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This manuscript has been previously reviewed at another journal that is not operating a transparent 

peer review scheme. This document only contains reviewer comments and rebuttal letters for 

versions considered at Nature Communications. 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): clinical expertise in colorectal cancer 

Comments 

It is known that the colorectal cancer is one of the earliest cancer types whose genomic feature 

have been dissected. AI-driven exploration of the association between Histopathology Images and 

the molecular feature of CRC could have great significance for the clinical diagnosis of this deadly 

disease. In the current study, Tsai and colleagues developed a novel explainable machine learning 

method MOMA to predict molecular alteration and clinical profile of CRC with histopathology image 

data. Specifically, MOMA integrates multiple prediction frameworks as a whole, which is the key 

feature shown in this study. Overall, this study is close to the clinic and might be applicable in the 

future if the performance could be improved and validated in more datasets with different ethnic 

composition. In addition to the topic and significance, I have the following concerns that need to 

be addressed. 

My Concerns: 

1. CMS(consensus molecular sub) system is one of the most popular molecular subtyping system 

for colorectal cancer, which linked to many genomic features like MSI, CIMP and altered signaling 

pathways. Could MOMA be used for predicting CMS subtypes? I think It would be more informative 

if this model were made. 

2. Unbalanced positive and negative dataset used in training dataset(MSI: 65 vs389; CIMP: 58 vs 

396; BRAF: 36vs524), and the bias maybe they split the dataset into the training, validation and 

test dataset by 3:1:1. Therefore, this bias should be noted during the model training process, or at 

least discussed? 

3. Why Only early-stage CRCs(I-II) were used for classifying short and long survivors and PFS. 

The author stated that "MOMA can be generalizable to multiple patient cohorts", I think that the 

stage III and IV shall not be ignored. Also, in general, early-stage CRC has better survival than 

stage III, IV CRC, so I think the definition of "short" and "long" survivor (limited in early-stage 

CRC) is not precise here. 

4. The performance of MOMA is a little confusing. Although the authors described some texts on 

the performance of MOMA when compared with previous approaches, no detail data were shown. 

e.g., the 3rd point of "Result" section entitles "MOMA provided improved prediction of MSI status", 

while only the performance score of MOMA was displayed. 

5. Clinical value of MOMA is insufficiently evaluated. As the MOMA is designed for multiple tasks on 

clinical practice such as survival and alteration prediction, no data show the clinical value, i.e. can 

it substitute the current assays used by clinical platforms? For example, when MOMA is applied to 

predict the CRC progression (i.e. OS or PFS), how it compares to the known clinical features such 

staging, 

6. The authors sometimes describe MOMA as a platform in the manuscript, however, I cannot find 

a web service or software/portal for potential MOMA users based on code availability. 

7. The 2nd paragraph of introduction lacks the description about related research advances in the 

CRCs. 

8. Figure 1C/D and related descriptions are not clear, what can readers get from the quantification 

of microenvironment component? 

9. It is weird that the author specifically highlight the "BECN1" in the CNV prediction section, 

please clarify. 

Reviewer #2 (Remarks to the Author): expertise in machine learning and cancer prediction 

In this paper, the authors developed a multi-omics multi-cohort assessment (MOMA) platform 

based on digital pathology images to predict molecular biomarkers and patient survival in 

colorectal cancer. Strengths of the paper include: 

1. Three large patient cohorts (n=1,888) 

2. Methodology is state-of-the-art and clearly described. 

3. Model visualization and interpretation are a plus 

Weaknesses include: 

1. It is uncertain if proposed framework has any use clinically. First, prediction of patient prognosis 



may not make any difference in patient management. Second, the performance on using digital 

pathology images to predict survival and molecular biomarkers is only moderate. For example, c-

index for predicting survival is only 0.67. The AUROC for predicting BRAF is only 0.68 in the TCGA 

test set and 0.66 in the NHS-HPFS cohort. The AUROC for predicting CIMP is only 0.65 for TCGA 

and 0.64 for the NHS-HPFS. The proposed use for the model is to "provide timely decision support 

for treatment selection in resource-limiting regions using only the H&E-stained histopathology 

slides or in settings of limited tissue availability". However, with the current performance, it is 

uncertain if this is possible. Combination with other modalities such as imaging or clinical variables 

may be able to achieve better results. 

2. Reporting the AUROCs alone is not enough for machine learning study to predict binary 

outcomes. Other performance metrics include accuracy, sensitivity and specificity. For imbalanced 

outcomes as studied in this paper, precision-recall is a very helpful performance metric to add. 

3. No detail is given on how the genomic data are extracted from the data source (e.g., from the 

TCGA). 

4. Colon and rectal cancer are sufficiently different to warrant subgroup analyses rather than 

grouping together as one cohort. 

5. In the prediction of outcome, only stage I and stage II colorectal cancer is used. However, the 

treatment and prognosis for colon and rectal cancer are very different as well as the work-up. For 

example, the first-line diagnostic imaging for rectal cancer is MRI and it is frequently treated with 

radiation before surgery. 

6. It is unclear throughout the manuscript what state-of-the-art technique is MOMA being 

compared to and what the results are. 

Reviewer #3 (Remarks to the Author): expert in colorectal cancer pathology 

This is a well-designed study evaluating the MOMA platform in colorectal cancer patients. The 

MOMA platform combines histological and genomic data (copy number alterations, gene expression 

profile and microstatellite instability status). The authors have validated the platform in a large 

cohort and some of the results are expected or well known (eg.lymphocyte rich population at the 

invasive margin of the tumour associated with MSI) 

The results are quite robust, and this is a very welcome paper in the development of AI in 

histopathology. However there are several concerns/ limitations in this paper that need to be 

addressed 

1. The study includes stage I and stage II CRC but, particularly stage II, is a very heterogenous 

group in which risk factors (iv. vascular invasion -mainly extramural-, tumour budding…) play an 

important role in the prognosis. There is no mention in the paper that these parameters were 

evaluated. Depending on the presence of some of this risk factors stage II CRC patients might 

receive chemoradiotherapy and the prognosis (DFS, OS…) will be different in this subgroup. Is 

there any data on treatment (were all the patients chemonaive or some patients received adjuvant 

chemotherapy) 

2. Contrary to the first set of patients /samples studied, the validation cohort included TMAs. This 

might have affected the results. The authors should explained how the assessed the 10 types of 

regions in the TMAs. Did TMAs include different areas from the tumour (eg. Core, stroma, invasive 

front)? or only 1 core per tumour was analysised or only one region per tumour? 

3. The conclusion on “dense clusters of adenocarcinoma cells being highly indicative of worse OS” 

(page 13) contradicts current knowledge that tumour with low-stroma (ie high proportion of 

epithelial cells and low amount of stroma) behave better than tumour with high-stroma content 

(GW van Pelt 2018; J Gao 2021…). This needs clarification 

4. The entire discussion around BRAF and response to double/ triple chemotherapy (BEACON 

study) needs to be properly addressed. The authors claime that MOMA can predict BRAF mutation 

but not what type of mutation. The only actionable mutation is V600E but around 20% of CRC 

patients have non-V600E mutations (of uncertain clinical significance but clearly not associated 



with poor prognosis or response to encorafenib-cetuximab-binimetinib). Without knowledge of 

what type of BRAF mutation the data is of very limited value.



Reviewer #1 (Remarks to the Author): clinical expertise in colorectal cancer 
 
Comments 
It is known that the colorectal cancer is one of the earliest cancer types whose genomic 
feature have been dissected. AI-driven exploration of the association between 
Histopathology Images and the molecular feature of CRC could have great significance 
for the clinical diagnosis of this deadly disease. In the current study, Tsai and 
colleagues developed a novel explainable machine learning method MOMA to predict 
molecular alteration and clinical profile of CRC with histopathology image data. 
Specifically, MOMA integrates multiple prediction frameworks as a whole, which is the 
key feature shown in this study. Overall, this study is close to the clinic and might be 
applicable in the future if the performance could be improved and validated in more 
datasets with different ethnic composition. In addition to the topic and significance, I 
have the following concerns that need to be addressed. 
 

Our response: We thank the reviewer for appreciating the novelty, scientific 
significance, and clinical relevance of our machine learning-based Multi-Omics, 
Multicohort Assessment (MOMA) of digital pathology images. Below we answer 
the reviewer’s question in detail. 

 
 
My Concerns: 
1. CMS(consensus molecular sub) system is one of the most popular molecular 
subtyping system for colorectal cancer, which linked to many genomic features like MSI, 
CIMP and altered signaling pathways. Could MOMA be used for predicting CMS 
subtypes? I think It would be more informative if this model were made. 
 

Our response: We thank the reviewer for the suggestions. Following the 
reviewer’s suggestion, we have added a new analysis that uses MOMA to predict 
CMS subtypes. Our new results show that MOMA predicted CMS subtypes with 
an AUROC of 0.74 for colon cancer, an AUROC of 0.77 for rectal cancer, and 
AUROC = 0.66 when training a single model for both colon and rectal cancers 
(the new Supplemental Table 2 and Supplemental Figure 8). Although the 
prediction performance is not sufficiently high to warrant replacing molecular 
profiling for CMS classification, our results reveal that hematoxylin-and-eosin 
(H&E)-stained histopathology images contain previously unrecognized biological 
signals related to CMS subtypes. We have included these new results in the 
revised manuscript. 

 

RESPONSE TO REVIEWERS' COMMENTS



In the revised Methods section (page 8, the second paragraph of the revised 
manuscript): 

 
Multi-omics Characterization via Histopathology 

Using the MOMA platform, we conducted multi-omics subgroup 
predictions on colorectal cancer patients, with a focus on clinically actionable 
molecular aberrations. Specifically, we predicted the microsatellite instability 
(MSI) status (65 MSI-high patients; 389 non-MSI-high patients in TCGA), CpG 
island methylator phenotype (CIMP; 58 CIMP-high tumor patients; 396 CIMP-
low/negative tumor patients), BRAF c.1799T>A (p.V600E) mutation (48 patients 
with BRAF c.1799T>A (p.V600E) tumor; 529 patients with BRAF-wild-type 
tumor), and the most prevalent Consensus Molecular Subtypes (CMS; 152 
CMS2 (canonical) patients; 105 CMS4 (mesenchymal) patients) of colorectal 
cancer. These tasks were constructed as weakly-supervised classification tasks. 

 
 

In the revised Results section (page 19, the second paragraph): 
 

MOMA Predicted Consensus Molecular Subtypes using Histopathology 
Patterns 

The consensus molecular subtype (CMS) is a commonly used molecular 
subtyping system for colorectal cancer that addresses inconsistencies in gene-
expression-based classifications and reflects the biological differences in tumor 
characteristics42. To identify the histopathology patterns indicative of the CMS 
subtypes, we employed MOMA to classify the major CMS subtypes with 
sufficient numbers of samples (CMS2 and CMS4). Results show that MOMA 
achieved an AUROC of 0.66 ± 0.04 in the held-out test set not participating in the 
model development process (Supplemental Figure 8A and Supplemental Table 
1). When stratifying the analysis by the colon and rectal cancer groups, we saw a 
slightly improved performance in CMS prediction (AUROC = 0.74-0.77; 
Supplemental Table 2). MOMA indicated that regions of cancer-associated 
stroma and mucus are highly indicative of CMS2 and CMS4 (Supplemental 
Figure 8B and Supplemental Figure 8C). In particular, the concept scores of 
lymphocytes and tumors are 21.60% and 19.46%, respectively. 
 
The new Supplemental Figure 8: MOMA identified the association between 
CMS and histopathology image patterns. (A) MOMA characterized a 
moderate correlation between CMS2 and CMS4 in histopathology image 
features. Results from the TCGA held-out test set were shown. (B) Attention 
visualization of a histopathology image from a CMS2 patient. (C) Attention 



visualization of a histopathology image from a CMS4 patient. Regions of stroma, 
cancers, lymphocytes, and mucus received high attention in this molecular 
classification task. MUC: mucus; TUM: colorectal adenocarcinoma epithelium; 
STR: cancer-associated stroma; LYM: lymphocytes. 

 
 
 
2. Unbalanced positive and negative dataset used in training dataset(MSI: 65 vs389; 
CIMP: 58 vs 396; BRAF: 36vs524), and the bias maybe they split the dataset into the 
training, validation and test dataset by 3:1:1. Therefore, this bias should be noted during 
the model training process, or at least discussed? 
 

Our response: We thank the reviewer for this comment. Indeed, unbalanced 
classes pose challenges to training machine learning models. We employed all 
samples with available molecular profiles and randomly divided them into 
training, validation, and test datasets. Thus, the unbalanced classes reflect the 
prevalence of each class in our cohort. To address the challenge of unbalanced 
classes in the development of prediction models, we employed bag loss 
functions with inverted class weights informed by the number of instances in 
each class. Our approach allows machine learning models to account for the 
classes with fewer instances and prevent the model from biasing toward 
predicting all instances as the majority class. And we successfully validated our 
machine learning models in the independent Nurses’ Health Study and Health 
Professionals Follow-up Study (NHS-HPFS) datasets. We have revised the 
Methods section to clarify this point. 



 
In the revised Methods section (page 9, the second paragraph): 
 
Finally, we applied two loss functions in the prediction tasks. The first one was 
the bag loss function of standard binary or multiclass cross-entropy with the 
inverted class weights informed by the number of tiles in each class. The inverted 
class weights enabled machine learning models to account for the classes with 
fewer instances and prevent the models from biasing toward predicting all 
instances as the majority class. The other was the instance loss function of the 
tile-level classifiers. To compute the instance loss function, we first ranked the 
weights obtained from the attention-based multi-instance learning to select the 
top three clusters with positive labels and the bottom three clusters with negative 
labels. Next, we employed the smooth support vector machine37 with varying 
hyperparameter tau optimized for each task. We computed the total loss of the 
model as the sum of the bag loss function and the instance loss function. 

 
 
3. Why Only early-stage CRCs(I-II) were used for classifying short and long survivors 
and PFS. The author stated that "MOMA can be generalizable to multiple patient 
cohorts", I think that the stage III and IV shall not be ignored. Also, in general, early-
stage CRC has better survival than stage III, IV CRC, so I think the definition of "short" 
and "long" survivor (limited in early-stage CRC) is not precise here. 
 

Our response: We thank the reviewer for this suggestion. In the revised 
manuscript, we have added a new analysis that predicts the overall survival and 
progression-free survival outcomes of stage III patients (the new Figures 4 and 
5). Our results show that MOMA can distinguish shorter-term survivors from 
longer-term survivors among stage III patients receiving standard treatments as 
well. We further validated our results in independent patient cohorts with 
sufficient sample sizes. Because stage IV patients in our cohorts received 
heterogeneous treatments and we have a smaller sample size, we did not apply 
our approaches to stage IV patients. 

 
In addition, we have clarified the definition of “shorter-term” and “longer-term” 
survivors among stage I and stage II patients to highlight the additional 
prognosis-informing signals from whole-slide pathology images independent of 
the clinical stage. Taken together, we have successfully predicted the survival 
outcomes of both early-stage (stages I and II) and stage III CRC patients. We 
have revised our manuscript to reflect these changes. 

 



In the revised Methods section (page 10, the second paragraph): 
 

Overall Survival and Progression-Free Survival Prediction 
To demonstrate the extensibility of our MOMA platform to different prediction 
tasks, we connected our machine learning framework with the Weibull modeling 
methods38 to predict overall survival and progression-free survival outcomes of 
early-stage (stage I and stage II) and stage III colorectal cancer patients. We 
distinguished patients in the same stage groups into a “predicted longer-term 
survival group” and a “predicted shorter-term survival group,” and we used the 
log-rank test to evaluate their differences in actual survival outcomes. Stage IV 
patients received heterogeneous treatments and were thus not included in our 
stratified survival outcome prediction analyses. 

 
In the revised Results section (page 15, the second paragraph): 

 
Furthermore, we employed MOMA to predict both overall survival and 
progression-free survival outcomes of stage III colorectal cancer patients. 
Results showed that MOMA successfully identified patients’ overall survival 
outcomes in the TCGA held-out test set (Figure 4A), with a c-index of 0.66 and 
log-rank test p-value of 0.02 between the two predicted prognostic groups. We 
successfully validated our model in two independent external cohorts: NHS-
HPFS (Figure 4B; P = 0.02) and PLCO (Figure 4C; P = 0.02). On model 
visualization, we showed that dense clusters of adenocarcinoma cells are highly 
indicative of worse overall survival outcomes (Figures 4D and 4E). Similarly, 
MOMA successfully predicted patients’ progression-free survival outcomes 
(Figure 5A), with a c-index of 0.74 and log-rank test p-value of 0.02 between the 
two predicted prognostic groups in the TCGA held-out test set. These results are 
validated in our independent external cohorts from NHS-HPFS (Figure 5B; P = 
0.003). Similar to our overall survival results, model visualization showed that 
dense clusters of adenocarcinoma cells are highly indicative of worse 
progression-free outcomes (Figures 5D and 5E). Quantitative concept-based 
analyses revealed that regions of tumor-associated stroma and interactions of 
carcinoma cells with smooth muscle cells in the cancerous regions were related 
to unfavorable progression-free survival. 

 
The new Figure 4. MOMA predicted overall survival outcomes of stage III 
colorectal cancer patients using digital histopathology images, with the 
results validated in multiple independent cohorts. (A) MOMA successfully 
distinguished the shorter-term survivors from longer-term survivors using 
histopathology images (log-rank test P-value = 0.02). Results from the TCGA 



held-out test set are shown. (B) The machine learning model derived from 
MOMA is successfully validated in an independent external validation set from 
the Nurses’ Health Study and Health Professionals Follow-up Study cohorts (log-
rank test P-value < 0.05). (C) We further validated our overall survival prediction 
model in PLCO, a nationwide multi-center study cohort (log-rank test P-value = 
0.04). (D) Model prediction of a patient with longer-term overall survival. The 
model focused on regions of cancerous tissue and cancer-associated stroma 
when making the prediction in this example. (E) Interpretation of the overall 
survival prediction model. The prediction of a patient with shorter-term survival is 
shown in this figure panel. Cancerous tissue, cancer-associated stroma, and 
smooth muscle receive high attention weights in the overall survival prediction 
task. TUM: colorectal adenocarcinoma epithelium; STR: cancer-associated 
stroma; MUC: mucus; MUS: smooth muscle; LYM: lymphocytes. 

 
 

The new Figure 5. MOMA predicted progression-free survival outcomes of 
stage III colorectal cancer patients using digital histopathology images, 
with the results validated in independent patient cohorts. (A) MOMA 
successfully distinguished the shorter-term survivors from longer-term survivors 
using histopathology images (log-rank test P-value = 0.02). Results from the 
TCGA held-out test set are shown. (B) The machine learning model derived from 
MOMA is successfully validated in an independent external validation set from 
the Nurses’ Health Study and Health Professionals Follow-up Study cohorts (log-
rank test P-value = 0.003). (C) Model prediction of a patient with longer-term 
progression-free survival. The model focused on regions of cancerous tissue and 



cancer-associated stroma when making the prediction in this example. (D) 
Interpretation of the progression-free survival prediction model. The prediction of 
a patient with shorter-term survival is shown in this figure panel. Cancerous 
tissue, cancer-associated stroma, lymphocytes, and smooth muscle receive high 
attention weights in the overall survival prediction task. STR: cancer-associated 
stroma; MUC: mucus; TUM: colorectal adenocarcinoma epithelium; LYM: 
lymphocytes. 

 
 
 
4. The performance of MOMA is a little confusing. Although the authors described some 
texts on the performance of MOMA when compared with previous approaches, no detail 
data were shown. e.g., the 3rd point of "Result" section entitles "MOMA provided 
improved prediction of MSI status", while only the performance score of MOMA was 
displayed. 
 

Our response: We thank the reviewer for this question. Following the reviewer’s 
suggestion, we have included supplemental tables (the revised Supplemental 
Tables 3, 4, and 5) to compare the prediction performance of MOMA with the 
state-of-the-art models for predicting MSI, copy number alterations (CNAs), and 
whole-genome doubling. In the revised manuscript, we have conducted a 
Wilcoxon rank sum test to illustrate the performance difference and show that 
MOMA has significantly better performance in predicting CNAs of key genes in 
colon and rectal cancers, as well as in predicting whole-genome doubling in 



rectal cancer, compared with previous methods. We have included these results 
in the revised Results section. 

 
In the revised Results section (page 16, the first paragraph): 

 
MOMA Provided Improved Prediction of MSI Status using Histopathology 
Images 

To facilitate the treatment effectiveness prediction for immune checkpoint 
inhibitors, we employed MOMA to predict the MSI status of each patient. Results 
showed that the AUROC of the TCGA held-out test set is 0.88 ± 0.06 (Figure 
6A), and in the NHS-HPFS dataset the AUROC is 0.76 ± 0.04 (Figure 6B and 
Supplemental Table 1). Our methods improved the AUROC by 4% compared 
with the state-of-the-art methods13 (Supplemental Table 3). In both colon cancer 
and rectal cancer groups, MOMA showed correlations between histopathology 
images and MSI status (Supplemental Table 2). Model visualization further 
demonstrated that MOMA attended to lymphocytes, stroma, mucosa, and cancer 
regions when predicting MSI status (Figures 6C and 6D). 

 
In the revised Results section (page 16, the second paragraph): 

 
MOMA Predicted Copy Number Alterations (CNAs) and Expression Levels 
of Key Genes in Cancer Development 
We further examined the performance of MOMA in predicting copy number 
alterations (CNAs), whole-genome doubling, and overexpression of the BECN1 
gene using histopathology images. CNAs of many key genes, including FHIT and 
PTEN, have been implicated in carcinogenesis. Here we showed that MOMA 
predicts CNAs in FHIT and many other tumor suppressor genes (Figures 7A-C). 
Compared with PC-CHiP, a commonly used image-based CNA prediction 
method, MOMA attained substantially improved prediction performance 
(Supplemental Table 4). In addition to the previously reported histopathology-
CNA associations, MOMA further predicted amplifications in NOL4L, HM13, 
FOXS1, and deletions in WWOX, CCER1, among many others (Figures 7D-F). 
Furthermore, MOMA demonstrated improved prediction performance for whole-
genome doubling, compared with PC-CHiP (Supplemental Table 5). 

 
In the revised Discussion section (page 21, the third paragraph): 

Compared with previously published methods, our approaches achieved 
substantially improved prediction performance. For instance, we first reproduced 
a widely used patch-based convolutional neural network13 for MSI prediction 
using the TCGA dataset, and we showed that MOMA achieved a 4% 



improvement on the same dataset (Supplemental Table 3). For CNA and WGD 
prediction, our approaches outperform models derived by the state-of-the-art PC-
CHiP methods45 by 7-29% (Figure 7). Wilcoxon signed-rank tests confirmed that 
the performance difference is statistically significant in many clinically important 
genetic alterations, including BCL2L1 amplification46 47 and FHIT deletion48 
(Supplemental Table 4). Furthermore, we successfully predicted the copy 
number alterations of 14 additional genes and connected our attention-based 
deep learning framework with time-to-event models for survival prediction. These 
methods have the potential to guide clinical decision-making, suggest clinical trial 
enrollment, and reduce costs attributed to sequencing by serving as a screening 
tool. We further validated our models in two independent patient populations, i.e., 
the NHS-HPFS and the PLCO cohorts, which demonstrated the reliability of our 
approaches when applied to previously unseen populations33,49–51. 

 
The new Supplemental Table 3. Performance comparison between MOMA, a 
patch-based standard convolutional neural network, and a previously published 
method (Kather et al.) in MSI prediction. 

 MOMA Patch-based Kather et al. 

Fold 1 0.92 0.85 - 

Fold 2 0.92 0.87 - 

Fold 3 0.79 0.78 - 

Fold 4 0.94 0.94 - 

Fold 5 0.89 0.85 - 

Mean AUROC 0.88 0.85 0.84 

Wilcoxon Signed Rank Test P-Value  Not significant 

 
 

The new Supplemental Table 4. Performance comparison between MOMA and 
PC-CHiP in copy number variation prediction. 

 Gene P-value 

Deletion in Colon Cancer FAT1 Not significant 

PPP2R2A 3.08E-07 



FHIT 7.21E-62 

PTEN Not significant 

LINC00290 1.80E-136 

MACROD2 Not significant 

CSMD1 Not significant 

Amplification in Colon Cancer BCL2L1 2.71E-168 

ZNF217 Not significant 

Deletion in Rectal Cancer PPP2R2A 2.34E-87 

MACROD2 2.06E-28 

CSMD1 6.15E-54 

 

The new Supplemental Table 5. Performance of whole-genome doubling 
prediction of MOMA compared with that of PC-CHiP. 

 Colon Cancer Rectal Cancer 

MOMA PC-CHiP MOMA PC-CHiP 

Area Under the Receiver 
Operating Characteristic Curve 

0.72 0.65 0.63 0.51 

Wilcoxon Signed Rank Test P-
Value 

Not significant 5.12E-19 

 
 
5. Clinical value of MOMA is insufficiently evaluated. As the MOMA is designed for 
multiple tasks on clinical practice such as survival and alteration prediction, no data 
show the clinical value, i.e. can it substitute the current assays used by clinical 



platforms? For example, when MOMA is applied to predict the CRC progression (i.e. 
OS or PFS), how it compares to the known clinical features such staging, 
 

Our response: We thank the reviewer for this point. In our revised Results 
section, we have demonstrated that MOMA provides additional prognostic 
prediction beyond the current staging. For example, among stage I or II CRC 
patients undergoing the standard treatment, MOMA can further differentiate 
longer-term survivors and shorter-term survivors. In our newly added results, 
MOMA identified two distinct survival groups among stage III CRC patients as 
well. These results have demonstrated that MOMA augments, rather than 
substitutes, the known clinical predictors (e.g., staging) for patient prognosis. 
Following the reviewer’s suggestion, we have revised our Results and Discussion 
sections to elucidate this point. 

 
In the revised Results section (page 14, the second paragraph): 

 
MOMA Predicted Patients’ Overall Survival and Progression-Free Survival 

Early-stage colorectal cancer patients have heterogeneous survival 
outcomes. Although many clinical and molecular predictors have been proposed, 
they cannot fully explain the divergent prognoses. To address this challenge, we 
employed MOMA to predict both overall survival and progression-free survival 
outcomes of stage I-II colorectal cancer patients. Results showed that MOMA 
successfully identified patients’ overall survival outcomes in the TCGA held-out 
test set (Figure 2A), with a c-index of 0.67 and log-rank test p-value of 0.01 
between the two predicted prognostic groups. We further validated our model in 
two independent external cohorts: NHS-HPFS (Figure 2B; P = 0.0495) and 
PLCO (Figure 2C; P = 0.046), demonstrating the generalizability of our 
approaches. 

 
In the revised Results section (page 15, the second paragraph): 

 
Furthermore, we employed MOMA to predict both overall survival and 

progression-free survival outcomes of stage III colorectal cancer patients. 
Results showed that MOMA successfully identified patients’ overall survival 
outcomes in the TCGA held-out test set (Figure 4A), with a c-index of 0.66 and 
log-rank test p-value of 0.02 between the two predicted prognostic groups. We 
successfully validated our model in two independent external cohorts: NHS-
HPFS (Figure 4B; P = 0.0495) and PLCO (Figure 4C; P = 0.04). 

 
In the revised Discussion section (page 21, the second paragraph): 



 
In addition, our stage-stratified survival outcome prediction successfully 

identified patients with shorter overall and disease-free survival under the 
standard treatments. Our analyses revealed previously unreported 
histopathology patterns associated with patient prognosis, which complements 
clinical staging. This prognostic information will be useful in guiding clinical 
decision-making. For example, clinicians may provide closer follow-up to patients 
with suboptimal clinical prognoses, consider more aggressive treatment options, 
or enroll them in ongoing clinical trials44. 

 
 
6. The authors sometimes describe MOMA as a platform in the manuscript, however, I 
cannot find a web service or software/portal for potential MOMA users based on code 
availability. 
 

Our response: We thank the reviewer for this point. To make MOMA maximally 
accessible to pathologists, oncologists, and biomedical informatics researchers, 
we have built a new web portal that analyzes any pathology images uploaded by 
the users and employs our trained model to provide the predictions. This new 
web portal along with our released software source codes will allow researchers 
and practitioners to employ our system for pathology evaluation. 

 
In the revised Methods section (page 10, the first paragraph): 

 
To make MOMA easily accessible to pathologists, oncologists, and 

biomedical informatics researchers, we further developed a web portal 
(https://rebrand.ly/MOMA_demo) that allows users to upload pathology images 
and employ our trained models to generate predictions. Our source codes for 
data analyses and trained models could be found at https://github.com/hms-
dbmi/MOMA. 

 
 
7. The 2nd paragraph of introduction lacks the description about related research 
advances in the CRCs. 
 

Our response: We thank the reviewer for pointing this out. Following the 
reviewer’s suggestion, we have included recent literature related to CRC 
pathology and added a summary of the key advances and limitations of these 
research papers in the revised second and third paragraphs of the Introduction 
section. 



 
In the revised Introduction section (page 4, the second and third paragraphs): 

 
With the recent development of reliable whole-slide pathology scanners 

and high-performing computer vision techniques, quantitative pathology 
evaluation has become increasingly feasible4. Several studies using machine 
learning techniques reported remarkable diagnostic accuracy for various cancer 
types, such as lung, breast, ovarian, renal cell, and colorectal carcinomas5–12. 
Previous works also demonstrated unexpected correlations between 
histopathology image features and clinically actionable molecular variations, such 
as microsatellite instability and PTEN gene deletion, in colorectal carcinoma 
samples13,14. These studies indicate that high-resolution pathology images 
contain underutilized biomedical signals useful for personalizing cancer care15–20. 

Nonetheless, many computational challenges hinder the extraction of 
useful histopathology signals, and several reports expressed concerns about the 
generalizability of deep learning models21. Typical high-resolution digital 
pathology whole-slide images of colorectal cancer tissues contain up to billions of 
pixels, making it infeasible for standard convolutional neural networks to process 
the whole image at once. In addition, deep learning models are highly complex, 
and it is difficult to connect the image patterns discovered by these data-driven 
models with biological knowledge22. Furthermore, since there are a large number 
of parameters that researchers need to optimize in data-driven machine learning 
models, generalizability to other image acquisition methods remains a substantial 
challenge to many digital pathology models23. The lack of extensive validation in 
different patient cohorts diminished the applicability of machine learning models 
in clinical settings. 

 
 
8. Figure 1C/D and related descriptions are not clear, what can readers get from the 
quantification of microenvironment component? 
 

Our response: We thank the reviewer for this question. To address this issue, 
we have revised Figures 1C, 1D, and the associated figure legends to clarify the 
design of our interpretable machine learning approaches and our findings related 
to each prediction task. Specifically, the revised Figure 1D shows a summary of 
the regions receiving high attention for overall survival, disease-free survival, and 
molecular prediction tasks. These results have indicated the relative importance 
of morphologies in different microenvironments in predicting patient prognoses 
and molecular profiles. 

 



The revised Figure 1C and the associated figure legend: 

 
 

(C) Model visualization and interpretation. To enhance the interpretability of our 
machine learning approaches, we compute the importance of each image region 
to the prediction target by quantifying the performance decay due to occlusion of 
the region, and we develop a multi-task classification model to quantify the 
concept (e.g., lymphocyte, stroma, tumor, adipose tissue, mucin, etc.) score 
using patches whose importance weight is greater than 0.7. This method 
connects prior histopathology knowledge with quantitative importance metrics 
independently learned by the models. 

 
 

The revised Figure 1D and the associated figure legend: 



 

 
(D) A summary of the pathology concepts associated with survival and multi-
omics predictions. The concept scores are plotted on the log scale. OS: overall 
survival prediction in early-stage CRC; DFS: disease-free survival prediction in 
early-stage CRC; MSI: microsatellite instability prediction; BRAF: BRAF mutation 
status prediction; BECN: BECN-1 overexpression prediction; CIMP: CpG island 
methylator phenotype prediction. The major concepts visualized here include 
lymphocytes (LYM), cancer-associated stroma (STR), tissue debris (DEB), 
mucus (MUC), smooth muscle (MUS), colorectal adenocarcinoma epithelium 



(TUM), and adipose tissue (ADI). The score for each concept indicates the 
relative importance of each type of microenvironment in predicting patient 
prognoses or the selected multi-omics variations with clinical implications. 

 
 
9. It is weird that the author specifically highlight the "BECN1" in the CNV prediction 
section, please clarify. 
 

Our response: We thank the reviewer for pointing this out. Following the 
reviewer’s suggestion, we have revised the title and narratives of that section to 
highlight results from both copy number alterations (CNAs) and BECN1 
overexpression to avoid confusion. We have condensed our results in this 
section to fit the word limit for the journal. 

 
In the revised Results section (page 17, the first paragraph): 

 
MOMA Predicted Copy Number Alterations (CNAs) and Expression Levels 
of Key Genes in Cancer Development 

We further examined the performance of MOMA in predicting copy 
number alterations (CNAs), whole-genome doubling, and overexpression of 
BECN1 using histopathology images. CNAs of many key genes, including FHIT 
and PTEN, have been implicated in carcinogenesis. Here we showed that MOMA 
predicts CNAs in FHIT and many other tumor suppressor genes (Figures 7A-C). 
Compared with PC-CHiP, a commonly used image-based CNA prediction 
method, MOMA attained substantially improved prediction performance 
(Supplemental Table 4). In addition to the previously reported histopathology-
CNA associations, MOMA further predicted amplifications in NOL4L, HM13, 
FOXS1, and deletions in WWOX, CCER1, among many others (Figures 7D-F). 
Furthermore, MOMA demonstrated improved prediction performance for whole-
genome doubling, compared with PC-CHiP (Supplemental Table 5). 

Moreover, MOMA revealed the previously unknown correlation between 
histopathology image patterns and the expression levels of BECN1 
(Supplemental Figure 2A), with the results validated in the NHS-HPFS dataset 
(Supplemental Figure 2B and Supplemental Table 1). Stratified analyses by 
colon and rectal cancers showed similar prediction performance in both cancer 
groups (Supplemental Table 2). The highlighted regions of BECN1-high patients 
have high lymphocyte, mucus, and tumor scores, while the model focused on the 
stroma, mucus, and tumor regions when evaluating BECN1-low patients 
(Supplemental Figure 2C and Supplemental Figure 2D). 

 



 
 
Reviewer #2 (Remarks to the Author): expertise in machine learning and cancer 
prediction 
In this paper, the authors developed a multi-omics multi-cohort assessment (MOMA) 
platform based on digital pathology images to predict molecular biomarkers and patient 
survival in colorectal cancer. Strengths of the paper include: 
1. Three large patient cohorts (n=1,888) 
2. Methodology is state-of-the-art and clearly described. 
3. Model visualization and interpretation are a plus 
 

Our response: We thank the reviewer for recognizing the strengths of our study, 
including the scale, novelty, and interpretability of our Multi-Omics Multi-cohort 
Assessment (MOMA) platform. Below we answer the reviewer’s questions in 
detail.  

 
 
Weaknesses include: 
1. It is uncertain if proposed framework has any use clinically. First, prediction of patient 
prognosis may not make any difference in patient management. Second, the 
performance on using digital pathology images to predict survival and molecular 
biomarkers is only moderate. For example, c-index for predicting survival is only 0.67. 
The AUROC for predicting BRAF is only 0.68 in the TCGA test set and 0.66 in the NHS-
HPFS cohort. The AUROC for predicting CIMP is only 0.65 for TCGA and 0.64 for the 
NHS-HPFS. The proposed use for the model is to "provide timely decision support for 
treatment selection in resource-limiting regions using only the H&E-stained 
histopathology slides or in settings of limited tissue availability". However, with the 
current performance, it is uncertain if this is possible. Combination with other modalities 
such as imaging or clinical variables may be able to achieve better results. 
 

Our response: We thank the reviewer for the questions. Following the reviewer’s 
suggestions, we have revised our manuscript substantially and conducted 
additional analyses to demonstrate the potential benefits of our prediction 
models. Below are our answers to the two questions raised by the reviewer. 

 
(1) Our overall survival and progression-free survival prediction models provide 
additional prognostic signals for patients in the same stage group. Currently, 
colorectal cancer patients with the same clinical stage and received standard 
treatments have divergent survival outcomes. We showed that our machine 
learning-based models can identify additional prognostic signals from the high-



resolution histopathology slides and distinguish longer-term survivors from 
shorter-term survivors in the same stage groups. Our model can provide useful 
prognostic information, which can influence treatment decision-making. For 
example, clinical applications of our prognostic predictions include personalizing 
the clinical follow-up schedule (e.g., closer clinical follow-up for patients with 
predicted poorer prognosis), treatment selection (e.g., enrolling patients in clinical 
trials or considering more aggressive forms of treatments), or advance care 
planning for patients with poorer prognosis. In addition, we have added a new 
analysis showing that our methods can be generalized to predict the overall 
survival and progression-free survival outcomes of stage III colorectal cancer 
patients. Our results are successfully validated in two independent cohorts (i.e., 
the Nurses’ Health Study-Health Professional Follow-Up Study cohort and the 
PLCO cohort). For example, we have shown that our overall survival prediction 
model differentiated longer-term survivors from shorter-term survivors among 
stage III colorectal cancer patients, with log-rank test P-values of 0.02 in both 
independent validation cohorts. We have revised our manuscript to reflect these 
changes and included the new analyses on prognosis prediction for stage III 
patients. 

 
In the revised Results section (pages 14-15): 

 
MOMA Predicted Patients’ Overall Survival and Progression-Free Survival 

Early-stage colorectal cancer patients have heterogeneous survival 
outcomes. Although many clinical and molecular predictors have been proposed, 
they cannot fully explain the divergent prognoses. To address this challenge, we 
employed MOMA to predict both overall survival and progression-free survival 
outcomes of stage I-II colorectal cancer patients. Results showed that MOMA 
successfully identified patients’ overall survival outcomes in the TCGA held-out 
test set (Figure 2A), with a c-index of 0.67 and log-rank test p-value of 0.01 
between the two predicted prognostic groups. We further validated our model in 
two independent external cohorts: NHS-HPFS (Figure 2B; P = 0.0495) and 
PLCO (Figure 2C; P = 0.046), demonstrating the generalizability of our 
approaches. We visualized our models and showed that dense clusters of 
adenocarcinoma cells are highly indicative of worse overall survival outcomes 
(Figures 2D and 2E). Analyses that stratified colon cancer and rectal cancer 
samples show similar prediction performance in both cancer groups 
(Supplemental Table 2). Quantitative concept-based analyses revealed that 
regions of carcinoma cells, tumor-associated stroma, and interactions of 
carcinoma cells with smooth muscle cells in the cancerous regions were related 
to unfavorable overall survival (Figure 1D). 



In addition, MOMA reliably predicted the progression-free survival 
outcomes of the same cohorts of patients. In the TCGA held-out test set, our 
progression-free survival outcome prediction model achieved a c-index of 0.88 
and a log-rank test p-value of 0.02 in distinguishing the prognostic groups (Figure 
3A). We further demonstrated the applicability of our model in the NHS-HPFS 
cohorts (Figure 3B; c-index = 0.6, P < 0.005). When stratifying the datasets into 
colon cancer and rectal cancer groups, our approaches successfully identified 
the prognostic differences in both groups (Supplemental Table 2). A sensitivity 
analysis that was restricted to a surgery-only subgroup demonstrated the 
robustness of our results (Supplemental Figure 1). Attention visualization showed 
that morphology patterns in tumor-associated stroma and groups of 
adenocarcinoma cells are highly indicative of progression-free survival (Figures 
3C and 3D). Compared with the overall survival prediction, our progression-free 
survival model put more emphasis on infiltrating lymphocytes and regions 
associated with extracellular mucin in its prediction. 

Furthermore, we employed MOMA to predict both overall survival and 
progression-free survival outcomes of stage III colorectal cancer patients. 
Results showed that MOMA successfully identified patients’ overall survival 
outcomes in the TCGA held-out test set (Figure 4A), with a c-index of 0.66 and 
log-rank test p-value of 0.02 between the two predicted prognostic groups. We 
successfully validated our model in two independent external cohorts: NHS-
HPFS (Figure 4B; P = 0.0495) and PLCO (Figure 4C; P = 0.04). On model 
visualization, we showed that dense clusters of adenocarcinoma cells are highly 
indicative of worse overall survival outcomes (Figures 4D and 4E). Similarly, 
MOMA successfully predicted patients’ progression-free survival outcomes 
(Figure 5A), with a c-index of 0.74 and log-rank test p-value of 0.02 between the 
two predicted prognostic groups in the TCGA held-out test set. These results are 
validated in our independent external cohorts from NHS-HPFS (Figure 5B; P = 
0.003). Model visualization showed that dense clusters of adenocarcinoma cells 
are highly indicative of worse progression-free outcomes (Figures 5D and 5E). 
Quantitative concept-based analyses revealed that regions of tumor-associated 
stroma and interactions of carcinoma cells with smooth muscle cells in the 
cancerous regions were related to unfavorable progression-free survival. 

 
In the revised Discussion section (page 21, the second paragraph): 

 
Our models demonstrated that high-resolution histopathology slides 

contain robust predictive signals for genetic aberrations and survival outcomes. 
Since genetic profiling requires abundant tissue samples, additional processing 
time, and costs, our prediction models can provide timely decision support for 



treatment selection in resource-limiting settings using only the H&E-stained 
histopathology slides or in settings of limited tissue availability. In addition, our 
stage-stratified survival outcome prediction successfully identified patients with 
shorter overall and disease-free survival under the standard treatments. Our 
analyses revealed previously unreported histopathology patterns associated with 
patient prognosis, which complements clinical staging. This prognostic 
information will be clinically useful because clinicians can provide closer follow-
up to patients with suboptimal clinical prognoses, consider more aggressive 
treatment options, or enroll them in ongoing clinical trials44. 

 
 
 
 
 

(2) Our results show that MOMA successfully differentiates patients with different 
overall survival and progression-free survival outcomes. For example, among 
early-stage colorectal cancer patients, MOMA achieved a c-index of 0.88 and 
log-rank test P-value of 0.02 in differentiating patients with different progression-
free survival outcomes. This result is further validated in our independent 
validation cohorts (e.g., log-rank test P-value < 0.005 in the NHS-HPFS cohorts). 
Because patients’ survival outcomes are affected by multiple factors, many 
widely used predictors, including tumor grade, have c-indices less than 0.6. 
Results from our data-driven analyses exceed these existing predictors and 
provide further information into the tumor microenvironments (the revised Figure 
1D) related to prognosis. 

 
We agree with the reviewer that the AUROC of predicting BRAF and 

CIMP is moderate. Nonetheless, our systematic analyses revealed multi-omics 
biomarkers with high correlation with histopathology imaging features (e.g., 
AUROC = 0.88 for predicting MSI status and AUROC = 0.84 for predicting FAT1 
deletion) as well as those with weaker associations (e.g., BRAF mutation and 
CIMP). In addition, our approaches outperformed state-of-the-art methods for 
pathology-based genetic alteration prediction (the new Supplemental Table 4). 
We agree with the reviewer that combining other imaging (e.g., radiology 
imaging) and clinical variables may further improve the prediction performance 
and include this point in our revised Discussion section. 

 
 

In the revised Results section (page 17, the first paragraph): 
 



MOMA Predicted Copy Number Alterations (CNAs) and Expression Levels 
of Key Genes in Cancer Development 

We further examined the performance of MOMA in predicting copy 
number alterations (CNAs), whole-genome doubling, and overexpression of 
BECN1 using histopathology images. CNAs of many key genes, including FHIT 
and PTEN, have been implicated in carcinogenesis. Here we showed that MOMA 
predicts CNAs in FHIT and many other tumor suppressor genes (Figures 7A-C). 
Compared with PC-CHiP, a commonly used image-based CNA prediction 
method, MOMA attained substantially improved prediction performance 
(Supplemental Table 4). In addition to the previously reported histopathology-
CNA associations, MOMA further predicted amplifications in NOL4L, HM13, 
FOXS1, and deletions in WWOX, CCER1, among many others (Figures 7D-F). 
Furthermore, MOMA demonstrated improved prediction performance for whole-
genome doubling, compared with PC-CHiP (Supplemental Table 5). 

 
 

In the revised Discussion section (page 21, the third paragraph): 
 

Compared with previously published methods, our approaches achieved 
substantially improved prediction performance. For instance, we first reproduced 
a widely used patch-based convolutional neural network13 for MSI prediction 
using the TCGA dataset, and we showed that MOMA achieved a 4% 
improvement on the same dataset (Supplemental Table 3). For CNA and WGD 
prediction, our approaches outperform models derived by the state-of-the-art PC-
CHiP methods45 by 7-29% (Figure 7). Statistical tests confirmed that the 
performance difference is statistically significant in many clinically important 
genetic alterations, including BCL2L1 amplification46 47 and FHIT deletion48 
(Supplemental Table 4). Furthermore, we successfully predicted the copy 
number alterations of 14 additional genes and connected our attention-based 
deep learning framework with time-to-event models for survival prediction. These 
methods have the potential to guide clinical decision-making, suggest clinical trial 
enrollment, and reduce costs attributed to sequencing by serving as a screening 
tool. We further validated our models in two independent patient populations, i.e., 
the NHS-HPFS and the PLCO cohorts, which demonstrated the reliability of our 
approaches when applied to previously unseen populations33,49–51. 

 
In the revised Discussion section (page 23, the second paragraph): 

 
Furthermore, incorporating patients’ radiology imaging data, pathology 

profiles, molecular aberrations, and clinical characteristics may further improve 



the prognostic prediction for colorectal cancer patients. Additional research is 
required to identify the optimal prognostic prediction methods and enable 
personalized treatments and advance care planning. 

 
 
2. Reporting the AUROCs alone is not enough for machine learning study to predict 
binary outcomes. Other performance metrics include accuracy, sensitivity and 
specificity. For imbalanced outcomes as studied in this paper, precision-recall is a very 
helpful performance metric to add. 
 

Our response: We thank the reviewer for this suggestion. Following the 
reviewer’s suggestion, we have added a new table (Supplemental Table 1) in our 
revised Results section to show these additional performance metrics. 
Specifically, we provided accuracy, sensitivity, specificity, and precision (using 
the standard 0.5 cutoff point for the predicted probability) for each task we 
performed. 

 
The new Supplemental Table 1. Additional model performance metrics for 
multi-omics characterization via histopathology image analyses. 

 

 Dataset Accuracy Precision Sensitivity 
(i.e., 
Recall) 
 

Specificity AUROC 

Microsatellite 
Instability 

TCGA 0.80 0.75 0.89 0.75 0.88 

NHS-HPFS 0.76 0.67 0.86 0.57 0.76 

BRAF Mutation 
c.1799T>A 
(p.V600E) 

TCGA 0.67 0.63 0.78 0.61 0.71 

NHS-HPFS Mutation Loci Not Available 

BECN1 
Overexpression 

TCGA 0.60 0.58 0.73 0.61 0.67 

NHS-HPFS 0.85 0.83 0.67 0.64 0.67 

CpG Island 
Methylator 
Phenotype 

TCGA 0.77 0.65 0.68 0.55 0.66 

NHS-HPFS 0.68 0.63 0.67 0.53 0.63 



Consensus 
Molecular Subtypes 

TCGA 0.69 0.86 0.73 0.57 0.66 

NHS-HPFS Transcriptomic Data Not Available 

 
 
3. No detail is given on how the genomic data are extracted from the data source (e.g., 
from the TCGA). 
 

Our response: We thank the reviewer for this point. To address this question, 
we have added a new paragraph to describe the methods we employed to 
extract genomic and transcriptomic data from our data sources. These detailed 
methods will allow researchers to replicate our results in full. 

 
In the revised Methods section (page 6, the first paragraph): 

 
We acquired the digital whole-slide pathology images, whole-exome 

sequencing results, and RNA-sequencing data of TCGA patients from the 
National Cancer Institute Genomic Data Commons Portal 
(https://portal.gdc.cancer.gov/). Mutation status, copy number alterations 
(including genetic amplifications and deletions), microsatellite instability, and 
CpG island methylator phenotypes (CIMP) of both colon and rectal 
adenocarcinomas were extracted from the cBioPortal 
(https://www.cbioportal.org/). Whole genome doublings and consensus molecular 
subtypes (CMS) of colorectal cancers were obtained from a previous TCGA 
publication29. 

 
 
4. Colon and rectal cancer are sufficiently different to warrant subgroup analyses rather 
than grouping together as one cohort. 
 

Our response: We thank the reviewer for this point. In the revised manuscript, 
we have conducted new analyses that separated colon cancer and rectal cancer 
in all prediction tasks. We have excluded tasks where the sample sizes are 
limited (i.e., fewer than 10 patients have death events in survival prediction 
analyses). Results have shown that we can predict survival outcomes and most 
of the clinically important genomic variations in both colon cancer and rectal 
cancer subsets, with AUROC levels comparable to the pooled results. We have 
included these new results in the revised Results section and the new 
Supplemental Table 2. 



 
In the revised Results section (page 14, the second paragraph): 

 
Early-stage colorectal cancer patients have heterogeneous survival outcomes. 
Although many clinical and molecular predictors have been proposed, they 
cannot fully explain the divergent prognoses. To address this challenge, we 
employed MOMA to predict both overall survival and progression-free survival 
outcomes of stage I-II colorectal cancer patients. Results showed that MOMA 
successfully identified patients’ overall survival outcomes in the TCGA held-out 
test set (Figure 2A), with a c-index of 0.67 and log-rank test p-value of 0.01 
between the two predicted prognostic groups. We further validated our model in 
two independent external cohorts: NHS-HPFS (Figure 2B; P = 0.0495) and 
PLCO (Figure 2C; P = 0.046), demonstrating the generalizability of our 
approaches. We visualized our models and showed that dense clusters of 
adenocarcinoma cells are highly indicative of worse overall survival outcomes 
(Figures 2D and 2E). Analyses that stratified colon cancer and rectal cancer 
samples show similar prediction performance in both cancer groups 
(Supplemental Table 2).  

 
 

The new Supplemental Table 2. Performance metrics of histopathology-based 
multi-omics characterization and survival prediction stratified by colon and rectal 
cancers. 

 

 Stage Data C-index P-value AUROC 

Overall Survival I & II TCGA (COAD) 0.73 0.04 - 

TCGA (READ) 0.70 0.04 - 

PLCO (COAD) 0.78 0.04 - 

PLCO (READ) 0.72 0.03 - 

NHS-HPFS (COAD) 0.72 0.03 - 

NHS-HPFS (READ) 0.71 0.04 - 

III TCGA (COAD) 0.69 0.02 - 



TCGA (READ) 0.73 0.04 - 

PLCO (COAD) 0.70 0.04 - 

PLCO (READ) 0.72 0.04 - 

NHS-HPFS (COAD) 0.65 <0.001 - 

NHS-HPFS (READ) 0.70 0.01 - 

Progression-Free 
Survival 

I & II TCGA (COAD) 0.66 0.04 - 

TCGA (READ) 0.60 0.02 - 

NHS-HPFS (COAD) 0.66 <0.001 - 

NHS-HPFS (READ) 0.62 <0.001 - 

III TCGA (COAD) 0.75 0.02 - 

TCGA (READ) 0.74 0.02 - 

NHS-HPFS (COAD) 0.73 <0.001 - 

NHS-HPFS (READ) 0.76 <0.001 - 

Microsatellite 
Instability 

I - IV TCGA (COAD) - - 0.93 

TCGA (READ) - - 0.73 

NHS-HPFS (COAD) - - 0.85 

NHS-HPFS (READ) - - 0.70 

BRAF Mutation 
(BRAF c.1799T>A) 

I - IV TCGA (COAD) - - 0.69 

TCGA (READ) - - - 



NHS-HPFS (COAD) - - - 

NHS-HPFS (READ) - - - 

BECN1 
Overexpression 

I & IV TCGA (COAD) - - 0.67 

TCGA (READ) - - 0.71 

NHS-HPFS (COAD) - - 0.70 

NHS-HPFS (READ) - - 0.68 

CpG Island Methylator 
Phenotype 

I - IV TCGA (COAD) - - 0.67 

TCGA (READ) - - - 

NHS-HPFS (COAD) - - 0.65 

NHS-HPFS (READ) - - - 

Consensus Molecular 
Subtypes 

I - IV TCGA (COAD) - - 0.74 

TCGA (READ) - - 0.77 

NHS-HPFS (COAD) - - - 

NHS-HPFS (READ) - - - 

 
 

In the revised Results section (page 14, the third paragraph): 
 

In addition, MOMA reliably predicted the progression-free survival 
outcomes of the same cohorts of patients. In the TCGA held-out test set, our 
progression-free survival outcome prediction model achieved a c-index of 0.88 
and a log-rank test p-value of 0.02 in distinguishing the prognostic groups (Figure 
3A). We further demonstrated the applicability of our model in the NHS-HPFS 
cohorts (Figure 3B; c-index = 0.6, P < 0.005). When stratifying the datasets into 



colon cancer and rectal cancer groups, our approaches successfully identified 
the prognostic differences in both groups (Supplemental Table 2). 

 
 

In the revised Results section (page 16, the second paragraph): 
 

Results showed that the AUROC of the TCGA held-out test set is 0.88 ± 
0.06 (Figure 6A), and in the NHS-HPFS dataset the AUROC is 0.76 ± 0.04 
(Figure 6B and Supplemental Table 1). Our methods improved the AUROC by 
4% compared with the state-of-the-art methods by Kather et al13 (Supplemental 
Table 3). In both colon cancer and rectal cancer groups, MOMA showed 
correlations between histopathology images and MSI status (Supplemental Table 
2). 

 
 

In the revised Results section (page 17, the second paragraph): 
Moreover, MOMA revealed the previously unknown correlation between 

histopathology image patterns and the expression levels of BECN1 
(Supplemental Figure 2A), with the results validated in the NHS-HPFS dataset 
(Supplemental Figure 2B and Supplemental Table 1). Stratified analyses by 
colon and rectal cancers showed similar prediction performance in both cancer 
groups (Supplemental Table 2). 

 
 

In the revised Results section (page 19, the second paragraph): 
 

To identify the histopathology patterns indicative of the CMS subtypes, we 
employed MOMA to classify the major CMS subtypes with sufficient numbers of 
samples (CMS2 and CMS4). Results show that MOMA achieved an AUROC of 
0.66 ± 0.04 in the held-out test set not participating in the model development 
process (Supplemental Figure 8A and Supplemental Table 1). When stratifying 
the analysis by the colon and rectal cancer groups, we saw a slightly improved 
performance in CMS prediction (AUROC = 0.74-0.77; Supplemental Table 2). 

 
 
5. In the prediction of outcome, only stage I and stage II colorectal cancer is used. 
However, the treatment and prognosis for colon and rectal cancer are very different as 
well as the work-up. For example, the first-line diagnostic imaging for rectal cancer is 
MRI and it is frequently treated with radiation before surgery. 
 



Our response: We thank the reviewer for this suggestion. To address this issue, 
we have conducted new analyses that separate colon cancer and rectal cancer 
patients into separate datasets, and we have run our data-driven analyses on 
each set. Results showed that MOMA successfully identified longer-term 
survivors from shorter-term survivors in both colon and rectal cancer groups in 
this stratified analysis. We have included these new results in the revised Results 
section.  

 
The revised sections are included in the response to the preceding 

comment (comment 4). 
 
 
6. It is unclear throughout the manuscript what state-of-the-art technique is MOMA 
being compared to and what the results are. 
 

Our response: We thank the reviewer for this question. In the revised 
manuscript, we have clarified the state-of-the-art approach (i.e., PC-CHiP for 
genomic prediction and Kather et al. for MSI prediction) we compared with. In 
addition, we have compared the performance of our MOMA platform with that of 
these prior arts using the Wilcoxon rank sum test, and we added new 
Supplemental Tables 4 and 5 to summarize our results. These results show that 
our approach has achieved statistically significant improvement in predicting 
gene amplification and deletion in many clinically relevant genes. We have 
included these results in the revised Results and Discussion sections. 

 
In the revised Results section (page 16, the second paragraph): 

 
To facilitate the treatment effectiveness prediction for immune checkpoint 

inhibitors, we employed MOMA to predict the MSI status of each patient. Results 
showed that the AUROC of the TCGA held-out test set is 0.88 ± 0.06 (Figure 
6A), and in the NHS-HPFS dataset the AUROC is 0.76 ± 0.04 (Figure 6B and 
Supplemental Table 1). Our methods improved the AUROC by 4% compared 
with the state-of-the-art methods by Kather et al.13 (Supplemental Table 3). 

 
In the revised Results section (page 17, the first paragraph): 

 
Compared with PC-CHiP, a commonly used image-based CNA prediction 

method, MOMA attained substantially improved prediction performance 
(Supplemental Table 4). In addition to the previously reported histopathology-
CNA associations, MOMA further predicted amplifications in NOL4L, HM13, 



FOXS1, and deletions in WWOX, CCER1, among many others (Figures 7D-F). 
Furthermore, MOMA demonstrated improved prediction performance for whole-
genome doubling, compared with PC-CHiP (Supplemental Table 5). 

 
The revised Figure 7 and legend: 

 
Figure 7. MOMA provides improved copy number alteration prediction 
compared with the current state-of-the-art methods and predicts additional 
copy number alterations not achieved in previous studies. We systematically 
predicted common copy number alterations of colorectal cancer tissues and 
compared the prediction performance with that of PC-CHiP45. The mean and 
range of AUROC are shown. (A) Prediction of common genetic deletions in 
patients with colon adenocarcinoma. (B) Prediction of common genetic 
amplification in patients with colon adenocarcinoma. (C) Prediction of common 
genetic deletions in patients with rectal adenocarcinoma. (D) Prediction of 
additional genetic deletions in colon adenocarcinoma. (E) Prediction of additional 
genetic amplifications in colon adenocarcinoma. (F) Prediction of additional 
genetic deletions in rectal adenocarcinoma.  



 



 
The revised Supplemental Table 4: 

 
Supplemental Table 4. Performance comparison between MOMA and PC-CHiP 
in copy number variation prediction. 

 Gene P-value 

Deletion in Colon Cancer FAT1 Not significant 

PPP2R2A 3.08E-07 

FHIT 7.21E-62 

PTEN Not significant 

LINC00290 1.80E-136 

MACROD2 Not significant 

CSMD1 Not significant 

Amplification in Colon 

Cancer 

BCL2L1 2.71E-168 

ZNF217 Not significant 

Deletion in Rectal Cancer PPP2R2A 2.34E-87 

MACROD2 2.06E-28 

CSMD1 6.15E-54 

 
 

The new Supplemental Table 5: 
 

Supplemental Table 5. Performance of whole-genome doubling prediction of 
MOMA compared with that of PC-CHiP. 



 

 Colon Cancer Rectal Cancer 

MOMA PC-CHiP MOMA PC-CHiP 

Area Under the Receiver 
Operating Characteristic Curve 

0.72 0.65 0.63 0.51 

Wilcoxon Signed Rank Test P-
Value 

Not significant 5.12E-19 

 
 
 
Reviewer #3 (Remarks to the Author): expert in colorectal cancer pathology 
 
This is a well-designed study evaluating the MOMA platform in colorectal cancer 
patients. The MOMA platform combines histological and genomic data (copy number 
alterations, gene expression profile and microstatellite instability status). The authors 
have validated the platform in a large cohort and some of the results are expected or 
well known (eg.lymphocyte rich population at the invasive margin of the tumour 
associated with MSI) 
 
The results are quite robust, and this is a very welcome paper in the development of AI 
in histopathology. However there are several concerns/ limitations in this paper that 
need to be addressed 
 

Our response: We thank the reviewer for appreciating the rigorous validation, 
robustness, and novelty of our Multi-omics Multi-cohort Assessment system for 
quantitative colorectal cancer pathology analyses. Below we answer the 
reviewer’s questions in detail. 

 
 
1. The study includes stage I and stage II CRC but, particularly stage II, is a very 
heterogenous group in which risk factors (iv. vascular invasion -mainly extramural-, 
tumour budding…) play an important role in the prognosis. There is no mention in the 
paper that these parameters were evaluated. Depending on the presence of some of 
this risk factors stage II CRC patients might receive chemoradiotherapy and the 
prognosis (DFS, OS…) will be different in this subgroup. Is there any data on treatment 
(were all the patients chemonaive or some patients received adjuvant chemotherapy) 
 



Our response: We thank the reviewer for this question. We agree with the 
reviewer that differences in treatments due to the differences in the known risk 
factors can play a role in patients’ prognoses. To address this issue, we have 
conducted a new analysis on stage I and II patients who only received surgery, 
but not chemotherapy or radiotherapy. Results have shown that our survival 
prediction methods can predict the progression-free survival outcomes of stage I 
and II patients who received surgery only. In addition, we have added an 
additional analysis on the prognostic prediction of stage III patients who have not 
received neoadjuvant chemotherapy, and we have shown that MOMA can 
predict progression-free survival in this subgroup of patients as well. Because 
human-annotated qualitative pathology findings (e.g., vascular invasion) are not 
reliably reported in all cases in our study cohorts, we focused on the prediction of 
patient subgroups with relatively homogeneous treatments, as the reviewer 
suggested. We have added these results to the new Supplemental Figure 1 and 
the results section of the revised manuscript. 
 
 
In the revised Results section (page 15, the first paragraph): 
 

When stratifying the datasets into colon cancer and rectal cancer groups, 
our approaches successfully identified the prognostic differences in both groups 
(Supplemental Table 2). A sensitivity analysis that was restricted to a surgery-
only subgroup demonstrated the robustness of our results (Supplemental Figure 
1). 

 
 

The new Supplemental Figure 1. MOMA predicted survival outcomes of 
stage I and II colorectal cancer patients receiving surgery only, and stage III 
cancer patients without neoadjuvant therapy using digital histopathology 
images. (A) MOMA successfully distinguished the overall shorter-term survivors 
from longer-term survivors using histopathology images (log-rank test P-value = 
0.015) of stage I and stage II patients receiving surgery only. (B) Among stage I 
and stage II patients without radiotherapy or chemotherapy, MOMA successfully 
distinguished progression-free survival groups using histopathology images (log-
rank test P-value = 0.047). (C) MOMA successfully distinguished the overall 
shorter-term survivors from longer-term survivors using histopathology images 
(log-rank test P-value = 0.024) of stage III patients without neoadjuvant therapy. 
(D) Among stage III patients without neoadjuvant therapy, MOMA successfully 
distinguished the progression-free survival groups using histopathology images 
(log-rank test P-value = 0.018). 



 

 
2. Contrary to the first set of patients /samples studied, the validation cohort included 
TMAs. This might have affected the results. The authors should explained how the 
assessed the 10 types of regions in the TMAs. Did TMAs include different areas from 
the tumour (eg. Core, stroma, invasive front)? or only 1 core per tumour was analysised 
or only one region per tumour? 
 

Our response: We thank the reviewer for this question. To generate our TMA 
dataset, we selected one representative core per tumor due to limits in the 
amounts of available samples and budget. Two experienced colorectal cancer 
pathologists (J.N. and S.O.) have reviewed the cancer samples and selected the 
cores to ensure the representativeness of the cores. Thus, our TMA image 
includes regions of tumor cells, stroma, tumor/stroma interfaces (i.e., microscopic 
invasive edges), lymphocyte infiltration, and other pathological changes 
characteristic of the tumor sample from which the core was generated. Our 
validation using TMA samples has demonstrated the generalizability of our 
approaches to different imaging modalities for cancer pathology samples. 



Following the reviewer’s suggestion, we have clarified this point in the revised 
manuscript. 

 
In the revised Methods section (page 6, the second paragraph): 

 
In addition, we obtained PLCO data from the National Cancer Institute 

Cancer Data Access System, and we collected clinical, genomic profiles, 
immunohistochemistry, and hematoxylin-and-eosin (H&E) stained tissue 
microarray images from the NHS and the HPFS coordinated by Harvard T.H. 
Chan School of Public Health, Harvard Medical School, and Brigham and 
Women’s Hospital. Notably, colorectal tumor tissue blocks in the NHS and the 
HPFS were retrieved from over a hundred hospitals throughout the U.S. with 
variable tissue age, which increased the generalizability of our findings30. For 
each histopathology from the NHS and HPFS cohort, two experienced colorectal 
cancer pathologists reviewed the cancer samples and selected the cores to 
ensure the representativeness of the cores. Thus, the TMA images include 
regions of tumor cells, stroma, tumor/stromal interfaces (i.e., microscopic tumor 
invasive edges), lymphocyte infiltration, and other pathological changes 
characteristic of the tumor sample from which the core was generated. Our multi-
center study was approved by the Institutional Review Boards of Harvard Medical 
School (IRB20-1509). 

 
 
3. The conclusion on “dense clusters of adenocarcinoma cells being highly indicative of 
worse OS” (page 13) contradicts current knowledge that tumour with low-stroma (ie high 
proportion of epithelial cells and low amount of stroma) behave better than tumour with 
high-stroma content (GW van Pelt 2018; J Gao 2021…). This needs clarification 
 

Our response: We thank the reviewer for this question. These findings do not 
necessarily contradict the results from van Pelt et al. and Gao et al., because our 
analyses discovered that our machine learning models leverage pathology 
patterns in the tumor cell clusters, rather than the relative amount of tumor or 
stroma in the sample, to predict the overall survival and disease-free survival 
outcomes. The importance scores shown in Figure 1D indicate the amount of 
attention our machine learning model paid to different regions of the pathology 
slides in making the prediction. The scores are not directly related to the amount 
of area occupied by the tumor or stroma in the slides. These results show that in 
addition to the known pathology indicators of colorectal patient prognosis, our 
data-driven approach systematically identified other signals strongly correlated 
with survival outcomes, and we successfully validated our results in two 



independent validation sets (Nurse’s Health Study/Health Professionals Follow-
up Study and PLCO cohorts). We have revised our Methods sections to elucidate 
this important point. Following the reviewer’s suggestion, we have also clarified 
our findings in our Results section. 

 
In the revised Methods section (page 12, the second paragraph): 

 
Model Visualization and Interpretation 

We developed a novel model interpretation method that incorporates 
model-derived concept scores and expert-annotated concepts based on prior 
pathology knowledge. Specifically, we first quantified the importance of each 
image region by occluding all pixels in the region and computing the extent to 
which the predicted outcome changed when the region was occluded. We define 
the importance index of each image region as the numerical change of the 
predicted probability due to the occlusion of the region. To connect crucial 
regions with pathology interpretation, we leverage 100,000 histopathology 
images annotated by gastrointestinal pathologists with seven concepts: 
colorectal adenocarcinoma epithelium, cancer-associated stroma, lymphocytes, 
smooth muscle, mucus, adipose tissue, and tissue debris. We developed a deep 
learning model that classified image regions into these pathology concepts with 
an accuracy of 99.38%, and we employed this model to compute the concept 
scores for regions with importance indices greater than 0.7. We scaled our 
concept score to a range of [0, 100], where 100 indicates the region has the 
highest relevance to the concept of interest. Thus, our concept scores indicate 
the amount of attention our machine learning model pays to different regions of 
pathology changes in making the prediction, and it is not directly related to the 
amount of area occupied by each pathology pattern in the slides. 

 
In the revised Results section (page 14, the second paragraph): 

 
Quantitative concept-based analyses revealed that regions of carcinoma 

cells, tumor-associated stroma, and interactions of carcinoma cells with smooth 
muscle cells in the cancerous regions received high attention when MOMA 
predicted patients’ overall survival outcomes (Figures 1D). 

 
 
4. The entire discussion around BRAF and response to double/ triple chemotherapy 
(BEACON study) needs to be properly addressed. The authors claime that MOMA can 
predict BRAF mutation but not what type of mutation. The only actionable mutation is 
V600E but around 20% of CRC patients have non-V600E mutations (of uncertain 



clinical significance but clearly not associated with poor prognosis or response to 
encorafenib-cetuximab-binimetinib). Without knowledge of what type of BRAF mutation 
the data is of very limited value. 
 

Our response: We thank the reviewer for this suggestion. Following the 
reviewer’s suggestion, we have revised Table 1 to summarize the mutational 
profiles of BRAF in our cohorts. Because only the c.1799T>A (p.V600E) mutation 
(i.e., the V600E mutation) is currently considered clinically actionable, we have 
conducted a new analysis that predicts the c.1799T>A (p.V600E) mutation, and 
the results show that our approaches can predict this specific mutation in BRAF 
with an AUROC of 0.71±0.07 (the new Supplemental Figure 3). These new 
results demonstrate that our platform can predict actionable mutations with direct 
implications in cancer therapy. As treatment options evolve due to the advent of 
new targeted therapy drugs, our methods can be tailored to systematically 
identify pathological signals indicative of actionable mutations in other loci or 
other genes. We have added these results to the revised manuscript and revised 
our Methods and Results sections accordingly. 

 
In the revised Methods section (page 8, the second paragraph): 

 
Using the MOMA platform, we conducted multi-omics subgroup 

predictions on colorectal cancer patients, with a focus on clinically actionable 
molecular aberrations. Specifically, we predicted the microsatellite instability 
(MSI) status (65 MSI-high patients; 389 non-MSI-high patients in TCGA), CpG 
island methylator phenotype (CIMP; 58 CIMP-high tumor patients; 396 CIMP-
low/negative tumor patients), BRAF c.1799T>A (p.V600E) mutation (48 patients 
with BRAF c.1799T>A (p.V600E) tumor; 529 patients with BRAF wild-type 
tumor), and the most prevalent Consensus Molecular Subtypes (CMS; 152 
CMS2 (canonical) patients; 105 CMS4 (mesenchymal) patients) of colorectal 
cancer. These tasks were constructed as weakly-supervised classification tasks.  

 
In the revised Results section (page 18, the first paragraph): 

 
To identify the morphological impact of clinically important genomic 

variations, we leveraged MOMA to systematically predict the mutation status of 
BRAF, HIF1A, and PIK3CA. Results showed that MOMA identified a moderate 
histopathology signal for predicting BRAF c.1799T>A (p.V600E) mutation in the 
TCGA test set, with an AUROC of 0.71±0.07 (Supplemental Figure 3A and 
Supplemental Table 1). To further identify the morphological patterns associated 
with this actionable genetic aberration, we visualized the attention distribution of 



our models in Supplemental Figure 3B and Supplemental Figure 3C. The 
concept scores of mucus, stroma, and tumor regions for BRAF mutation with 
c.1799T>A (p.V600E) detection are 19.89, 18.94, and 16.87, respectively (Figure 
1D). When classifying samples with BRAF mutation at any loci (n=529) with 
those without BRAF mutation, we also showed that MOMA can identify the 
morphological signals associated with BRAF mutations in general (Supplemental 
Figures 4A and 4B). 

 
 The revised Table 1: 

Table 1. Patient characteristics of our study cohorts. 
Patient Characteristics TCGA NHS-HPFS PLCO 

Number of Patients N=628 N=927 N=333 

Age (Standard Deviation) 66.3±12.8 62.4±9.6 65.0±4.7 

Sex Male 334 (53.2%) 413 (44.6%) 213 (64.0%) 

Female 294 (46.8%) 512 (55.3%) 120 (36.0%) 

Race Not Available 255 (40.61%) 390 (42.07%) 175 (52.6%) 

Black or African 
American 

65 (10.35%) 8 (0.86%) 8 (2.4%) 

White 295 (46.97%) 526 (56.74%) 120 (36.0%) 

Asian 12 (1.91%) 3 (0.32%) 26 (7.8%) 

Native American or 
Alaska Native 

1 (0.16%) 0 (0%) 0 (0.0%) 

Pacific Islander 0 (0.0%) 0 (0%) 4 (1.2%) 

Tumor 
Location 

Proximal Colon 258 (42.5%) 469 (50.4%) 127 (38.1%) 

Distal Colon 185 (30.5%) 280 (30.1%) 88 (26.4%) 

Rectum 164 (27.0%) 181 (19.5%) 118 (35.4%) 



Disease Stage Stage I 108 (17.2%) 198 (21.4%) 49 (14.7%) 

Stage II 229 (36.5%) 281 (30.3%) 64 (19.2%) 

Stage III 181 (28.8%) 248 (26.8%) 50 (15.0%) 

Stage IV 90 (14.3%) 134 (14.5%) 16 (4.8%) 

Unknown 20 (3.2%) 66 (7.1%) 154 (46.2%) 

MSI High 65 (14.3%) 150 (16.7%) - 

Low/negative 389 (85.7%) 750 (83.3%) - 

BRAF 
mutation 

BRAF mutation 
in any loci 

62 (10.4%) 136 (15.0%) - 

BRAF c.1799T>A 
(p.V600E) mutation 

48 (8.32%) - - 

Wild-Type 529 (89.5%) 770 (85.0%) - 

CIMP High 58 (12.8%) 155 (18.1%) - 

Low/negative 396 (87.2%) 703 (81.9%) - 

 
 

The new Supplemental Figure 3. MOMA identified the association between 
BRAF c.1799T>A (p.V600E) mutation and histopathology image patterns. (A) 
MOMA characterized a moderate correlation between BRAF c.1799T>A 
(p.V600E) mutation and histopathology image features. Results from the TCGA 
held-out test set were shown. (B) Attention visualization of a histopathology 
image from a BRAF wild-type patient. (C) Attention visualization of a 
histopathology image from a BRAF c.1799T>A (p.V600E) mutation patient. 
Regions of muscle, stroma, cancers, and mucus received high attention in this 
molecular classification task. TUM: colorectal adenocarcinoma epithelium; STR: 
cancer-associated stroma; MUC: mucus; MUS: smooth muscle. 



 
 

 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

All my concerns have been carefully and properly addressed. I have no further comment. 

Reviewer #2 (Remarks to the Author): 

The authors have satisfactorily addressed many concerns of the current reviewer including 

separation of analysis for colon and rectal cancer, addition of other metrics for imbalanced dataset, 

how genomic data are extracted from source, comparison of current approach with SOTA, etc. 

The authors acknowledged that combination with clinical and imaging data may further improve 

the results and added this to their discussion. 

The remaining concerns include the low C-index for overall survival on the external dataset (for 

example, 0.67 for the TCGA dataset in stage 1-2 and 0.66 in stage III). Also low AUROC in 

predicting cpG island methylator phenotype and molecular subtypes (AUROC in the 0.6-0.7 range). 

Although the authors attempt to point out the supposed potential clinical utility of MOMA, it is very 

uncertain the developed platform will have any role clinically whether now or in the future, 

especially given equivocal results on the external validation as stated above. 

Reviewer #3 (Remarks to the Author): 

The authors have addressed adequate most of the concerns and have made amendments in the 

manuscript. 



Reviewer #1 (Remarks to the Author): 
All my concerns have been carefully and properly addressed. I have no further comment. 
 
Our response: We thank the reviewer for appreciating our additional analyses to address the 
comments raised previously. 
 
Reviewer #2 (Remarks to the Author): 
The authors have satisfactorily addressed many concerns of the current reviewer including 
separation of analysis for colon and rectal cancer, addition of other metrics for imbalanced 
dataset, how genomic data are extracted from source, comparison of current approach with 
SOTA, etc. 
The authors acknowledged that combination with clinical and imaging data may further improve 
the results and added this to their discussion. 
 
Our response: We thank the reviewer for appreciating our stratified analyses, the addition of 
other performance metrics, details on our data extraction process, and comparisons between 
our novel methods and the current state-of-the-art methods. As the reviewer pointed out, we 
have added discussions on future directions on combining clinical and imaging data in the 
prediction models. Below we answer the reviewer’s additional comment in detail. 
 
The remaining concerns include the low C-index for overall survival on the external dataset (for 
example, 0.67 for the TCGA dataset in stage 1-2 and 0.66 in stage III). Also low AUROC in 
predicting cpG island methylator phenotype and molecular subtypes (AUROC in the 0.6-0.7 
range). Although the authors attempt to point out the supposed potential clinical utility of MOMA, 
it is very uncertain the developed platform will have any role clinically whether now or in the 
future, especially given equivocal results on the external validation as stated above. 
 
Our response: We thank the reviewer for pointing out the prediction performance of some of 
our models included in this systematic study. We agree with the reviewer that our survival 
prediction model did not perfectly predict the overall survival outcomes of all individuals. In 
addition, a few molecular prediction tasks included in our analytical plan did not attain an area 
under the receiver operating characteristic curve (AUROC) that warrants replacements of the 
current methods for generating ground truth (e.g., genomic sequencing for molecular subtype 
determination). Nonetheless, our survival prediction framework showed that novel quantitative 
pathology profiles can provide additional signals that complement known prognostic indicators 
(e.g., cancer stage) that are used clinically. In addition, we have attained significantly better 
performance in many molecular prediction tasks (e.g., microsatellite instability, whole-genome 
doubling, and copy number alterations in genes) compared with the current state-of-the-art 
methods. Following the reviewer’s suggestion, we clarified the clinical implications of our proof-
of-concept validation study and identified future research directions that could further improve 
the prediction performance of these models. 
 
In the revised discussion section: (page 21, the second paragraph) 
 

 RESPONSE TO REVIEWERS' COMMENTS



Our models demonstrated that high-resolution histopathology slides contain useful 
predictive signals for genetic aberrations and survival outcomes. Because genetic profiling 
requires additional tissue samples, processing time, and costs, our prediction models that use 
only the H&E-stained histopathology slides can provide timely decision support for treatment 
selection in resource-limiting settings or in clinical scenarios with limited tissue availability. In 
addition, our stage-stratified survival outcome prediction successfully identified patients with 
shorter overall and disease-free survival under the standard treatments. These results showed 
that our machine learning approaches extracted stage-independent morphological signals 
indicative of patients’ clinical outcomes. Because patient prognosis depends on many clinical 
factors, no prediction models can perfectly identify the survival outcomes of individual patients. 
Nonetheless, our approach unveiled previously unknown histopathology patterns related to 
patient prognosis, which could be useful in guiding clinical decision-making. For example, 
clinicians may provide closer follow-up to patients with suboptimal clinical prognoses, consider 
more aggressive treatment options, or enroll them in ongoing clinical trials44.  
 
Reviewer #3 (Remarks to the Author): 
The authors have addressed adequate most of the concerns and have made amendments in 
the manuscript. 
 
Our response: We thank the reviewer for appreciating our extensive amendments and 
additional analyses included in the previous revision. 
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