WGD on 
immune response, in particular through interferon down-regulation, seems to improve our power to 
detect differentially expressed pathways.  

  



 
 

 

55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure R2. Correlation between purity estimates from three different omic purity measurements: the 
proportion of DNA material from the tumor (genomic estimate of purity), the proportion of infiltrating 
immune cells (transcriptomic estimate of purity), and the amount of tumor tissue in the observed slide 
(pathological estimate of purity). (A) between transcriptomic and pathological estimates, (B) between 
genomic and pathological estimates, and (C) between genomic and transcriptomic estimates. In these 
three panels, q-values and coefficients r correspond to Pearson’s correlation tests. All measurements of 
purity were significantly correlated.  
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Figure S26. A and new panel E. Pathways up- and down-regulated in WGD+ samples, accounting for 
additive (top) or multiplicative (bottom) effects of purity on gene expression. 
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Figure R3. Association between MOFA latent factors and estimates of purity. In these three panels, q-
values and coefficient r correspond to Pearson’s correlation tests. 
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8. In the Pareto TI analysis, outlier tumors based on gene expression are known to interfere with the 
position of the archetypes. Did the author verify whether there were any outlier tumors? “No answer 
was provided.” 

 

Answer: We indeed see that we forgot to mention in the methods that we used a bootstrapping approach 
(200 bootstraps each subsampling 75% of the data with replacement) to estimate archetype positions 
robust to outliers; we now mention it on p.42 and refer to the code on our github repository 
(https://github.com/IARCbioinfo/MESOMICS_data/blob/main/phenotypic_map/MESOMICS/Phenotypic
Map_MESOMICS.md). 

 

In Fig2a, the authors described that only LF2 and LF3 create the “triangular shape delimited by 3 
extremes”, not ploidy or CIMP factors. Can the results based on ploidy and CIMP be presented so one 
can verify the results and compare them with LF2 and LF3? “No answer was provided.” 

 

Answer: We thank the Reviewer for this comment and now provide further precisions on which 
combination of latent factors the Pareto algorithm was tested in p.42. In fact, after sorting the factors 
with the highest percentage of variance explained from the RNA dataset, the algorithm increases the 
number of factors to test together with the number of archetypes to find, meaning that in our case the 
algorithm performed tests on LF2-LF3, LF2-LF3-LF4, and LF2-LF3-LF4-LF1 spaces and never directly LF1-
LF4. For each set of factors and number of archetypes to find, the algorithm computes a p-value from the 
Pareto model fit and the method described by Hausser et al. Nat Commun. 2019 indicates that if several 
models are significant, the users should select the model with the lowest number of archetypes. We now 
provide the fit results for each model tested by the Pareto algorithm in Table S8. Additionally, we also 
provide an illustration of the non-significant (p-value=0.971) fit in LF1-LF4 space in a new Fig. S11. 

 

https://github.com/IARCbioinfo/MESOMICS_data/blob/main/phenotypic_map/MESOMICS/PhenotypicMap_MESOMICS.md
https://github.com/IARCbioinfo/MESOMICS_data/blob/main/phenotypic_map/MESOMICS/PhenotypicMap_MESOMICS.md
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New Figure S11. Comparison of the best Pareto front fit in (A) morphological factor (LF2) and adaptive-
response factor (LF3) space and (B) ploidy factor (LF1) and CIMP factor (LF4) space. The scatter plots 
represent sample positions along each factor and coloured vertices the position of the archetype defined 
by the ParetoTI algorithm in each space. 

 

9. There is a large discrepancy between CIMP-index (32-56%) and CIMP-normal index (1.3-19%). How 
do the authors explain this large difference? The range of CIMP in tumors is based on beta values >0.3. 
This is not the typical way the CIMP phenotype is identified. CIMP is important because exhibits highly 
recurrent hyper-methylation of TSS genes. Can the authors replicate the CIMP analyses using 
unsupervised clustering methods and evaluate how the LFs vary by CIMP subtypes? “No answer was 
provided, although the authors discussed the CIMP factors in response to Reviewer 1.” 

 

Answer: In order to clarify our analyses with regard to this phenotype we have provided additional details 
about the CIMP index, below, and in the study methods (section: CpG island methylator phenotype index, 
p.31).  

Firstly, we have been deliberate in not describing this finding in MESOMICS as a CIMP+ phenotype 
as the method we have used to investigate CpG island methylation level, based on DNA methylation array 
data, differs from the classical gene panel model assessed through methylation-specific PCR 
(Weisenberger et al. Nat Genet. 2006; Hughes et al. Cancer Res. 2013). Instead we refer to our 
measurement as a CIMP index, with a continuous rather than categorical interpretation. The Reviewer 
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refers to an additional method for calculating a CIMP index, the CIMP-normal index, which we tested in 
the MESOMICS cohort as it was previously used in a mesothelioma series (Blum et al. Nat Commun. 2019). 
In this method, probes located within CpG islands were retained, and the mean beta value across all 
probes within each island was calculated for the three adjacent normal tissues available in the MESOMICS 
cohort. Islands whose methylation level was <30% in all three adjacent normal samples were retained 
(n=15,824), denoted as normally hypomethylated islands. The CIMP-normal index was then 
calculated as the proportion of these 15,824 islands with ≥30% methylation (beta value ≥0.3) 
per sample. CIMP-normal index values ranged from 0.013 to 0.19, corresponding to 0.13% to 
19% of normally hypomethylated islands to be hypermethylated per sample. These values 
differ from the CIMP index presented in the manuscript as they are calculated from a subset 
of CpG islands present on the array (those typically hypomethylated in normal tissue), in 
contrast to all islands on the array as are used for the CIMP index calculation. Although these 
values differ, there is a significant correlation between CIMP index and CIMP-normal index 
values (p-value=3.27×10-66, r=0.96). The CIMP index, rather than the CIMP-normal index, was used for 
subsequent analyses as the method for CIMP-normal index was based on first identifying normally 
hypomethylated islands, therefore requiring normal pleura. The ‘normal’ tissues available in the 
MESOMICS cohort are material adjacent to mesothelioma tumors, therefore they are unlikely to be pure 
non-tumour pleural tissue. 

A further method used to identify CIMP-high samples has been to perform unsupervised 
clustering over variably methylated probes across a cohort. To address the Reviewer’s concerns for 
additional replication, we have performed unsupervised k-means consensus clustering on the 8,000 most 
variable probes (calculated from standard deviation across m-values) with 1,000 iterations over random 
subsamples of 80% of the 8,000 probe set (R package ConsensusClusterPlus) similarly to Sturm et al. 
Cancer Cell. 2012. As anticipated from additional clustering analyses performed in response to the 
Reviewer’s concerns about our methodological approach using MOFA (presented in Fig. S34), consensus 
clustering of methylation array data only also resulted in unstable clusters where K>2 (Fig. R4). We further 
performed linear regression analyses to examine relationships between the methylation clusters 
identified, and MOFA latent factors and CIMP index. This identified that whilst consensus clustering with 
methylation data resulted in clusters significantly associated with sample position along latent factors 
(q<0.05), and CIMP index, it does not clearly capture the continuous nature of the mesothelioma 
methylation profile (Fig. R5). Therefore, we believe the most appropriate way to investigate any potential 
CpG island methylation phenotype is with a continuous index-based model, as presented in the 
manuscript.  
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Figure R4. Consensus matrix heatmaps for K=2 to K=5, generated from 8,000 most variable probes for 
n=119 samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure R5. Sample position along MOFA latent factor 4 (CIMP-factor) (top row), and sample CIMP index 
value (bottom row), coloured by methylation class identified through consensus clustering over 8,000 
most variable probes for n=119 samples. 
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10. The TCGA-MOFA methylation analyses are based on the arrays with ~450K probes and appear to 
replicate the MESOMICS analyses based on the EPIC array with ~850K probes. Can more features in 
enhancer probes (enriched in the 850k EPIC array) improve the MOFA analysis? “No answer was 
provided.” 

 

Answer: Yes, the Reviewer is correct that the TCGA and MESOMICS cohorts have different types of 
Illumina Methylation Beadchip Array data available. In MESOMICS we have used the EPIC array, which 
was designed to cover an increased number of regulatory regions including enhancers. In order to try and 
address the Reviewer’s query, we have examined which of the probes input into MOFA would also be 
found on the previous iteration of the Illumina array, the HM450K. Of the 5000 promoter-associated 
probes incorporated, 3849 (77%) of the probes are also on the HM450K array, and of the 5000 body-
associated probes 3878 (78%) are on the previous array, this is in contrast to just 1520 of the 5000 
enhancer-associated probes (30%) being available on the HM450K array. This indicates that many 
enhancer regions which display highly variable methylation patterns between mesothelioma samples are 
not captured by the HM450K array, and the EPIC array therefore provides us with perhaps a more 
complete picture of methylation patterns in this cancer. This information has now been included in the 
Methods section on p.35. 

It is difficult to say whether the inclusion of additional probes improves the MOFA analysis, as we 
did not consider testing the difference between inputting EPIC probes vs. HM450K probes into the model 
given that we generated the more exhaustive EPIC array data for this study. Whilst we feel such a technical 
test is outside the scope of the purpose of our work, we can consider our replication analyses with the 
TCGA dataset (HM450K) as partially addressing this query. With the TCGA data, we were able to replicate 
many of our methylation-based findings including recapitulating MOFA latent factors 2-4 (those explaining 
much of the variation within the methylation datasets, Fig. S2), variable CIMP index (Fig. S4), and 
associations between latent methylation components hidden in enhancer-associated probe profiles with 
sarcomatoid, epithelioid, and immune cell proportions (Tables S2 and S6). In summary, we believe that 
the EPIC array provides additional information on enhancer methylation profiles in mesothelioma over 
and above the HM450K array, however our findings related to methylation profile are robust given their 
validation in the TCGA cohort.  

 

11. Notes: lines 1077-1078 report 2 different estimates (1.3% or 0.0013?); lines 1125-1127: the number 
of probes used do not match: 150 + 207 + 2446 = 2803 not 3764 probes. “No answer was provided.” 
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Answer: We apologize for this error in calculation, the correct values are as follows: “This resulted in 3,764 
probes across all 77 genes, specifically 153 promoter probes corresponding to 17 EMT genes, 209 
enhancer probes corresponding to 54 EMT genes, 2,575 body probes corresponding to 77 EMT genes, and 
an additional 827 probes not annotated to promoter, enhancer, or gene body regions, corresponding to 
73 genes.” We have corrected this sentence in the manuscript Methods on p.33.  

 

12. I am not clear how the tumor evolution was estimated across all samples. Do the different LFs 
identify tumors with different evolutionary trajectories? Fig5d only describes 6 samples. Was the timing 
of the lesions only conducted in these 6 samples? Four out of 6 are linked to TERT amp (likely based on 
tumor-only samples). And was asbestos exposure only ascertained in one sample (grey area)? It would 
be important to time the asbestos exposure in relation to different genomic changes to try to 
understand whether the asbestos exposure was involved in the initiation or progression of the tumors 
or had no detectable effect on tumor evolution. “No answer was provided, although the authors 
acknowledged the limitations of their approach in response to Reviewer 1.” 

 

Answer: As the Reviewer noted, we now explicitly state in p.10 that we studied “timing of WGD, TERT 
amp, and copy neutral LOH in the few samples (n=6) with such events where a subclonal deconvolution 
was possible,” and we also note in the Methods p.43 that this analysis focused on T/N matched samples. 
We now also note in p.10 that asbestos exposure was available for 5/6 samples (2 non exposed, 3 exposed) 
and that 2 had reported periods of exposure, one encompassing the estimated timing of the LOH event 
and one more than 50 years before the estimated timing of the TERT amplification, although we note that 
such results based on a few samples need to be confirmed in much larger series. Regarding the association 
with the different LFs, we now mention on p.10-11 that we detect a significant enrichment of neutrally 
evolving tumors at the extreme of the morphology and adaptive-response factors. 

 

13. For the gene expression analyses, did the authors take into account copy number alterations 
(beyond WGD), which could substantially affect gene expression levels? “No answer was provided.” 

 

Answer: We agree with the Reviewer that copy number can strongly affect gene expression, and we 
indeed used copy number estimates as suggested by the Reviewer in the WGD analyses because we were 
then interested in finding a “WGD effect” on gene expression that would be beyond what is expected 
from just having an increased number of copies. We now mention in the other expression analyses 
(namely, the archetype expression analyses p.43) that in that particular case, because we are interested 
in reconstructing a genotype-to-phenotype map, we actually want to first visualize the resulting 
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phenotype that therefore includes gene expression modulated by copy number changes (see Fig. 2) and 
second, to identify genes which amplification or deletion directly impacts gene expression (see Fig. 5) and 
thus purposely avoided correcting for copy number changes, which would have removed the signal and 
thus potentially lost the interesting biological impact of copy number changes on tumor specialization. 

 

14. How did the authors identify 3 specific cancer tasks from IGSEA analyses? Can results from other 
pathways be shown (Table S7 only reports the 3 archetypes)? “No answer was provided.” 

 

Answer: We ran IGSEA for each archetype identified by using the association between gene expression 
and archetype proportion (see Methods for more details) resulting in a set of enriched pathways (GO 
terms). Inspired by Hausser et al. Nat Commun. 2019 methods, and from this list of enriched pathways, 
we annotated groups of GO terms under the same biological function that corresponds to known cancer 
tasks. We also indeed noticed from the comments of Reviewer 1 that the Fig. 2c display was misleading, 
and changed it for revision 1, and we believe that it is now more adequate to show how cancer tasks are 
inferred. Indeed, we report all the significant pathways both from the hyper-pathways and from other 
pathways, to show that these hyper-pathways constitute a large proportion of enriched pathways. We 
also report in Table S8 all pathways and mention which (if any) hyper-pathway they belong to. 

 

15. IGSEA results are confusing: for many gene sets, there only 10-15% of genes overlap with a given 
pathway, but they reach very low p-values. For example, for downregulated pathways - myogenesis has 
11/200 overlapping genes but has much lower p-value (3.90E-07) than the down-regulated pathways in 
the xenobiotic metabolism with 33/200 genes overlap (p=0.02). Can the authors clarify these findings? 
“No answer was provided.” 

 

Answer: We indeed forgot to mention the exact test that we performed (hypergeometric test), and that 
we performed the tests separately on upregulated and downregulated genes. We now mention this in 
Methods p.28 and write that this explains the counter-intuitive result the Reviewer mentions regarding 
results in Table S3: “Note that because the number of significantly upregulated and downregulated genes 
had different orders of magnitude (137 upregulated vs. 4129), the proportion of overlap expected by 
chance are much higher in the downregulated GSEA while even modest overlaps (e.g., 6 genes) in the 
upregulated GSEA are sufficiently surprising to be statistically significant.” 
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Table S3 is confusing (and there are 2 “Table S3”). It’s unclear what is the mean expression between the 
two groups. For example, how were genes with different expression estimate signs labelled (up/down 
regulated)? In addition, gene names annotation should be included. Similar issues are in Table S7. 

 

Answer: We have clarified Table S3, which indeed contained many columns with confusing names. We 
have added gene names as suggested and shifted the column comparing WGD+ vs. WGD- groups to the 
beginning (left) to make the difference in mean expression between the two groups more visible, and 
explicitly separated up- and down-regulated genes in WGD+ samples. We apologize for the confusion 
about the multiple tables, the Nature submission tracking system unfortunately only authorizes tabs from 
a same table to be uploaded separately, hence the many different tables with similar names; this issue 
should be resolved at publication with the different tabs having explicit names related to their content 
(here, “differentially expressed genes” and “GSEA results” to separate gene-level and pathway-level 
results). For the IGSEA performed on archetypes the down/up regulated genes have been defined by the 
sign of the Pearson’s correlation coefficient from the test between gene expression and each archetype 
proportion (the highest proportion the closest the position to the archetype is). In Table S8 (former Table 
S7), we also annotated each enrichment with a fold change estimated between the 10% closest samples 
vs. the 10% furthest samples from each archetype, similarly to Hausser et al. Nat Commun. 2019 methods. 
We now show the gene’s HUGO symbols in Tables S3 and S8. 

 

Samples with DNMT3B and EZH2 mutations - are they overly expressed in the tumors? “No answer was 
provided” 

 

Answer: Within the MESOMICS cohort, three samples have mutations in DNMT3B, two with 
nonsynonymous SNVs and one with a stopgain mutation, whilst no samples harbored an EZH2 mutation 
(Table S13). DNMT3B mutation was not significantly associated with gene expression (p=0.076, linear 
regression model adjusted for tumor purity estimated by PURPLE, see Figure R6 below attached to this 
review), and its effect was not in the direction of overexpression. 
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Figure R6. Density of DNMT3B expression in MESOMICS cohort. Density of DNMT3B expression over 109 
MPM (MESOMICS cohort). Blue lines designate the expression level of three samples harboring damaging 
DNMT3B alterations.  

 

16. The authors calculated a genomic instability score using CNV, gene expression, and methylation 
data, but I am not clear on how these scores were combined or which score was used for which analyses. 
It seems that there is no great correlation between the scores calculated from different omics in Supp 
Table 2. “No answer was provided.” 

 

Answer: We thank the Reviewer for their comment and wish to clarify our analyses. We investigated 
genomic instability within the Cell division archetype (p.6) using proxies from the three available omic 
data types. We performed Pearson’s correlation tests between each archetype and each score of 
instability. Therefore, these proxies have not been combined and we reported individual p-, q-values, and 
correlation coefficients for these tests in an additional supplementary table (Table S6, line 33) resulting 
from the first revision of this manuscript. Individually, and after multiple-testing correction, each of these 
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proxies was significantly associated with the Cell division archetype. In addition, we replicated these 
associations in the Bueno and TCGA series (see Table S6 for details). We now also mention the correlation 
between these scores p.33-34 (see also Fig. R7 below for an illustration). Although each of these pairwise 
correlations is significant (q-value=1.53x10-5; q-value=6.63x10-3; and q-value=1.39x10-3 for genomic vs. 
transcriptomic, genomic vs. epigenomic, and transcriptomic vs. epigenomic scores, respectively), we 
observe differences that we think can be explained by the fact that each proxy captures a part of genomic 
instability that can be partially independent: the proportion of the genome with copy number changes, 
the expression of genes that are involved in genomic instability pathways, and the low global methylation 
level of the genome that is associated with instability. 

 

 

Figure R7. Correlation between genomic instability from three different omic measurements: the 
proportion of CN changes (genomic estimate of genomic instability), the transcriptomic score of 
genomic instability gene set (transcriptomic estimate of genomic instability), and the global DNA 
methylation level (epigenomic estimate of genomic instability). (A) between genomic and transcriptomic 
estimates, (B) between genomic and epigenomic estimates, and (C) between transcriptomic and 
epigenomic estimates. In these three panels, q-values and coefficient r correspond to Pearson’s 
correlation tests. 

 

17. In Fig.3A, MPM driver gene overview, the top genes BAP1 and NF2 are both identified as having 
large deletion events (mostly heterozygous deletions). What is the relationship between these 
heterozygous deletions and SV (and SNV) events? The gene expression plot for figure 3a should separate 
different alteration types for these two genes. “No answer was provided.” 

 

Answer: We thank the Reviewer for this comment. Indeed in the MESOMICS samples, we found 46 
samples with copy number deletions in the BAP1 gene and 14 samples with damaging SVs. Thirteen of the 
14 damaging SVs (one interchromosomal translocation and 12 deletions) occured in conjunction with a 
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BAP1 copy number deletion. In addition, among the 46 deleted samples, 9 also display a damaging SNV, 
and one sample displays all three kinds of events. Similarly, we found 69 samples with copy number 
deletions in NF2 and 20 with damaging SVs that all co-occurred with copy number deletions (one 
inversion, three interchromosomal translocations, two duplications and 14 deletions). In addition to these 
20 cases, 8 display damaging SNVs.  

We apologize that the legend of Fig. 3a was not precise enough on how the tests presented on 
the right subpanel were performed. In fact, the expression level comparison has been done with true wild-
type samples, meaning we excluded cases with SVs or SNVs in these genes for this WT group of samples 
(see Table S6 for details on statistical tests and replication). We now specify this in the Fig. 3a legend. 
However, the group of samples with copy number deletion include cases also with SVs and/or SNVs 
corresponding to 46% of the deleted cases for BAP1 and 41% for NF2. Therefore we have now reproduced 
our analyses and excluded these cases, and found the same significant differences in gene expression with 
q-values≤0.0001 for NF2, MTAP, and BAP1, and WT vs. Heterozygous, and WT vs. Homozygous for 
CDKN2A (no longer a significant difference between Heterozygous and Homozygous CDKN2A deletions). 
These new results are now reported on p.27 

 

18. 23% of the samples have homologous recombination-deficiency (HRD) phenotype. Given the 
potential clinical implications of this finding, can the authors verify these results with other approaches 
(e.g., CHORD, HRDetect)? Are there any germline variants in HRD genes in these samples? “No answer 
was provided, although the authors reported previous cell lines results and clinical trial data to support 
their findings on HRD in response to Reviewer 1.” 

 

Answer: We indeed did use two methods to detect HRD samples: CHORD, as the Reviewer suggested (see 
results in Table S11), and the new copy number signature recently identified as associated with HRD 
(Steele et al. biorXiv. 2021). We thank the Reviewer for their suggestion of checking germline variants in 
HRD genes. We now mention on p.7-8 and in the Methods p.20 that we looked for pathogenic variants 
(from the CLINVAR database) in a list of 26 HRD genes (from Toh and Ngeow, The Oncologist. 2021) and 
indeed found 6 variants reported as pathogenic (1 in BRCA1, 3 in BRCA2, 1 in ATM, and 1 in NBN), all 
reported as being linked with a Hereditary cancer-predisposing syndrome. As expected, these variants 
were significantly more common in HRD tumors compared to non-HRD tumors (only a frameshift deletion 
in NBN was found in non-HRD tumors; odds ratio of 20, Fisher’s exact test p-value=0.002). In addition, we 
note that the BRCA1 and BRCA2 germline-mutated tumors indeed were correctly classified as BRCA1-type 
and BRCA2-type by CHORD, further validating our results, and that two out of the six patients with 
germline mutations in HR genes have a history of cancer (breast cancer for one BRCA2-mutated patient, 
and oral cavity Carcinoma and skin Carcinoma for another BRCA2-mutated patient; 3 patients have no 
data available and one had no reported history of cancer). We now provide these results in Table S13. 
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In Figure 3, only NF2 is reported on chr22q; however, there are multiple cancer driver genes (TSS) 
located on this region (such as CHEK2 and EP300). Unless there is a need to emphasize NF2 for its link 
to MPM, these two cancer driver genes should be considered. “No answer was provided.” 

 

Answer: The NF2 association with this disease is emphasized as it is one of the most well-defined driver 
genes of MPM. As presented in Fig. 4, NF2 was detected as an IntOGen driver gene in the MESOMICS 
cohort, but also in the TCGA and Bueno series individually, and jointly (see Fig. S21C for details). For this 
reason, we prefer not to report other cancer genes in Fig. 3b but focus on MPM driver genes. Fig. 4 reports 
all MPM driver genes (IntOGen and recurrent SV-altered genes) and CHECK2 and EP300 were not found 
in this list. However, the Reviewer is right that two other genes of note, MYH9 (IntOGen driver) and TTC28 
(recurrent SV-altered gene) do share the same chromosome arm as NF2, significantly deleted in 
MESOMICS series (Fig. 3b). We annotated the genes in Fig. 4 as belonging to significant broad or focal 
copy number events detected by GISTIC2, and now mentioned these two other interesting genes on chr 
22q in the manuscript p.8-9, and, of note, the list of genes for each focal GISTIC2 event is also given in 
Table S9. 

 

19. In Fig.4, can the specific structural variants be defined (large indels, translocations and fusion 
transcripts)? For example, do large indels overlap with heterozygous deletion? What is the difference 
between translocation and fusion transcripts? How was the “CNB” estimated? By number of 
segmentations? Copy number breakpoints? “No answer was provided” 

 

Answer: We indeed see that the legend of Fig. 4 was not sufficiently clear, and now provide  the definitions 
of all these elements in the legend. We mention that large indels are detected by SV callers and thus can 
overlap copy number deletions as described in Fig. 3. Translocation can refer to intra- or 
interchromosomal translocation detected by SV callers while fusion transcripts are detected at the 
transcriptomic level and can overlap SV events. CNB has indeed been calculated as the number of CN 
segments, as mentioned in p.23.  

 

Are any specific alteration types in BAP1 and NF2 in the matched T/N WGS data? “No answer was 
provided.” 
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Answer: We have used Fisher’s exact test to identify enrichment for alteration types in BAP1 and NF2 
genes (CN types as presented in Fig. 3a and SVs and SNV types as presented in Fig. 4) in T-only (n=72) or 
T/N (n=43) groups. Using the data available in Tables S10, S12, and S13, we tested for BAP1 heterozygous 
(n=41, q-value=0.18) and homozygous deletions (n=5, q-value=1), translocation (n=13, q-value=0.66), and 
frameshift indels (n=11, q-value=0.66), and for NF2 heterozygous deletions (n=67, q-value=0.26), large 
indels (n=7, q-value=0.76) and translocation (n=13, q-value=0.76), and frameshift indels (n=5, q-
value=0.24), and corrected for multiple testing for each gene. Therefore, we did not find any significant 
enrichment in alteration types in T-only or T/N samples (all q-value>0.05). 

 

20. Mutational signatures: the authors mentioned de novo signature extraction for SNVs, but no results 
are reported. “No answer was provided” 

 

Answer: We agree with the Reviewer that this is important information, in particular to support the non-
existence of an asbestos SBS signature, and we have thus added the results of the de novo extraction to 
Table S13, in particular the TMB for each de novo signature and the mapping of de novo signatures to 
known COSMIC signatures. We now mention in the Methods p.23 that “Five de novo signatures were 
identified and decomposed with high fidelity (cosine similarities greater than 0.93) into 10 known COSMIC 
signatures.”  

 

It is interesting that APOBEC mutations have much lower TMB than other signatures, including the age 
signature (Fig S10). This is different than many cancer types and could be discussed in the Discussion. 
“No answer was provided”.  

 

Answer: We realize that the S-plot representation in Fig. S10 (now Fig. S13) is not well adapted to compare 
TMB across signatures, because it does not show whether tumors with a low APOBEC signature TMB 
actually correspond to tumors with a high age-signature TMB. We have investigated the observation of 
the Reviewer and directly compared the joint TMB of APOBEC and age signatures across samples from the 
MESOMICS and PCAWG cohorts (new Fig. S13D,, see below), and actually find that MPM is similar to other 
tumors with a low burden of APOBEC signatures: age signatures have a slightly larger TMB than APOBEC 
signatures. This is because tumors with a low SBS2 and SBS13 TMB also tend to have a low SBS1, SBS5,and 
SBS40 signatures. We now mention this observation on p.23. 
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Figure S13D. Comparison of the Relative TMB of age related signatures SBS1, 5, and 40, and APOBEC 
signatures SBS2 and 13 in the MESOMICS and PCAWG cohorts. 

 

Moreover, APOBEC 2 and 13 are usually associated. In this figure, SBS13 is only presented in half of 
samples with SBS2. Also, 3 samples have a platinum therapy signature: weren’t the samples treatment 
naïve? If not, this should be mentioned at the beginning, since treatment may strongly affect genomic 
changes. If yes, why these signatures? The authors may want to check the signature assignment. “No 
answer was provided.” 

 

Answer: We now comment on this in the Methods p.23 and show the results in a new panel Fig. S13C. 
Indeed, as the Reviewer mentioned, SBS13 is absent in 3 out 6 samples where we detected SBS2: two 
samples where SBS2 was present at a very low level (just 4 and 26 mutations), and one sample where it 
was present at higher levels (169 mutations). We compared this observation with the PCAWG mutational 
signatures (Alexandrov et al. Nature, 2020) and found similar patterns in such low-SBS2 signature 
samples (see figure below), such as the Lymph-BNHL cohort (Lymphoid - Mature B-cell lymphoma) where 
3 out of the 8 samples with SBS2 did not have any trace of SBS13.  
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Figure S13C. Comparison of the mutation burden of APOBEC signatures SBS2 and 13 in the MESOMICS 
cohort and in more than 2000 tumors from the PCAWG cohort. 

 

Regarding the platinum agent signature, it appears we forgot to mention in the mutational signature 
analysis methods that for these analyses, we have added the 3 samples known to be non-chemonaive to 
confirm the high-level presence of a platinum therapy signature; we now mention this on p.23. 
Nevertheless, the non-chemonaive were excluded from all other analyses to avoid the effects the 
Reviewer is mentioning as we mention in the manuscript p.15 in the description of the cohort. 

 

The authors proposed age as the etiological factor responsible for signatures 1, 5, and 40. However, at 
least for signature 40 the etiology is still unknown. 

The authors showed 7 copy number signatures but it’s unclear how the number of copy number 
signatures were derived/chosen and how they were assigned to be associated with certain processes. 
“No answer was provided.” 

 

Answer: We now mention in the legend of Fig. S13 that although SBS40 is associated with age, its etiology 
is still unknown. We have added more details about how the copy number signatures were derived and 
what reference we used for signature attribution and associated processes p.23, and also added the de 
novo CNV signatures and assignment to COSMIC signature statistics in Table S10. In addition, because 
CNV signatures are very new and rapidly changing, we have added the exact signatures we fit (based on 
COSMIC 3.1) in Table S10. 
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21. ecDNA: on Figure 3C, the ecDNA region on chr10 appears to have extremely high WGS coverage 
compared to the rest of the region, but the estimated copy numbers are not higher than other regions. 
I suspect copy numbers were wrongly estimated here. Otherwise, how can the authors explain this? 
“No answer was provided.” 

 

Answer: We thank the Reviewer for their careful review of the figure that allowed us to identify a bug in 
the plotting of the coverage for some regions of the amplicon. Indeed in former Fig. 3c, a CN of 2 
corresponded to a coverage of 10X, and some regions on chr10 seemed to have a coverage >100X, which 
should have roughly corresponded to a CN >20, but CN estimates reported in the figure were only around 
5-10. We discovered that this was due to a default option of AmpliconArchitect that downsampled the 
reads to 10X for fast computing of an approximate coverage, but this approximation was apparently off 
by a factor of 2 in this region. We thus replotted the figure removing this option, forcing AmpliconArchitect 
to plot the exact coverage in the region using all mapped reads, and this resolved the issue (see revised 
Fig. S14 below). In recomputing this plot, we also discovered that the AmpliconArchitect developers have 
created a new tool to visualize ecDNA structures in a simpler way (CycleViz, 
https://github.com/jluebeck/CycleViz). We have now opted for this new representation in the main figure 
(see below), while keeping the more complex representation showing split reads and coverage, which is 
perhaps more useful for bioinformaticians but less for biological interpretations, in Fig. S14. 

 

 

Figure S14. ecDNA prediction for amplicon 1 of sample MESO_019_T.  

 

https://github.com/jluebeck/CycleViz
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Revised Figure 3c. Patient with oncogene amplification due to a chromothripsis event (MESO_019). Left: 
Chromosomes involved in chromothripsis event (outer circle: shattered regions, intermediate circle: copy 
number, inner circle: structural variants). Middle: reconstructed ecDNA structure. Right: gene expression 
in MESO_019 relativce to the expression in other tumors from the cohort (quantile). Oncogenes founds 
within the ecDNA region are represented in red. 

 

In Figure S11, there appears to be a recurrent ecDNA identified on chr13:15-17Mbp. However, this 
region largely overlaps with the chr13 centromere, which should be excluded from the analyses. “No 
answer was provided.” 

 

Answer: There are indeed 4 out of 105 samples where the AmpliconArchitect software detected an 
amplicon from a seed in the chr13 region 16.0-16.5Mbp. We kept these regions because they are outside 
of the list of centromeric regions excluded by the Amplicon suite pipeline during the seed search step by 
CNVkit (step finding “seed” highly amplified segments), which uses the UCSC cytoBands for the position 
for centromeres (p11.1 and q1; 16.5-18.9Mbp). In addition, although AmpliconArchitect can extend the 
seeds to neighboring regions and does not explicitly exclude centromeric regions, it implements several 
procedures to avoid spurious calls in repetitive and low-complexity regions (in particular, we now mention 
our use of the amplified_intervals.py script for filtering such regions before using the seeds), such as 
creating a mappability map of the human genome and filtering out reads based on mappability. Finally, 
the amplicons we detected were each supported by multiple split-reads after these filters (>25 
breakpoints per ecDNA amplicon), which we believe is unlikely to be an artifact. In the end, we thus prefer 
to report these segments; we now mention this in the Methods p.24, and also mentionning that apart 
from MESO_019, no ecDNA included known oncogenes. 
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In Figure S13, in tumor 019T there is chromothripsis in the same regions were ecDNA was identified. 
The authors could emphasize this finding, since chromothripsis can be a primary mechanism of genomic 
DNA rearrangements and amplification into ecDNA. “No answer was provided.” 

 

Answer: We thank the Reviewer for noting this interesting fact, we now mention the possible link between 
these two observations on p.7 and highlight it in Fig. 3c (see above). 

 

22. In Figure S8, the color legend is missing. “The color legend for the Pearson correlation has been 
added to what is now Figure S9.” 

 

Answer: Done. 

 

Reviewer #3: 

Remarks to the Author: 

I appreciate the thoughtful response to the previous critiques. 

 

Answer: Thanks! 

 
  
 

Decision Letter, second revision:   
7th Nov 2022 
 
Dear Dr. Fernandez-Cuesta, 
 
Thank you for submitting your revised manuscript "Whole-genome sequencing and multi-omic 
integrative analyses reveal novel axes of molecular variation and specialized tumor profiles in 
Malignant Pleural Mesothelioma" (NG-A59168R1). It has now been seen by Reviewer #2 and their 
comments are below. The reviewers find that the paper has improved in revision, and therefore we'll 
be happy in principle to publish it in Nature Genetics, pending minor revisions to satisfy our editorial 
and formatting guidelines. 
 
If the current version of your manuscript is in a PDF format, please email us a copy of the file in an 
editable format (Microsoft Word or LaTex)-- we can not proceed with PDFs at this stage. 
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We are now performing detailed checks on your paper and will send you a checklist detailing our 
editorial and formatting requirements soon. Please do not upload the final materials and make any 
revisions until you receive this additional information from us. 
 
Thank you again for your interest in Nature Genetics Please do not hesitate to contact me if you have 
any questions. 
 
Sincerely, 
 
Safia Danovi 
Editor 
Nature Genetics 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
I am satisfied by the authors' thoughtful and detailed responses to my questions and comments. 
  
 

Final Decision Letter: 
26th Jan 2023 
 
Dear Dr. Fernandez-Cuesta, 
 
I am delighted to say that your manuscript "Multi-omic analysis of malignant pleural mesothelioma 
identifies molecular axes and specialized tumor profiles driving inter-tumor heterogeneity" has been 
accepted for publication in an upcoming issue of Nature Genetics. 
 
Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Genetics 
style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 
publishing options for your paper and our Author Services team will be in touch regarding any 
additional information that may be required. 
 
After the grant of rights is completed, you will receive a link to your electronic proof via email with a 
request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 
this deadline, please inform us at rjsproduction@springernature.com immediately. 
 
You will not receive your proofs until the publishing agreement has been received through our system. 
 
Due to the importance of these deadlines, we ask that you please let us know now whether you will be 
difficult to contact over the next month. If this is the case, we ask you provide us with the contact 
information (email, phone and fax) of someone who will be able to check the proofs on your behalf, 
and who will be available to address any last-minute problems. 
 
Your paper will be published online after we receive your corrections and will appear in print in the 
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next available issue. You can find out your date of online publication by contacting the Nature Press 
Office (press@nature.com) after sending your e-proof corrections. Now is the time to inform your 
Public Relations or Press Office about your paper, as they might be interested in promoting its 
publication. This will allow them time to prepare an accurate and satisfactory press release. Include 
your manuscript tracking number (NG-A59168R2) and the name of the journal, which they will need 
when they contact our Press Office. 
 
Before your paper is published online, we shall be distributing a press release to news organizations 
worldwide, which may very well include details of your work. We are happy for your institution or 
funding agency to prepare its own press release, but it must mention the embargo date and Nature 
Genetics. Our Press Office may contact you closer to the time of publication, but if you or your Press 
Office have any enquiries in the meantime, please contact press@nature.com. 
 
Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced 
in the print or electronic media, until the embargo/publication date. These restrictions are not 
intended to deter you from presenting your data at academic meetings and conferences, but any 
enquiries from the media about papers not yet scheduled for publication should be referred to us. 
 
Please note that <i>Nature Genetics</i> is a Transformative Journal (TJ). Authors may publish their 
research with us through the traditional subscription access route or make their paper immediately 
open access through payment of an article-processing charge (APC). Authors will not be required to 
make a final decision about access to their article until it has been accepted. <a 
href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more 
about Transformative Journals</a> 
 
Authors may need to take specific actions to achieve <a 
href="https://www.springernature.com/gp/open-research/funding/policy-compliance-
faqs"> compliance</a> with funder and institutional open access mandates. If your research 
is supported by a funder that requires immediate open access (e.g. according to <a 
href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>) 
then you should select the gold OA route, and we will direct you to the compliant route where 
possible. For authors selecting the subscription publication route, the journal’s standard licensing 
terms will need to be accepted, including <a href="https://www.nature.com/nature-portfolio/editorial-
policies/self-archiving-and-license-to-publish. Those licensing terms will supersede any other terms 
that the author or any third party may assert apply to any version of the manuscript. 
 
Please note that Nature Portfolio offers an immediate open access option only for papers that were 
first submitted after 1 January, 2021. 
 
If you have any questions about our publishing options, costs, Open Access requirements, or our legal 
forms, please contact ASJournals@springernature.com 
 
If you have posted a preprint on any preprint server, please ensure that the preprint details are 
updated with a publication reference, including the DOI and a URL to the published version of the 
article on the journal website. 
 
To assist our authors in disseminating their research to the broader community, our SharedIt initiative 
provides you with a unique shareable link that will allow anyone (with or without a subscription) to 
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read the published article. Recipients of the link with a subscription will also be able to download and 
print the PDF. 
 
As soon as your article is published, you will receive an automated email with your shareable link. 
 
You can now use a single sign-on for all your accounts, view the status of all your manuscript 
submissions and reviews, access usage statistics for your published articles and download a record of 
your refereeing activity for the Nature journals. 
 
An online order form for reprints of your paper is available at <a 
href="https://www.nature.com/reprints/author-
reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. Please let your coauthors 
and your institutions' public affairs office know that they are also welcome to order reprints by this 
method. 
 
If you have not already done so, we invite you to upload the step-by-step protocols used in this 
manuscript to the Protocols Exchange, part of our on-line web resource, natureprotocols.com. If you 
complete the upload by the time you receive your manuscript proofs, we can insert links in your article 
that lead directly to the protocol details. Your protocol will be made freely available upon publication of 
your paper. By participating in natureprotocols.com, you are enabling researchers to more readily 
reproduce or adapt the methodology you use. Natureprotocols.com is fully searchable, providing your 
protocols and paper with increased utility and visibility. Please submit your protocol to 
https://protocolexchange.researchsquare.com/. After entering your nature.com username and 
password you will need to enter your manuscript number (NG-A59168R2). Further information can be 
found at https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#protocols 
 
 
Sincerely, 
 
Safia Danovi 
Editor 
Nature Genetics 
 


