Supplementary Information

Supplementary Figure 1. MOMA predicted survival outcomes of stage I and II colorectal cancer patients receiving surgery only, and stage III cancer patients without neoadjuvant therapy using digital histopathology images. (A) MOMA successfully distinguished the overall shorter-term survivors from longer-term survivors using histopathology images (two-sided log-rank test P-value = 0.015) of stage I and stage II patients receiving surgery only. (B) Among stage I and stage II patients without radiotherapy or chemotherapy, MOMA successfully distinguished progression-free survival groups using histopathology images (two-sided log-rank test P-value = 0.047). (C) MOMA successfully distinguished the overall shorter-term survivors from longer-term survivors using histopathology images (log-rank test P-value = 0.024) of stage III patients without neoadjuvant therapy. (D) Among stage III patients without neoadjuvant therapy. MOMA successfully distinguished the progression-free survival groups using histopathology images (log-rank test P-value = 0.024) of stage III patients without neoadjuvant therapy. (D) Among stage III patients without neoadjuvant therapy. MOMA successfully distinguished the progression-free survival groups using histopathology images (log-rank test P-value = 0.024) of stage III patients without neoadjuvant therapy. (D) Among stage III patients without neoadjuvant therapy. (D) Among stage III patients without neoadjuvant therapy. MOMA successfully distinguished the progression-free survival groups using histopathology images (log-rank test P-value = 0.018).

В

Supplementary Figure 2. MOMA characterized pathology imaging signals correlated with the expression level of the *BECN1* gene. (A) MOMA identified a moderate association between histopathology imaging and the expression level of *BECN1*. Performance in the TCGA held-out test set was shown. (B) We successfully validated the MOMA-based prediction model in the Nurses' Health Study and Health Professionals Follow-Up Study cohorts, demonstrating the validity of the identified associations. (C) Attention visualization of *BECN1*-low histopathology images. (D) Attention visualization of *BECN1*-high histopathology images. Regions of cancer cells received a high attention level from the *BECN1* prediction model. Both mucosa and tumor receive high attention weights in BECN1 prediction. In *BECN1*-high, the model pays more attention to the cancer-associated stroma, but in *BECN1*-high, the model focuses more on lymphocytes. MUC: mucus; TUM: colorectal adenocarcinoma epithelium; STR: cancer-associated stroma; LYM: lymphocytes.

Supplementary Figure 3. MOMA identified the association between *BRAF* c.1799T>A (p.V600E) mutation and histopathology image patterns. (A) MOMA characterized a moderate correlation between *BRAF* c.1799T>A (p.V600E) mutation and histopathology image features. Results from the TCGA held-out test set were shown. (B) Attention visualization of a histopathology image from a *BRAF* wild-type patient. (C) Attention visualization of a histopathology image from a *BRAF* c.1799T>A (p.V600E) mutation patient. Regions of muscle, stroma, cancers, and mucus received high attention in this molecular classification task. TUM: colorectal adenocarcinoma epithelium; STR: cancer-associated stroma; MUC: mucus; MUS: smooth muscle.

Supplementary Figure 4. MOMA identified the association between *BRAF* mutations at any loci and histopathology image patterns. (A) MOMA characterized a moderate correlation between *BRAF* mutation and histopathology image features. Results from the TCGA held-out test set were shown. (B) The same model generated by MOMA was validated in the Nurses' Health Study and Health Professionals Follow-Up Study cohorts. (C) Attention visualization of a histopathology image from a BRAF wild-type patient. (D) Attention visualization of a histopathology image from a BRAFmutated patient. Regions of stroma, cancers, and mucus received high attention in this molecular classification task. STR: cancer-associated stroma; MUC: mucus; TUM: colorectal adenocarcinoma epithelium.

Supplementary Figure 5. MOMA weakly predicts overexpression of the *HIF1A* gene using histopathology images. (A) Performance in the TCGA held-out test set was shown. (B) The results are validated in the Nurses' Health Study and Health Professionals Follow-up Study cohorts.

Supplementary Figure 6. MOMA identified a moderate association between histopathology images and *PIK3CA* mutation status. (A) Performance in the TCGA held-out test set was shown. (B) The results are validated in the Nurses' Health Study and Health Professionals Follow-up Study cohorts.

Supplementary Figure 7. MOMA associates histopathology image patterns with the CpG Island Methylator Phenotype (CIMP). (A) CIMP prediction performance in the TCGA held-out test set. (B) Our CIMP prediction model was validated in the Nurses' Health Study and Health Professionals Follow-up Study cohorts. (C) Attention visualization of non-CIMP-high histopathology images. (D) Attention visualization of CIMP-high histopathology images. TUM: colorectal adenocarcinoma epithelium; STR: cancer-associated stroma; MUC: mucus; LYM: lymphocytes.

Supplementary Figure 8. MOMA identified the association between CMS and histopathology image patterns. (A) MOMA characterized a moderate correlation between CMS2 and CMS4 in histopathology image features. Results from the TCGA held-out test set were shown. (B) Attention visualization of a histopathology image from a CMS2 patient. (C) Attention visualization of a histopathology image from a CMS4 patient. Regions of stroma, cancers, lymphocytes, and mucus received high attention in this molecular classification task. MUC: mucus; TUM: colorectal adenocarcinoma epithelium; STR: cancer-associated stroma; LYM: lymphocytes.

Supplementary Table 1. Additional model performance metrics for multi-omics

Dataset Accuracy Precision Sensitivity Specificity AUROC (i.e., Recall) Microsatellite TCGA 0.80 0.75 0.89 0.75 0.88 Instability 0.67 0.76 NHS-HPFS 0.76 0.86 0.57 BRAF Mutation 0.71 TCGA 0.67 0.63 0.78 0.61 c.1799T>A (p.V600E) NHS-HPFS Mutation Loci Not Available 0.58 0.61 0.67 BECN1 TCGA 0.60 0.73 Overexpression NHS-HPFS 0.85 0.83 0.67 0.64 0.67 CpG Island 0.77 0.65 0.68 0.55 0.66 TCGA Methylator Phenotype NHS-HPFS 0.68 0.63 0.67 0.53 0.63 TCGA 0.69 0.86 0.73 0.57 0.66 Consensus Molecular Subtypes NHS-HPFS Transcriptomic Data Not Available

characterization via histopathology image analyses.

Gene names are italicized

Supplementary Table 2. Performance comparison between MOMA, a patch-based standard convolutional neural network, and a previously published method (Kather et al.) in MSI prediction (two-sided Wilcoxon signed-rank test).

	MOMA	Patch-based	Kather et al.
Fold 1	0.92	0.85	-
Fold 2	0.92	0.87	-
Fold 3	0.79	0.78	-
Fold 4	0.94	0.94	-
Fold 5	0.89	0.85	-
Mean AUROC	0.88	0.85	0.84
Two-sided Wilcoxon Signed-Rank Test P-Value	-	Not significant	

Supplementary Table 3. Performance comparison between MOMA and PC-CHiP in

copy number variation prediction.

	Gene	P-value
Deletion in Colon Cancer	FAT1	Not significant
	PPP2R2A	3.08E-07
	FHIT	7.21E-62
	PTEN	Not significant
	LINC00290	1.80E-136
	MACROD2	Not significant
	CSMD1	Not significant
Amplification in Colon Cancer	BCL2L1	2.71E-168
	ZNF217	Not significant
Deletion in Rectal Cancer	PPP2R2A	2.34E-87
	MACROD2	2.06E-28
	CSMD1	6.15E-54

Supplementary Table 4. Performance of whole-genome doubling prediction of MOMA

compared with that of PC-CHiP (two-sided Wilcoxon signed-rank test).

	Colon Cancer		Rectal Cancer	
	MOMA	PC-CHiP	MOMA	PC-CHiP
Area Under the Receiver Operating Characteristic Curve	0.72	0.65	0.63	0.51
Two-sided Wilcoxon Signed Rank Test P-Value	Not significant		5.12E-19	