SUPPLEMENTARY INFORMATION

Supplementary Fig. 1: MK of single ploidy exist as two distinct sub-populations.

(a) Representative flow cytometric plot of MK separated by ploidy and further subfractionated using CD61 into CD61^{bright} (LCM) and CD61^{dim} (SCM). 8N LCM = 0.15%, 8N SCM = 0.38%, 16N LCM = 0.68%, 16N SCM = 0.84%, 32N LCM = 0.07%, 32N SCM = 0.35%. (b) c-MPL can also be used to separate MK into LCM and SCM. 8N LCM = 0.12%, 8N SCM = 0.44%, 16N LCM = 0.8%, 16N SCM = 0.91%, 32N LCM = 0.07%, 32N SCM = 0.4%. (a,b: representative plots from at least 7 biological replicates from ≥ 2 experiments). Percentages shown in flow plots are current gate as a percentage of the parent. (c) RT-PCR analysis of *Gata-2* expression in 16N LCM and 16N SCM (MK-LCM^{WT/WT} n = 5, MK- $LCM^{\Delta/\Delta} n = 6$, biological replicates). (d) RT-PCR analysis of *Nfe-2* expression in 16N LCM and 16N SCM (MK-LCM^{WT/WT} n = 5, MK-LCM^{Δ/Δ} n = 6, biological replicates). (e) RT-PCR analysis of *Gata-1* expression in 16N LCM and 16N SCM (MK-LCM^{WT/WT} n = 6, MK- $LCM^{\Delta/\Delta} n = 5$, biological replicates). (f) RT-PCR analysis of Zfpm-1 expression in 16N LCM and 16N SCM (MK-LCM^{WT/WT} n = 5, MK-LCM^{Δ/Δ} n = 5, biological replicates). (c-f: Data relative to HSC mRNA expression of each target gene, from 2 experiments per gene). (g) MK-LCM $^{\Delta/\Delta}$, *Pf-4-Cre-Srsf3* KO mouse model. (h) Absolute number of LCM per mouse hind limb (MK-LCM^{WT/WT} n = 6, MK-LCM^{Δ/Δ} n = 10, biological replicates from ≥ 2 experiments). (i) Absolute number of SCM per hind limb (MK-LCM^{WT/WT} n = 10, MK- $LCM^{\Delta/\Delta} n = 9$, biological replicates from ≥ 2 experiments). (j) Body weights of MK- $LCM^{WT/WT}$ and MK-LCM^{Δ/Δ} mice (Female: MK-LCM^{WT/WT} n = 14, MK-LCM^{Δ/Δ} n = 15, Male: MK-LCM^{WT/WT} n = 8, MK-LCM^{Δ/Δ} n = 5, biological replicates from 8 experiments). (k) BM cellularity in the hind limb of MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice (MK-LCM^{WT/WT} n = 31, MK-LCM^{Δ/Δ} n = 30, biological replicates from 8 experiments). (1) Red blood cell counts in MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice (MK-LCM^{WT/WT} n = 38, MK- $LCM^{\Delta/\Delta} n = 39$, biological replicates from 8 experiments). (m) ZFPM-1 protein level in MK-

LCM^{WT/WT} and MK-LCM^{Δ/Δ} BM. Data generated in MSqRob (n =3 biological replicates from 1 experiment, assessed 9 different peptide sequences, \geq 45 reads per sample group, unpaired two-sided Student's t-test). Mean (line), 1st/3rd quartiles (box), range (vertical line). Statistical analysis was performed using unpaired two-sided Student's t-test, p-values indicated for (e), unpaired two-sided Mann-Whitney test (f), Two-Way ANOVA with Geisser-Greenhouse correction, p<0.0001 (overall) with individual groups for each timepoint compared using Holm-Sidak multiple comparisons test, p-values indicated for (h). Source data are provided as a Source Data File. Error bars = SEM.

Supplementary Fig. 2: Murine model with diminished LCM in the BM.

(a) PB white cell count in MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice (MK-LCM^{WT/WT} n = 38, MK-LCM^{Δ/Δ} n = 39, biological replicates from 8 experiments). (b) Frequency of LSK in blood, (c) number of LSK in PB and (d) frequency of HSC in PB (b.c: MK-LCM^{WT/WT} n = 6, MK-LCM^{Δ/Δ} n = 12, d: MK-LCM^{WT/WT} n = 6, MK-LCM^{Δ/Δ} n = 9, biological replicates from \geq 2 experiments). (e) Spleen cellularity in MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice (MK-LCM^{WT/WT} n = 31, MK-LCM^{Δ/Δ} n = 35, biological replicates from 7 experiments). (f) Frequency of LSK in spleen (MK-LCM^{WT/WT} n = 13, MK-LCM^{Δ/Δ} n = 30, biological replicates from 7 experiments), (g) number of LSK in spleen (MK-LCM^{WT/WT} n = 11, MK- $LCM^{\Delta/\Delta} n = 27$, biological replicates from 7 experiments) and (h) frequency of HSC in spleen (MK-LCM^{WT/WT} n = 13, MK-LCM^{Δ/Δ} n = 30, biological replicates from 7 experiments). (i) Frequency of cHSC cycling in MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} BM. (j) Metabolic activity of MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} hematopoietic stem and progenitors (seahorse assay). (i,j: n = 4, representative data of 2 experiments and eHSC data). (k) TPO concentration in the plasma of MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice (MK-LCM^{WT/WT} n = 5, MK-LCM^{Δ/Δ} n = 6, biological replicates from 2 experiments). (I) Cytokine array data showing PF4 levels in MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} BM fluid (MK-LCM^{WT/WT} n = 5, MK-LCM^{Δ/Δ} n = 5, biological replicates from 1 experiment). (m) Proteomic analysis for PF-4 in the BM of MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice. Data generated in MSqRob (n = 3 biological replicates from 1 experiment, assessed 2 different peptide sequences, ≥ 10 reads per sample group, unpaired two-sided Student's t-test). Mean (line), $1^{st}/3^{rd}$ quartiles (box), range (vertical line). (n) Concentration of FGF-1 in the BM fluid of MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice $(LCM^{WT/WT} n = 8, MK-LCM^{\Delta/\Delta} n = 8, biological replicates from 2 experiments). (0) FX$ concentration in the BM of MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice (LCM^{WT/WT} n = 5, MK- $LCM^{\Delta/\Delta}$ n = 5, biological replicates from 2 experiments). (p) Concentration of SDF-1 in the

BM fluid of MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice (LCM^{WT/WT} n = 6, MK-LCM^{Δ/Δ} n = 6, biological replicates from 2 experiments, one-tailed t-test). (q) MMP-9 protein in MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} BM. Proteomics data generated in MSqRob (n = 3 biological replicates from 1 experiment, assessed 13 different peptide sequences, \geq 74 reads per sample group, unpaired two-sided Student's t-test). Mean (line), 1st/3rd quartiles (box), range (vertical line). (r) Concentration of MMP-9 in the BM fluid of MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice (ELISA, LCM^{WT/WT} n = 4, MK-LCM^{Δ/Δ} n = 4, biological replicates from 1 experiment, onetailed t-test). (s) Cytokine array data analysing the concentration of IL-9 in the BM fluid of MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice (LCM^{WT/WT} n = 5, MK-LCM^{Δ/Δ} n = 5, biological replicates from 1 experiment). (t) Concentration of SCF in the BM fluid of MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice measured by ELISA (LCM^{WT/WT} n = 10, MK-LCM^{Δ/Δ} n = 10, biological replicates from 2 experiments, one-tailed t-test). (u) BM proteomics data for Coll VI α 3, generated in MSqRob (n \geq 1 individual mouse from 1 experiment, assessed 2 different peptide sequences, ≥ 1 reads per sample group, unpaired two-sided Student's t-test). Mean (thin line), 1st/ 3rd quartiles (box), range (vertical line). (v) Volcano plot of protein changes in the BM fluid of MK-LCM^{WT/WT} and MK-LCM^{Δ/Δ} mice from 1 experiment. Statistical analysis was performed using unpaired two-sided Mann-Whitney test (a,c,f,h), unpaired twosided Student's t-test, p-values indicated for (b,d,e,g,k,l,n,o,s), Two-Way ANOVA with Geisser-Greenhouse correction, p = 0.003 (overall) with individual groups for each timepoint compared using Holm-Sidak multiple comparisons test, p-values indicated for (j) or unpaired one-way t-test (**p**,**r**,**t**). Source data are provided as a Source Data File. Error bars = SEM.

Supplementary Fig. 3: Loss of LCM results in decreased lymphoid and increased myeloid cell frequencies in the BM, PB and spleen.

(a-f) Frequencies and absolute numbers of B-, T- and myeloid cells in BM (LCM^{WT/WT} n = 14, MK-LCM^{Δ/Δ} n = 18, biological replicates from 4 experiments). (g-l) Frequencies and absolute numbers of B-, T- and myeloid cells in PB (LCM^{WT/WT} n = 15, MK-LCM^{Δ/Δ} n = 15, biological replicates, from 4 experiments). (m-r) Frequencies and absolute numbers of B-, T- and myeloid cells in spleen (LCM^{WT/WT} n = 13, MK-LCM^{Δ/Δ} n = 17, biological replicates, from 4 experiments). Statistical analysis was performed using unpaired two-sided Student's t-test, p-values indicated for (a,b,e-g,m,n,p-r) or unpaired two-sided Mann-Whitney test (c,d,h,k,l,o). Source data are provided as a Source Data File. Error bars = SEM.

Supplementary Fig. 4: LCM and SCM populations

MK ploidy distribution (a) and frequency of LCM (b) in *Pf4-Cre Stop*^{fl/fl}*tdTomato* mice; where *Pf4* drives the expression of tdTomato in Cre⁺ mice (Cre⁺ n = 10, Cre⁻ n = 9, biological replicates, from 2 experiments). Statistical analysis was performed using Two-Way ANOVA (NS). Source data are provided as a Source Data File. Error bars = SEM.

Target	Fluorophore	Clone	Isotype	Supplier	Cat #	Conc.
Protein						
CD41	AF700	HIP8	Mouse	Biolegend	303728	0.5µg/ml
			IgG1			
	APC	HIP8	Mouse	BD	559777	0.3µg/ml
			IgG1			
Mac-1,	Pure	ICRF44	Mouse	BD	555386	1µg/ml
CD11b			IgG			
CD14	Pure	M5E2	Mouse	BD	555396	1µg/ml
			IgG			
CD20	Pure	2H7	Mouse	BD	555621	1µg/ml
			IgG2b			

Supplementary Table 1: Anti-human antibodies

Target	Fluorophore	Clone	Isotype	Supplier	Cat #	Conc.
CD ₂ e	BV510	1742	rot IaC2b	Piologand	100234	2ug/ml
CD3C	$\Delta PC C v7$	17A2	rat IgG2b	BD	560590	$2\mu g/ml$
CD45P	APCCy7	PA3 6B2	rat IgG20	BD	552094	$0.5\mu g/ml$
B220	BV510	$RA3_{6B2}$	rat IgG2a	BD	563103	$2\mu q/ml$
D220	AF647	$RA3_{6B2}$	rat IgG2a	Biolegend	103226	$2\mu g/ml$
	nurified	$RA3_{6B2}$	rat IgG2a	BD	557390	1µg/ml
Gr-1 I v-	APCCv7	RB6-8C5	rat IgG2b	BD	557661	$0.1 \mu g/ml$
6G/Ly-6C	AF647	RB6-8C5	rat IgG2b	Biolegend	108418	$0.1 \mu g/ml$
00/Ly 00	nurified	RB6-8C5	rat IgG2b	BD	553123	$1 \mu g/ml$
Mac-1	APCCv7	M1/70	rat IgG2b	BD	557657	$0.5 \mu g/ml$
CD11b	AF647	M1/70	rat IgG2b	Biolegend	101218	$0.5 \mu g/ml$
CDIIO	purified	M1/70	rat IgG2b	BD	553308	$1 \mu g/ml$
CD117	BUV395	2B8	rat IgG2b	BD	564011	1µg/ml
c-Kit	AF647	2B8	rat IgG2b	Biolegend	105818	$0.25 \mu g/ml$
	111 017	200	140 19020	Diologena	102010	0.20 µg III
Sca-1,	PECy7	E13-161.7	rat IgG2a	Biolegend	122514	0.4µg/ml
Ly-6A/E						
TER119	purified	TER119	rat IgG2b	BD	550565	0.1µg/ml
CD48	APC	HM48-1	А.	BD	562746	0.5µg/ml
	FITC	HM48-1	Hamster	BD	557484	1µg/ml
	BV421	HM48-1	IgG1	BD	562745	1µg/ml
	BV510	HM48-1		BD	563536	1µg/ml
CD150,	BV650	TC15-	rat IgG2a	Biolegend	115931	2µg/ml
SLAMF1		12F12.2				
	PE	TC15-	rat IgG2a	Biolegend	115904	1µg/ml
		12F12.2				
	Biotin	TC15-	rat IgG2a	Biolegend	115908	1µg/ml
		12F12.2				
CD41	AF700	MWReg30	Rat IgG1	Biolegend	133926	0.25µg/ml
						(MK)
						5µg/ml
						(platelets)
						10µg/ml
						(HSC)
CD61	PE	2C9.G2	A.	BD	553347	5µg/ml
			Hamster			
			lgGl			
c-Mpl	Biotin		Goat IgG	R&D	AF1317	2µg/ml
α ₄	BV605	9C10	Rat IgG2a	BD	745183	2µg/ml
α9	PE		Goat IgG	R&D	FAB3827P	0.5µg/ml
CXCR-4	AF647	L276F12	Rat gG2b	Biolegend	146503	2.5µg/ml

Supplementary Table 2: Anti-mouse antibodies

Tom20	Pure	FL-145	Rabbit	Santa Cruz	SC-11415	0.5µg/ml
			IgG			
VWF	Pure		Rabbit	Abcam	Ab9378	8µg/ml
			IgG			
Ki67	BV786	B56	Mouse	BD	563756	1 in 10
			IgG			
Rabbit-	AF568			Invitrogen	A-11011	10µg/ml
IgG						
Goat-IgG	AF647			Molecular	A21447	2µg/ml
				Probes		
SAV	AF647			Biolegend	405237	0.5µg/ml
SAV	BUV805			BD	564923	1µg/ml

MMP-9	DMIDDAFAR
	GSPLQGPFLTAR
	GVVIPTYYGNSNGAPCHFPFTFEGR
	LGLGPEVTHVSGLLPR
	QLSLPQTGELDSQTLK
	QPTFVVFPK
	QSLRPALLMLQK
	SLDKLGLGPEVTHVSGLLPR
	SQKVDPQSVIR
	TWPALPATLDSAFEDPQTKR
	VDKEFSGVPWNSHDIFQYQDK
	VDPQSVIR
	VFFFSGR
PF-4	HITSLEVIK
	TISSGIHLK
ZFPM-1	APAGAAAEPDPSR
	GEIYSPGAGHPAAK
	GPPAPAPAPGGGGGHR
	LQQGAGSSGAAGTPTGLFSGTK
	LVTEPHGAPR
	QAHGLQVAKPAASPGAEPR
	RPPAPTTAPGPAAPALTAPPVR
	VEAAEEPEATR
	VRGDLVEHLR
Col6a3	EVQVSEVTENSAR
	PAPAQPVLAK

Supplementary Table 3: Peptides used in the proteomics analysis: